EecPaSHlY O CORETSE RepsTesERtations™

llias Diakonikolag Homin K. Le€ Kevin Matulef Krzysztof Onak
Columbia University ~ Columbia University MIT MIT
ilias@cs.columbia.edu homin@cs.columbia.edu matulef@mit.edu konak@mit.edu
Ronitt Rubinfeld Rocco A. Servedio Andrew Wari*
MIT Columbia University Columbia University
ronitt@theory.csail.mit.edu rocco@cs.columbia.edu atwl2@columbia.edu
Abstract

We describe a general method for testing whether a function imput variables has a concise repre-
sentation. The approach combines ideas from the junta feéSisoher et al. [6] with ideas from learning
theory, and yields property testers that make poly) queries (independent of) for Boolean function
classes such asterm DNF formulas (answering a question posed by Parnagd. ¢12]), sizes decision
trees, sizes Boolean formulas, and sizeBoolean circuits.

The method can be applied to non-Boolean valued functi@sekaas well. This is achieved via a gener-
alization of the notion ofariationfrom Fischer et al. to non-Boolean functions. Using thisegafization we
extend the original junta test of Fischer et al. to work fonABoolean functions, and give pély'e)-query
testing algorithms for non-Boolean valued function classech as size-algebraic circuits ands-sparse
polynomials over finite fields.

We also prove aﬁl(\/E) query lower bound for nonadaptively testiggparse polynomials over finite
fields of constant size. This shows that in some instancegjemeral method yields a property tester with
query complexity that is optimal (for nonadaptive algomit) up to a polynomial factor.

1. Introduction

Suppose you are given black-box access to a program corgmarinnknown function. You would like
to gain some understanding of the program by querying it\wgifees as possible. A natural first question
is whether the program has some sort of concise represamtagiit representable by a small decision tree?
a small DNF formula, Boolean circuit, or algebraic circugi®parse polynomial?

In this paper we study the problem of testing whether a fondtias a concise representation for various
different types of representations, including those noerell above. We work in the standard model of
property testing Namely, we assume that we have black-box query access takarown functionf :

*Supported in part by NSF grant CCF-04-30946 and an AlexaBd@nassis Foundation Fellowship.

TSupported in part by NSF award CCF-0347282 and by NSF awaf-@23664.

tSupported in part by an NSF graduate fellowship.

$Supported in part by NSF grant 0514771.

YSupported in part by NSF grant 0514771.

ISupported in part by NSF award CCF-0347282, by NSF award 0823664, and by a Sloan Foundation Fellowship.
**Supported in part by NSF award CCF-0347282 and by NSF awafl@@23664.

ISSN 1433-8092

Q" — X, and we are interested in algorithms that accept any fumetioich has a concise representation
of the desired type and reject any function which-far from having such a representation (i.e. for every
function f’ which has such a representatighand f’ disagree on at least anfraction of inputs). As is
standard in property testing, we assume that queries tautietion are the limiting resource (rather than
computation time), and we would like to obtain algorithmsosé query complexity is independentgfthe
number of inputs to the function.

Previous work on testing function classesThere has been considerable research on testing functions
for various types of representations. Our work is most tliygootivated by the paper of Parnasal.[12],
who gave algorithms for testing whether Boolean functigns {0, 1}"*—{0, 1} have certain very simple
representations as Boolean formulae. They gav@@ri¢)-query algorithm for testing whethégris a single
Boolean literal or a Boolean conjunction, andéfsz /€)-query algorithm for testing whethgtis ans-term
monotone DNF. Parnast al. posed as an open question whether a similar testing resuliecabtained for
the broader class of general (hon-monotosigrm DNF formulas.

Other closely related results include the following: Axi1/¢)-query algorithm for testing whether a
function can be represented as a linear form over a finiteiejtven in Blumet al.[2]. This algorithm was
subsequently generalized in several works to test whetloan be represented as a low-degree polynomial.
In particular, [1, 8, 9] consider the case whgis defined over a small finite field. Fischefral.[6] gave an
algorithm to test whether a Boolean functign Q™ — {0,1} is aJ-junta (i.e. depends only on at maost
of its n arguments) with query complexity polynomial jhand1/e.

Other research in the area includes the work of Kearns andRdnwvho gave testing algorithms for the
classes of interval functions over the continuous intef¥al] and for neural networks and decision trees
over the continuous cubi®, 1]”. Their results are not comparable to ours because they 6iéfm the
“standard” property testing results in several ways; fog tning, they view the dimensiom as a constant
and their algorithms have query complexity that dependsqeantially) onn.

Our Results. Our main result is a general algorithm that can be used tovwtksther an unknown
function f : Q™ — X belongs to one of many different representation classdengsas the representation
class satisfies certain conditions. We show that this dlguoriyields property testers for many classes
that were not previously known to be testable. These inctietdsion lists, size-decision trees, size-
branching programss-term DNF (resolving the aforementioned open question oh#&set al.), sizes
Boolean formulas, size-Boolean circuits, and-sparse polynomials ové,.! For each of these classes the
testing algorithm uses pdly, 1/¢) many queries, independent of the numbef inputs to the function (the
running time is exponential ig, though linear im). These testing results are summarized in the top part of
Table 1. We note that our general algorithm can also be esisdwn to yield property testers for all of the
classes tested in [12]; the query complexities would bén8lidarger than in [12], but would not require a
specialized algorithm for each problem.

Our second contribution is a generalization of the notiowvarfation given in [6] to functions with
non-Boolean ranges. This generalization, and the pr@sene establish for the generalized variation, lets
us extend the junta test of [6] to functions with non-Booleanges. It also allows us to use our general
algorithm to achieve testers for non-Boolean valued famctiasses such as sizelgebraic circuits, size-
algebraic computation trees, andgparse polynomials over finite fields (see the bottom of dakl

Our third main contribution is a lower bound; we show that aop-adaptive algorithm to testsparse
polynomials over finite fields of constant size must m@l{Q/E) queries. Since this is within a polynomial
factor of our upper bound, this result shows that in at leastinstance our general algorithm yields a tester
that is nearly optimal. (For testing other representatiasses, there is a larger gap between our upper

1We remind the reader thatdFis a subclass af’, the existence of a testing algorithm 18r doesnotimply the existence of a
testing algorithm fo€; thus, for example, our testing result for Boolean circddes not imply the results for weaker representations
such as Boolean formulas or DNF formulas.

Class of functions \

Number of Queries

Reference\

Boolean functionsf : {0,1}" — {0,1}
Boolean literals (dictators), conjunctions O(1/¢) [12]
s-term monotone DNFs O(s%/e) [12]
J-juntas O(J?%/¢), Q(J) (adaptive) [6], [3]
decision lists O(1/¢€%) this paper
sizes decision trees, sizedbranching programs, O(s'/e?), this paper
s-term DNFs, sizes Boolean formulas Q(log s/ loglog s) (adaptive)
s-sparse polynomials ovét, O(s/e?), Q(v/3) this paper
sizes Boolean circuits O(s5/€?) this paper
functions with Fourier degre€ d 0(204/€2), Q(V/d) this paper
General functions f : Q" — X
J-juntas O(J?/e) this paper
s-sparse polynomials over field of sii| Q(\/Og()(:f‘;/f)é(l) this paper
sizes algebraic circuits, ~ .
sizes algebraic ?:omputation trees ovér O(s" log [F|/€*) this paper

Table 1. Selected previous results on testing function classes. Our upper bounds are for adap-
tive algorithms, though in all cases very similar bounds for non-adaptive algorithms can be
achieved (see Appendix C). The lower bounds are for non-adaptive algorithms unless other-
wise indicated by (adaptive).

and lower bounds. We give some simple but fairly weak lowermals for other representation classes in
Appendix E.)

Our techniques. Our approach combines ideas from the junta test of Fisehal [6] with ideas from
learning theory. The basic idea of using a learning algorith do property testing goes back to Goldredth
al. [7]. They observed that any proper learning algorithm foleg€C can immediately be used as a testing
algorithm forC. (If f belongs taC, then a proper learning algorithm can be used to find a fumgtio= C
that f is ¢/2-close to, while iff is e-far from C then clearly the proper learning algorithm cannot find any
function f’ € C that f is evene-close to.) However, it is well known that proper learningaithms for
virtually every interesting class af-variable functions (such as all the classes listed in Tablacluding
such simple classes as Boolean literals) must make at{l&st) queries. Thus this testing-by-learning
approach did not previously yield any strong results fotingsnteresting function classes.

We get around this impediment by making the key observahahrhany interesting class€of func-
tions are “well-approximated” by juntas in the followingse: every function i is close to some function
in Cy, whereC; C C and every function i is a.J-junta. For example, eversrterm DNF over{0,1}" is
7-close to ans-term DNF that depends on ondylog s/7 variables, since each term with more thag s/
variables can be removed from the DNF at the cost of at mpserror. Roughly speaking, our algorithm
for testing whetherf belongs toC works by attempting to learn the “structure” of the juntaCip that f
is close towithout actually identifying the relevant variables on walhithe junta dependdf the algorithm
finds such a junta function, it accepts, and if it does notgjiats. Our approach can be characterized as
testing by implicit learningas opposed to the explicit proper learning in the approdchatdreichet al.
[7]), since we are “learning” the structure of the junta toiethf is close without explicitly identifying

its relevant variables. Indeed, avoiding identifying te&evant variables is what makes it possible to have
guery complexity independent of

We find the structure of the juntf in C; that f is close to by using the techniques of [6]. As in [6],
we begin by randomly partitioning the variables pinto subsets and identifying which subsets contain
an influential variable (the random partitioning ensures thith high probability, each subset contains
at most one such variable ff is indeed inC). Next, we create a sample of random labeled examples
(', yh), (22,9%),..., (@™, y™), where each:’ is a string of length/ (not lengthn; this is crucial to the
query complexity of the algorithm) whose bits correspondhi® influential variables of, and wherey’
corresponds with high probability to the value of jurfteon 2*. Finally, we exhaustively check whether any
function inC; — over.J input variables — is consistent with this labeled samplés Step takes at leagt ;|
time steps, which is exponential infor the classes in Table 1; but sinf&;| is independent of. we are
able to get away with an overall query complexity that is peledent of.. (The overall time complexity is
linear as a function of; note that such a runtime dependencends inevitable since it takes time steps
simply to prepare a length-query string to the black-box function.) We explain our itegtalgorithm in
more detail in Section 3.

In order to extend our testing results and the junta testsglts in [6] to functions with non-Boolean
ranges, we extend the technical definitionvafiation given in [6] to more general functions (intuitively,
the variation is a measure of the ability of a set of varialbbesway a function’s output). We show that this
extended definition has the necessary properties to cagrgrthlysis of the junta tests and our test over to
this more general setting. We present and analyze our eediesiefinition of variation in Section 3.3.

Finally, we prove our lower bound for testingsparse polynomials over finite fields in two stages. We
first show that any non-adaptive algorithm that can sucatgddistinguish a linear forme;, + - - - + x;,
(over s randomly selected variables from, ..., z,) from a linear formz;, + --- + z;,, (overs +p
randomly selected variables, wheres the characteristic of the finite field) must mefke\/g) queries. This
is a technical generalization of a similar result #y in [6]; the heart of our proof is an extension of a
convergence type result about random walks &/with arbitrary step distribution to random walks over
Z;}. (As an interesting side product, the latter also partiafigwers a question posed in [6] as to what groups
possess a similar convergence type property.) We then phatesverys-sparse polynomiay over finite
field F is “far” from every affine function with at least + 1 non-zero coefficients. This result does not
have an analogue in [6] (that paper establishes a lower boardistinguishing size-parities from size-

(s + 2) parities, and it is trivially true that every sizeparity is far from every sizés + 2) parity) and its
proof requires several ideas; our argument uses randonctiesis chosen according to a distribution that
depends on the structure of the polynomjialWe present these results in Section 4.

2. Preliminaries

Fori € IN, we denotei et {1,2,...,4}. Throughout the papef} denotes an arbitrary finite set and
X denotes an arbitrary finite range set. We will be interesteflimctions f that map fromQ2" to X. In
keeping with the notation of Fischet al.[6] we sometimes writé°([n]) to denote the domaift”, and we
write z = (1, ..., z,) to denote an element of the dom&n[n]). An important special case for many of
the applications of our main result, discussed in Appendik, 3 whenf is a Boolean function over the
Boolean hypercube, i.€ = {0,1}" and X = {—1,1}.

We view the domairP([n]) as endowed with the uniform probability measure. Two fuordif;, f2 :
P([n]) — X are said to be-closeif Pr[fi(z) # fo(x)] < ¢, and arec-far if Pr[fi(z) # fa(z)] > €. We
write E to denote expectation andto denote variance.

Let f : P([n]) — X be afunction and lef C [n] be a subset of the input coordinates. We defiié)
to be the set of all partial assignments to the input cootdsg for i € I. ThusP([n]) = Q" is the entire

domain of all input vectors of length. Forw € P([n] \ I) andz € P(I), we writew LI z to denote the
assignment whoseth coordinate isv; if i € [n] \ I and isz; if i € I.

A function f : P([n]) — X is said to be a/-juntaif there exists a sel/ C [n] of size at most/ such
that f(z) = f(y) for every two assignments, y € P([n]) that agree o1y/.

Let S be afinite set ant, Q be probability measures on it. Ttatistical distancéetweenP andQ is

defined byi|P — Q|| ' maxcg [P(A) — Q(A)].
3. The test and an overview of its analysis

In this section we present our testing algorithm and givenduiitive explanation of how it works. We
close this section with a detailed statement of our mainrdrapTheorem 4, describing the correctness and
query complexity of the algorithm.

3.1. Subclass approximators.

Let C denote a class of functions frof([n]) to X. We will be interested in classes of functions that
can be closely approximated by juntas in the class. We havollowing:

Definition 1. For 7 > 0, we say that a subclagyr) C C is a(r, J(7))-approximatoifor C if

e C(7) is closed under permutation of variables, i.efif1,...,x,) € C(7) then f(zs,,...,24,) IS
also inC(r) for every permutatiom of [n]; and

e for every functionf € C, there is a functionf’ € C(r) such thatf’ is 7-close tof and f’ is a
J(7)-junta.

Typically for usC will be a class of functions with size boundn some particular representation, and
J(7) will depend ons and 7. (A good running example to keep in mind@ = {0,1}, X = {-1,1},
andC is the class of all functions that hageterm DNF representations. In this case we may take to
be the class of al-termlog(s/7)-DNFs, and we havd (1) = slog(s/7).) Our techniques will work on
function classe€ for which J(7) is a slowly growing function ofl /7 such adog(1/7). In Section 3.7 we
will consider many different specific instantiations@énd corresponding choices ©fr).

We writeC(7);, to denote the subclass©fr) consisting of those functions that depend only on variables
in{x1,...,z;}. We may (and will) view functions i@ (1), as takingk arguments fron§) rather tham.

3.2. The independence test.

An important sub-test that will be used throughout the mest is the independence test from [6].

Independence testGiven a functionf, and a set of variables choosew € P([n]\I) andzy, zo €x P(I).
Accept if f(w U z1) = f(w U z3) and reject iff (w U z1) # f(w U z3).

If fis independent of the coordinates finthe independence test always accepts. On the other hand,
intuitively if I contains highly relevant variables that are likely to swag output off, the independence
test is likely to reject.

3.3. Extended variation and testing juntas with non-Boolean ranges.

Fischeret al. [6] defined the notion of theariation of a function on a subset of input variables. The
variation is a measure of the extent to which the functiorssgive to the values of the variables in the set.
Let us recall their definition of variation.

Definition 2. Let f be a function fronP([n]) to {—1,1}, and let/ C [n] be a subset of coordinates. We
define thevariationof f onI as

vip(l) € Ewepmnn [Veepa) [f(w U 2)]] . 1)

Fischeret al. showed that the variation is monotone and sub-additivé féh@ subsef of the variables,
the probability that the independence test rejects is Bo(%dfrf(l); and that ifVry(7) < 2e then f is
e-close to a function which does not depend on the variablds irhe analysis of their junta tests depends
crucially on these properties of variation.

Unfortunately, the variation properties stated above daiwsays hold for functions with non-Boolean
range, and the original analysis of the junta test does oy o&er to the non-Boolean setting. Intuitively,
however, the fact that a function may take on more than tweegshould not make the junta test incorrect.
The independence test, which is the main component of tha jest, only checks if values of the function
are equal or different. Can one maodify the definition of vdmimand the analysis of the junta test so that the
non-Boolean case is captured too?

An approach that we manage to successfully apply is mappmméunction range to the Boolean range.
The general idea is to pick a mapping from the function rakige the set{ —1, 1} that preserves as much
of the sensitivity of the function as possible. If we look ajuation 1 defining variation, we could choose
the best mapping t¢—1,1} either before or after the expectation operator. It turrtstioet depending on
the context, one or the other is more suitable, so we definausadoth. Denote by (X) the set of all
functions fromX to {—1,1}.

Definition 3. Let f be a function fronP([n]) to X, and let] C [n] be a subset of coordinates. We define
thebinary variationof f on I as

. def
BinVr (1) % Voo (1) = Eyepiis [V, LT,
inVry(I) e Vrg 7() . Euep () (Vierw) l9(f(w U 2))]]

and theextreme variatiorof f on I as

def
ExtVr¢(I) = Eep(in Vv, L
xtVry (1) eP(nh\1) | 12X Veep() [9(f(w U 2))]
To be able to use both new notions of variation, we need to ghatwthey are related. Probabilistic
analysis shows that these two quantities are always witfastar of 4 of each other:

iExtVrf(I) < BinVry(I) < ExtVrs(I).

In Appendix A, we prove that thbeinary variationhas almost identical properties to the original varia-
tion. Namely, we show that the binary variation is also monetand sub-additive; that the independence
test rejects with probability at leagBinVr;(I); and that ifBinVr (1) < e/4 for some subsef of the
variables off then f is e-close to a function that does not depend lonFurthermore, in Appendix A.6
we explain how these properties imply that the three jurdestgiven by Fischeet al. essentially work for
functions with non-Boolean ranges as well (with minor madifions). Indeed, the first step of our general
testing algorithmA is essentially the junta test of Fischetral. modified to apply to non-Boolean valued
functions. We carefully analyze this first step in Appendif Bhe results there are easily seen to imply that
this first step gives af®)(J2/¢)-query junta test for non-Boolean functions as claimed inld4.

Identify-Critical-Subsets (input is black-box access tb: 2" — X ande > 0)

1. Partition the variables,, .. ., z,, intor random subsets by assigning eachqf. . . , z,, equiprob-
ably to one ofl4, ..., I,.

2. Chooses random subsetd, ..., A; C [r] of size J(7*) by uniformly choosing without repeti

tions J(7*) members ofr|. Each set\; determines a blocl; uf U I;. (Note that we do

not guarantee that the blocks are disjoint.)

JEN;

3. Apply h iterations of theindependence tegsee Section 3.2) to each blodk;. If all of the
independence test iterations applied to blégkaccept, themB; is declared to be@ariation-free
and all the subsett with j € A; are declared to be variation-free on its behalf.

4, If:

(a) atleast half of the blockBy,...,B; are variation-free; and

(b) except for at mosf (7*) subsets, every subset in the partitin. . . ,I,. is declared variation
free on behalf of some block,

then output the list; , .. ., I;; of those subsets that anet declared to be variation-free. (We ca
these theritical subsets.) Otherwise, halt and output “Notifi

Figure 1. The subroutine Identify-Critical-Subsets.

3.4. Explanation of our testing algorithm.

Our algorithm for testing whether a functigh: P([n])— X belongs taC or is e-far fromC is given in
Figures 1 through 3. Given> 0 and black-box access {g the algorithm performs three main steps:

1. Identify critical subsets. In Step 1, we first randomly partition the variables . . . , x,, into r disjoint
subsetd, ..., I,. We then attempt to identify a set pf< J(7*) of theser subsets, which we refer
to ascritical subsets because they each contain a “highly relevant’blarigFor now the value*

should be thought of as a small quantity; we discuss how thlisevis selected below.) This step is

essentially the same as the 2-sided test/iguntas from Section 4.2 of Fischet al. [6]. We will
show that if f is close to aJ(7*)-junta then this step will succeed w.h.p., and ifs far from every
J(7*)-junta then this step will fail w.h.p.

2. Construct a sample.Let I;,, ..., I;; be the critical subsets identified in the previous step. &p2t
we construct a sef of m labeled example$(zt, y!), ..., (z™,y™)}, where each’ is independent
and uniformly distributed ove®” (™). We will show that if f belongs taC, then with high probability
there is a fixedf” € C(7*) (,+) such that eacly’ is equal tof”(z"). On the other hand, if is far
from C, then we will show that w.h.p. no sugf € C(7*) ;(,+) exists.

To construct each labeled example, we again borrow a tegbrqgtlined in [6]. We start with a uni-
formly randomz € Q™. We then attempt to determine how théighly relevant coordinates af
are set. Although we don't know which of the coordinateg afe highly relevant, we do know that,

assuming the previous step was successful, there shouldebeighly relevant coordinate in each of
the critical subsets. We use the independence test repettedietermine the setting of the highly

relevant coordinate in each critical subset.

For example, suppose that= {0, 1} and/; is a critical subset. To determine the setting of the highly

relevant coordinate of in critical subsetl;, we subdividel; into two sets: the subsél, C I; of

Construct-Sample (input is the listl;,, ..., I;, output byldentify-Critical-Subsets and black-box
access tq)

1. Repeat the followingr times to construct a sét of m labeled example&r, y) € Q) x X,
where(2 = {wo,wl, R ,WIQ‘_l}:
(a) Drawz uniformly from Q™. Let X, et {i: 2 =wy}, foreachd < ¢ <[Q] - 1.

(b) Fore=1,...,j

. def
i.w=0

i. Fork=1,...,[lg|Q|]
A. Qo X union of (X, N I;,) taken over alb < g < |Q2] — 1 such that the:-th bit of

q is zero

B. € % union of (X, N I;,) taken over alb < g < |Q2] — 1 such that the:-th bit of

g is one

C. Apply g iterations of thandependence tesd (2. If any of theg iterations reject,
mark 2y. Similarly, applyg iterations of thendependence tesb 2;; if any of the
g iterations reject, mark;.

D. If exactly one ofQ)g, 1 (say(2) is marked, set thé-th bit of w to b.
E. If neither ofQ2, ©2; is marked, set thé-th bit of w to unspecified.
F. If bothQg, ©; are marked, halt and output “no”.
iii. If any bit of w is unspecified, choose at random from{0, 1,...,|Q| — 1}.
iv. If w ¢ [0,|Q| — 1], halt and output “no.”
V. Setry) = wy,.

(c) Evaluatef onz, assign the remaining(7*) — j coordinates ok randomly, and add the pa
(z, f(2)) to the sample of labeled examples being constructed.

=

Figure 2. The subroutine Construct-Sample.

Check-Consistencyinput is the samplé& output byldentify-Critical-Subsets)

1. Check every function i€ (7*) ;) to see if any of them are consistent with samgle If so
output “yes” and otherwise output “no.”

Figure 3. The subroutine Check-Consistency.

indices where: is set to0, and the subsé®; = I;\Q) of indices where: is set tol. We can then use
the independence test on bdth and(2; to find out which one contains the highly relevant variable.
This tells us whether the highly relevant coordinate: af subsetl; is set to0 or 1. We repeat this
process for each critical subset in order to find the settoidgke j highly relevant coordinates af
these form the string. (The otherJ(7*) — j coordinates ofc are set to random values; intuitively,
this is okay since they are essentially irrelevant.) We theput(x, f(z)) as the labeled example.

3. Check consistency.Finally, in Step 3 we search througt{T*) ;(,+) looking for a functionf” over
Q7(™") that is consistent with alh examples inS. (Note that this step také3(|C(7*) ;(+)|) time but
uses no queries.) If we find such a function then we acg¢eptherwise we reject.

3.5. Sketch of the analysis.

We now give an intuitive explanation of the analysis of thet.te

CompletenessSupposef is in C. Then there is som¢ € C(7*) that ist*-close tof. Intuitively, 7*-close

is so close that for the entire execution of the testing @lgor, the black-box functiory might as well
actually bef’ (the algorithm only performs< 1/7* many queries in total, each on a uniform random string,
so w.h.p. the view of the algorithm will be the same whetherttirget isf or f’). Thus, for the rest of this
intuitive explanation of completeness, we pretend thabthek-box function isf’.

Recall that the functiorf’ is a.J(7*)-junta. Let us refer to the variables;, that haveBinVr ¢(z;) > 6
(recall thatBinVr(x;) is a measure of the influence of variablg and¢ is some threshold to be defined
later) as thehighly relevantvariables off’. Since f’ is a junta, in Step 1 we will be able to identify a
collection ofj < J(7*) “critical subsets” with high probability. Intuitively, #se subsets have the property
that:

e each highly relevant variable occurs in one of the criticddsets, and each critical subset contains at
most one highly relevant variable (in fact at most one reievariable forf’);

¢ the variables outside the critical subsets are so “irrglguhat w.h.p. in all the queries the algorithm
makes, it doesn’'t matter how those variables are set (ralyditipping the values of these variables
would not change the value ¢f w.h.p.).

Given critical subsets from Step 1 that satisfy the aboveentees, in Step 2 we construct a sample of
labeled example§ = {(z',y"),..., (z™,y™)} where each’ is independent and uniform over' (™). We
show that w.h.p. there is.&(7*)-junta f” € C(7*) j(+) with the following properties:

e there is a permutation : [n] — [n] for which f"(z5(1y, ..., Zs(s(r))) iS Close tof (1, ..., zy);
e The sampleS is labeled according t¢” .

Finally, in Step 3 we do a brute-force search over alf@f*) ;(,+) to see if there is a function consistent
with S. Since f” is such a function, the search will succeed and we output’‘yith high probability
overall.

SoundnessSuppose now that is e-far fromC.

One possibility is thaf is e-far from everyJ (7*)-junta; if this is the case then w.h.p. the test will output
“no” in Step 1.

The other possibility is thaf is e-close to aJ(7*)-junta f’ (or is itself such a junta). Suppose that
this is the case and that the testing algorithm reaches Stép 2tep 2, the algorithm tries to construct a
set of labeled examples that is consistent wfith The algorithm may fail to construct a sample at all; if
this happens then it outputs “no.” If the algorithm succemdsonstructing a sampl#, then w.h.p. this
sample is indeed consistent wifhy but in this case, w.h.p. in Step 3 the algorithm will not fimy dunction
g € C(7%) () that is consistent with all the examples. (If there were saidhinctiong, then standard
arguments in learning theory show that w.h.p. any such fomgt € C(7*) ;(.+ that is consistent wittt
is in fact close tof’. Sincef’ is in turn close tof, this would mean tha is close tof. But g belongs to
C(7*) s~y and hence t@, so this violates the assumption tifais e-far fromC.)

3.6. The main theorem.

We now state our main theorem, which is proved in detail inéupx B. The algorithmA is adaptive,
but in Appendix C we discuss how to make it non-adaptive witly @ slight increase in query complexity.

9

Theorem 4. There is an algorithmd with the following properties:
Let C be a class of functions frof1" to X. Suppose that for every > 0, C(7) C Cis a(r, J(1))-
approximator forC. Suppose moreover that for every- 0, there is ar satisfying

7 < ke [I(|Q)) - J(7)? - (I (7)) - W2(C(7) s) - (I (7)) - n(2EL m[C(r)) D)L, ()

wherex > 0 is a fixed absolute constant. Let be the largest value satisfying (2) above. Then algorithm
A makes

0 (B et o))

many black-box queries tf, and satisfies the following:
e If f € C thenA outputs “yes” with probability at leas®/3;
e If fise-far fromC then.A outputs “no” with probability at leas/3.

Here are some observations to help interpret the bound (8)e that if /() grows too rapidly as a
function of1/7, e.g.J(7) = Q(1/+/7), then there will be no- > 0 satisfying inequality (2). On the other
hand, if J(7) grows slowly as a function dof/7, e.g.log(1/7), then it is may be possible to satisfy (2).

In all of our applications/(7) will grow as O(log(1/7)), andIn |C(7) s will always be at most
poly(J(7)), so (2) will always be satisfiable. The most typical case fowill be that/(7) < poly(s)log(1/7)
(wWheres is a size parameter for the class of functions in questiod)}afC'(7) ;)| < poly(s)-poly log(1/7),

which yields = O(¢?) /poly(s) and an overall query bound pbly(s)/O(€?).
3.7. Applications to Boolean and Non-Boolean Functions

Theorem 4 can be used to achieve testing algorithms, in nasssgolynomial-query ones, for a wide
range of natural and well-studied classes of Boolean fanstbver the:-dimensional Boolean hypercube
(i.e.2 = {0,1} and X = {—1,1}), such ass-term DNF. We use Theorem 4 to achieve testing algorithms
for several interesting classes of non-Boolean functianaell. These testing results are noted in Table 1;
we give detailed statements and proofs of these results pre@gix D.

4. Lower bounds for testing sparse polynomials.

One consequence of Theorem 4 is a pely)-query algorithm for testing-sparse polynomials over
finite fields of fixed size (independent oj. In this section we present a polynomial lower bound for-non
adaptive algorithms for this testing problem. (Detailedgfs for all results in this section are given in
Appendix E.)

Theorem 5. LetF be any fixed finite field, i.6F| = O(1) independent of.. There exists a fixed constant
¢ > 0 (depending ofif|) such that anyion-adaptive-testing algorithm for the class efsparse polynomials
overF™ must maké(,/s) queries.

To prove Theorem 5 we use Yao’s principle [16] in (what hasobeg) a standard way for proving
lower bounds in property testing (e.g. see [5]). We presentdistributionsDygs and Dyo, the former
on inputs satisfying the property (i.e-sparse polynomials from™ to), the latter on inputs that akefar
from satisfying it, and show that any deterministic (nomyatile) algorithm making “few” queries cannot
distinguish between a random draw frdir gg versus a random draw frolyo. By standard arguments

10

(see for example Lemma 8.1 in [5]), it suffices to argue thataioy query set@ C F" of cardinality
q = O(y/5) the induced distributions ofi? (obtained by restricting the randomly chosen functionsese
g points) have statistical distance less thda.

We define bothDygs and Dyo to be distributions over linear forms frofii* to F. A random func-
tion from Dvygg is obtained by independently and uniformly (with repetigd picking s variables from
x1,- .., T, and taking their sum.Dyo is defined in the same way, but instead we pick p variables,
wherep is the characteristic of the fieldl. Clearly, every draw fronDvygg is ans-sparse polynomial over
FF, and forn = w((s + p)?), the birthday paradox implies that almost all the probgbitiass ofDyo is on
functions withs + p distinct nonzero coefficients. We claim that, for any sej ef O(,/s) points inF", the
corresponding induced distributions have statisticahdise less thaih/3.

Let (G, +) be a finite group. A probability measufeon GG induces a random walk off as follows:
Denoting by X, its position at timen, the walk starts at the identity element and at each steptse@
elements,, € G according taP and goes toX,, 1 = &, + X,,. By arguments parallel to those in Section
6 of [6], the aforementioned claim can be reduced to theiotlg theorem about random walks ovéf,
which we prove in Section E.1.2:

Theorem 6. Letr be a primeg € IN* andP be a probability measure d#;. Consider the random walk
on Z} with step distributionP. LetP; be the distribution ofX at stept. There exists an absolute constant
C > 0 such that for every < § < 1/2,if t > C&2 14 1og 1. g2 1og?(q + 1) then|[B; — Py, || < 4.

Theorem 6 is a non-trivial generalization of a similar regubved in [6] for the special case= 2.
We now give a high-level overview of the overall strategy.yAjivenz € (Z})* partitions the space into
non-empty subspacd§” = {y € Z! : (y,z) = i} fori = 0,1,...,7 — 1. We say that am € (Z})* is
degeneratef there exists some whose probability measui@(V;*) is “large”. We consider two cases: If
all the Fourier coefficients df are not “very large”, then we can show by standard arguméatghe walk
is close to its stationary (uniform) distribution after tthesired number of steps. If, on the other hand, there
exists a “very large” Fourier coefficient, then we argue thate must also exist a degenerate direction and
we use induction op.

So far we have shown that any algorithm that can successfigtinguish a random linear form;, +
-+» + x;, from a random linear form;, + --- + x;_, must make)(,/5) queries. To complete the proof
of Theorem 5, we must show that evergparse polynomial ovef™ is “far” from every linear function of
the formz;, + --- + x4, ,. We do this via the following new theorem (stated and provechore detail as
Theorem 36 in Appendix E), which may be of independent istere

Theorem 7. There exists a function= ¢(|F|) such that for any : F* — F that is ans-sparse polynomial
with s < n — 1, g is e-far from every affine function with at least+ 1 non-zero coefficients.

The high-level idea of the proof of Theorem 7 is as followst L& be a particular monomial ig, and
consider what happens wheris hit with a restriction that fixes all variables that do nator in M. M
itself is not affected by the restriction, but it is possilibe a longer monomial to “collapse” ontd/ and
obliterate it (i.e. ifM is z12% andg contains another monomidl’ = —x; 2323, then a restriction that fixes
x3 +— 1 would causeM’ to collapse ontdl/ and in fact obliteraté/). We show thay must have a short
monomial M (which, however, has degree at least 2) with the followingpprty: for a constant fraction
of all possible restrictions of variables notd, no longer monomial collapses ondd. This implies that
for a constant fraction of all such restrictiopsthe induced polynomigj, is “substantially” different from
any affine function (since, — a polynomial of degree at least two — is not identical to dfipefunction,
it must be “substantially” different since there are onlgdéh(/) surviving variables), and hengeitself
must be “far” from any affine function.

11

Lower bounds for other function classes.By adapting techniques of Chockler and Gutfreund [3], we
can also obtaif2(log s) lower bounds for many of the other testing problems listetiaible 1. We state and
prove these lower bounds at the end of Appendix E.

5. Conclusion

Our positive results are all achieved via a single genegorghm that is not geared toward any partic-
ular class of functions. For many classes of interest, tleeygcomplexity of this algorithm igoly(s, 1/¢),
but the running time is exponential i It would be interesting to study algorithms that are morecep
cally tailored for classes such agerm DNF, sizes Boolean formulas, etc. with the aim of obtaining pely
runtimes.

One approach to achieving better runtimes is to replaceioplitit learning” step with a more efficient
proper learning algorithm (the current learning algoritsimply gathers random examples and exhaustively
checks for a consistent hypothesis in the concept €lgsS ;(,+)). For some specific concept classes, proper
learning is known to be NP-hard, but for other classes, timpbexity of proper learning is unknown. The
existence of a time-efficient proper learning algorithmsome specific class(7*) ;(,+) would likely yield
a time-efficient test in our framework.

Another goal for future work is to strengthen our lower bosindan polys) query lower bounds be
obtained for classes such as sizdecision treess-term DNF, etc?

References

[1] N. Alon, T. Kaufman, M. Krivelevich, S. Litsyn, and D. RofTesting low-degree polynomials over GF(2). In
Proceedings of RANDOM-APPROpages 188-199, 2003.

[2] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/cortewy with applications to numerical problemk.Comp.
Sys. Sc¢j.47:549-595, 1993. Earlier version in STOC’90.

[3] H. Chocklerand D. Gutfreund. A lower bound for testingfas.Information Processing Letter80(6):301-305,
2004.

[4] P. Diaconis.Group Representations in Probability and Statistibsstitute of Mathematical Statistics, Hayward,
CA, 1988.

[5] E. Fischer. The art of uninformed decisions: A primer togerty testing.Computational Complexity Column
of The Bulletin of the European Association for TheoretiCamputer Scien¢§5:97-126, 2001.

[6] E. Fischer, G. Kindler, D. Ron, S. Safra, and A. Samortekyi Testing juntasJournal of Computer & System
Sciences68:753-787, 2004.

[7] O. Goldreich, S. Goldwaser, and D. Ron. Property teséingd its connection to learning and approximation.
Journal of the ACM45:653-750, 1998.

[8] C. Jutla, A. Patthak, A. Rudra, and D. Zuckerman. Testwg-degree polynomials over prime fields. In
Proceedings of the 45th Annual IEEE Symposium on FoundatiérComputer Science (FOCS '04)ages
423-432, 2004.

[9] T. Kaufman and D. Ron. Testing polynomials over generdtl. InProceedings of the 45th Annual IEEE
Symposium on Foundations of Computer Science (FOCSpades 413-422, 2004.

[10] M. Kearns and D. Ron. Testing problems with sub-leagrsample complexityd. Comp. Sys. S¢i61:428-456,
2000.

[11] N. Nisan and M. Szegedy. On the degree of Boolean funstas real polynomials. IRroceedings of the
Twenty-Fourth Annual Symposium on Theory of Compupages 462—-467, 1992.

[12] M. Parnas, D. Ron, and A. Samorodnitsky. Testing baedan formulae.SIAM J. Disc. Math.16:20-46,
2002.

[13] D. Stefankovit. Fourier transform in computer science. Migsthesis, University of Chicago, 2000.

[14] A. Terras.Fourier Analysis on Finite Groups and Application€ambridge University Press, Cambridge, UK,
1999.

[15] K. Verbeurgt. Learning DNF under the uniform distritmut in quasi-polynomial time. I#roceedings of the
Third Annual Workshop on Computational Learning Thepages 314—-326, 1990.

12

[16] A.Yao. Probabilistic computations: Towards a unifiedasure of complexity. IRroceedings of the Seventeenth
Annual Symposium on Foundations of Computer Scigrages 222-227, 1977.

A. Variation and testing juntas for non-Boolean ranges

For a random variablé&’, we write E[X] to denote its expectation aif{ X | to denote its variance. We
write F(X) to denote the set of all functions froi to {—1, 1}.

A.1. The original variation notion.

In the paper of Fischeet al. [6] on testing juntas, the notion of variation played a caintole in the
proof of correctness of their algorithms. Unfortunatehit definition of variation only works for functions
with Boolean range. We will redefine the notion of variatiantksat it works for non-Boolean ranges, and
we will argue that the tests by Fischetral. indeed work for non-Boolean ranges, with the only diffeeenc
being multiplicative constants.

Let us recall the original definition of variation.

Definition 8. Let f be a function fronP([n]) to {—1,1}, and let/ C [n] be a subset of coordinates. We
define thevariationof f onI as

def
Vep(I) = Eyepnpn [Veepn [f(wL 2)]] .

Fischeret al. showed the following two facts on the variation, which wére heart of the proofs of the
soundness of their algorithms.

Lemma 9 (probability of detection [6]) Let f be a function fron?([n]) to {—1,1}, and let] C [n] be a
subset of coordinates. 4 € P([n|\I) andz, z2 € P(I) are chosen independently, then

Prf(w i z1) # f(wl)] = £Vi(D)
Lemma 10(monotonicity and sub-additivity [6])
Vr(A) < Vrp(AUB) < Vry(A) + Vry(B).
A.2. The binary and extreme variation.

Now we will define the notion of théinary variationand theextreme variatiorwhich work also for
functions of non-Boolean ranges. Even though now we may heore than 2 different values, we will map
the range to only two different values, which results in nistidguishing some values of a function. We
will try to minimize the negative effects of such a mappingtaking a mapping that maximizes what we
can distinguish. Let us start with the notion of the binargiation.

Definition 11. Let f be a function fron¥([n]) to X, and letl C [n] be a subset of coordinates. We define
thebinary variationof f on I as

. def
BinVry(I) = max Vrgop(I) = max Eyepqupn [Veepn l9(f(w U 2))]] .

geEF(X) geEF(X)

By Lemma 9 and by the definition of the binary variation, thikofwing simple fact follows.

13

Lemma 12 (probability of detection) Let f be a function froniP([n]) to X, and let/ C [n] be a subset of
coordinates. Ifw € P([n|\I) andz, 2z, € P(I) are chosen independently, then

Prif(wUz) # f(wU z)] > %BinVrf(I).

The binary variation also is monotone and sub-additive ctvidirectly follows from the sub-additivity
and monotonicity of the original variation (Lemma 10).

Lemma 13 (monotonicity and sub-additivity)
BinVr¢(A) < BinVr (A U B) < BinVrs(A) + BinVr(B).
Proof.

BinVr(A)

max Vrgor(A) < max Vrger(AU B)
9 9
max (Vrgos(A) + Vrgor(B))

IN

IN

max Vrgo¢(A) + max Vryor(B)
9 9

IN

BinVrs(A) + BinVr(B).
|

Now we will define the extreme variation which differs fronethinary variation by switching the order
of the expectation and maximization in the definition.

Definition 14. Let f be a function fron¥([n]) to X, and letl C [n] be a subset of coordinates. We define
the extreme variatiorof f on I as

def
ExtVrf(I) = Eyep(npn | max V.epqr) [9(f(w U 2))]

gEF(X)
It turns out that the two new notions of variation are clogelgted. Namely, they stay within a constant
factor.

Lemma 15.
BinVr (1) < ExtVry(I) < 4 - BinVrs(I).

Proof. The first inequality is trivial, and directly follows from ¢hdefinitions of the binary and extreme
variations.

Focus now on the second inequality. kixc P([n]\1). To maximizeV_cpp[(go f)(wU 2)], we need
to takeg such that splitsX into two sets such that the probability that the functioruedbelongs to each of
them is as close td/2 as possible. If is the probability thatg o f)(w U z) = —1, then

V(p) € V.epnllgo f)(wU2)] = 4p(1 — p).

Becauséd/ is concave irp, we have
2V (p/2) > V(p)

for p € [0,1]. Letp, be the greatest in the rangel0, 1/2] that we can achieve. This means that the
corresponding functiom, splits X into two setsX; and X, of probability p, and1 — p,, respectively,
where the first one is mapped td, and the other ta.

14

Now consider a functioy € F(X) that is uniformly chosen at random. Sucly anaps at least half
(measured by probability) ok to either—1 or 1; assume w.l.0.g. that it maps at least halfX6f to —1.
Independently, with probability at least2 we have thay maps at least half oK, to 1. This means that for
a randomly chosen, with probability 1/2 we have thap is in the rangép../2, 1 — p,/2], which implies in
turn thatV (p) > V(p4)/2. Therefore,

BinVr(I) = maxEyep(p1) [Veer (g0 f)(w U 2)]]

> Ey [Ewepmpn [Veermn (g0 f)(wU 2)]]]
= Euep(pn) [Eg [Viepr (g0 f)(w L 2)]]]
1

1
Evepann |5 g maxVeep [(g 0 f)(w U 2)]

v

1

A.3. The independence test.

An important sub-test that will be used throughout the mest is the independence test.

Independence testGiven a functionf, and a set of variables choosev € P([n]\I) andzy, 2o €g P(I).
Acceptif f(w U 2z1) = f(wU z9) and reject iff (w Ll z1) # f(w U 29).

The independence test always accepisig independent of the coordinatesiinand Lemma 12 states
that it rejects with probability at Iea%tBinVr #(I) in the non-Boolean setting, and with probability exactly
$Vr¢(I) in the Boolean setting.

A.4. Small variation and closeness to juntas.

Denote byPlur, f(z) the most commonly occurring output ¢f for argumentse with ties broken
arbitrarily (often referred to as the plurality).

Fischeret al. [6] showed that if the variation of some subset of variabdesmall, then the function is
close to a function that does not depend on these variableswillVshow that an almost identical claim
holds for the binary variation.

Lemma 16. Let.7 be a set of coordinates such tHainVr ;(7) < 1e. Let

def
h(z) = Plurzepg) [f((znT)Uz).
The functiom is a|J |-junta, depends only on variables jh, and agrees witlf on a set of assignments
of measure more thah— e.

The original lemma stated that it suffices to haie(7) < 2¢ to bee-close to a junta o/ for a
Boolean-valued functiorf. Because of the difference in the required bound on variatiq7 in the non-
Boolean settingd/4 vs. 2¢) we need to run the independence test, which is a subroutitfeeijunta test,
more times to get the required result. Fortunately, it isughato replace each single run of the independence
test byc independent runs for some constan(lt is also possible that actually the original algorithwith
the original constants work for non-Boolean ranges, buthtmasthis, a more careful analysis would be
necessary.)

We start with the following lemma that helps us connect seygsbbabilities for multi-valued functions
with probabilities for two-valued functions.

15

Lemma 17. Let f be a function from a sdb (with some probability measure on it) £0. It holds that

Pr[f(z) = Plur, f(y)] > 2 min Pr[(go f)(x) = Plury(g 0 f)(y)] - 1.
z geEF(X) =

Proof. Letp = Pr,[f(xz) = Plur, f(y)]. This means that for anyin X it holds thatp > Pr,[f(x) = r].
Enumerate elements of. They arery, r3, r3, and so forth. Denote by, the probability thatf (x) equals
r; for j > 4. Obviously,p; = piy1 + Pry[f(x) = ri] < pig1 + p, that isp;1 > p; — p. Since
p1 = 1 and the sequengg converges td) and does not drop too quickly, there is an indg»such that
Pi, € [(1—]?)/2, (l—l—p)/Q] LetX, = {7"1, R ,Ti*_l}, andX, = {Ti*ari*+17 .. } Defineg* : X—){—l, 1}
as

(r) def | —1 forr € Xy,
el = 1 for r € Xo.
It holds that
max Prl(go f)(@) # Plury (g £)(0)] > Prl(go £)(a) # Plur, (g0 £)w)] = 52

which can be rearranged to the required form:

\%

1— min Pr{(go f)(z) =Plury,(go f)(y)] > % <1 - I;r[f(x) = Pluryf(y)]>)

gEF(X) =
Prlf() = Plur, f(y)] > 2 min Prl(go f)(x) = Plur,(g© f)(w)] -~ 1

Now we can prove our main lemma on binary variation and clesgmo juntas:
Proof of Lemma 16Lety € P(J) andz € P(J). We have
h(y U z) = Plur,cp 7 f(y U).

Assume now that: € P([n]), y, z andt are random over their respective domains and independeat. W
have

Prlf(e) = h(z)] = E, [Pr(f(yuz)=hlyu2)]
= B, [Prlf(yu2) = Plurf(y 1))
> B |2 min Pl Nyua) =Phnle NGunl-1] @
— B | min B0 Hlyu)- Plunge (o] @

= Ey _gglgi(g() E-[(go f)(y U 2)]-sign(E[(g o f)(y U t)])}

= 5[min |5 [(gof)(yuZ)]”
o< :

Z By 2y (B o Dy <) }

= E, _1—9@2&)“7 [(go f)yU)}

= 1—ExtViy(J) > 1—4BinVrs(J) > 1 —, (5)

16

where (3) is by Lemma 17 applied to the functiffyL!-), (4) is becausg o g andPlur are both+1-valued,
and the first inequality in (5) is by Lemma 15. |

A.5. Unique variation.

We will make use of the following technical tool which was defil by Fischeet al. [6].
Definition 18. Let f be a function that mapB([n]) to {—1,1}, and let7 C [n] be a set of coordinates. For
each coordinate € [n], we define theinique variation of with respect tQ7 as
.\ def . .
Urp(i) = Vrp([\T) — Vrg ([— 1\T),
and forI C [n] we define the unique variation éfas
def .
Urp(1) S Urs(d).
icl
The most important property of the unique variation thatiiggishes it from the other notions of
variation is that for any set of coordinates, its variationgy equals the sum of the variations of each of its

coordinates. This makes it easy to compute the expected aéline unique variation on a random subset
of coordinates. Furthermore, the following propertiesdhol

Lemma 19 (Fischeret al. [6]).
e For any coordinate € [n], Urs({i}) < Vry({i}).
e For every sefl C [n] of coordinatesUr (1) < Vr;(I\J).
o Urs([n]) = Urs([n\T) = Vrp([n]\T).
We will also use the following technical claim.

Lemma 20(Fischeret al.[6]). LetX = Zé:l X; be a sum of non-negative independent random variables
X;, and denote expectation af by a. If every X; is bounded above hy then

Pr[X < na] < exp <%(ne - 1))

for everyn > 0.
A.6. Application to testing juntas.

It turns out that one can use the binary variation in placéef/ariation of Fischeet al.to carry out the
proof that their algorithms work in the non-Boolean settifige only difference is in some constant factors
—we want to make sure that the set of variables that we gjaasihon-relevant has binary variation at most
e/4, instead of variatior2e in the original analysis. This results in an increase in thealber of runs of the
independence test by a constant factor. Other than thid difiatence, the properties established above for
the binary variation let the proofs given by Fisclegal. go through directly for non-Boolean functions, so
we do not repeat them. Summarizing, we get three testg-fontas for functions with non-Boolean ranges
from [6]:

e anon-adaptive one-sided test with query complegity’ /¢),
e an adaptive one-sided test with query complexity/> /¢),

e anon-adaptive two-sided test with query complexity/? /e).

The last of these is simply tHdentify-Critical-Subsets subroutine from Figure 1, modified to output “yes”
in Step 4 instead of the list of critical subsets.

17

B. Proof of Theorem 4

For convenience we restate Theorem 4 in somewhat more Hetaw:

Theorem 4. There is an algorithmA4 with the following properties:
LetC be a class of functions frof1” to X. Suppose that for every > 0, C(7) C Cis a(r, J(1))-
approximator forC. Suppose moreover that for every- 0, there is ar satisfying

62

() - J(7)2 - W2(J (7)) - mnIn(J (7)) - W2(|C(7))]) - (2D [C () 5)

wherex > 0 is a fixed absolute constant. Let be the largest value satisfying (2) above. Then algorithm
A makes:

T<K

2sh + (297 (%) [1g|Q[] + 1)m
- 0 <%J(T*)21D2(J(T*))log log J(T*)ln(\C(T*)J<T*)\)>

+0 (LI (e i) I (10)
— o (e P et)

6

many black-box queries tf, and satisfies the following:

e If f € C thenA outputs “yes” with probability at leas®/3;

e If fise-far fromC then.A outputs “no” with probability at leas/3.

Let us describe how the parameters, g andm mentioned above (and others) are set. (The table below
should perhaps be glossed over on a first pass through the papeill be useful for subsequent reference.)
Givene > 0, let 7 be as described in the theorem statement. We set:

r j_i 25, (%) O(J(r)?),
ifng(T*)(Hlm) SEJ)(T*)ID (7)),
€ = 5 €)s
mj:i é1n6‘c(7*)J(7—*)’ 9(%111(‘6(7')7 1)
o L O(e/m(IC(T*) st]))
&of aJ(r) O(e/(In(IC(T*) sy) (%)),
g 2m(100mJ () [1g |21) | © (L7 m(IC(r) s) - n (2LLI) I(IC) 50D),
234 2Ins) O I(IC(r*) sy)T () In I (r*) InIn J (%)),

wheree is the base of the natural logarithm. Note that- e; < e.
Observe that for some suitable (small) absolute consgtan®), our setting of parameters and choice of
7* yields the following bounds that we will use later:

e 2mgJ(7*)[lg|?|] - 7* < 1/100 (used in Lemma 26)
e 2sh - 7* < 1/100 (used in Corollary 25),
e m(e; +7*) < 1/100 (used in Lemma 26).

18

Identify-Critical-Subsets (input is black-box access tb: 2" — X ande > 0)

1. Partition the variables,, .. ., z,, intor random subsets by assigning eachqf. . . , z,, equiprob-
ably to one ofl4, ..., I,.

2. Chooses random subsetd, ..., A; C [r] of size J(7*) by uniformly choosing without repeti

tions J(7*) members ofr|. Each set\; determines a blocl; uf Ujen, Zj- (Note that we do

not guarantee that the blocks are disjoint.)

3. Apply h iterations of theindependence tegtee Section A.3) to each blodg;. If all of the
independence test iterations applied to blégkaccept, themB; is declared to be@ariation-free
and all the subsett with j € A; are declared to be variation-free on its behalf.

4, If:

(a) atleast half of the blockBq,...,B; are variation-free; and

(b) except for at mosf (7*) subsets, every subset in the partitin. . . ,I,. is declared variation
free on behalf of some block,

then output the list; , .. ., I;; of those subsets that anet declared to be variation-free. (We ca
these theritical subsets.) Otherwise, halt and output “Notifi

Figure 4. The subroutine Identify-Critical-Subsets.

B.1. Step 1: Identifying critical subsets.

Step 1 of the algorithm consists of running the proceddemntify-Critical-Subsets, reproduced for
convenience in Figure 4. This procedure perfows queries tof. The procedure is nearly identical to the
“two-sided” junta test of Section 4.2 of Fischefr al. with two small differences. The first is that we have
adjusted various constant factors slightly (we need a smi@ilure probability because we are using this in
the context of a larger test). The second is thantify-Critical-Subsets outputs the list of subsets that are
declared to be not variation-free (whereas the Fisehat. test simply accepts or rejecfy, since we will
need these subsets for the rest of our test.

We now prove two quick lemmata that will be useful in estdbiig the soundness and completeness of
the algorithm.

Lemma 21. Let f be a function with at mosf(7*) variablesz; that haveBinVr¢({i}) > 6. Then with
probability at leastl — 1/400, each of the variables; that haveBinVr¢({i}) > 6 occurs in some subsét
that is not declared variation-free dgentify-Critical-Subsets.

Proof. Fix a variablex; such thatBinVr;({:}) > 0. Let I, denote the subset to which belongs. By
Lemma 13 we have that
6 < BinVrs({i}) < BinVr (1) < BinVr(By,)

where By, is any block such that € A.. This implies that for any such blocky, the probability that alh
iterations of the independence test accept is at rfiost g)h < ﬁ < Wm- So the probability that

any block that contains; is declared variation-free is at moﬁO}(—T*). By a union bound over all at most
J(7*) variablesz; that haveBinVr,({i}) > 6, the probability that any block that contains such a vaeabl
causes any subsét containing the variable to be declared variation-free imast1/400. |

19

Lemma 22. Let V' be any set of at most(7*) variables fromz, ..., z,. Then with probability at least
1 —1/25, every subsei,, 1 < ¢ < r, contains at most one variable from

Proof. Let ;' denote the number of variables ¥ The probability that no two variables i end up in the
same subsef; is

r! Pt A NP €k VNP A€) 1
(r —)i’ r r 25J (7*)2 25

So the probability that any subsht . . ., I, ends up with two or more variables frovhis at mostl /25. B

Let K C [n] denote a set of coordinates satisfyiBynVr;(K) < ie;. Lemma 16 states that the

following function:
def

h(z) = Plur,cp i [f((z N K) U 2)] (6)
is e1-close tof.

Let 7 denote the set of those coordinates on whichas binary variation at leagt To prove the
soundness ofdentify-Critical-Subsets, we must prove that iff passeddentify-Critical-Subsets with
probability greater than 1/3, then it ég-close to aJ(7*)-junta. This is accomplished by showing that
|| < J(7*), and that7 can be used in place @ above,i.e., BinVr;(7) < te;. Then we can invoke
Lemma 16 to finish the proof. In addition, we will also proversoproperties about the subséts ..., I;;

output by the algorithm.

Lemma 23. If f passeddentify-Critical-Subsets with probability higher than 1/3, then:
) |T] < J(T);

(i) BinVrf(j) < %61,
and f is thuse; -close to aJ(7*)-junta by Lemma 16.
Let h be defined as in Equation (6) usigg as the setC. Suppose thaf passeddentify-Critical-
Subsetswith probability greater than 1/3. Then given th@tpasses, the sets output by the algorithm,
L, ..., I;;, have the following properties with probability at leas76/

(i) Every xz; € J occurs in some subsé}, that is output;
(iv) Every subsef;,, 1 < ¢ < j, contains at most one variable from.

Proof. Condition (i): (paraphrasing Prop. 3.1 and Lemma 4.3 of [6]) Suppo8e> J(7*). Then with
probability at leasB/4 (using the same argument as in the proof of Lemma 22), the eunflsubsetd;,
containing an element fronf is at least/(7*) + 1. For any fixed subsef;, that contains an element from
J and any fixed blockB containing/;,, the probability of 3 being declared variation-free is bounded by:

1

_ —(1— @+2ms)/0 o L
(1—6/2)" = (1 —6/2)23+21 9<203(J(T*)+1)'

Union bounding over the at mostblocks to which the subsdf, can belong, and union bounding over
J(*) + 1 subsets that contain an element frgfp we have that with probability at leagt- 2 > 2, at
leastJ(7*) 4 1 subsets are not declared variation-free and consequguihes not paskientify-Critical-
Subsets Thus, if f passeddentify-Critical-Subsets with probability at least /3, it must be the case that
7| < J().

Condition (ii): (paraphrasing Prop. 3.1 and Lemma 4.3 of [6]) Supﬂﬁfsﬁ’g(?) > %el, and letg

be a function such th@inVr;(J) = Vrser(J). We will show that each block, has high variation with

20

high probability. This will imply that the number of block®nhdeclared variation-free is larger thaj2
with high probability, so the test will reject with probabjl at least2/3.

Fix any valuel € [s]. The blockB;, is a random set of variables independently containing eadbhle
x; coordinate with probability/(7*)/r. Let Ur,.¢(I) be the unique variation of a sétwith respect tQ7
(see Definition 18). Then the expected value of the uniquatan of B, is

Iy

m Vigos (7) /() .

r 4r

E[Urgor(Br)] = Urgor(J) =

By Lemma 19 and Lemma 20 (taking= 1/2e, t = 6§ anda = 61‘7() in Lemma 20), we have

Pr [Vigoy(B) < L2 < P Urgog () < 50| <omp (-0) — o0 <

8er 8er Serf 12

Hence the probability that the variation &, is less thane, J(7*)/8er = 36 is less thanl/12. This
implies that the expected number of blocks with variatiasthar86 is smaller thars/12. From Markov’s
inequality we get that with probability at least— % there are less thagy2 blocks with variation smaller
than36.

The probability of a block with variation greater thaf being declared variation free is at most:

h 2(3+21ns)/0
1_% — 1_% 3+)/ <e—(9+61ns) < 1
2 2 1000s’

and therefore with probablllty at least— 0 none of these blocks are declared variation free. So with
overall probability at least — (£ + 1355) > 2, more thans /2 blocks are declared variation-free and the test
rejects.

Condition (iii): We may suppose thgt passeddentify-Critical-Subsets with probability greater than
1/3. Then we know that7| < J(7*) by Condition (i). By Lemma 21, given thgtpassesdentify-Critical-
Subsets the probability that some; € J does not occur in some subsgt output by the algorithm is at
most3/400. (The bound is3/400 rather thanl /400 because we are conditioning gnpassingldentify-
Critical-Subsets which takes place with probability at least3.)

Condition (iv): As above we may suppose thatpasseddentify-Critical-Subsets with probability
greater than 1/3. By Condition (i) we know that| < J(7*), so we may apply Lemma 22. Hence condi-
tioned onf passinddentify-Critical-Subsets (an event which has probability at ledst3), the probability
that any subset;, output by the algorithm includes more than one relevanaiéeiofh, is at most3/25.

Summing the probabilities, we get that conditions (iii) i are true with probability at least —

(705 +35) > % n
Fischeret al. establish completeness by showing thaf i a junta then with probability at leasy3

conditions (a) and (b) are both satisfied in Step 4. Howeveneasl more than this, since we are going to
use the subset§, , . .., I;; later in the test. We will prove:

Lemma 24. Suppose thaf is a J(7*)-junta. Let/C be the set of variables satisfyiiginVr;({i}) > 6.
Then with probability at leadi/7, algorithm Identify-Critical-Subsets outputs a list ofj < J(7*) subsets
Ly, ..., I;; with the property that:

(i) each variabler; € K occurs in some subsét that is output;
(i) BinVr(K) < €1/4;

(iif) Every subsetl;,, 1 < /¢ < j, contains at most one relevant variable for

21

Proof. Condition (a): Fix any partition/y, If fisaJ(7*)-junta, then it is independent of all but at
most.J(7*) subsets in the partition. Hence for any fixédhe probability over the selection of the blocks
that f is independent o3, is at least:

_ * _ K\ \ J(TF) * J(T*) *\2
r—J(1) / r S 2J(7*) (i J(1) o1 J(1) EQ.
J(7*) J(7*) r— J(m*) r—J(1%) r—J(m*) — 24
The probability thatf depends on more than half of the blocks is therefore smaldméii using the Markov

inequality. (See [6], Lemma 4.2).
Condition (b) fails with probability at most:

s 25J(7*)(T+Inr)
Y PN, D S <ros oo 1
25J(t%)) 257 (%) 1000 1000’

(see [6], Lemma 4.2, which uses= 20.J(3 + Ilnr) instead).

Condition (i): Since we assume thdtis a J(7*)-junta we may apply Lemma 21, and thus the prob-
ability that any variabler; that hasVr({i}) > 6 occurs in a subsel, that is declared variation-free by
Identify-Critical-Subsets is at mostl /400.

Condition (ii): Let £ denote the relevant variables fothat are not iriC, and letZ denoteln]\ (KUL).

By Lemma 10 we have

BinVr(£) < > BinVry({i}) < J(7)0 = J(T*)#% < 64—1.
€L

We have thatC = £ U 7, so by Lemma 10 we get

BinVr;(K) = BinVr (LU T) < BinVr (L) + BinVrf(7) = BinVrs(£) < € /4.
Condition (iii): Suppose there are precisgly< J(7*) many relevant variables. Then by Lemma 22,
the probability that any subsét, . .., I, ends up with two or more relevant variables is at mogb.

Summing failure probabilities, we find that all the requighditions are fulfilled with probability at
leastl — (1/12 4 1/1000 + 1/400 + 1/25) which is greater thafi/7. [|

We are ultimately interested in what happens witemtify-Critical-Subsets is run on a function from
C. Using the above, we have:

Corollary 25. Supposef is 7*-close to somé& (7*)-junta f’. Then with probability at least/6, algorithm
Identify-Critical-Subsets outputs a list ofj < J(7*) subsetd;,, ..., I;; with the property that

(") each variablex; which hasBinVr ({i}) > 6 occurs in some subsét that is output;

(i) BinVrp(K) < €1/4;
(i) Every subsetl;,, 1 < ¢ < j, contains at most one relevant variable ffit

Proof. The crucial observation is that each of & queries thatdentify-Critical-Subsets performs is

on an input that is selectadiformly at randonfrom Q™ (note that the query points are not all independent
of each other, but each one considered individually is umifp distributed). Sincef and f’ disagree on at
most ar* fraction of all inputs, the probability thadentify-Critical-Subsets queries any point on which

f and f’ disagree is at mo®sh - 7* < 1/100. Since by Lemma 24 we know that conditions (i’), (ii’) and
(iii") would hold with probability at least /7 if the black-box function werg’, we have that conditions (i),
(i) and (iii) hold with probability at leas6/7 — 1/100 > 5/6 with f as the black-box function. |

22

Construct-Sample (input is the listl;,, ..., I;, output byldentify-Critical-Subsets and black-box
access tq)

1. Repeat the followingr times to construct a sét of m labeled example&r, y) € Q) x X,
where(2 = {wo,wl, R ,WIQ‘_l}:

(a) Drawz uniformly from Q™. Let X, et {i: 2 =wy}, foreachd < ¢ <[Q] - 1.

(b) Fore=1,...,j

. def
i.w=0

i. Fork=1,...,[lg|Q|]

A. Qo X union of (X, N I;,) taken over alb < g < |Q2] — 1 such that the:-th bit of

q is zero

B. € % union of (X, N I;,) taken over alb < g < |Q2] — 1 such that the:-th bit of

g is one

C. Apply g iterations of thandependence tesd (2. If any of theg iterations reject,
mark 2y. Similarly, applyg iterations of thendependence tesb 2;; if any of the
g iterations reject, mark;.

D. If exactly one ofQ)g, 1 (say(2) is marked, set thé-th bit of w to b.
E. If neither ofQ2, ©2; is marked, set thé-th bit of w to unspecified.
F. If bothQg, ©; are marked, halt and output “no”.
iii. If any bit of w is unspecified, choose at random from{0, 1,...,|Q| — 1}.
iv. If w ¢ [0,|Q| — 1], halt and output “no.”
V. Setry) = wy,.
(c) Evaluatef onz, assign the remaining(7*) — j coordinates ok randomly, and add the pa
(z, f(2)) to the sample of labeled examples being constructed.

=

Figure 5. The subroutine Construct-Sample.

B.2. Step 2: Constructing a sample.

Step 2 of the algorithm consists of running the procedboastruct-Sample The algorithm makes
(2g7[1g |22]] + 1)m many queries tof, and either outputs “no” or else outputs a samplerofabeled
exampleqz, y) where each: belongs ta)/ (7).

We introduce some notation. Given functiohs Q" — X andf’ : 97— X with j < n and a permutation
o : [n]—[n], we write f < f’ to indicate thatve € Q" : f'(x,1),.- - %y()) = fla1,...,2n). If
[+ 2"—X is a function withj relevant variables, we usg’ to mean the function ovei variables that
results by mapping theth relevant variable undef to thei-th character of @-character string ove®; i.e.
if o is a permutation which induces such a mapping, tfiens the function satisfyingf 2 f7. Given a

function f : O/ — X and permutatiow : [n]—[n], we write f{ to denote thg-junta satisfying/f; 2 f.

Lemma 26. Givenf : Q"— X and someJ(7*)-junta f’ that isT*-close tof, let K be the set of variables
satisfyingBinVr ({i}) > 6. Suppos€onstruct-Sampleis given oracle access tband inputsl;, , ..., I,
with j < J(7*), where:

1. Each variabler; € K is contained in one of;, , ..., [; ;

J

23

2. BlIlVI‘f/(IC) < 61/4;
3. Every subsef;,, 1 < ¢ < j, contains at most one relevant variable f6t

Leth be the function defined as in Equation 6 using theGdtet’ C K be the set of relevant variables for
h, and leto : [n]—[n] be some permutation which maps the variable ff@nmn bin I;, to bit /. Then with
probability at leastl — 3/100, Construct-Sample outputs a set ofn uniform, random examples labeled
according to aJ(7*)-junta ¢ which depends on no variables outsidekofand satisfiePr,cqn [g?(z) %

f(2)] < e

Proof. By Lemma 16 we have thdtr,cqon [h(z) # f/(z)] < e1. We now show that except with probability
less tharB/100, Construct-Sampleproduces a sef of m examples that are uniform, random, and labeled
. def
according tgy = hjw) (note thas 7= h).
Consider a particular iteration of Step 1@bnstruct-Sample The iteration generates an example
that is uniform random and labeled according; b

(a) for every binZ;, which contains a variable fro{, Step 1(b)ii constructs the index such thatX,,
contains that variable;

(b) for every binl;, that contains no variable frofH, in every iteration of Step 1(b)ii(C) at most one of
Q0,1 is marked, and the value that is considered in Step 1(b)iv lies|in |©2| — 1]; and

(© hz) = 1(2).

Item (a) ensures that if;, contains a variable frorfi{, thenz, takes the value of that variable under the
assignment: (and, sincez is a uniform random value, so ig). Item (b) ensures that if;, contains no
variable fromH, Construct-Sampledoes not output “no” and assigmg a uniform random value, because
x, either gets a fresh uniform random value in Step 1(b)iii ds glee value ot (which is uniform random).
Together, these ensure thdtr) = g(24(1), - - - Zo(J(++)))» @nd item (c) ensures that the label for the example
x willbe h(z) = g(x).

It remains to bound the probability that any of (a), (b), grfél to hold. Suppose first that every query
of every iteration of the independence test is answeredrdicgpto /. Then item (3) implies that (a) can
only fail to hold if we do not manage to figure out some bitoin Step 1(b)ii for some for which I;,
contains a variable frori{ (which means that alj executions of the independence test pass for that bit
failed), and it also implies that condition (b) holds (it isgsible for a bit ofw to be unspecified, but not for
both g, ©2; to be marked or fotw to be set to an out-of-range value). Thus the probability eftaer (a) or
(b) fails to hold is at most

iNg QN - 0/2)? +2jgNg Q] - 7,
where the first term bounds the probability that dllg |2|] executions of the independence test pass for
some/ and the second term bounds the probability that any exetuofithe independence test queries a
point z such thatf (z) # f'(z). Finally, the probability that (c) fails to hold is at mast+ 7*.

Now considering allm iterations, we have that the overall probability of eithetputting “no” or
obtaining a bad example in the-element sample is at most;[lg ||| (1 — 6/2)9 + 25gm][lg Q]| - 7% +
(€1 +7*)m < 1/100 + 1/100 + 1/100, and the lemma is proved. [|

B.3. Step 3: Checking consistency.

The final step of the algorithm, Step 3, is to i@heck-Consistency This step makes no queries fo
The following two lemmata establish completeness and swesxlof the overall test and conclude the
proof of Theorem 4.

24

Check-Consistencyinput is the samplé& output byldentify-Critical-Subsets)

1. Check every function i€ (7*) s+ to see if any of them are consistent with samgle If so
output “yes” and otherwise output “no.”

Figure 6. The subroutine Check-Consistency.

Lemma 27. Suppose thaf € C. Then with probability at least 2/3, algorithtd outputs yes.

Proof. Let f’ be someJ(7*)-junta inC(7*) that isT*-close tof. By Corollary 25, we have that except with
probability at mostl /6, f passesdentify-Critical-Subsets and the inputd;, , . . ., I;; given toConstruct-
Samplewill satisfy conditions (i")-(iii’). Let I be the set consisting of those variables that have binary
variation at least under f’. We use Lemma 26 to conclude that with probability at lelast 3/100,
Construct-Sampleoutputsm uniform, random examples labeled according to softe")-junta g satisfy-

ing Pr[g7(2) # f'(2)] < e1. Leto’ map the variables ifC to the same values as but also map the re-

maining, possibly relevant variables ffto the remaining/ (7*) — j bits. ClearlyPr, [gif’(z) £ f'(2)] < e,
and since the relevant variablesg?f (which are contained iiC) are a subset of the relevant variables 6f
we have thaPr,[g(z) # (f/)SI(T*)(ZL')] < €.

Assuming thatConstruct-Sample outputsm uniform random examples labeled accordingytdhey
are also labeled according ygd(;) € C(7%) j(+) except with probability at mostyn. Summing all the

failure probabilities, we have th&heck-Consistencydoes not output “yes” with probability at most6 +
3/100e;m < 1/3, and the lemma is proved. []

Lemma 28. Suppose thaf is e-far fromC. Then the probability that algorithndl outputs “yes” is less than
1/3.

Proof. We assume thaf passeddentify-Critical-Subsets with probability greater than 1/3 (otherwise we
are done), and show that ffpassesdentify-Critical-Subsets, it will be rejected byConstruct-Sampleor
Check-Consistencywith probability at least 2/3.

Assumef passeddentify-Critical-Subsets and outputd;, ..., I;,. Using Lemma 23, we know that
except with probability at most 1/77, the set of variables with binary variation at ledstnder f, satisfies:

° BinVrf(j) < 61/4;
e each variable i/ is contained in some bify, that is output;
e each bin/;, contains at most one variable framh

As in Lemma 26, we construct a functi@rusing the variables ity according to Equation 6 in Section B.1.
Let H C J be the set of relevant variables foy and leto : [n]—[n] be as in Lemma 26. We have that
Pr.can[h(z) # f(2)] < e1. We show that with probability greater than— 2/100, Construct-Sample

either outputs “no” or a set of uniform, random examples labeled according " hS (-
Consider a particular random drawof Q™ As in Lemma 26, this draw will yield a uniform, random
examplex € Q77 for ¢ as long as

(a) for every bin/;, which contains a variable fror, Step 1(b)ii constructs the index such thatX,,
contains that variable;

(b) for every binl;, that contains no variable frofH, in every iteration of Step 1(b)ii(C) at most one of
0o, Q1 is marked, and the value that is considered in Step 1(b)iv lies|i |©2| — 1]; and

25

(©) h(z) = f(2).

The probability of (c) failing is bounded by . The probability of (a) failing is at mogt1lg |2|](1—6/2)9 <
ﬁ. If neither (a) nor (c) occurs, then the example satisfiegiggand (c) unless it fails to satisfy (b), but
if it fails to satisfy (b)Construct-Sampleoutputs “no” in Step 1(b).ii.F or Step 1(b).iv. a Thusfilpasses

Identify-Critical-Subsets, we have that with probability at least
1—-1/7—-1/100 —eym >1—1/7—-2/100 > 1—1/6

Construct-Sampleeither outputs “no” or it outputs a set of uniform random examples far.
SupposeConstruct-Sample outputs such a set of examples. We claim that with probglalitleast
1 — 1/6 over the choice of random examples fgrCheck Consistencywill output “no”. Suppose that
Check Consistencyfinds somey’ C(7*) j(+) consistent with alln examples. Thep’ cannot be,-close
to g. (Otherwise, we have thatr.[¢” (2) # g7 (2)] < €2, from which it follows thatPr. [g7 (2) # f(2)] <
€2 + €1 < e sinceg? (z) is e;-close tof. Butg’' € C(7) s(r+), SOg¢ € C(7*) C C which contradicts our
assumption thaf is e-far fromC.) By choice ofm, the probability there exists@ € C(7*) ;(-+) consistent
with all m examples that is nat-close tog is at most|C(7*) j+)|(1 — e2)™ = 1/6. Thus, if f passes
Identify-Critical-Subsets, thenConstruct-Sampleand Check-Consistencyoutput “yes” with probability
less thanl /6 + 1/6 < 1/3. This proves the lemma. [|

C. Making the algorithm non-adaptive

The algorithmA presented in the previous section is adaptive. In this@ectve show thatd can be
made non-adaptive without considerably increasing itsygoemplexity.

The only part of our current algorithm that fails to be nomyatilze is Step 2, th€onstruct-Sample
subroutine, which relies on knowledge of the critical stbsgentified in Step 1. To remove this reliance,
one approach is to modify theonstruct-Sample subroutine (in particular thEor -loop in step 1(b)) so
that it iterates over every subset rather than just thecatitines. This modified subroutine can be run before
the critical subsets are even identified, and the querieakescan be stored for future use. Later, when the
critical subsets are identified, the queries made duringéhetions over non-critical subsets can be ignored.
Since there ar®(J(7*)?) total subsets compared to th.J(7*)) critical ones, the cost of this modified
algorithm is an additional factor &d(.J(7*)) in the query complexity given in Theorem 4. For all of our
applications, this translates to only a small polynomiaté@ase in query complexity (in most cases, merely
an additional factor 0B (s)).

We briefly sketch a more efficient approach to nonadaptittitis, is done essentially by combining Steps
1 and 2. Specifically, each of tme examples that we currently generate in Step 2 can be gedersitgy the
techniques from Step 1. To generate a single example, watekedom assignment to all of the variables,
and we split each sdt of variables into(2| sets/; ., wherel; ,, consists of those variables i that were
assignedo. We getO(|Q2]J(7*)?) sets of variables. Now, as in theentify-Critical-Subsets subroutine,
we createk = O(J(7*)log(|2|J(7*))) blocks, each consisting of exactl2|.J(7*) setsI; . chosen at
random. We run the independence s log(km)) times on each of these blocks, and declare variation
free those not rejected even once. If for each critical dubsat least(2| — 1 sets/; ,, are declared variation
free on behalf of some block, the remainifig, which are not declared variation free give us the values of
the influential variables. One can show that this happens pribbability 1 — O(1/m). Therefore when
the procedure is repeated to generateraixamples, the probability of overall success is constaritih it
going into a detailed analysis, the query complexity of thadified algorithm is essentially the same as that

given in Theorem 4, namel§ (1“6—‘29|J(T*)2 1n2(]C(T*)J(T*)])). Thus, for all of our applications, we can
achieve non-adaptive testers with the same complexity dmatated in Theorems 29 and 33.

26

D. Applications to Testing Classes of Functions

The algorithm.A in Theorem 4 can be applied to many different classes of fometthat were not
previously known to be testable. The following two subsewdistate and prove our results for Boolean and
non-Boolean functions, respectively.

D.1. Boolean Functions

Theorem 29. For any s and anye > 0, Algorithm A4 yields a testing algorithm for
(i) decision lists using)(1/€2) queries;

(i) size-s decision trees using(s*/¢?) queries;

(i) size-s branching programs usin@(s4/62) queries;

(iv) s-term DNF usingD(s*/€?) queries;
(v) sizes Boolean formulas usin@(s*/e?) queries;

(vi) sizes Boolean circuits using) (s /¢?) queries;

(vii) functions with Fourier degree at mogtusingO(26¢ /¢2) queries.

Proof. We describe each class of functions and apply Theorem 4 t@ mach part of the theorem.

Decision Lists.A decision listL of lengthm is described by a listl, b1), . .., (b, bm), bm+1 Where each
¢; is a Boolean literal and eadh is an output bit. Given an input € {0,1}" the value ofL on x is b;,
wherej > 1 is the first value such thdt is satisfied byz. If /; is not satisfied by forall j = 1,...,m
then the value of(z) iS by, 1.

Let C denote the class of all Boolean functions computed by detigsts. Since only a/27 fraction of

inputsz cause the;j + 1)-st literalZ; in a decision list to be evaluated, we have that the dds$ o {all

functions computed by decision lists of lendtig(1/7)} is a(r, J(7))-approximator foC, where.J (r) o

log(1/7). We havelC(7) ;)| < 2 - 41°8(/7) (log(1/7))!. This yieldst* = O(e?), so Theorem 4 thus yields
part (i) of Theorem 29.

Decision Trees.A decision treas a rooted binary tree in which each internal node is labeliéu a variable
x; and has precisely two children and each leaf is labeled witbwput bit. A decision tree computes
a Boolean function in the obvious way: given an inpythe value of the function om is the output bit
reached by starting at the root and going left or right at @éatelinal node according to whether the variable’s
value inz is 0 or 1. Thesizeof a decision tree is simply the number of leaves of the trdedwis one more
than the number of internal nodes).

LetC denote the class of all Boolean functions computed by dectisees of size at most It is obvious

that any sizes decision tree depends on at mestariables. We may thus tak&) ' ¢ and we trivially

have thaC(r) is a(r, J(7))-approximator foiC with J(7) L g,

Now we bound/C(7) 5| by (8s)®. It is well known that the number of-leaf rooted binary trees in
which each internal node has precisely two children is thal@a numbeiC;_; = 1(*72), which is at
most4°. For each of these possible tree topologies there are atsfiostvays to label thes — 1 internal
nodes with variables from, ..., z,. Finally, there are precisely® ways to choose the leaf labels. So the
total number of decision trees of siz@ver variablesry, .. ., x, is at mostd® - s5~1 . 25 < (8s)*.

We thus have* = O(¢?/s*) in Theorem 4, and we obtain part (i) of Theorem 29.

27

Branching Programs. Similar results can be obtained foranching programs.A branching program of
sizes is a rooteds-node directed acyclic graph with two sink nodes labéleehd 1. Each internal node has
fanout two (and arbitrary fan-in) and is labeled with a vibleefromz+, .. . , z,,. Given an inputz, the value
of the branching program anis the output bit reached as described above.

Let C denote the class of altnode branching programs ovgl, 1}". As with decision trees we may

takeC(7) “e andJ(T) L 5. We show thatC(7) j(r)| < s%(s + 1),

The graph structure of the DAG is completely determined ®cEping the endpoints of each of the two
outgoing edges from each of thenternal vertices. There are at mast 1 possibilities for each endpoint
(at mosts — 1 other internal vertices plus the two sink nodes), so thezeatamost(s + 1)2* possible graph
structures. There are at mostways to label thes nodes with variables fronizy, . ..,z }. Thus the total
number of possibilities for a sizebranching program over, . .., z, is at mosts®(s + 1)%.

Again we haver* = O(¢2/s*), so Theorem 4 yields part (iii) of Theorem 29.

DNF Formulas. An s-term DNF formula is an-way OR of ANDs of Boolean literals. A-DNF is a DNF
in which each term is of length at ma'st

It is well known that any-term DNF formula ovei0, 1}" is 7-close to dog(s/7)-DNF with at mosts
terms (see e.g. [15] or Lemma 30 below). ThuS i§ the class of als-term DNF formulas ovef0, 1}", we

may takeC(7) to be the class of ali-termlog(s/7)-DNF, and we have thak(r) is a(r, J(7))-approximator

for C with J () % slog(s/r). An easy counting argument shows thetr) ;| < (2slog(s/7))* 108/,

We getr* = O(e?/s*), so Theorem 4 yields part (iv) of Theorem 29.

Boolean Formulas. We define aBoolean formulato be a rooted tree in which each internal node has
arbitrarily many children and is labeled with either AND oR@nd each leaf is labeled with a Boolean
variablex; or its negatiorx;. The size of a Boolean formula is the number of AND/OR gatesritains.

Let C denote the class of all Boolean formulas of size at moSimilar to the case of DNF, we have the
following easy lemma:

Lemma 30. Any sizes Boolean formula (or size-circuit) over{0,1}" is T-close to a size-formula (or
sizes circuit) in which each gate has at mdsi;(s/7) inputs that are literals.

Proof. If a gateg has more thatog(s/7) many inputs that are distinct literals, the gate is-approximated
by a constant function (1 for OR gates, O for AND gates). Rerfiog such a replacement for each of the
gates in the circuit yields a-approximator for the overall formula (or circuit). |

We may thus take€(7) to be the class of all size-Boolean formulas in which each gate has at most

log(s/7) distinct literals among its inputs, and we have téét) is a(r, J(7))-approximator forC with

J(1) ¥ s1og(s/7). An easy counting argument shows thétr))| < (2slog(s/7))*10e(s/7)+s; for each

of the s gates there is a two-way choice for its type (AND or OR) andtan@sts-way choice for the gate
that it feeds into. There are also at masi(s/7) literals fromzy, ..., Zs105(s/7)> T1s- - - Tslog(s/r) that

feed into the gate. Thus there are at m@stlog(s/7))"°s(*/7)*1 possibilities for each of the gates, and
consequently at mog®s log(s/7))*18(s/7)+s possibilities overall. Again we get* = O(¢?/s*), which
gives part (v) of Theorem 29.

Boolean Circuits. An even broader representation scheme is th&auflean circuits A Boolean circuit
of sizes is a rooted DAG withs internal nodes, each of which is labeled with an AND, OR or Nfate.
(We consider circuits with arbitrary fan-in, so each AND/@Bde is allowed to have arbitrarily many
descendants.) Each directed path from the root ends in ahe of+ 2 sink nodest;, .. ., z,,0, 1.

For C the class of all size-Boolean circuits, using Lemma 30 we may ta@ke) to be the class of all

sizes Boolean circuits in which each gate has at mosgts/7) distinct literals among its inputs, and we

have thaC(7) is a(r, J(7))-approximator folC with J(7) def log(s/7). Itis easy to see thal(7) ;)| <

28

225°+4s To completely specify a sizeBoolean circuit, it suffices to specify the following for éagf the s
gates: its label (three possibilities, AND/OR/NOT) and se¢ of nodes to which it has outgoing edges (at
most225+2 possibilities, since this set is a subset of the 2 sink nodes and theinternal nodes).

This results inr* = O(e2/s%), and consequently Theorem 4 yields part (vi) of Theorem 29.

Functions with bounded Fourier degree.For convenience here we take= {—1,1}. Recall that every
Boolean functionf : {—1,1}" — {—1,1} has a unique Fourier representation, i.e. a representai@n
multilinear polynomial with real coefficientsf (z) = > gy f(S) [I;cszi- The coefficientsf (S) are the
Fourier coefficient®f f. TheFourier degreeof f is the degree of the above polynomial, i.e. the largest value
d for which there is a subsé§| = d with f(S) # 0.

Let C denote the class of all Boolean functions oyerl, 1}" with Fourier degree at most Nisan and
Szegedy [11] have shown that any Boolean function with Eoutegree at most must have at most2?

relevant variables. We thus may takeér) ¢ and J(T) 424, The following lemma gives a bound on

IC(T)an !
Lemma 31. For anyd > 0 we haveC(7) ;| < 272",

Proof. We first establish the following simple claim:

Claim 32. Suppose the Fourier degree pf {—1,1}" — {—1,1} is at most. Then every nonzero Fourier
coefficient off is an integer multiple of /291,

Proof. Let us viewf : {—1,1}" — {—1,1} as a polynomial with real coefficients. Define the polynomial
p(z1,...,x,) @s
fQxy—1,...,2z, — 1)+ 1

5 .
The polynomialp maps{0,1}" to {0,1}. Sincef is a multilinear polynomial of degree at maktso isp.
Now it is well known that there is a unique multilinear polynial that computes any given mapping from
{0,1}™ t0 {0, 1}, and it is easy to see that this polynomial has all integeffictents. Since

p(x1,...,xn) =

1 1
f(xl,...,wn):2p< k! —|—acn>_17

5 T g

it follows that every coefficient of is an integer multiple of;, and the claim is proved. [|

To prove Lemma 31 we must bound the number of distinct Boofeantions with Fourier degree
d

at mostd over variablesr, . ..,z 0. First observe that there are at mdst= > ¢, (dfd) < (d24)d
monomials of degree at mogtover these variables.

If f:{-1, 1}d2d — {—1, 1} has Fourier degree at mastthen by Claim 32 every Fourier coefficient is
an integer multiple of /2¢~!. Since the sum of squares of all Fourier coefficients of angl&m function
is 1, at most22¢—2 of the D monomials can have nonzero Fourier coefficients, and eatth cefficient

takes one of at mo&¥ values. Thus there can be at most

<2£_2> @27 < (D2t < 2B

many Boolean functions over, . ..,z that have Fourier degree at mast

We thus get that* = O(e2/26%), and Theorem 4 yields part (vii) of Theorem 29.

29

D.2. Non-Boolean Functions

Theorem 33. For any s and anye > 0, Algorithm A4 yields a testing algorithm for

(i) s-sparse polynomials over finite fieflusingO((s|Q|)*/€2) queries;

(i) size=s algebraic circuits over finite ring or fielé usingO(s* log® [2|/€2) queries;
(i) size-s algebraic computation trees over finite ring or fiélUusingO(s4 log® |Q|/€?) queries.
Proof. We describe class of functions and apply Theorem 4 to prose part of the theorem.

Sparse Polynomials over Finite FieldsLet 2 denote any finite field and lef = €. An s-sparse polyno-
mial over(2 is a multivariate polynomial in variables, . . . , z,, with at mosts nonzero coefficients.

Let us say that théength of a monomial is the number of distinct variables that oceuit i(so for
example the monomidz?z3 has length two). We have the following:

Lemma 34. Any s-sparse polynomial ovef? is T-close to ans-sparse polynomial ovef in which each
monomial has length at moge| In(s/7).

Proof. If a monomial has lengtli greater thanQ|In(s/7), then it can ber/s-approximated by 0 (for a
uniform randomz € Q", the probability that the monomial is not 0 undeis (1 — 1/|22])¢). Performing
this approximation for alk terms yields ar-approximator for the polynomial. |

For C = the class of alk-sparse polynomials in variables over finite field), we have that the class
C(r) of all s-sparse polynomials over finite fiefd with all monomials of length at mos$f2| In(s/7) is a
(7, J(7))-approximator with/(7) = s|2| In(s/7). The following counting argument shows that

C(T)ym| < (s|Q In(s/7))1m(s/7),
()

Consider a single monomiadll. To specify M we must specify a coefficient ift, a subset of at mogt
of the J(7) possible variables that have nonzero degree (at thast’ possibilities), and for each of these
variables we must specify its degree, which we may assuntemest || — 1 sincea/?l = for everya
in finite field Q. Thus there are at moe|(.J(7)|Q2|)¢ possibilities for each monomial, and consequently at
most |Q*(J(7)|Q])*¢ = |Q*(s|? In(s/7))sIU /T < (512 In(s/7))5IU /) possible polynomials
overall.

Settingr* = O(¢?/(s|Q|)*) and applying Theorem 4 yields part (i) of Theorem 33.

Algebraic Circuits. Let €2 denote any finite ring or field and lef = Q). A sizes algebraic circuit (or
straight line progranm overQ2” is a rooted directed acyclic graph withinternal nodes (each with two inputs
and one output) and + k leaf nodes for somé > 0 (each with no inputs and arbitrarily many outputs).
The firstn leaf nodes are labeled with the input variabigs. .. ; z,,, and the lask leaf nodes are labeled
with arbitrary constants; from Q. Each internal node is labeled with a gate frém, x, —} and computes
the sum, product, or difference of its two input value<{iis a field we allow division gates as well).

Let C denote the class of all Boolean functions computed by atgelwircuits of size at most over
variableszy, ..., z,. (Here we analyze the simpler case of circuits withx, — gates; our analysis can
easily be extended to handle division gates as well.) Ang-sialgebraic circuit depends on at mast

variables. We may thus tak&r) X' ¢ and we trivially have thaf(7) is a(r, J(7))-approximator forC

with J(r) < 25. Now we show thalC(7) ;| < (75[9%s?)5.

A size s algebraic circuit can read at mdst leaves as each internal node has two inputs. Thus it can
read at mosks constant leaves, and at ma@stinput leaves. To completely specify a sizelgebraic circuit,
it suffices to specify th@s constant leaf hodes and the following for each of ¢tgates: its label (at most

30

three possibilities) and the two nodes to which it has ouig@dges (at mogts)? possibilities, since it
can hit two of the at mosts leaves and the internal nodes). Thus there are at mgg* (75s%)* different
algebraic circuits.

Equation 2 in Theorem 4 is satisfied for smal, but we do not care how large the optimurnhis as
J(7) does not depend on Eventually, Theorem 4 yields part (ii) of Theorem 33.

Algebraic Computation Trees. Let 2 denote any finite ring or field and I = Q. A sizes algebraic
computation tre@ver input variables, . .., x, is a rooted binary tree with the following structure. There
are s leaves, each describes an output value which is either gatdnsn input variable, or one of the
variables computed in the ancestors of the leaf. Each at@ade has two children and is labeled with
wherey, = y, © ¥y, andy,, y,, are either inputs, the labels of ancestor nodes, or cossi@amd the operator
o is one of{+, —, x, =} (the last one only if2 is a field). An input that reaches such a node branches left
if y, = 0 and branches right if, # 0.

Let C denote the class of all functions computed by algebraic coation trees of size at mostover

x1,-..,T,. ANy Sizes algebraic computation tree depends on at Mestariables. So similar to algebraic

circuits, we can také(r) e andJ(r) ' 35. Now we show thalC(7) sy | < 16°(|Q| + 45)3.

As in the boolean case, the numbegdéaf rooted binary trees in which each internal node hasigely
two children is at most®. A tree hass — 1 internal nodes and leaves. For each of these possible tree
topologies there are at most|Q2| + 4s)? ways to label thes — 1 internal nodes (with one of 4 operations
on two constants, variables or ancestor nodes). Finakyethare at most|Q2| + 4s)° ways to choose the
leaf labels. So the total number of decision trees of siaeer variables:y, . .., x5 is at mostd® - (4(|| +
48)2)571 . (|Q] + 45)® < 165(]Q] + 45)3.

As before we do not care what the optimdl in Theorem 4 is. Finally, we obtain query complexity
O(s*log?®|Q|/€?) by Theorem 4, that is, we obtain part (jii) of Theorem 33. [|

E. Lower Bound Proofs

In this section we restate and prove the testing lower bodratsissed in Section 4. The main result in
that section was Theorem 5, the lower bound for testisgarse polynomials over finite fields of constant
size. In Subsection E.1, we prove Theorem 5. In Subsectidne prove some simpler (and weaker) lower
bounds for other function classes.

E.1. Lower Bound for s-Sparse Polynomials

Throughout this section we wrif@ to denote the finite field witt® elements, wher® = p* is a prime
power. For convenience, we restate Theorem 5:

Theorem 5. Let F be any fixed finite field, i.e|F| = O(1) independent of.. There exists a fixed constant
€ > 0 (depending oﬂiF\) such that anypon-adaptive:-testing algorithm for the class efsparse polynomials
overF"™ must make(,/s) queries.

To prove Theorem 5, we consider the following two distribas over functions mapping® to F:

e A draw from Dvyggs is obtained as follows: independently and uniformly (widpetitions) draws
variablese;, , ..., x;, fromzy, ..., x,, and letf(z) = x;, + - + x4,

e A draw from Dy is obtained as follows: independently and uniformly (witipetitions) dravs + p
variables;, , ...,z fromzy, ... x,, and letf(z) = z;; +--- +2;,,.

31

Itis clear that every draw fromygs is ans-sparse polynomial ové, and that for any: = w((s+p)?)
almost all the probability mass d¥no is on functions withs + p distinct nonzero coefficients.

Theorem 5 then follows from the following two results:

Theorem 35. Let A be any non-adaptive algorithm which is given black-box asde a functiory : F" —
F and outputs either “yes” or “no.” Then we have

Pr [Af outputs “yes’ — Pr [A' outputs “yes]| <
feDYES[puts “yes’] fEDNO[puts “yes’]| <

Wl

unlessA makes(/s) queries to the black-box functigh

Theorem 36. Let ,
def 2 10P<+26
o(P) = 1/(PTHF)-

Fix anys < n — 1. Letg be ans-sparse polynomial iff[z1, ..., z,]. Theng is ®(P)-far from every affine
function overF in whichs + 1 or more variables have nonzero coefficients, i.e. everytiiomof the form

a1xry + -+ AQsgrTsir + b (7)
where0 # a; € F,b € F,andr > 1.

Theorem 35 shows that any non-adaptive algorithm that cacessfully distinguish a random linear
formx;, +- - -+x;, fromarandom linear forme;, +- - -+;,, , must make(,/5) queries; this is a technical
generalization of a similar result fd in [6]. Theorem 36 establishes that every functiop+ - - - + ;,_,
is far from everys-sparse polynomial ovef. Together these results imply that any testing algorithm fo
s-sparsdf polynomials must be able to distinguish lengtlinear forms from length(s + p) linear forms,
and must make(,/s) queries. We prove these theorems in the following subsestio

We note that it is conceivable that a stronger version of Tém@mo36 might be true in whick(P) is
replaced by an absolute constant such & however Theorem 36 as stated suffices to give our desired
lower bound.

E.1.1 Proof of Theorem 35.
First, let us recall the definition of statistical distance:

Definition 37 (statistical distance)Let S be a finite set and®, Q be probability measures off, 2°). The
statistical distanceetweerP andQ is defined by|P — Q|| % max4cs|P(A) — Q(A)).

The following fact is an immediate consequence of the dedimit

Fact 38. [P — Q|| = § Y,c5 [P(2) — Q(@)] = ¥,es (P(z) — Qa)) ™.

We now explain how Theorem 35 can be reduced to a converggpeeresult about random walks
on the groupZ; (Theorem 6). We remark that the argument given here is an @iateegeneralization
of the corresponding argument in Section 6 of [6]. Our maaiitécal contribution is in fact the proof of
Theorem 6.

Recall that a non-adaptive testing algorithm queries a fowdgbetQ of the domainF™, where|F| =
P = pFis a prime power. To prove Theorem 35, it suffices to argue fthraany query seQ ¢ F” of
cardinalityq = |Q| = O(+/s) the induced distributions o’ (obtained by restricting the randomly chosen
functions to thesg points) have a statistical distance less thah

32

Let us now describe the distributions inducedygs and Dxo onIFe. Letry, 7o, ..., 7, € F" be the
queries, and led/ be ag x n matrix with rowsry,...,r,. To choose an element< F? according to the
first (induced) distribution, we choose at random (with tgje®s) s columns ofM and sum them up. This
gives us an element @?. The same holds for the second distribution, the only difiee being that we
chooses + p columns.

Forz € F9 = Z’;q, let P(z) be the probability of choosing when we pick a column of/ at random.
Consider a random walk on the gromﬁq, starting at the identity element, in which at every step h@ose
an element of the group accordinglkaand add it to the current location. LBt be the distribution of this
walk aftert steps. Observe thét; andP,,, are exactly the distributions induced s and Dxo. We
want to show that fos sufficiently large compared @ the distributions?; andP,,, are close with respect
to the statistical distance. To do this, it suffices to praneefollowing theorem (restated from Section 4):

Theorem 6. Letr be a prime,g € IN andP be a probability measure on the additive grodf. Consider
the random walkX on Z; with step distributior. LetP; be the distribution of{ at stept. There exists an
7bso|ute cc’)nstam:’ > 0 such that for every < § < 1/2,if t > C% -r*logr - ¢*log?(q + 1) then

Py — Pryr|| < 6.

Indeed, since the underlying additive group of the figli$ Z*, by applying the above theorem for= p
andq’ = kq the result follows. We prove Theorem 6 in the following sudtiss.

E.1.2 Proof of Theorem 6.

To prove Theorem 6, we start with some basic definitions acis f@bout random walks on (finite) groups.
For a detailed treatment of the subject, see [4] and refeeetierein. For basic facts about Fourier Analysis
on finite groups, see [13, 14].

Let (G, +) be a finite group. For any probability measufe€) on G, the convolutionP « Q) of P and
Q is the probability measure ad defined by:

(P+Q)(y) = Y P=)Q(x +y)

zeG

LetPy,...,P, be probability measures @n. Theconvolution producof theP;’s, is defined as follows:

DR < Py
n def n . .
{11 Pi = Py {x]IHZ; 1 Pis 1>
Similarly, P**, the n-fold convolution product oP with itself is defined by:P*! © p andpn
P=1) 4« P if n > 1.

A distribution (probability measurd on GG induces a random walk off as follows: Denoting byX,,
its position at timen, the walk starts at the identity element®@f(n. = 0) and at each step selects an element
&, € G according tdP and goes toX,,. 1 = &, + X,,. Denote byP,, the distribution ofX,,. SinceX,, is the
sum ofrn independent random variables with distributibnit follows thatP,, = P*".

We will be interested in such random walks finite abelian groupsand in particular on the group
(Z1,+) , where+ denotes componentwise addition modulo We remark that for abelian groups, the
convolution operation is commutative. In fact, commuigtivs crucially exploited in the proof of the
theorem.

For a functionf : Z{ — C, we define its Fourier transforﬁ: 7} — C by

33

wherew, e 2i/r and forz,y € Z} we denote(z, y) def (3% xiy;) mod r.

Fact 39. LetP, Q be probability measures da?. ThenP « Q(y) = 7 - P(y) - Q(y), y € ZZ.

Forp > 1andf : Z! — C, thel, norm of f is defined by|| /||, o {Ewezg[|f(x)|p]}1/p. The inner product

of f,g: ZI — Cis defined as(f, g) & E, cza[f(x)g(x)]-

Fact 40 (Parseval's identity) Let f : Zi — C. Then,||f||3 = (f, f) = > czs |F12().

Proof of Theorem 6.

The special case of this theorem for= 2 was proved by Fischest al. [6]. Our proof is a technical
generalization of their proof. Moreover, our proof has tame overall structure as the one in [6]. However,
one needs to overcome several difficulties in order to aeltiei¢ generalization.

We first give a high-level overview of the overall strategyyAgivenz € (Z})* partitions the space into
r non-empty subspacé§” = {y € Z} : (y,x) =i} fori =0,1,...,r — 1. We say that an: € (Z)* is
degeneratéf there exists someéwhose probability measut@(V;*) is “large”. (We note that the definition
of degeneracy in the proof of [6] is quite specialized for daser = 2. They define a direction to be
degenerate if one of the subspadgs V" has “small” probability. Our generalized notion - that eg&ly
reduces to their definition for = 2 - is the conceptually correct notion and makes the overglt@gzh
work.)

We consider two cases: If all the Fourier coefficient®afre not “very large” (in absolute value), then
we can show by standard arguments (see e.g. [4]) that theiwvalbse to stationarity after the desired
number of steps. Indeed, in such a case the walk convergatiyrap the uniform distribution (in the
“classical” sense, i.€|P; — U| — 0 ast approaches infinity).

If, on the other hand, there exists a “very large” Fourierfiicient of P, then we argue that there must
also exist a degenerate direction (this is rather nonaljiand we use induction on the dimensign It
should be noted that in such a case the vmadly not converge at all in the classical sen§&n extreme such
case would be, for example,lifwas concentrated on one element of the group.)

Remark: It seems that our proof can be easily modified to hold for famiye abelian group (We remind
the reader that any such group can be uniquely expressed dsdht sum of cyclic groups.) Perhaps, such
a result would be of independent interest. We have not atesirtp do so here, since it is beyond the scope
of our lower bound. Note that, with the exception of the inttkecargument, all the other components of
our proof work (in this generalized setting) without any pes. It is very likely that a more complicated
induction would do the trick.

Now let us proceed with the actual proof. We make essentmlofisgwo lemmata. The first one is a
simple combinatorial fact that is used several times in these of the proof:

Lemma 41. Letn be a positive integer greater thanande € (0, 1/2] be a constant. Consider a complex
numberv € C expressible as a (non-trivial) convex combination of thth roots of unity all of whose
coefficients are at most— e. Then, we havéev| < 1 — ¢/2n2.

34

n—1

Proof. We can writev = $"_J v;wi,, with w, = 2™/", v; > 0, Y ""fv; = 1 andmax;v; < 1 —e.
For the proof it will be helpful to view the?’s as unit vectors in the complex plane (the angle between two
“adjacent” such vectors beirg, = 27/n).

By assumption, it is clear that at least two distinct coadfits must be non-zero. We claim that the
length of the vectox is maximized (over all possible “legal” choices of thgs) when exactly two of the
coefficients are non-zero, namely two coefficients corredpg to consecutive-th roots of unity.

This is quite obvious, but we give an intuitive argument. \&k assume that > 5; otherwise the claim
is straightforward. Consider the unit vecto(this vector corresponds to one of lzlaé's) whose coefficient
Ve IN v is maximum. We want to “distribute” the remaining “mads™ v, to the other coordinates:{th
roots) so as to maximize the length. First, observe that vectors whose angle witls at leastr/2 do not
help; so we can assume the corresponding coefficients ase Rew consider the set of vectors “above”
e (whose angle witte is less thanr/2). We can assume that their “mass” (i.e. sum of coefficier#ts) i
concentrated on the unit vectey adjacent te (whose angle witle is minimum); this maximizes their total
contribution to the length of the sum. By a symmetric arguinitie same holds for the set of vectors “below”
e (denote bye, the corresponding adjacent vector). Finally, it is easye® that in order to maximize the
total contribution ofe, ande to the length of the sum, one of them must have zero weighelgiat their
total mass is “fixed”).

Now let us proceed with the proof of the upper bound. By synmynét is no loss of generality to
assume thatg, v; > 0 with vg > v;. The claim now follows from the following sequence of elertzen
calculations:

\V]2 = ’ug + v% + 2wvguy cos b, 1-— 21)01)1(1 — cos 9n)

1 —2v0(1 — o) (1 — cos(27/n))
1 —2¢(1 —€)(1 — cos(2m/n))

1 —¢(1 — cos(2m/n))

1—¢/n?

IN A IA

The last inequality above follows by observing tkat(27/n) < 1 — 1/n?, n > 2. The elementary
inequality/1 — < 1 — x/2 completes the argument. |

Our second lemma is an analytical tool giving a (relativélsirp) upper bound on the statistical distance
between two distributions. It should be noted that thisltaswa variant of the “upper bound lemma” [4],
which has been used in numerous other random walk problems.

Lemma 42 (upper bound lemma, [4])In the context of Theorem 6, for any> 0, we have:

Py — P2 < v > Ja(a) ™.
x€(ZE)*

Proof. We have:

35

IP: — Perr|” = (779/4) - [Py — Pryr|7 (8)
< (rP9/4) - [Py — P |l (9)
= (r*/4)- Z |]P’t]P’t+r)‘2 (20)

x€ZY
= (P1/4)- 30 | ([B(a))' - patr D (B(a)) P (11)

z€(Z3)*
= (/4 > at(@) - ot (x))? (12)

x€(Z)*
< Z lou(z)[* (13)

xe(ZE)*

Step (8) follows directly from the definitions of the statiat distance and thg norm. Step (9) easily
follows from the Cauchy-Schwarz inequality and step (16pfithe Parseval identity. For Step (11) notice
thatP, (y) = 9= (B(y))" andP(0) = 1/r%. Step (12) is immediate by the definition @fand Step (13)
follows from the triangle inequality. |

Let X; € Z! be the position of the random walk at timandP; its distribution. By assumptioiy = 0.
As previously mentioned?; = P*.. Itis easy to show that the statistical distan@ — ;|| is monotone
non-increasing ir; we are interested in the first timte= ¢(r, ¢) for which P; andP,, arej-close.

Notation. Forg € IN, defineb(q) = q2 log?(q+1), d(r) def logr, S, o 1_13/0(), g & lim; o0 S

andt, & e g(1)p(q).

Throughout the proof, we assume for simplicity thais an integer. If® is a probability measure d#? and

P is its Fourier transform, we denote x) o rq@(az). A word concerning absolute constants. The letter
will always denote an absolute constant, but as is custotharyalue ofC need not be the same in all its
occurrences. Also note thétis an absolute constant, ébcan depend of.

Theorem 6 follows from the following claim:

Claim 43. There exists a universal constafit > 0 such that for any) < § < 1/2, anyt > ¢, and any
probability measuré® on Z? it holds ||P; — Py || < % -8y < 0.

We will prove the claim by induction oaq.

Base casdq = 1). Given an arbitrary probability measufeon the discrete circl&.,,, n € IN*, we will
show that, for alk > t; = C%812 . p416g n, it holds [Py — Pyyp | < 2

Seteg 1= % and consider the following two cases below:

Case I (There exists & € Z,, such thatP(k) > 1 — ¢.) In this case, we claim that for alle IN* it holds
IP: — Pryn|| < nep = §/S. (In fact, this holds independently of the value of the titrjeThis should be
intuitively obvious, but we give an argument.

Recall that the statistical distand@®; — P, .|| is @ monotone non-increasing function fofor any
constant. Hence||P; — Pyiy, || < ||P — P,,41|| and it suffices to argue thaP — P,,,1|| < ney. The crucial

36

fact is that for alli € Z,, we haveP, (i) > (1 — neg) - P(i). This directly implies that|P — P,,+|| =

>iez, (B(E) = Ppia (i)™ < meo - 3 gm0 ())>En (i)} P(0) S €0 D ez, P(i) = neo.
To see that the aforementioned fact is true, observe thainipi € Z,,, conditioned on the walk being
at position; at timet¢ = 1, with probability at leasf1 — €)™ each of the next steps ist, so with probability

atleast(1 — €p)™ > 1 — ney the walk is at positionri again attimg = n + 1.

Case Il (Forallk € Z, itholdsP(k) < 1—¢,.) Note that, fork € Z,,, we can writex(k) = 3= P(1)-wk?,
wherew,, = ¢2™/"_ SinceP is a probability measure, it follows that0) = 1. Now observe that fok € Z,
a(k) is a convex combination of-th roots of unity with coefficients at mos$t— ¢,. Hence, an application
of Lemma 41 gives the following corollary:

Corollary 44. Forall k € Z, it holds|a(k)| <1 — 2Sn3

We have now set ourselves up for an application of Lemma 4Raifpt € IN with ¢ > t1, we thus get:

ny la()*

i€Z

< TL2(€ 2Sn)2t1 :n2e—0nlognlog(1/6)/5’

Py — Pyn?

IN

where we used the elementary inequality- + < e *, for x € [0,1]. For large enougtC, we have
Py — Pyyn | < (6/5)? and the base case is proved.

Induction Step: Assume that the claim holds fagr — 1, i.e. that for anyt > t,_; and any probability
measuré® on ZZ ! it holds ||P; — Py, | <3 . Sq_l. We will prove that the claim also holds for

Forz € (Z4)* andi = 0,1,...,r — 1 defineVz A {y ez (y,z) = i}. Atthis point we are ready to
formally define the notion of degenerate direction:

Definition 45. We say thatr € (Z1)* is adegenerate directidifithere exists ari € {0,1,...,r — 1} such

x _ 20q
thatP(V*) > 1 N o=TTAL

We distinguish the following two cases below:

Case I(For allz € (Z1)* it holds |a(z)] < 1 — \/_ 4b(.) Note that, sincé is a probability distribution,
we haven(0) = 1. Now, fort > ¢, Lemma 42 yields:

Y)

x€(Z)*

[Py — Ppyr)?

IN

= (1 - x/Ube(q)>2t =r (1 - x/@fzb(Q))%

_ 44
< T2q(e \/6T4b(q))2tq :T2qe—2qlogr\/élogl/6

IN

Similarly, if C'is large enough, we havgP; — P.|| < §/S < & - S,.

Case Il (There exists some, € (Z%)* such thaja(zg)| > 1 — \/Ufigb(q)')

37

Sincer is a prime, we may assume without loss of generality that= ¢; = (10,—1). Then, fori =
0,1,...,7r—1,we haveV; = V" = {y = (y1,y2,...,Yq) € Z} : y1 = i}; note that eacl; is isomorphic
toZ4 7L,

Now observe that we can write(zo) = 3520 P(V;)w? with 3", P(V;) = 1, P(V;) > 0. Thatis,
a(xg) is a convex combination of-th roots of unity whose absolute value is at leste’ /2r2, wheree’ :=

mi‘i%(q). Thus, (the contrapositive of) Lemma 41 implies that thetstexist somg € {0,1,...,r — 1}
with P(V;) > 1 — mi‘;‘g)(q) (i.e.zq is degenerate). Clearly, it is no loss of generality to agstmtj = 0,
- s

ie.P(Vp) >1— \/627"2(117((1)'

Fori=0,1,...,r — 1 andj = t4,t, + r, consider the conditional probability measuﬂ%s: (P;|V3).
All the 2r distributions obtained in this manner can be viewed asibigions onZ?‘l. By the law of total
probability, we can writeP; = 31 "1 P;(V;) - P’

SinceP(Vp) > 1— % it follows that|P; (V;) — Pyyr (Vi)] < éfg(q) foralli € {0,1,...,r—1}.
(In fact, this holds independently of the value of the titheThis can be shown by an argument similar to
that in Case | of the induction basis.

We will show using the induction hypothesis that foe 0,1,...,r — 1 andt > ¢, it holds:

4 . 5 q
P — P < — . _ -
1P =Pl < 5 (S + 50)

We claim that this will conclude the proof. This follows fraime following chain of inequalities:

r—1 r—1
Py = Prrll < D IPU(VE) = Pegr (Vi) + || D Pel(Vi) - (P} — Py, | (14)
=0 7=0
20q 1) q
< %Sq (16)

Step (14) follows easily from the triangle inequality (rk¢hat the statistical distance is a norm) and
by using the fact that thE;ﬁ's are distributions. For Step (15) observe that the secanth®and in (14) is a
convex combination and Step (16) assumes ¢hi large enough.

To finish the proof we show tha?? — P, || < - (Sq_l + ﬁq)) The proofs for the: — 1 remaining
cases are very similar.

Fori =0,1,...,r — 1 denoteP* = (P|V;). LetN; = (le,...,Nj’.“‘l) be a random vector such that

the random variablésf} (Il =1,2,...,r—1) counts the number of times the walk makes a stepZ; with
x1 = [during the firstj steps. Consider a vecter= (s1, sa, ..., s,—1) such thats| def E;:ll s; < jand

S _l ks, =0 mod r. Then, we have:

(PYIN; = s) = (£ [Tzt (@)=) + (B0) 61D

where by{x [[} we denote the convolution product. The above equality Holdthe following reason: The
distribution on the left hand side is the distribution dn= z¢ given that the walk makesg stepsr with
xr1=1(0=1,2,...,r—1) (andj — |s| steps withz; = 0). The equality follows by commutativity.

38

Therefore, by the law of total probability, we can erP§ as the following convex combination of
conditional distributions:

P) = > PrN; =] - ({+ [12t (B) = (@) 0D

(CrZl ksk=0 mod r) and(|s|<j)

Using this fact, we can bounP) — P, || for t = ¢, as follows:

[P? = Piy]l < PrNy # Niy] + PrlNy| > 4gr* log rv/Clog(1/0)
+ Z Nt _ S H {* H}r 1]P)z *sz (PO)*(t Is]) () (t+7"—\s\)]H

s such that
(it ks, =0 mod r)
(Js| < 4gr?logrv/Clog(1/5))

The first summand is equal to the probability that a nondtigtep in the first coordinate (i.e step
with z; # 0) was made in one of the times+ 1,...,t¢ + r and this is at mosksq/+/Crb(q) (because

P(Vo) > 1 —20¢/v/Cr?b(q)).

To upper bound the second summand, we observeat= E;‘:‘ll N} is a binomial random variable
with parameters = ¢, andp < 25¢/v/Cr?b(q). Thus, by a standard Chernoff bound we get that the second
summand is also very small, so that the sum of the first two samasiis at mosg 2b(for large enough
C.

Now consider the third summand. Sineé < 4qr?logrv/Clog(1/6), it follows thatt, — |s| > t,_1
and the induction hypothesis implies:

H ({* [z (Pi)*Si) [(PO)*(t-lsl) _ (pO)s(t+r-Isl

‘ < H(]P’O)*(t—\s\)_(PO)*(t+r—\s\)

IN

)
5 S

The first inequality follows from the fact thd []}7_; (P?)** is a distribution. Therefore, the expres-
sion & 5 * Sg—1 Is an upper bound for the third summand and the proof is cample

E.1.3 Proof of Theorem 36.

Recall that théengthof a monomial is the number of distinct variables that ocauit {so for exampler?z
has length two). Recall that @ffinefunction is simply a degree-1 polynomial.
Let f : F™ — I be any function. We say that thefluenceof variablex; on f is
def

Pr [f(xla ey Li—15Lgy Li4-1y - - - 7xn) 7é f(xla ey Ti—15 Y, Ti41y - - - 7xn)]
ZEl,...,fL'n,yeF

If f is a single monomial of length that contains the variable,;, then the influence af:l on f is
(1—)" (the probablllty that the othefr— 1 variables besides; all take nonzero values {g — +)*"!, and
then thereisd — ﬁ probability that the value af; changes when we re-randomize). Slmllarlyg is an

39

s-sparse polynomial in whicl; occurs inr monomials of lengttty, . .., ¢,, then the influence at; is at

most ' P
1\“ 1\

1—— et (1=

(=3) = (-5)

The total influenceof f is the sum of the influences of all variables. Each monomidkongth/ in a
polynomialg contributes at mogt(1 — %)é to the total influence of (i.e. if a polynomial hag monomials
of lengths(y, . . ., ¢, then the total influence af is at most/; (1 —)% + -+ + £, (1 — 5)%.

Note that each variable in an affine function of the form (A imluencel — %, and the total influence
of such a function is precisel + r)(1 — 5).

The following fact will be useful:

Fact 46. Let f, g : F — F be two functions such that for some variablenve haveInf;(f) — Inf;(g)| = 7.
Thenf is 7/2-far from g.

Proof. We may assume without loss of generality thét (g) = Inf;(f)+7. Letx denote a uniform random
input from[F and letz’ denotexr with thei-th coordinate re-randomized. We have

Prlg(@) # 9(a')) < Prlg(@) # f(@)]+ Prlf(e) # f)] + Prif() # go)]
Rearranging, we get

T = Prig(a) # g(2")] - Prif(z) # f@)]
Prlg(@) # f(=)] + 55,[f($’) #g(z')] = 2 Prlg(a) # f(2)]

IN

where the final inequality holds since battandz’ are uniformly distributed. This gives the fact. |

Finally, recall that in any polynomigj(x1, ..., z,) overF, we may assume without loss of generality
that no variable’s degree in any monomial is greater tRan 1. (The multiplicative group is of siz& — 1
and hence”” = o for everya € F.)

Proof of Theorem 36.

Let g be ans-sparse polynomial iff[zy,...,z,] and letA(x) be a fixed affine function given by
equation (7). We will show that must be®(P)-far from A and thus prove the theorem.

First note that without loss of generality we may assun@s no term of degree 1. (Suppagsbast
such terms. Leg’ be the polynomial obtained by subtracting off these ternfenl/ is (s — ¢)-sparse and
is ®(P)-close to the affine function’(x) obtained by subtracting off the same terms; this affine fonct
has at least + r — t nonconstant terms. So we can run the following argument aith s — ¢ playing the
role of “s” in the lemma.)

Now we observe thaj must satisfy

1
Infi(g) + -+ + Infs(g) > (1 —4P(P))s(1 — ﬁ)' a7
If this were not the case, then some variablein z1,...,z; would necessarily have influence at most

(1—4®(P))(1 — 1]%) ong. Since the influence of; on (7) is1 — 5, by Fact 46 this would mean thais at
least2®(P)(1 —) > ®(P)-far from (7), and we would be done.

Notation. We will henceforth refer to monomials inof length less tharP? asshort monomials, and we
write S to denote the set of all short monomialsgnFor P? < ¢ < P8, we refer to monomials ig of

40

length ¢ asintermediatemonomials, and we writé to denote the set of all intermediate monomialgyin
Finally, for ¢ > P® we refer to monomials ig of length/ aslong monomials, and we writé to denote the
set of all long monomials.

Observe that
e Each monomial iry that is intermediate or long contributes at most to Inf;(g) + - - - + Infs(g).
This is because each monomial of lengtix P2 contributes at most(1 — +)* to this sum, and for

integer/ the valuemax;~ p2 £(1 — %)5 is achieved at = P2 where the value is at most/4 (the
upper bound holds for all integd? > 2).

e Each short monomial iy contributes at mosP/e to Inf,(g) + --- + Infs(g). This is because
max>1 /(1 — 5)¢ < P/e (the max is achieved arourfd~ P).

Since the RHS of17) is at leas{(1 — 42)s, we have the following inequalities:

[I|+|L| |S|P 1.2
>(1——
4 + e P

>s and |I|+|L|<s

(the second inequality holds simply because there are atstmsg monomials). These inequalities straight-
forwardly yield |S| > 5%.

Letm, denote the number of monomialsgrthat have length exactl Note that we have . ps my =
|L| <s.

Given two monomials\{y, M> that occur ing, we say thail/; coversis if all variables inM; are also
in M, (note we do not care about the degrees of the variables ie thesomials). We refer to such a pair
(M, M) as acoverage more precisely, if\/; is of length? we refer to the paifM;, M,) as ar/-coverage
(One can view eachrcoverage as an edge in a bipartite graph.)

Let S’ C S be the set of those monomiald in S which are “maximal” in the sense that no other
monomialM’ € S (with M’ # M) coversM.

Claim 47. We have$'| > s/(3PF%).

Proof. SinceS is finite it is clear thatS’ is nonempty; suppose the elementsSofare M, ..., M. Each
of the (at least/(3P) many) elements of is covered by som@/;. But each)M; is of length/ for some
¢ < P? — 1, and hence can cover at madt monomials (any monomial covered By; is specified by
giving ¢ exponents, each between 0 afd- 1, for the/ variables in)M;). |

Fix any ¢ > P2. Each fixed monomial of length participates in at most,%,) P¥* < (¢P)”* many
¢-coverages of monomials iff. (There are(;) ways to choose a subset BF variables, and once chosen,
each variable may take any exponent between 0fand1.) Consequently, the lengthmonomials ing
collectively participate in at mosty,(¢/P)" ’ many ¢-coverages of variables ifi’ in total. By Claim 47, it
follows that
mg(KP)PQ o 377”Lg€P2P2P2

E /[# £-coveragesV! is in| < =
MGS[g] = S/(3PP2) s

By Markov’s inequality, we have

Pr [#(-coveragesV is in > 3myt" 2 P2P% /5] < 1/62
Mes’

So for each? > P2, we have that at most &/¢? fraction of monomials inS’ are covered by at least
3metT*+2p2F* /s many length? monomials. Since . p2 1/¢% < 1/2, we have that at least half of the
monomials inS” have the following property:

41

e Forall¢ > P2, at most3m,¢F*+2P2F* /s many lengthe monomials covedl. (1)

Fix M to be some particular monomial with propefty. SinceM belongs taS’, we know that no short
monomial ing coversM'; we now show that for a constant fraction of all restrictipnasf variables outside
of M, no intermediate or long monomial i), coversM. (Once this is accomplished, we will be almost
done.)

First observe that for any valuewith P? < ¢ < P?®, using the fact thain,/s is at mostl, we have that

at most
3€P2+2P2P2 < 3P10P2+16 < P10P2+18

many length¢ monomials cover\/. So in total there are at mogP8 — P2 4 1)Pl0P*+18 < ploP?+26
many intermediate monomials that covef; let 7' denote the set of these intermediate monomials. Each
intermediate monomial i’ has length strictly greater than the length\éf so each such monomial contains
at least one variable that is notid. LetV be a set of at mogP!07*+26 variables such that each monomial
in T' contains at least one variable from, and letp; be the restriction that sets all variableslinto O

and leaves all other variables unfixed. Note that for each lapnomial ing, applyingp; either kills the
monomial (because some variable is set to 0) or leaves itamyeld (no variable in the monomial is set) in
gp, - Thus the result of applying; is that no intermediate monomial i, covers)M.

Now let po denote a random restriction over the remaining variablesiwleaves free precisely those
variables that occur id/ and fixes all other variables independently to uniformly s elements df.
SupposeM’ is a long monomial (of length > P?®) from g that survived intay,, . It must be the case that
M’ contains at least — P2 variables that are neither i nor in /, and consequently the probability that
M’ is not killed byp- (i.e. the probability that all variables i’ that are not inV/ are set to nonzero values
underp,) is at most(1 — %)=, Consequently the expected number of lengthonomials ing,, that

cover M and are not killed by, is at mosBm,¢** P>P*(1 — %)=F /s. Summing over alt > P%, we
have

[E,, [# long monomials that coveY! and survivep; ps] (18)
3melT* PP (1 — L)-r?
< > L
> P8 5
my P2 52pP2 L o p2
< — | - P 1——= . 19
< g};g S| maxs (1-3) (19)

We have) ,. ps 2 < 1. Aroutine exercise shows that for @l > 2, the max in (19) is achieved at
¢ = P® where the value is at mosy2 (in fact it is far smaller). So (18) is certainly at madst2, and we
have

E,, [# long monomials that cove¥/ and survivep; po] < 1/2.

So the probability that any long monomial that cov@fssurvivesp; p, is at mostl /2. Since we already
showed that no short or intermediate monomiajn,, coversM, it follows that with probability at least
1/2 over the random choice @k, no monomial ing,,, ,, covers)M except forM itself.

Now let p denote a truly random restriction that assigns all varghl& in A/ uniformly at random and
keeps all variables i/ free. Since the variables i will be assighed according t@, with probability

1/PP"***° we have that with probability at leasf(2P""*” ") > 1/(PP**"****+1) over the random
choice ofp, no monomial iy, coversM. Suppose is such a restriction. Sinc¥ itself clearly survives the
restrictionp, we have that the functiog, (a function on length)/) < P? — 1 many variables) is different
from the functionA, — this is simply because the polynomigl contains the monomial/, which is not of

42

degree 1, whereas all monomialsAp have degree 1. Hence the functiapsand A, differ on at least one
of the (at most)Plﬂ‘1 possible inputs.

2 .
So, we have shown that for at least £ PX™"" "*°+1) fraction of all restrictions of the variables not
occurring inM, the error ofg under the restriction in computing is at Ieastl/PPz‘l. This implies that
the overall error of; in computingA is at least

10P2+26 | p2
1/(P”) =o(P)
and we are done with the proof of Theorem 36. |

E.2. Lower Bounds for Boolean Function Classes

In this section we prove lower bounds on the query complexitiesting sizes decision trees, size-
branching programs;-term DNF, and size-Boolean formulas (Theorem 48), and Boolean functions with
Fourier degree at mogt(Theorem 51).

Theorem 48. Lete = 1/1000. Anye-testing algorithm for any of the following classes of fuoies over
{0, 1} must maké2(log s/ log log s) queries: (i) sizes decision trees; (ii) size-branching programs; (iii)
s-term DNF; (iv) sizes Boolean formulas.

Proof. The proof combines a counting argument with the result ofdkles and Gutfreund [3] showing
that Q2(J/k) queries are required to distinguish betwekjuntas andJ + k)-juntas over{0,1}". More
precisely, consider the following distributions:

1. Dno is the uniform distribution over all functions (onvariables) that depend on (at most) the first
(J + k) variables.

2. Dygs is the distribution obtained in the following way. Choosk-alement subsef;, uniformly and
randomly from the sefl,...,J + k}. Then choose a uniformly random function from the set of all
functions onn variables that depend on (at most) the variables indexetébget.J + k| \ Z.

Chockler and Gutfreund show that with very high probabgityandom draw fronDy o is far from every
J-junta, whereas clearly every draw frobw g is aJ-junta. Given any putative testing algorithm, the dis-
tributions Dy s, Dno over functions induce two distributiorGy g, Cno over “guery-answer histories”.
Chockler and Gutfreund show that for any (even adaptiverialgn that makes fewer than(.J/ k) queries,
the statistical difference betweery s and Cno will be at most1/6. This implies that any successful
testing algorithm must make(.J/k) queries.

We adapt this argument to prove Theorem 48 as follows.ClLdte a class of functions for which we
would like to prove a lower bound (e.gs could be the class of all Boolean functions owevariables that
are computed by decision trees of size at sdstVe choose/ (as a function o&) such that any/-junta is a
function inCy; with this choice the distributioy s described above is indeed a distribution over functions
in the class. We chooge(as a function of/) so that with very high probability, a random function drawn
from Dyo (i.e. arandom function over the firgt+ k variables) is-far from every function irC,. This gives
anQ(J/k) lower bound for testing whether a black-box function i€nor is e-far from every function in
Cs.

For all of the classes addressed in Proposition 48 we canitakéog, s andk = O(log J). We work
through the analysis for sizedecision trees, sketch the analysis for sizg-anching programs, and leave
the (very similar) analysis fos-term DNF and size-Boolean formulas to the interested reader.

Decision Trees (of sizes): We set] = log, s andk = log, J. Itis clear that any/-junta can be expressed
as a sizes decision tree.

43

Lemma 49. Fix e = 1/1000. With very high probability, a randorfi/+log J)-junta over the firs.J+log J)
variables ise-far from any sizes decision tree over the fir§t/ + log J) variables.

Proof. For any sizes decision tree over the fir§t/ + log J) variables, the number dfJ + log J)-juntas
(over these variables)close to it equal§~¢% "’ (277, Fore = 1/1000, this is at mose®-12" "' —

(2
a—1

2(7/102” (recall that the sum of the binomial coefficied®/? () is O(C/(a)™), whereC(a) = a/*(=21) ")
Now we upper bound the number of sizelecision trees over the first+ log J variables. There are
at most4® = 22'2‘]) distinct decision tree topologies for trees witteaves. For each topology there are at
most(.J + log J)* < 22sloslogs — 9(2log /)2’ different labellings of the nodes.
Thus, the number ofJ + log J)-juntas that are-close toany decision tree of size (over the first
J + log J variables) is at mos2(//10+2log /)2’ Thjs is a vanishingly small fraction of the total number of

(J + log J)-juntas over the first.J + log J) variables, which i """ = 272", n

We are not quite done, since we need that with very high piibtyaé random function fromDyo is
e-far from everysizes decision tree, not just from sizedecision trees over the fir6f + log J) variables.
This follows easily from the previous lemma:

Corollary 50. For e = 1/1000, with very high probability a randon\J + log .J)-junta over the firs{.J +
log J) variables ise-far from any sizes decision tree (over variables).

Proof. Let f be any(J + log J)-junta over the sefx1, ...,z 41057} Suppose thag is a sizes decision
tree over{x1,...,x,} that ise-close tof. It is not hard to show that then there exists a sizkecision tree
g’ over the relevant variablefsey, . .., z 71104 7} that ise-close tof as well ' can be obtained from by
fixing all the irrelevant variables to the values that maziey’'s agreement witly). |

We have thus established part (i) of Theorem 48.

Branching Programs: We only sketch the required analysis. We det= log, s andk = 10log, J.
Any J-junta can be expressed as a sizBranching program. Simple counting arguments show that for

e = 1/1000, a random(J + k)-junta over{xy, ...,z } IS with high probabilitye-far from every sizes
Branching Program ovezy, ...,z 1 }. An analogue of Corollary 50 completes the argument.
This completes the proof of Theorem 48. |

Remark: We note that these simple arguments do not seem to give anyriviah testing lower bound for
the class of Boolean circuits of sizelt would be interesting to obtain lower bounds for this slas

Finally, we point out the following:

Theorem 51. Let0 < € < 1/2. Any non-adaptive-testing algorithm for the class of Boolean functions
over {0, 1} with Fourier degreel must maké(~/d) queries.

Proof. Consider the following two distributions over Boolean ftiaos on{—1, 1}":
1. Dno is the uniform distribution over aﬂ d_’iz) parities of exactlyl + 2 variables fromey, ..., z,;

2. Dvygg is the uniform distribution over aﬂg) parities of exactlyl variables fromzy, ..., z,.

Every function in theDygg distribution clearly has Fourier degree, whereas evergtion in the Do
distribution has distance precisely2 from every function with Fourier degreg(this follows immediately
from Parseval’s identity). Fischeat al. showed that any non-adaptive algorithm for distinguishiingws
from Dvygs versusDyno must makeﬂ(\/ﬁ) draws; this immediately gives the desired result. |

44

ECCC ISSN 1433-809

http://eccc.hpi-web.de/

