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Abstract

We consider the problem of testing graph expansion in the bounded degree model. We give a
property tester that given a graph with degree bound d, an expansion bound α, and a parameter
ε > 0, accepts the graph with high probability if its expansion is more than α, and rejects it with
high probability if it is ε-far from any graph (with degree bound 2d) with expansion Ω(α2). The

algorithm runs in time Õ(n
0.5+µ

d
2

εα2 ) for any given constant µ > 0.

1 Property Testing of Expansion

We are given an input graph G = (V,E) on n vertices with degree bound d. Assume that d is a
sufficiently large constant. Given a cut (S, S̄) (where S̄ = V \ S) in the graph, let E(S, S̄) be the

number of edges crossing the cut. The expansion of the cut is E(S,S̄)
min{|S|,|S̄|} . The expansion of the

graph, αG, is the expansion of the minimum expansion cut in the graph.
We can estimate graph expansion using random walks. Consider the following slight modification

of the standard random walk on the graph: starting from any vertex, the probability of choosing
any outgoing edge is 1/2d, and with the remaining probability, the random walk stays at the current
node. Thus, for a vertex of degree d′ ≤ d, the probability of a self-loop is 1−d′/2d ≥ 1/2. This walk
is symmetric and reversible; therefore, its stationary distribution is uniform over the entire graph.
Thus, the conductance of a cut (S, S̄) in the graph is exactly its expansion divided by 2d. The
conductance of the graph, ΦG, is the conductance of the minimum conductance cut in the graph.
Thus, ΦG = αG/2d.

The graph is represented by an adjacency list, so we have constant time access to the neighbors
of any vertex. The tester is given two parameters Φ and ε. Each of these will be assumed to be at
most some sufficiently small constant. The tester must (with high probability) accept if ΦG > Φ
and reject if G is ε-far from having ΦG > cΦ2 (for some absolute constant c), even when the degree
is allowed to be 2d. This means that G has to be changed at εdn edges (either removing or adding)
to make the conductance > cΦ2 - keeping the degrees to be at most 2d. Note that this formulation
in terms of the conductance is equivalent to the property testing problem given in the abstract,
since the conductance and expansion in the graph are related by scaling. We can always assume
that ε ≤ 1/4d. If not, then we can simply set ε to be 1/4d in our tester and this will not affect the
results.

This formulation was first considered by Goldreich and Ron [2], who described an approach
towards designing the required property tester. They proposed an algorithm, but analysis relied
on an unproven combinatorial conjecture. Note that we solve a weaker version of their problem,
because we only reject graphs that are far from being expanders with degree bound 2d (instead of
d). Our algorithm uses the same ideas as their paper, but we use different algebraic techniques to
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prove different combinatorial results which suffice to complete the analysis. Now we present our
main result:

Theorem 1.1 For any constant µ > 0, there is an algorithm which runs in time O(n1/2+µ log(n) log(1/ε)
εΦ2 )

and with high probability, accepts any graph with degree bound d whose conductance is at least Φ,

and rejects any graph that is ε-far from a graph of conductance at least Ω(Φ2) with degree bound 2d.

2 Description of the Property Tester

We now present the tester. We first define a procedure called Vertex Tester which will be used
by the actual tester.

Vertex Tester

Input: Vertex v ∈ V .
Parameters: ` = 3 ln n/Φ2 and m = Ω(n(1+µ)/2).

1. Perform m random walks of length ` from s.

2. Let A be the number of pairwise collisions between the endpoints of these walks.

3. The quantity A/
(m

2

)

is the estimate of the vertex tester. If A/
(m

2

)

≥ (1+2n−µ)/n, then output
Reject, else output Accept.

Now, we define the actual property tester.

Expansion Tester

Input: Graph G = (V,E).
Parameters: t = Ω(ε−1) and N = Ω(log(ε−1)).

1. Choose a set S of t random vertices in V .

2. For each vertex v ∈ S:

(a) Run Vertex Tester on v for N trials.

(b) If a majority of the trials output Reject, then the Expansion Tester aborts and
outputs Reject.

3. Output Accept.

3 Proof of Theorem 1.1

Let us fix some notation. The probability of reaching v by performing a random walk of length l
from s is pl

s,v. The collision probability from s is denoted by γl(s) =
∑

v(p
l
s,v)

2. The norm of the
discrepancy from the stationary distribution will be denoted by ∆t(s):

∆l(s)
2 =

∑

v∈V

(pl
s,v − 1/n)2 =

∑

v∈V

(pl
s,v)

2 − 1/n = γl(s) − 1/n

Since l will usually be equal to `, in that case we drop the subscripts. The relationship between
∆(s) and γ(s) is central to the functioning of the tester. The paramater ∆(s) is a measure of
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how well a random walk from s mixes. The parameter γ(s) is something that can be estimated in
sublinear time, and by the relationship, allows us to test mixing of random walks in sublinear time.
The following is basically proven in [2]:

Lemma 3.1 The estimate of γ(s), viz. A/
(m

2

)

, provided by the Vertex Tester lies outside the

range [(1 − 2n−µ)γ(s), (1 + 2n−µ)γ(s)] with probability < 1/3.

Proof: For every i < j ≤ m, define a 0/1 random variable Xij which is 1 iff the ith and jth
walks share the same endpoint. Let A =

∑

i,j Xij , the total number of pairwise collisions. Note that

E[Xij ] = γ and E[A] = γ(s)
(m

2

)

. We now bound the variance var(A).
Note that Xij and Xkl are independent when {i, j} and {k, l} are disjoint. For clarity, we will

denote
(m

2

)

by M . Set X ij = Xij − γ(s).

var(A) = E[(A − µM)2]

= E[(
∑

i,j

Xij)
2]

≤
∑

i,j

E[X
2
ij] +

∑

(i,j),(i′,j′)
i6=i′,j 6=j′

E[XijXi′j′ ] + 6
∑

i<j<k

E[X ijXik]

≤ γ(s)M + 0 + 6

(

m

3

)

∑

v

p3
s,v

Since Xij and Xi′j′ are independent, E[XijXi′j′ ] = E[X ij ]E[Xi′j′ ] = 0. The product X ijX ik

is 1 iff the ith, jth, and kth walks end at the same vertex, and the probability of that is
∑

v p3
s,v.

Using Cauchy-Schwartz, we can show that
∑

v p3
s,v ≤ γ(s)3/2. Thus,

var(A) ≤ γ(s)M + 4(γ(s)M)3/2 ≤ 5(γ(s)M)3/2

By Chebyschev’s inequality, for any k > 0,

Pr[|A − γ(s)M | > k(γ(s)M)3/4] < 1/k2

This proves that the estimate provided by the Vertex Tester, viz. A/M , lies outside the range
[(1 − 2n−µ)γ(s), (1 + 2n−µ)γ(s)] with probability < 1/3. 2

For clarity, we set σ = n−µ. We now have the following corollary:

Corollary 3.2 The following holds with probability of error < ε/3. Let s ∈ S, the random sample

chosen by the Expansion Tester. If γ(s) < (1+σ)/n, then the majority of the N trials of Vertex

Tester run on v return Accept. If γ(s) > (1+6σ)/n, then the majority of the N trials of Vertex

Tester run on v return Reject.

This is an easy consequence of the fact that we run N = Ω(log(ε−1)) trials, by an direct appli-
cation of Chernoff’s bound and using Lemma 3.1. We are now ready to analyze the correctness of
our tester. First, we show the easy part.

Claim 3.3 If ΦG > Φ, then the Expansion Tester accepts with probability at least 2/3.
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Proof: Let λG be the second largest eigenvalue of the transition matrix of the random walk on
G. It is well known (see, e.g., [3]) that λG ≤ 1 − Φ2

G/2 < 1 − Φ2/2. By the standard rapid mixing
analysis, for all s, v ∈ V :

|ps,v − 1/n| ≤ λ`
G < (1 − Φ2/2)3Φ

−2 lnn ≤ 1/n1.5

As a result, ∆(s)2 < 1/n2, and γ(s) < (1 + σ)/n for all s ∈ V . By Corollary 3.2, the tester
accepts with probability > 2/3. 2

We now show that if G is ε-far from having conductance Ω(Φ2), then the tester rejects with high
probability. Call a vertex s weak if γ(s) > (1+6σ)/n, all others will be called strong. Suppose there
are more than εn weak vertices. Then with high probability, the random sample S chosen by the
Expansion Tester has a weak vertex, since the sample has Ω(ε−1) random vertices. Thus, the
Expansion Tester will reject with high probability.

Let us therefore assume that there are at most εn weak vertices. Now, we will show that εdn
edges can be added to make the conductance Ω(Φ2).

We first start with a useful lemma. Let M denote the transition matrix of the random walk.
The matrix L = I − M is the Laplacian (I denotes the identity matrix). The eigenvalues of this
matrix are of the form (1 − λ), where λ is an eigenvalue of M .

Lemma 3.4 Consider a set S ⊂ V of size s < n/2 such that the cut (S, S) has conductance less

than δ. Then, for any integer l > 0, there exists a v ∈ S such that ∆l(v) > (2
√

s)−1(1 − δ)l.

Proof: Denote the size of S by s (s < n/2). Let us consider the starting distribution ~p where:

pv =

{

1/s v ∈ S
0 v /∈ S

Let ~u = ~p −~1/n. Note that ~uM t = ~pM t −~1/n. For clarity -

uv =

{

1/s − 1/n v ∈ S
−1/n v /∈ S

Let 1 = λ1 ≥ λ2 · · · ≥ λn > 0 be the eigenvalues of M and ~e1, ~e2, · · · , ~en be the corresponding
orthogonal normalized eigenvectors. Note that ~e1 is the ~1/

√
n. We can represent ~u =

∑

i αi~ei. Here,
α1 = 0, since ~u ·~1 = 0.

∑

i

α2
i = ‖~u‖2

2

= s

(

1

s
− 1

n

)2

+
n − s

n2

=
1

s
− 1

n

Taking the Laplacian L:

~u>L~u = ~u>I~u − ~u>M~u

= ‖u‖2
2 −

∑

i

α2
i λi
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On the other hand:

~u>L~u =
∑

i<j

Mij(ui − uj)
2 <

δds

2
× 1

2d
× 1

s2
=

δ

4s

Putting the above together:

∑

i

α2
i λi >

(

1

s
− 1

n

)

− δ

4s

=
1

s

(

1 − δ

4

)

− 1

n

If λi > (1− δ), call it heavy. Let H be the index set of heavy eigenvalues, and L the index set of
the light ones. Since

∑

i α
2
i λi is large, we expect many of the αi corresponding to heavy eigenvalues

to be large. This would ensure that the starting distribution ~p will not mix rapidly.

∑

i∈H

α2
i λi +

∑

i∈L

α2
i λi >

1

s

(

1 − δ

4

)

− 1

n

Setting x =
∑

i∈H α2
i :

x + (
∑

i

α2
i − x)(1 − δ) >

1

s

(

1 − δ

4

)

− 1

n

We therefore get:

δx +

(

1

s
− 1

n

)

(1 − δ) >

(

1

s
− 1

n

)

− δ

4s

x >

(

1

s
− 1

n

)

− 1

4s

≥ 1

4s
∵ n ≥ 2s (1)

We note that ~uM l =
∑

i αiλ
l~ei.

‖~uM l‖2
2 =

∑

i

α2
i λ

2l
i

≥
∑

i∈H

α2
i λ

2l
i

>
1

4s
(1 − δ)2l

So ‖~uM l‖ >
1

2
√

s
(1 − δ)l

For every node v ∈ V , let ~fv be the distribution that is completely concentrated on v. Then

~u = 1
|S|

∑

v∈S(~fv − ~1
n), and hence ~uM l = 1

|S|
∑

v∈S(~fvM
l − ~1

n). Now, ~fvM
l − ~1

n is the discrepancy
vector of the probability distribution of the random walk starting from v after l steps. Thus, by
Jensen’s inequality, we conclude that 1

|S|
∑

v∈S ∆l(v) ≥ ‖~uM l‖ > 1
2
√

s
(1 − δ)l. Hence, there is some

v ∈ S for which ∆l(v) > (2
√

s)−1(1 − δ)l. 2

Lemma 3.5 Consider sets T ⊆ S ⊆ V such that the cut (S, S̄) has conductance < δ. Let |T | =

(1 − θ)|S|. Assume 0 < θ ≤ 1
8 . Then for some v ∈ T , ∆t(v) > (1−2

√
2θ)2

2
√

s
(1 − δ)t.
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Proof: Let ~uS (resp., ~uT ) be the uniform distribution over S (resp., T ) minus
~1
n . Let s and t

be the sizes of S and T resp. Let ~uS =
∑

i αi~ei and ~uT =
∑

i βi~ei be representation of ~uS and ~uT

in the basis {~e1, . . . , ~en}, the unit eigenvectors of M . Note that α1 = β1 = 0 since ~uS and ~uT are
orthogonal to ~1.

Since the conductance of S is < δ, by (1), we have that

∑

i∈H

α2
i >

1

4s
.

We have

‖~uS − ~uT ‖2 =
1

t
− 1

s
=

θ

(1 − θ)s
≤ 2θ

s
.

Furthermore,

‖~uS − ~uT ‖2 =
∑

i

(αi − βi)
2 ≥

∑

i∈H

(αi − βi)
2.

Using the triangle inequality ‖~a −~b‖ ≥ ‖~a‖ − ‖~b‖, we get that

∑

i∈H

β2
i ≥





√

∑

i∈H

α2
i −

√

∑

i∈H

(αi − βi)2





2

>

[

1

2
√

s
−

√
2θ√
s

]2

≥ (1 − 2
√

2θ)2

4s
.

Finally, reasoning as before, we get that ‖~uT M t‖ > (1−2
√

2θ)2

2
√

s
(1− δ)t, and thus, by Jensen’s inequal-

ity, there is a v ∈ T such that ∆t(v) > (1−2
√

2θ)2

2
√

s
(1 − δ)t. 2

Lemma 3.6 If there are less than εn weak vertices, then εdn edges can be added to make the

conductance Ω(Φ2), while ensuring that all degrees are at most 2d.

Proof: We iterate over the weak vertices, and start adding edges randomly as follows. At any
stage, there is a subset F ⊆ V of at most n/4 “forbidden” nodes. Initially, F is empty. For each
weak vertex v, we repeat the following process d times. We choose a random node u in V \ F and
add the edge {u, v}. We then add u to F . Once we have d edges to v, we move on to the next weak
vertex. Since we add at most εdn edges this way (note that we can assume this is less than n/4),
the size of F can never be more than n/4. This process gives us a new graph G′. Note that no node
in G′ has degree more than 2d. We now show that G′ (with non-zero probability) has conductance
at least Ω(Φ2).

Consider any subset S ⊂ V of size m (m < n/2). Suppose that at least a 1/10-fraction of the
vertices in S are weak. At least dm/10 edges with an endpoint in S were randomly chosen. The
probability that the random edge has both endpoints in S is at most m

3n/4 ≤ 2/3, since |V \F | ≥ 3n/4

at any stage, and m ≤ n/2.
The expected number of these edges that lie completely in S is ≤ dm/15. By the Chernoff-

Hoeffding bounds, the probability that more than md/12 randomly chosen edges lie completely in
S is less than n−Ω(md) ≤ 1/3nm+1, if we assume d is a large enough constant.

Taking a union bound over all sets of size m (the number of which is at most nm), and then
summing over all m, we get the with probability at least 2/3, none of these events happen, and thus
at least at least md/60 edges cross the cut (S, S). Therefore, the conductance of this cut is at least
1/120 > Ω(Φ2), since Φ ≤ 1.
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Now, suppose that at most a 1/10-fraction of the vertices in S are weak. For any strong vertex
s, γ(s) ≤ (1 + 6σ)/n and thus ∆(s) ≤

√

6σ/n. Let T be the set of all strong vertices in S. Note
that |T | ≥ (9/10)|S|. Consider the cut (S, S). By Lemma 3.5, if the cut (S, S) has conductance δ

(before adding the new edges), then for some constant b =
(1−2

√
1/5)2√
2

, we have

b√
n

(1 − δ)` <

√

6

n1+µ

This implies δ = Ω(Φ2). Since adding the new edges only increases the conductance, the conductance
of the cut (S, S̄) is also Ω(Φ2).

Therefore, ΦG′ = Ω(Φ2). 2
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