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Abstract

We develop and study the complexity of propositional proof systems of varying strength
extending resolution by allowing it to operate with disjunctions of linear equations instead
of clauses. We demonstrate polynomial-size refutations for hard tautologies like the pigeon-
hole principle, Tseitin graph tautologies and the clique-coloring tautologies in these proof sys-
tems. Using the (monotone) interpolation by a communication game technique we establish an
exponential-size lower bound on refutations in a certain, considerably strong, fragment of res-
olution over linear equations, as well as a general polynomial upper bound on (non-monotone)
interpolants in this fragment.

We then apply these results to extend and improve previous results on multilinear proofs
(over fields of characteristic 0), as studied in [RT06]. Specifically, we show the following:

• Proofs operating with depth-3 multilinear formulas polynomially simulate a certain, con-
siderably strong, fragment of resolution over linear equations.

• Proofs operating with depth-3 multilinear formulas admit polynomial-size refutations of
the pigeonhole principle and Tseitin graph tautologies. The former improve over a previous
result that established small multilinear proofs only for the functional pigeonhole principle.
The latter are different than previous proofs, and apply to multilinear proofs of Tseitin
mod p graph tautologies over any field of characteristic 0.

We conclude by connecting resolution over linear equations with extensions of the cutting
planes proof system.

Key words and phrases. Proof complexity, resolution, algebraic proof systems, multilinear proofs,
cutting planes, feasible monotone interpolation.
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1 Introduction

This paper considers two kinds of proof systems. The first kind are extensions of resolution that
operate with disjunctions of linear equations with integral coefficients instead of clauses. The
second kind are algebraic proof systems operating with multilinear arithmetic formulas. Proofs in
both kinds of systems establish the unsatisfiability of formulas in conjunctive normal form (CNF).
We are primarily concerned with connections between these two families of proof systems and with
extending and improving previous results on multilinear proofs.

The resolution system is a popular propositional proof system that establishes the unsatisfi-
ability of CNF formulas (or equivalently, the truth of tautologies in disjunctive normal form) by
operating with clauses (a clause is a disjunction of propositional variables and their negations). It
is well known that resolution cannot provide small (that is, polynomial-size) proofs for many basic
counting arguments. The most notable example of this are the strong exponential lower bounds on

2



the resolution refutation size of the pigeonhole principle and its different variants (Haken [Hak85]
was the first to establish such a lower bound; see also [Razb02] for a survey on the proof complexity
of the pigeonhole principle). Due to the popularity of resolution both in practice, as the core of
many automated theorem provers, and as a theoretical case-study in propositional proof complex-
ity, it is natural to consider weak extensions of resolution that can overcome its inefficiency in
providing proofs of counting arguments. The proof systems we present in this paper are extensions
of resolution, of various strength, that are suited for this purpose.

Propositional proof systems of a different nature that also attracted much attention in proof
complexity theory are algebraic proof systems, which are proof systems operating with (multivari-
ate) polynomials over a field. In this paper, we are particularly interested in algebraic proof systems
that operate with multilinear polynomials represented as multilinear arithmetic formulas, called by
the generic name multilinear proofs (a polynomial is multilinear if the power of each variable in its
monomials is at most one). The investigation into such proof systems was initiated in [RT06], and
here we continue this line of research. This research is motivated on the one hand by the apparent
considerable strength of such systems; and on the other hand, by the known super-polynomial size
lower bounds on multilinear formulas computing certain important functions [Raz04, Raz06], com-
bined with the general working assumption that establishing lower bounds on the size of objects a
proof system manipulates (in this case, multilinear formulas) is close to establishing lower bounds
on the size of the proofs themselves.

The basic proof system we shall study is denoted R(lin). The proof-lines1 in R(lin) proofs
are disjunctions of linear equations with integral coefficients over the variables ~x = x1, . . . , xn.
It turns out that (already proper subsystems of) R(lin) can handle very elegantly basic counting
arguments. The following defines the R(lin) proof system. Given an initial CNF, we translate
every clause

∨
i∈I xi ∨

∨
j∈J ¬xj (where I are the indices of variables with positive polarities and

J are the indices of variables with negative polarities) pertaining to the CNF, into the disjunction∨
i∈I(xi = 1)∨∨

j∈J(xj = 0). Let A and B be two disjunctions of linear equations, and let ~a ·~x = a0

and ~b · ~x = b0 be two linear equations (where ~a,~b are two vectors of n integral coefficients, and
~a · ~x is the scalar product

∑n
i=1 aixi; and similarly for ~b · ~x). The rules of inference belonging to

R(lin) allow to derive A ∨ B ∨ ((~a +~b) · ~x = a0 + b0) from A ∨ (~a · ~x = a0) and B ∨ (~b · ~x = b0) (or
similarly, to derive A∨B ∨ ((~a−~b) ·~x = a0 − b0) from A∨ (~a ·~x = a0) and B ∨ (~b ·~x = b0)). We can
also simplify disjunctions by discarding (unsatisfiable) equations of the form (0 = k), for k 6= 0.
In addition, for every variable xi, we shall add an axiom (xi = 0) ∨ (xi = 1), which forces xi to
take on only Boolean values. A derivation of the empty disjunction (which stands for false) from
the (translated) clauses of a CNF is called an R(lin) refutation of the given CNF. This way, every
unsatisfiable CNF has an R(lin) refutation (this can be proved by a straightforward simulation of
resolution by R(lin)).

The basic idea connecting resolution operating with disjunctions of linear equations and multi-
linear proofs is this: Whenever a disjunction of linear equations is simple enough — and specifically,
when it is close to a symmetric function, in a manner made precise — then it can be represented
by a small size and small depth multilinear arithmetic formula over fields of characteristic 0. This
idea was already used (somewhat implicitly) in [RT06] to obtain polynomial-size multilinear proofs
operating with depth-3 multilinear formulas of the functional pigeonhole principle (this principle
is weaker than the pigeonhole principle). In the current paper we generalize previous results on
multilinear proofs by fully using this idea: We show how to polynomially simulate with multilinear
proofs, operating with small depth multilinear formulas, certain short proofs carried inside resolu-
tion over linear equations. This enables us to provide new polynomial-size multilinear proofs for
certain hard tautologies, improving results from [RT06].

1Each element (usually a formula) of a proof-sequence is referred to as a proof-line.
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More specifically, we introduce a certain fragment of R(lin), which can be polynomially simu-
lated by depth-3 multilinear proofs (that is, multilinear proofs operating with depth-3 multilinear
formulas). On the one hand this fragment of resolution over linear equations already is sufficient
to formalize in a transparent way basic counting arguments, and so it admits small proofs of the
pigeonhole principle and the Tseitin mod p formulas (which yields some new upper bounds on
multilinear proofs); and on the other hand we can use the (monotone) interpolation technique to
establish an exponential-size lower bound on refutations in this fragment as well as demonstrating a
general (non-monotone) polynomial upper bound on interpolants for this fragment. The possibility
that multilinear proofs (possibly, operating with depth-3 multilinear formulas) possess the feasible
monotone interpolation property (and hence, admit exponential-size lower bounds) remains open.

Another family of propositional proof systems we discuss in relation to the systems mentioned
above are the cutting planes system and its extensions. The cutting planes proof system operates
with linear inequalities with integral coefficients, and this system is very close to the extensions
of resolution we present in this paper. In particular, the following simple observation can be used
to polynomially simulate cutting planes proofs with polynomially bounded coefficients (and some
of its extensions) inside resolution over linear equations: The truth value of a linear inequality
~a · ~x ≥ a0 (where ~a is a vector of n integral coefficients and ~x is a vector of n Boolean variables) is
equivalent to the truth value of the following disjunction of linear equalities:

(~a · ~x = a0) ∨ (~a · ~x = a0 + 1) ∨ · · · ∨ (~a · ~x = a0 + k) ,

where a0 + k equals the sum of all positive coefficients in ~a (that is, a0 + k = max
~x∈{0,1}n

(~a · ~x)).

Note on terminology. All the proof systems considered in this paper intend to prove the
unsatisfiability over 0, 1 values of collections of clauses (possibly, of translation of the clauses to
disjunctions of linear equations). In other words, proofs in such proof systems intend to refute the
collections of clauses, which is to validate their negation. Therefore, throughout this paper we shall
sometime speak about refutations and proofs interchangeably, always intending refutations, unless
otherwise stated.

1.1 Comparison to Earlier Work

To the best of our knowledge this paper is the first that considers resolution proofs operating with
disjunctions of linear equations. Previous works considered extensions of resolution over linear
inequalities augmented with the cutting planes inference rules (the resulting proof system denoted
R(CP)). In full generality, we show that resolution over linear equations can polynomially simulate
R(CP) when the coefficients in all the inequalities are polynomially bounded (however, the converse
is not known to hold). On the other hand, we shall consider a certain fragment of resolution over
linear equations, in which we do not even know how to polynomially simulate cutting planes proofs
with polynomially bounded coefficients in inequalities (let alone R(CP) with polynomially bounded
coefficients in inequalities). We now shortly discuss the previous work on R(CP) and related proof
systems.

Extensions of resolution to disjunctions of linear inequalities were first considered by Kraj́ıček
[Kra98] who developed the proof systems LK(CP) and R(CP). The LK(CP) system is a first-order
(Gentzen-style) sequent calculus that operates with linear inequalities instead of atomic formulas
and augments the standard first-order sequent calculus inference rules with the cutting planes
inference rules. The R(CP) proof system is essentially resolution over linear inequalities, that is,
resolution that operates with disjunctions of linear inequalities instead of clauses.
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The main motivation of [Kra98] is to extend the feasible interpolation technique and conse-
quently the lower bounds results, from cutting planes and resolution to stronger proof systems.
That paper establishes an exponential-size lower bound on a restricted version of R(CP) proofs,
namely, when the number of inequalities in each proof-line is O(nε), where n is the number of
variables of the initial formulas, ε is a small enough constant and the coefficients in the cutting
planes inequalities are polynomially bounded.

Other papers considering extensions of resolution over linear inequalities are the more recent
papers by Hirsch & Kojevnikov [HK06] and Kojevnikov [Koj07]. The first paper [HK06] considers
a combination of resolution with LP (an incomplete subsystem of cutting planes based on simple
linear programming reasoning), with the ‘lift and project’ proof system (L&P), and with the cutting
planes proof system. The second paper [Koj07] deals with improving the parameters of the tree-like
R(CP) lower-bounds obtained in [Kra98].

Whereas previous results concerned primarily with extending the cutting planes proof system,
our foremost motivation is to extend and improve previous results on algebraic proof systems
operating with multilinear formulas obtained in [RT06]. In that paper the concept of multilinear
proofs was introduced and several basic results concerning multilinear proofs were proved. In
particular, polynomial-size proofs of two important combinatorial principles were demonstrated:
the functional pigeonhole principle and the Tseitin (mod p) graph tautologies. In the current paper
we improve both these results.

As mentioned above, motivated by relations with multilinear proofs operating with depth-3
multilinear formulas, we shall consider a certain subsystem of resolution over linear equations. For
this subsystem we apply twice the interpolation by a communication game technique. The first
application is of the non-monotone version of the technique, and the second application is of the
monotone version. Namely, the first application provides a general (non-monotone) interpolation
theorem that demonstrates a polynomial (in the size of refutations) upper bound on interpolants;
The proof uses the general method of transforming a refutation into a Karchmer-Wigderson com-
munication game for two players, from which a Boolean circuit is then attainable. In particular,
we shall apply the interpolation theorem of Kraj́ıček from [Kra97]. The second application of the
(monotone) interpolation by a communication game technique is implicit and proceeds by using
the lower bound criterion of Bonet, Pitassi & Raz in [BPR97]. This criterion states that (semantic)
proof systems (of a certain natural and standard kind) whose proof-lines (considered as Boolean
functions) have low communication complexity cannot prove efficiently a certain tautology (namely,
the clique-coloring tautologies).

1.2 Summary of Results

This paper introduces and connects several new concepts and ideas with some known ones. It
identifies new extensions of resolution operating with linear equations, and relates (a certain)
such extension to multilinear proofs. The upper bounds for the pigeonhole principle and Tseitin
mod p formulas in fragments of resolution over linear equations are new. By generalizing the
machinery developed in [RT06], these upper bounds yield new and improved results concerning
multilinear proofs. The lower bound for the clique-coloring formulas in a fragment of resolution
over linear equations employs the standard monotone interpolation by a communication game
technique, and specifically utilizes the theorem of Bonet, Pitassi & Raz from [BPR97]. The general
(non-monotone) interpolation result for a fragment of resolution over linear equations employs the
theorem of Kraj́ıček from [Kra97]. The upper bound in (the stronger variant of – as described
in the introduction) resolution over linear equations of the clique-coloring formulas follows that of
Atserias, Bonet & Esteban [ABE02]. We now give a detailed outline of the results in this paper.
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The proof systems. In Section 3 we formally define two extensions of resolution of decreasing
strength allowing resolution to operate with disjunctions of linear equations. The size of a linear
equation a1x1 + . . . + anxn = a0 is the sum of all a0, . . . , an written in unary notation. The size of
a disjunction of linear equations is the total size of all linear equations in the disjunction. The size
of a proof operating with disjunctions of linear equations is the total size of all the disjunctions in
it.

R(lin): This is the stronger proof system (described in the introduction) that operates with
disjunctions of linear equations with integer coefficients.

R0(lin): This is a (provably proper) fragment of R(lin). It operates with disjunctions of (arbi-
trarily many) linear equations whose variables have constant coefficients, under the restriction that
every disjunction can be partitioned into a constant number of sub-disjunctions, where each sub-
disjunction either consists of linear equations that differ only in their free-terms or is a (translation
of a) clause.

Note that any single linear inequality with Boolean variables can be represented by a disjunction
of linear equations that differ only in their free-terms (see the example in the introduction section).
So the R0(lin) proof system is close to a proof system operating with disjunctions of constant
number of linear inequalities (with constant integral coefficients). In fact, disjunctions of linear
equations varying only in their free-terms, have more (expressive) strength than a single inequality.
For instance, the parity function can be easily represented by a disjunction of linear equations,
while it cannot be represented by a single linear inequality (or even by a disjunction of linear
inequalities).

As already mentioned, the motivation to consider the restricted proof system R0(lin) comes
from its relation to multilinear proofs operating with depth-3 multilinear formulas (in short, depth-
3 multilinear proofs): R0(lin) corresponds roughly to the subsystem of R(lin) that we know how
to simulate by depth-3 multilinear proofs via the technique in [RT06] (the technique is based on
converting disjunctions of linear forms into symmetric polynomials, which are known to have small
depth-3 multilinear formulas). This simulation is then applied in order to improve over known
upper bounds for depth-3 multilinear proofs, as R0(lin) is already sufficient to efficiently prove
certain “hard tautologies”. Moreover, we are able to establish an exponential lower bound on
R0(lin) refutations size (see below for both upper and lower bounds on R0(lin) proofs). We also
establish a super-polynomial separation of R(lin) from R0(lin) (via the clique-coloring principle,
for a certain choice of parameters; see below).

Short refutations. We demonstrate the following short refutations in R0(lin) and R(lin):

1. Polynomial-size refutations of the pigeonhole principle in R0(lin);

2. Polynomial-size refutations of Tseitin mod p graph formulas in R0(lin);

3. Polynomial-size refutations of the clique-coloring formulas in R(lin) (for certain parameters).
The refutations here follow by direct simulation of the Res(2) refutations of clique-coloring
formulas from [ABE02].

All the three families of formulas above are prominent “hard tautologies” in proof complexity
literature, which means that strong size lower bounds on proofs in various proof systems are known
for them (for the exact formulation of these families of formulas see Section 6).

Interpolation results. We provide a polynomial upper-bound on (non-monotone) interpolants
corresponding to R0(lin) refutations; Namely, we show that any R0(lin)-refutation of a given for-
mula can be transformed into a (non-monotone) Boolean circuit computing the corresponding
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interpolant function of the formula (if there exists such a function), with at most a polynomial
increase in size. We employ the general interpolation theorem of Kraj́ıček [Kra97] for semantic
proof systems.

Lower bounds. We provide the following exponential lower bound:

Theorem 1 R0(lin) does not have sub-exponential refutations for the clique-coloring formulas.

This result is proved by applying a result of Bonet, Pitassi & Raz [BPR97], that (implicitly) use the
monotone interpolation by a communication game technique for establishing an exponential-size
lower bound on refutations of general semantic proof systems operating with proof-lines of low
communication complexity.

Applications to multilinear proofs. Multilinear proof systems are (semantic) refutation sys-
tems operating with multilinear polynomials over a fixed field, where every multilinear polynomial
is represented by a multilinear arithmetic formula. In this paper we shall consider multilinear
formulas over fields of characteristic 0 only. The size of a multilinear proof (that is, a proof in
a multilinear proof system) is the total size of all multilinear formulas in the proof (for formal
definitions concerning multilinear proofs see Section 9).

We shall first connect multilinear proofs with resolution over linear equations by the following
result:

Theorem 2 Multilinear proofs operating with depth-3 multilinear formulas over characteristic 0
polynomially-simulate R0(lin).

An immediate corollary of this theorem and the upper bounds in R0(lin) described above are
polynomial-size multilinear proofs for the pigeonhole principle and the Tseitin mod p formulas.

1. Polynomial-size depth-3 multilinear refutations for the pigeonhole principle over fields of
characteristic 0. This improves over [RT06] that shows a similar upper bound for a weaker
principle, namely, the functional pigeonhole principle.

2. Polynomial-size depth-3 multilinear refutations for the Tseitin mod p graph formulas over
fields of characteristic 0. These refutations are different than those demonstrated in [RT06],
and further they establish short multilinear refutations of the Tseitin mod p graph formulas
over any field of characteristic 0 (the proof in [RT06] showed how to refute the Tseitin mod
p formulas by multilinear refutations only over fields that contain a primitive pth root of
unity).

Relations with cutting planes proofs. As mentioned in the introduction, a proof system
combining resolution with cutting planes was presented by Kraj́ıček in [Kra98]. The resulting
system is denoted R(CP) (see Section 10 for a definition). When the coefficients in the linear
inequalities inside R(CP) proofs are polynomially bounded, the resulting proof system is denoted
R(CP*). We establish the following simulation result:

Theorem 3 R(lin) polynomially simulates resolution over cutting planes inequalities with polyno-
mially bounded coefficients R(CP*).

We do not know if the converse also holds.
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2 Notation and Background on Propositional Proof Systems

For a natural number n, we use [n] to denote {1, . . . , n}. For a vector of n (integral) coefficients
~a and a vector of n variables ~x, we denote by ~a · ~x the scalar product

∑n
i=1 aixi. If ~b is another

vector (of length n), then ~a +~b denotes the addition of ~a and ~b as vectors, and c~a (for an integer
c) denotes the product of the scalar c with ~a (where, −~a denotes −1~a). For two linear equations
L1 : ~a · ~x = a0 and L2 : ~b · ~x = b0, their addition (~a +~b) · ~x = a0 + b0 is denoted L1 + L2 (and their
subtraction (~a −~b) · ~x = a0 − b0 is denoted L1 − L2). For two Boolean assignments (identified as
0, 1 strings) α, α′ ∈ {0, 1}n we write α′ ≥ α if α′

i ≥ αi, for all i ∈ [n] (where αi,α
′
i are the ith bits

of α and α′, respectively).
We now recall some basic concepts on propositional proof systems. For background on algebraic

proof systems (and specifically multilinear proofs) see Section 9.

Resolution. In order to put our work in context, we need to define the resolution refutation
system.

A CNF formula over the variables x1, . . . , xn is defined as follows. A literal is a variable xi or
its negation ¬xi. A clause is a disjunction of literals. A CNF formula is a conjunction of clauses.
The size of a clause is the number of literals in it.

Resolution is a complete and sound proof system for unsatisfiable CNF formulas. Let C and D
be two clauses containing neither xi nor ¬xi, the resolution rule allows one to derive C ∨ D from
C ∨ xi and D ∨ ¬xi. The clause C ∨ D is called the resolvent of the clauses C ∨ xi and D ∨ ¬xi

on the variable xi, and we also say that C ∨ xi and D ∨ ¬xi were resolved over xi. The weakening
rule allows to derive the clause C ∨ D from the clause C, for any two clauses C, D.

Definition 2.1 (Resolution) A resolution proof of the clause D from a CNF formula K is a
sequence of clauses D1, D2, . . . , D` , such that: (1) each clause Dj is either a clause of K or a
resolvent of two previous clauses in the sequence or derived by the weakening rule from a previous
clause in the sequence; (2) the last clause D` = D. The size of a resolution proof is the sum of all
the sizes of the clauses in it. A resolution refutation of a CNF formula K is a resolution proof of
the empty clause ¤ from K (the empty clause stands for false; that is, the empty clause has no
satisfying assignments).

A proof in resolution (or any of its extensions) is called also a derivation or a proof-sequence.
Each sequence-element in a proof-sequence is called also a proof-line. A proof-sequence containing
the proof-lines D1, . . . , D` is also said to be a derivation of D1, . . . , D`.

Cook-Reckhow proof systems. Following [CR79], a Cook-Reckhow proof system is a
polynomial-time algorithm A that receives a Boolean formula F (for instance, a CNF) and a
string π over some finite alphabet (“the (proposed) refutation” of F ), such that there exists a π
with A(F, π) = 1 if and only if F is unsatisfiable. The completeness of a (Cook-Reckhow) proof
system (with respect to the set of all unsatisfiable Boolean formulas; or for a subset of it, e.g. the
set of unsatisfiable CNF formulas) stands for the fact that every unsatisfiable formula F has a string
π (“the refutation of F”) so that A(F, π) = 1. The soundness of a (Cook-Reckhow) proof system
stands for the fact that every formula F so that A(F, π) = 1 for some string π is unsatisfiable (in
other words, no satisfiable formula has a refutation).

For instance, resolution is a Cook-Reckhow proof system, since it is complete and sound for the
set of unsatisfiable CNF formulas, and given a CNF formula F and a string π it is easy to check
in polynomial-time (in both F and π) whether π constitutes a resolution refutation of F .
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We shall also consider proof systems that are not necessarily (that is, not known to be) Cook-
Reckhow proof systems. Specifically, multilinear proof systems (over large enough fields) meet the
requirements in the definition of Cook-Reckhow proof systems, except that the condition on A
above is relaxed: we allow A to be in probabilistic polynomial-time BPP (which is not known to
be equal to deterministic polynomial-time).

Polynomial simulations of proof systems. When comparing the strength of different proof
systems we shall confine ourselves to CNF formulas only. That is, we consider propositional proof
systems as proof systems for the set of unsatisfiable CNF formulas. For that purpose, if a proof
system does not operate with clauses directly, then we fix a (direct) translation from clauses to
the objects operated by the proof system. This is done for both resolution over linear equations
(which operate with disjunctions of linear equations) and its fragments, and also for multilinear
proofs (which operate with multilinear polynomials, represented as multilinear formulas); see for
example Subsection 3.1 for such a direct translation.

Definition 2.2 Let P1,P2 be two proof systems for the set of unsatisfiable CNF formulas (we
identify a CNF formula with its corresponding translation, as discussed above). We say that P2

polynomially simulates P1 if given a P1 refutation π of a CNF formula F , then there exists a
refutation of F in P2 of size polynomial in the size of π. In case P2 polynomially simulates P1

while P1 does not polynomially simulates P2 we say that P2 is strictly stronger than P1.

3 Resolution over Linear Equations and its Subsystems

The proof systems we consider in this section are extensions of resolution. Proof-lines in reso-
lution are clauses. Instead of this, the extensions of resolution we consider here operate with
disjunctions of linear equations with integral coefficients. For this section we use the convention
that all the formal variables in the propositional proof systems considered are taken from the set
X := {x1, . . . , xn}.

3.1 Disjunctions of Linear Equations

For L a linear equation a1x1 + . . . + anxn = a0, the right hand side a0 is called the free-term of L
and the left hand side a1x1 + . . . + anxn is called the linear form of L (the linear form can be 0).
A disjunction of linear equations is of the following general form:

(
a

(1)
1 x1 + . . . + a(1)

n xn = a
(1)
0

)
∨ · · · ∨

(
a

(t)
1 x1 + . . . + a(t)

n xn = a
(t)
0

)
, (1)

where t ≥ 0 and the coefficients a
(j)
i are integers (for all 0 ≤ i ≤ n, 1 ≤ j ≤ t). We discard duplicate

linear equations from a disjunction of linear equations. The semantics of such a disjunction is the
natural one: We say that an assignment of integral values to the variables x1, ..., xn satisfies (1)

if and only if there exists j ∈ [t] so that the equation a
(j)
1 x1 + . . . + a

(j)
n xn = a

(j)
0 holds under the

given assignment.
The symbol |= denotes the semantic implication relation, that is, for every collection D1, . . . , Dm

of disjunctions of linear equations,
D1, . . . , Dm |= D0

means that every assignment of 0, 1 values that satisfies all D1, . . . , Dm also satisfies D0.
2 In this

case we also say that D1, . . . , Dm semantically imply D0.

2Alternatively, we can consider assignments of any integral values (instead of only Boolean values) to the variables

9



The size of a linear equation a1x1 + . . . + anxn = a0 is
∑n

i=0 |ai|, i.e., the sum of the bit sizes
of all ai written in unary notation. Accordingly, the size of the linear form a1x1 + . . . + anxn is∑n

i=1 |ai|. The size of a disjunction of linear equations is the total size of all linear equations in it.
Since all linear equations considered in this paper are of integral coefficients, we shall speak

of linear equations when we actually mean linear equations with integral coefficients. Similar to
resolution, the empty disjunction is unsatisfiable and stands for the truth value false.

Translation of clauses. As described in the introduction, we can translate any CNF formula to
a collection of disjunctions of linear equations in a direct manner: Every clause

∨
i∈I xi ∨

∨
j∈J ¬xj

(where I and J are sets of indices of variables) pertaining to the CNF is translated into the
disjunction

∨
i∈I(xi = 1) ∨ ∨

j∈J(xj = 0). For a clause D we denote by D̃ its translation into a
disjunction of linear equations. It is easy to verify that any Boolean assignment to the variables
x1, . . . , xn satisfies a clause D if and only if it satisfies D̃ (where true is treated as 1 and false

as 0).

3.2 Resolution over Linear Equations – R(lin)

Defined below is our basic proof system R(lin) that enables resolution to reason with disjunctions
of linear equations. As we wish to reason about Boolean variables we augment the system with
the axioms (xi = 0) ∨ (xi = 1), for all i ∈ [n], called the Boolean axioms.

Definition 3.1 (R(lin)) Let K := {K1, . . . , Km} be a collection of disjunctions of linear equa-
tions. An R(lin)-proof from K of a disjunction of linear equations D is a finite sequence
π = (D1, ..., D`) of disjunctions of linear equations, such that D` = D and for every i ∈ [`],
either Di = Kj for some j ∈ [m], or Di is a Boolean axiom (xh = 0)∨ (xh = 1) for some h ∈ [n],
or Di was deduced by one of the following R(lin)-inference rules, using Dj , Dk for some j, k < i:

Resolution Let A, B be two disjunctions3of linear equations and let L1, L2 be two linear equa-
tions.

From A ∨ L1 and B ∨ L2 derive A ∨ B ∨ (L1 + L2).

Similarly, from A ∨ L1 and B ∨ L2 derive A ∨ B ∨ (L1 − L2).

Weakening From a disjunction of linear equations A derive A ∨ L , where L is an arbitrary
linear equation over X.

Simplification From A ∨ (0 = k) derive A, where A is a disjunction of linear equations and
k 6= 0.

An R(lin) refutation of a collection of disjunctions of linear equations K is a proof of the empty
disjunction from K. The size of an R(lin)-proof π is the total size of all the disjunctions of linear
equations in π, denoted |π|.

Similar to resolution, in case A ∨ B ∨ (L1 + L2) is derived from A ∨ L1 and B ∨ L2 by the
resolution rule, we say that A ∨L1 and B ∨L2 were resolved over L1 and L2, respectively, and we
call A ∨B ∨ (L1 + L2) the resolvent of A ∨L1 and B ∨ L2 (and similarly, when A ∨B ∨ (L1 − L2)
is derived from A ∨ L1 and B ∨ L2 by the resolution rule; we use the same terminology for both

in D1, . . . , Dm, stipulating that the collection D1, . . . , Dm contains all disjunctions of the form (xj = 0) ∨ (xj = 1)
for all the variables xj ∈ X (these formulas force any satisfying assignment to give only 0, 1 values to the variables).

3Possibly the empty disjunction. This remark also applies to the inference rules below.
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addition and subtraction, and it should be clear from the context which operation is actually
applied). We also describe such an application of the resolution rule by saying that L1 was added
(resp., subtracted) to (resp. from) L2 in A ∨ L1 and B ∨ L2.

In light of the direct translation between CNF formulas and collections of disjunctions of linear
equations (described in the previous subsection), we can consider R(lin) to be a proof system for
the set of unsatisfiable CNF formulas:

Proposition 4 The R(lin) refutation system is a sound and complete Cook-Reckhow (see Sec-
tion 2) refutation system for unsatisfiable CNF formulas (translated into unsatisfiable collection of
disjunctions of linear equations).

Proof. Completeness of R(lin) (for the set of unsatisfiable CNF formulas) stems from a straight-
forward simulation of resolution, as we now show.

Claim 1 R(lin) polynomially simulates resolution.

Proof of claim: Proceed by induction on the length of the resolution refutation to show that any
resolution derivation of a clause A can be translated with only a linear increase in size into an R(lin)
derivation of the corresponding disjunction of linear equations Ã (see the previous subsection for
the definition of Ã).

The base case: An initial clause A is translated into its corresponding disjunction of linear
equations Ã.

The induction step: If a resolution clause A∨B was derived by the resolution rule from A∨ xi

and B ∨ ¬xi, then in R(lin) we subtract (xi = 0) from (xi = 1) in B̃ ∨ (xi = 0) and Ã ∨ (xi = 1),
respectively, to obtain Ã∨ B̃ ∨ (0 = 1). Then, using the Simplification rule, we can cut-off (0 = 1)
from Ã ∨ B̃ ∨ (0 = 1), and arrive at Ã ∨ B̃.

If a clause A∨B was derived in resolution from A by the Weakening rule, then we derive Ã∨ B̃
from Ã by the Weakening rule in R(lin).

Soundness of R(lin) stems from the soundness of the inference rules (which means that: If D
was derived from C, B by the R(lin) resolution rule then any assignment that satisfies both C and
B also satisfies D; and if D was derived from C by either the Weakening rule or the Simplification
rule, then any assignment that satisfies C also satisfies D).

The R(lin) proof system is a Cook-Reckhow proof system, as it is easy to verify in polynomial-
time whether an R(lin) proof-line is inferred, by an application of one of R(lin)’s inference rules,
from a previous proof-line (or proof-lines). Thus, any sequence of disjunctions of linear equations,
can be checked in polynomial-time (in the size of the sequence) to decide whether or not it is a
legitimate R(lin) proof-sequence. ¤

In Section 5 we shall see that a stronger notion of completeness (that is, implicational com-
pleteness) holds for R(lin) and its subsystems.

3.3 Fragment of Resolution over Linear Equations – R0(lin)

Here we consider a restriction of R(lin), denoted R0(lin). As discussed in the introduction section,
R0(lin) is roughly the fragment of R(lin) we know how to polynomially simulate with depth-3
multilinear proofs.

By results established in the sequel (Sections 6.3 and 8) R(lin) is strictly stronger than R0(lin),
which means that R(lin) polynomially simulates R0(lin), while the converse does not hold.
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R0(lin) operates with disjunctions of (arbitrarily many) linear equations with constant coeffi-
cients (excluding the free terms), under the following restriction: Every disjunction can be par-
titioned into a constant number of sub-disjunctions, where each sub-disjunction either consists of
linear equations that differ only in their free-terms or is a (translation of a) clause.

As mentioned in the introduction, every linear inequality with Boolean variables can be rep-
resented by a disjunction of linear equations that differ only in their free-terms. So the R0(lin)
proof system resembles, to some extent, a proof system operating with disjunctions of constant
number of linear inequalities with constant integral coefficients (on the other hand, it is probable
that R0(lin) is stronger than such a proof system, as a disjunction of linear equations that differ
only in their free terms is [expressively] stronger than a linear inequality [or even a disjunction of
linear inequalities]: the former can define the parity function while the latter cannot).

Example of an R0(lin)-line:

(x1 + . . . + x` = 1) ∨ · · · ∨ (x1 + . . . + x` = `) ∨ (x`+1 = 1) ∨ · · · ∨ (xn = 1),

for some 1 ≤ ` ≤ n. The next section contains other concrete (and natural) examples of R0(lin)-
lines.

Let us define formally what it means to be an R0(lin) proof-line, that is, a proof-line inside an
R0(lin) proof, called R0(lin)-line:

Definition 3.2 (R0(lin)-line) Let D be a disjunction of linear equations whose variables have
constant integer coefficients (the free-terms are unbounded). Assume D can be partitioned into a
constant number k of sub-disjunctions D1, . . . , Dk, where each Di either consists of (an unbounded)
disjunction of linear equations that differ only in their free-terms, or is a translation of a clause
(as defined in Subsection 3.1). Then the disjunction D is called an R0(lin)-line.

Thus, any R0(lin)-line is of the following general form:

∨

i∈I1

(
~a(1) · ~x = `

(1)
i

)
∨ · · · ∨

∨

i∈Ik

(
~a(k) · ~x = `

(k)
i

)
∨

∨

j∈J

(xj = bj) , (2)

where k and all at
r (for r ∈ [n] and t ∈ [k]) are integer constants and bj ∈ {0, 1} (for all j ∈ J) (and

I1, . . . , Ik, J are unbounded sets of indices). Note that a disjunction of clauses can be combined
into a single clause. Hence, without loss of generality we can assume that in any R0(lin)-line only
a single (translation of a) clause occurs. This is depicted in (2) (where in addition we have ignored
in (2) the possibility that the single clause obtained by combining several clauses contains xj ∨¬xj ,
for some j ∈ [n]).

Definition 3.3 (R0(lin)) The R0(lin) proof system is a restriction of the R(lin) proof system in
which each proof-line is an R0(lin)-line (as in Definition 3.2).

For a completeness proof of R0(lin) see Section 5.4

4The simulation of resolution inside R(lin) (in the proof of Proposition 4) is carried on with each R(lin) proof-line
being in fact a translation of a clause, and hence, an R0(lin)-line (notice that the Boolean axioms of R(lin) are
R0(lin)-lines). This already implies that R0(lin) is a complete refutation system for the set of unsatisfiable CNF
formulas. In section 5 we give a proof of a stronger notion of completeness for R0(lin).
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4 Reasoning and Counting inside R(lin) and its Subsystems

In this section we illustrate a simple way to reason by case-analysis inside R(lin) and its subsystems.
This kind of reasoning will simplify the presentation of proofs inside R(lin) (and R0(lin)) in the
sequel (essentially, a similar – though weaker – kind of reasoning is applicable already in resolution).
We will then demonstrate efficient and transparent proofs for simple counting arguments that will
also facilitate us in the sequel.

4.1 Basic Reasoning inside R(lin) and its Subsystems

Given K a collection of disjunctions of linear equations {K1, . . . , Km} and C a disjunction of linear
equations, denote by K ∨C the collection {K1 ∨ C, . . . , Km ∨ C}. Recall that the formal variables
in our proof system are x1, . . . , xn.

Lemma 5 Let K be a collection of disjunctions of linear equations, and let z abbreviate some linear
form with integer coefficients. Let E1, . . . , E` be ` disjunctions of linear equations. Assume that for
all i ∈ [`] there is an R(lin) derivation of Ei from z = ai and K with size at most s where a1, . . . , a`

are distinct integers. Then, there is an R(lin) proof of
∨`

i=1 Ei from K and (z = a1)∨· · ·∨(z = a`),
with size polynomial in s and `.

Proof. Denote by D the disjunction (z = a1)∨ · · · ∨ (z = a`) and by πi the R(lin) proof of Ei from
K and z = ai (with size at most s), for all i ∈ [`]. It is easy to verify that for all i ∈ [`] the sequence
πi ∨

∨
j∈[`]\{i}(z = aj) is an R(lin) proof of Ei ∨

∨
j∈[`]\{i}(z = aj) from K and D. So overall, given

D and K as premises, there is an R(lin) derivation of size polynomial in s and ` of the following
collection of disjunctions of linear equations:

E1 ∨
∨

j∈[`]\{1}
(z = aj), . . . , E` ∨

∨

j∈[`]\{`}
(z = aj) . (3)

We now use the Resolution rule to cut-off all the equations (z = ai) inside all the disjunctions
in (3). Formally, we prove that for every 1 ≤ k ≤ ` there is a polynomial-size (in s and `) R(lin)
derivation from (3) of

E1 ∨ · · · ∨ Ek ∨
∨

j∈[`]\[k]

(z = aj) , (4)

and so putting k = `, will conclude the proof of the lemma.
We proceed by induction on k. The base case for k = 1 is immediate (from (3)). For the

induction case, assume that for some 1 ≤ k < ` we already have an R(lin) proof of (4), with size
polynomial in s and `.

Consider the line
Ek+1 ∨

∨

j∈[`]\{k+1}
(z = aj) . (5)

We can now cut-off the disjunctions
∨

j∈[`]\[k](z = aj) and
∨

j∈[`]\{k+1}(z = aj) from (4) and (5),
respectively, using the Resolution rule (since the aj ’s in (4) and in (5) are disjoint). We will
demonstrate this derivation in some detail now, in order to exemplify a proof carried inside R(lin).
We shall be less formal sometime in the sequel.

Resolve (4) with (5) over (z = ak+1) and (z = a1), respectively, to obtain

(0 = a1 − ak+1) ∨ E1 ∨ · · · ∨ Ek ∨ Ek+1 ∨
∨

j∈[`]\{1,k+1}
(z = aj) . (6)
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Since a1 6= ak+1, we can use the Simplification rule to cut-off (0 = a1 − ak+1) from (6), and we
arrive at

E1 ∨ · · · ∨ Ek ∨ Ek+1 ∨
∨

j∈[`]\{1,k+1}
(z = aj) . (7)

Now, similarly, resolve (4) with (7) over (z = ak+1) and (z = a2), respectively, and use Simplifica-
tion to obtain

E1 ∨ · · · ∨ Ek ∨ Ek+1 ∨
∨

j∈[`]\{1,2,k+1}
(z = aj) .

Continue in a similar manner until you arrive at

E1 ∨ · · · ∨ Ek ∨ Ek+1 ∨
∨

j∈[`]\{1,2,...,k,k+1}
(z = aj) ,

which is precisely what we need. ¤

Under the appropriate conditions, Lemma 5 also holds for R0(lin) proofs. This is stated in the
following lemma.

Lemma 6 Let K be a collection of disjunctions of linear equations, and let z abbreviate a linear
form with integer coefficients. Let E1, . . . , E` be ` disjunctions of linear equations. Assume that
for all i ∈ [`] there is an R0(lin) derivation of Ei from z = ai and K with size at most s, where
the ai’s are distinct integers. Then, assuming

∨`
i=1 Ei is an R0(lin)-line, there is an R0(lin) proof

of
∨`

i=1 Ei from K and (z = a1) ∨ · · · ∨ (z = a`), with size polynomial in s and `.

Proof. It can be verified by simple inspection that, under the conditions spelled out in the statement
of the lemma, each proof-line in the R(lin) derivations in the proof of Lemma 5 is actually an
R0(lin)-line.5 ¤

Abbreviations. Lemmas 5 and 6 will sometime facilitate us to proceed inside R(lin) and R0(lin)
with a slightly less formal manner. For example, the situation in Lemma 5 above can be depicted
by saying that “if z = ai implies Ei (with a polynomial-size proof) for all i ∈ [`], then

∨`
i=1(z = ai)

implies
∨`

i=1 Ei (with a polynomial-size proof)”.

In case
∨`

i=1(z = ai) above is just the Boolean axiom (xi = 0) ∨ (xi = 1), for some i ∈ [n], and
xi = 0 implies E0 and xi = 1 implies E1 (both with polynomial-size proofs), then to simplify the
writing we shall sometime not mention the Boolean axiom at all. For example, the latter situation
can be depicted by saying that “if xi = 0 implies E0 with a polynomial-size proof and xi = 1
implies E1 with a polynomial-size proof, then we can derive E0∨E1 with a polynomial-size proof”.

4.2 Basic Counting inside R(lin) and R0(lin)

In this subsection we illustrate how to efficiently prove several basic counting arguments inside
R(lin) and R0(lin). This will facilitate us in showing short proofs for hard tautologies in the sequel.
In accordance with the last paragraph in the previous subsection, we shall carry the proofs inside
R(lin) and R0(lin) with a slightly less rigor.

5Note that when the proofs of Ei from z = ai, for all i ∈ [`], are all done inside R0(lin), then the linear form z

ought to have constant coefficients.
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Lemma 7 Let z1 abbreviate ~a · ~x and z2 abbreviate ~b · ~x. Let D1 be
∨

α∈A(z1 = α) and let D2 be∨
β∈B (z2 = β), where A,B are two (finite) sets of integers. Then there is a polynomial-size (in the

size of D1, D2) R(lin) proof from D1, D2 of:
∨

α∈A,β∈B
(z1 + z2 = α + β) . (8)

Moreover, if ~a and ~b consist of constant integers (which means that D1, D2 are R0(lin)-lines), then
there is a polynomial-size (in the size of D1, D2) R0(lin) proof of (8) from D1, D2.

Proof. Denote the elements of A by α1, . . . , αk. In case z1 = αi, for some i ∈ [k] then we can add
z1 = αi to every equation in

∨
β∈B (z2 = β) to get

∨
β∈B(z1 + z2 = αi + β). Therefore, there exist

k R(lin) proofs, each with polynomial-size (in |D1| and |D2|), of
∨

β∈B
(z1 + z2 = α1 + β) ,

∨

β∈B
(z1 + z2 = α2 + β) , . . . ,

∨

β∈B
(z1 + z2 = αk + β)

from z1 = α1, z1 = α2 ,. . . ,z1 = αk, respectively.
Thus, by Lemma 5, we can derive

∨

α∈A,β∈B
(z1 + z2 = α + β) (9)

from D1 and D2 in a polynomial-size (in |D1| and |D2|) R(lin)-proof. This concludes the first part
of the lemma.

Assume that ~a and ~b consist of constant coefficients only. Then by inspecting the R(lin)-proof
of (9) from D1 and D2 demonstrated above (and by using Lemma 6 instead of Lemma 5), one can
verify that this proof is in fact carried inside R0(lin). ¤

An immediate corollary of Lemma 7 is the efficient formalization in R(lin) of the following
obvious counting argument: If a linear form equals some value in the interval (of integer numbers)
[a0, a1] and another linear form equals some value in [b0, b1] (for some a0 ≤ a1 and b0 ≤ b1), then
their addition equals some value in [a0 + b0, a1 + b1]. More formally:

Corollary 8 Let z1 abbreviate ~a ·~x and z2 abbreviate ~b ·~x. Let D1 be (z1 = a0)∨ (z1 = a0 +1) . . .∨
(z1 = a1), and let D2 be (z2 = b0) ∨ (z2 = b0 + 1) . . . ∨ (z2 = b1). Then there is a polynomial-size
(in the size of D1, D2) R(lin) proof from D1, D2 of

(z1 + z2 = a0 + b0) ∨ (z1 + z2 = a0 + b0 + 1) ∨ . . . ∨ (z1 + z2 = a1 + b1) . (10)

Moreover, if ~a and ~b consist of constant integers (which means that D1, D2 are R0(lin)-lines), then
there is a polynomial-size (in the size of D1, D2) R0(lin) proofs of (10) from D1, D2.

Lemma 9 Let ~a · ~x be a linear form with n variables, and let A := {~a · ~x | ~x ∈ {0, 1}n} be the set
of all possible values of ~a · ~x over Boolean assignments to ~x. Then there is a polynomial-size, in
the size of the linear form ~a · ~x,6 R(lin) proof of

∨

α∈A
(~a · ~x = α) . (11)

Moreover, if the coefficients in ~a are constants, then there is a polynomial-size (in the size of ~a · ~x)
R0(lin) proof of (11).

6Recall that the size of ~a · ~x is
∑n

i=1
|ai|, that is, the size of the unary representation of ~a.
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Proof. Without loss of generality, assume that all the coefficients in ~a are nonzero. Consider the
Boolean axiom (x1 = 0) ∨ (x1 = 1) and the (first) coefficient a1 from ~a. Assume that a1 ≥ 1. Add
(x1 = 0) to itself a1 times, and arrive at (a1x1 = 0) ∨ (x1 = 1). Then, in the resulted line, add
(x1 = 1) to itself a1 times, until the following is reached:

(a1x1 = 0) ∨ (a1x1 = a1) .

Similarly, in case a1 ≤ −1 we can subtract (|a1| + 1 many times) (x1 = 0) from itself in
(x1 = 0) ∨ (x1 = 1), and then subtract (|a1| + 1 many times) (x1 = 1) from itself in the resulted
line.

In the same manner, we can derive the disjunctions: (a2x2 = 0) ∨ (a2x2 = a2), . . . , (anxn =
0) ∨ (anxn = an).

Consider (a1x1 = 0) ∨ (a1x1 = a1) and (a2x2 = 0) ∨ (a2x2 = a2). From these two lines, by
Lemma 7, there is a polynomial-size in |a1| + |a2| derivation of:

(a1x1 + a2x2 = 0) ∨ (a1x1 + a2x2 = a1) ∨ (a1x1 + a2x2 = a2) ∨ (a1x1 + a2x2 = a1 + a2) . (12)

In a similar fashion, now consider (a3x3 = 0) ∨ (a3x3 = a3) and apply again Lemma 7, to obtain

∨

α∈A′
(a1x1 + a2x2 + a3x3 = α) , (13)

where A′ are all possible values to a1x1 + a2x2 + a3x3 over Boolean assignments to x1, x2, x3. The
derivation of (13) is of size polynomial in |a1| + |a2| + |a3|.

Continue to consider, successively, all other lines (a4x4 = 0) ∨ (a4x4 = a4), . . . , (anxn = 0) ∨
(anxn = an), and apply the same reasoning. Each step uses a derivation of size at most polynomial
in

∑n
i=1 |ai|. And so overall we reach the desired line (11), with a derivation of size polynomial in

the size of ~a · ~x. This concludes the first part of the lemma.

Assume that ~a consists of constant coefficients only. Then by inspecting the R(lin)-proof demon-
strated above (and by using the second part of Lemma 7), one can see that this proof is in fact
carried inside R0(lin). ¤

Lemma 10 There is a polynomial-size (in n) R0(lin) proof from

(x1 = 1) ∨ · · · ∨ (xn = 1) (14)

of
(x1 + . . . + xn = 1) ∨ · · · ∨ (x1 + . . . + xn = n) . (15)

Proof. We show that for every i ∈ [n], there is a polynomial-size (in n) R0(lin) proof from (xi = 1)
of (x1 + . . . + xn = 1) ∨ · · · ∨ (x1 + . . . + xn = n). This concludes the proof since, by Lemma 6,
we then can derive from (14) (with a polynomial-size (in n) R0(lin) proof) the disjunction (14) in
which each (xi = 1) (for all i ∈ [n]) is replace by (x1 + . . . + xn = 1) ∨ · · · ∨ (x1 + . . . + xn = n),
which is precisely the disjunction (15) (note that (15) is an R0(lin)-line).

Claim 2 For every i ∈ [n], there is a a polynomial-size (in n) R0(lin) proof from (xi = 1) of
(x1 + . . . + xn = 1) ∨ · · · ∨ (x1 + . . . + xn = n).
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Proof of claim: By Lemma 9, for every i ∈ [n] there is a polynomial-size (in n) R0(lin) proof
(using only the Boolean axioms) of

(x1 + . . . + xi−1 + xi+1 + . . . + xn = 0) ∨ · · · ∨ (x1 + . . . + xi−1 + xi+1 + . . . + xn = n − 1) . (16)

Now add successively (xi = 1) to every equation in (16) (note that this can be done in R0(lin)).
We obtain precisely (x1 + . . . + xn = 1) ∨ · · · ∨ (x1 + . . . + xn = n). ¤

Lemma 11 There is a polynomial-size (in n) R0(lin) proof of (x1+. . .+xn = 0)∨(x1+. . .+xn = 1)
from the collection of disjunctions consisting of (xi = 0) ∨ (xj = 0), for all 1 ≤ i < j ≤ n.

Proof. We proceed by induction on n. The base case for n = 1 is immediate from the Boolean
axiom (x1 = 0) ∨ (x1 = 1). Assume we already have a polynomial-size proof of

(x1 + . . . + xn = 0) ∨ (x1 + . . . + xn = 1). (17)

If xn+1 = 0 we add xn+1 = 0 to both of the equations in (17), and reach:

(x1 + . . . + xn+1 = 0) ∨ (x1 + . . . + xn+1 = 1). (18)

Otherwise, xn+1 = 1, and so we can cut-off (xn+1 = 0) in all the initial disjunctions (xi =
0) ∨ (xn+1 = 0), for all 1 ≤ i ≤ n. We thus obtain (x1 = 0), . . . , (xn = 0). Adding together
(x1 = 0), . . . , (xn = 0) and (xn+1 = 1) we arrive at

(x1 + . . . + xn+1 = 1) . (19)

So overall, either (18) holds or (19) holds; and so (using Lemma 6) we arrive at the disjunction of
(19) and (18), which is precisely (18). ¤

5 Implicational Completeness of R(lin) and its Subsystems

In this section we provide a proof of the implicational completeness of R(lin) and its subsystems. We
shall need this property in the sequel (see Section 6.2). The implicational completeness of a proof
system is a stronger property than mere completeness. Essentially, a system is implicationally
complete if whenever something is semantically implied by a set of initial premises, then it is
also derivable from the initial premises. In contrast to this, mere completeness means that any
tautology (or in case of a refutation system, any unsatisfiable set of initial premises) has a proof in
the system (respectively, a refutation in the system). As a consequence, the proof of implicational
completeness in this section establishes an alternative completeness proof to that obtained via
simulating resolution (see Proposition 4). Note that we are not concerned in this section with the
size of the proofs, but only with their existence.

Recall the definition of the semantic implication relation |= from Section 3.1. Formally, we
say that R(lin) is implicationally complete if for every collection of disjunctions of linear equations
D0, D1, . . . , Dm, it holds that D1, . . . , Dm |= D0 implies that there is an R(lin) proof of D0 from
D1, . . . , Dm.

Theorem 12 R(lin) is implicationally complete.
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Proof. We proceed by induction on n, the number of variables x1, . . . , xn in D0, D1, . . . , Dm.

The base case n = 0. We need to show that D1, . . . , Dm |= D0 implies that there is an R(lin)
proof of D0 from D1, . . . , Dm, where all Di’s (for 0 ≤ i ≤ m) have no variables but only constants.
This means that each Di is a disjunction of equations of the form (0 = a0) for some integer a0 (if
a linear equation have no variables, then the left hand side of this equation must be 0; see Section
3.1).

There are two cases to consider. In the first case D0 is satisfiable. Since D0 has no variables,
this means precisely that D0 is the equation (0 = 0). Thus, D0 can be derived easily from any
axiom in R(lin) (for instance, by subtracting each equation in (x1 = 0) ∨ (x1 = 1) from itself, to
reach (0 = 0) ∨ (0 = 0), which is equal to (0 = 0), since we discard duplicate equations inside
disjunctions).

In the second case D0 is unsatisfiable. Thus, since D1, . . . , Dm |= D0, there is no assign-
ment satisfying all D1, . . . , Dm. Hence, there must be at least one unsatisfiable disjunction Di in
D1, . . . , Dm (as a disjunction with no variables is either tautological or unsatisfiable). Such an
unsatisfiable Di is a disjunction of zero or more unsatisfiable equations of the form (0 = a0), for
some integer a0 6= 0. We can then use Simplification to cut-off all the unsatisfiable equations in
Di to reach the empty disjunction. By the Weakening rule, we can now derive D0 from the empty
disjunction.

The induction step. Assume that the theorem holds for disjunctions with n variables. Let the
underlying variables of D0, D1, . . . , Dm be x1, . . . , xn+1, and assume that

D1, . . . , Dm |= D0 . (20)

We write the disjunction D0 as:

t∨

j=1

(
n∑

i=1

a
(j)
i xi + a

(j)
n+1xn+1 = a

(j)
0

)
, (21)

where the a
(j)
i ’s are integer coefficients. We need to show that there is an R(lin) proof of D0 from

D1, . . . , Dm.
Let D be a disjunction of linear equations, let xi be a variable and let b ∈ {0, 1}. We shall

denote by D¹xi=b the disjunction D, where in every equation in D the variable xi is substituted by
b, and the constant terms in the left hand sides of all resulting equations (after substituting b for
xi) switch sides (and change signs, obviously) to the right hand sides of the equations (we have to
switch sides of constant terms, as by definition linear equations in R(lin) proofs have all constant
terms appearing only on the right hand sides of equations).

We now reason (slightly) informally inside R(lin) (as illustrated in Section 4.1). Fix some
b ∈ {0, 1}, and assume that xn+1 = b. Then, from D1, . . . , Dm we can derive (inside R(lin)):

D1¹xn+1=b, . . . , Dm¹xn+1=b . (22)

The only variables occurring in (22) are x1, . . . , xn. From assumption (20) we clearly have D1¹xn+1=b

, . . . , Dm¹xn+1=b |= D0¹xn+1=b. And so by the induction hypothesis there is an R(lin) derivation of
D0¹xn+1=b from D1¹xn+1=b, . . . , Dm¹xn+1=b. So overall, assuming that xn+1 = b, there is an R(lin)
derivation of D0¹xn+1=b from D1, . . . , Dm.

We now consider the two possible cases: xn+1 = 0 and xn+1 = 1.
In case xn+1 = 0, by the above discussion, we can derive D0 ¹xn+1=0 from D1, . . . , Dm. For

every j ∈ [t], add successively (a
(j)
n+1 times) the equation xn+1 = 0 to the jth equation in D0¹xn+1=0

(see (21)). We thus obtain precisely D0.
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In case xn+1 = 1, again, by the above discussion, we can derive D0¹xn+1=1 from D1, . . . , Dm. For

every j ∈ [t], add successively (a
(j)
n+1 times) the equation xn+1 = 1 to the jth equation in D0¹xn+1=1

(recall that we switch sides of constant terms in every linear equation after the substitution of xn+1

by 1 is performed in D0¹xn+1=1). Again, we obtain precisely D0. ¤

By inspecting the proof of Theorem 12, it is possible to verify that if all the disjunctions
D0, , . . . , Dm are R0(lin)-lines (see Definition 3.2), then the proof of D0 in R(lin) uses only R0(lin)-
lines as well. Therefore, we have:

Corollary 13 R0(lin) is implicationally complete.

Remark: Corollary 13 states that any R0(lin)-line that is semantically implied by a set of initial
R0(lin)-lines, is in fact derivable in R0(lin) from the initial R0(lin)-lines. On the other hand, it is
possible that a certain proof of the same R0(lin)-line inside R(lin) will be significantly shorter than
the proof inside R0(lin). Indeed, we shall see in Section 8 that for certain CNF formulas R(lin) has
a super-polynomial speed-up over R0(lin).

6 Short Proofs for Hard Tautologies

In this section we show that R0(lin) is already enough to admit small proofs for “hard” counting
principles like the pigeonhole principle and the Tseitin graph formulas for constant degree graphs.
On the other hand, as we shall see in Section 8, R0(lin) inherits the same weakness that cutting
planes proofs have with respect to the clique-coloring tautologies. Nevertheless, we can efficiently
prove the clique-coloring principle in (the stronger system) R(lin), but not by using R(lin) “ability
to count”, rather by using its (straightforward) ability to simulate Res(2) proofs (that is, resolution
proofs extended to operate with 2-DNF formulas, instead of clauses).

6.1 The Pigeonhole Principle Tautologies in R0(lin)

This subsection illustrates polynomial-size R0(lin) proofs of the pigeonhole principle. This will allow
us to establish polynomial-size multilinear proofs operating with depth-3 multilinear formulas of
the pigeonhole principle (in Section 9).

The m to n pigeonhole principle states that m pigeons cannot be mapped one-to-one into n < m
holes. The negation of the pigeonhole principle, denoted ¬PHPm

n , is formulated as an unsatisfiable
CNF formula as follows (where clauses are translated to disjunctions of linear equations):

Definition 6.1 The ¬PHPm
n is the following set of clauses:

1. Pigeons axioms: (xi,1 = 1) ∨ · · · ∨ (xi,n = 1), for all 1 ≤ i ≤ m;

2. Holes axioms: (xi,k = 0) ∨ (xj,k = 0), for all 1 ≤ i < j ≤ m and for all 1 ≤ k ≤ n.

The intended meaning of each propositional variable xi,j is that the ith pigeon is mapped to the jth
hole.

We now describe a polynomial-size in n refutation of ¬PHPm
n inside R0(lin). For this purpose

it is sufficient to prove a polynomial-size refutation of the pigeonhole principle when the number
of pigeons m equals n + 1 (because the set of clauses pertaining to ¬PHPn+1

n is already contained
in the set of clauses pertaining to ¬PHPm

n , for any m > n). Thus, we fix m = n + 1. In this
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subsection we shall say a proof in R0(lin) is of polynomial-size, always intending polynomial-size in
n (unless otherwise stated).

By Lemma 10, for all i ∈ [m] we can derive from the Pigeon axiom (for the ith pigeon):

(xi,1 + . . . + xi,n = 1) ∨ · · · ∨ (xi,1 + . . . + xi,n = n) (23)

with a polynomial-size R0(lin) proof.
By Lemma 11, from the Hole axioms we can derive, with a polynomial-size R0(lin) proof

(x1,j + . . . + xm,j = 0) ∨ (x1,j + . . . + xm,j = 1), (24)

for all j ∈ [n].
Let S abbreviate the sum of all formal variables xi,j . In other words,

S :=
∑

i∈[m],j∈[n]

xi,j .

Lemma 14 There is a polynomial-size R0(lin) proof from (23) (for all i ∈ [m]) of

(S = m) ∨ (S = m + 1) · · · ∨ (S = m · n).

Proof. For every i ∈ [m] fix the abbreviation zi := xi,1 + . . . + xi,n. Thus, by (23) we have
(zi = 1) ∨ · · · ∨ (zi = n).

Consider (z1 = 1) ∨ · · · ∨ (z1 = n) and (z2 = 1) ∨ · · · ∨ (z2 = n). By Corollary 8, we can derive
from these two lines

(z1 + z2 = 2) ∨ (z1 + z2 = 3) ∨ · · · ∨ (z1 + z2 = 2n) (25)

with a polynomial-size R0(lin) proof.
Now, consider (z3 = 1)∨ · · · ∨ (z3 = n) and (25). By Corollary 8 again, from these two lines we

can derive with a polynomial-size R0(lin) proof:

(z1 + z2 + z3 = 3) ∨ (z1 + z2 + z3 = 4) ∨ · · · ∨ (z1 + z2 + z3 = 3n) . (26)

Continuing in the same way, we eventually arrive at

(z1 + . . . + zm = m) ∨ (z1 + . . . + zm = m + 1) ∨ · · · ∨ (z1 + . . . + zm = m · n) ,

which concludes the proof, since S equals z1 + . . . + zm. ¤

Lemma 15 There is a polynomial-size R0(lin) proof from (24) of

(S = 0) ∨ · · · ∨ (S = n).

Proof. For all j ∈ [n], fix the abbreviation yj := x1,j + . . . + xm,j . Thus, by (24) we have
(yj = 0) ∨ (yj = 1), for all j ∈ [n]. Now the proof is similar to the proof of Lemma 9, except that
here single variables are abbreviations of linear forms.

If y1 = 0 then we can add y1 to the two sums in (y2 = 0) ∨ (y2 = 1), and reach (y1 + y2 =
0) ∨ (y1 + y2 = 1) and if y1 = 1 we can do the same and reach (y1 + y2 = 1) ∨ (y1 + y2 = 2). So,
by Lemma 6, we can derive with a polynomial-size R0(lin) proof

(y1 + y2 = 0) ∨ (y1 + y2 = 1) ∨ (y1 + y2 = 2) . (27)

Now, we consider the three cases in (27): y1+y2 = 0 or y1+y2 = 1 or y1+y2 = 2, and the clause
(y3 = 0) ∨ (y3 = 1). We arrive in a similar manner at (y1 + y2 + y3 = 0) ∨ · · · ∨ (y1 + y2 + y3 = 3).
We continue in the same way until we arrive at (S = 0) ∨ · · · ∨ (S = n). ¤
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Theorem 16 There is a polynomial-size R0(lin) refutation of the m to n pigeonhole principle
¬PHPm

n .

Proof. By Lemmas 14 and 15 above, all we need is to show a polynomial-size refutation of (S =
m) ∨ · · · ∨ (S = m · n) and (S = 0) ∨ · · · ∨ (S = n).

Since n < m, for all 0 ≤ k ≤ n, if S = k then using the Resolution and Simplification rules we
can cut-off all the sums in (S = m) ∨ · · · ∨ (S = m · n) and arrive at the empty clause. Thus, by
Lemma 6, there is a polynomial-size R0(lin) proof of the empty clause from (S = 0)∨ · · · ∨ (S = n)
and (S = m) ∨ · · · ∨ (S = m · n). ¤

6.2 Tseitin mod p Tautologies in R0(lin)

This subsection establishes polynomial-size R0(lin) proofs of Tseitin graph tautologies (for constant
degree graphs). This will allow us (in Section 9) to extend the multilinear proofs of the Tseitin
mod p tautologies to any field of characteristic 0 (the proofs in [RT06] required working over a
field containing a primitive pth root of unity when proving the Tseitin mod p tautologies; for more
details see Section 9).

Tseitin mod p tautologies (introduced in [BGIP01]) are generalizations of the (original, mod 2)
Tseitin graph tautologies (introduced in [Tse68]). To build the intuition for the generalized version,
we start by describing the (original) Tseitin mod 2 principle. Let G = (V, E) be a connected
undirected graph with an odd number of vertices n. The Tseitin mod 2 tautology states that there
is no sub-graph G′ = (V, E′), where E′ ⊆ E, so that for every vertex v ∈ V , the number of edges
from E′ incident to v is odd. This statement is valid, since otherwise, summing the degrees of all
the vertices in G′ would amount to an odd number (since n is odd), whereas this sum also counts
every edge in E′ twice, and so is even.

As mentioned above, the Tseitin mod 2 principle was generalized by Buss et al. [BGIP01] to
obtain the Tseitin mod p principle. Let p ≥ 2 be some fixed integer and let G = (V, E) be a
connected undirected r-regular graph with n vertices and no double edges. Let G′ = (V, E′) be the
corresponding directed graph that results from G by replacing every (undirected) edge in G with
two opposite directed edges. Assume that n ≡ 1 (mod p). Then, the Tseitin mod p principle states
that there is no way to assign to every edge in E′ a value from {0, . . . , p − 1}, so that:

(i) For every pair of opposite directed edges e, ē in E′, with assigned values a, b, respectively,
a + b ≡ 0 (mod p); and

(ii) For every vertex v in V , the sum of the values assigned to the edges in E′ coming out of v is
congruent to 1 (mod p).

The Tseitin mod p principle is valid, since if we sum the values assigned to all edges of E′ in
pairs we obtain 0 (mod p) (by (i)), where summing them by vertices we arrive at a total value of 1
(mod p) (by (ii) and since n ≡ 1 (mod p)). We shall see in what follows, that this simple counting
argument can be carried on in a natural (and efficient) way already inside R0(lin).

As an unsatisfiable propositional formula (in CNF form) the negation of the Tseitin mod p
principle is formulated by assigning a variable xe,i for every edge e ∈ E′ and every residue i modulo
p. The variable xe,i is an indicator variable for the fact that the edge e has an associated value i.
The following are the clauses of the Tseitin mod p CNF formula (as translated to disjunctions of
linear equations).
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Definition 6.2 (Tseitin mod p formulas (¬TseitinG,p)) Let p ≥ 2 be some fixed integer and
let G = (V, E) be a connected undirected r-regular graph with n vertices and no double edges, and
assume that n ≡ 1 (mod p). Let G′ = (V, E′) be the corresponding directed graph that results from
G by replacing every (undirected) edge in G with two opposite directed edges.

Given a vertex v ∈ V , denote the edges in E′ coming out of v by e[v, 1], . . . , e[v, r] and define
the following set of (translation of) clauses:

MODp,1(v) :=

{
r∨

k=1

(xe[v,k],ik = 0)

∣∣∣∣ i1, . . . , ir ∈ {0, . . . , p − 1} and
r∑

k=1

ik 6≡ 1 mod p

}
.

The Tseitin mod p formula, denoted ¬TseitinG,p, consists of the following (translation) of clauses:

1.
p−1∨
i=0

(xe,i = 1) , for all e ∈ E′

(expresses that every edge is assigned at least one value from 0, . . . , p − 1);
2. (xe,i = 0) ∨ (xe,j = 0) , for all i 6= j ∈ {0, . . . , p − 1} and all e ∈ E′

(expresses that every edge is assigned at most one value from 0, . . . , p − 1);
3. (xe,i = 1) ∨ (xē,p−i = 0) and (xe,i = 0) ∨ (xē,p−i = 1), 7

for all two opposite directed edges e, ē ∈ E′ and all i ∈ {0, . . . , p − 1}
(expresses condition (i) of the Tseitin mod p principle above);

4. MODp,1(v) , for all v ∈ V
(expresses condition (ii) of the Tseitin mod p principle above).

Note that for every edge e ∈ E′, the polynomials of (1,2) in Definition 6.2, combined with the
Boolean axioms of R0(lin), force any collection of edge-variables xe,0, . . . , xe,p−1 to contain exactly
one i ∈ {0, . . . , p − 1} so that xe,i = 1. Also, it is easy to verify that, given a vertex v ∈ V ,
any assignment σ of 0, 1 values (to the relevant variables) satisfies both the disjunctions of (1,2)
and the disjunctions of MODp,1(v) if and only if σ corresponds to an assignment of values from
{0, . . . , p − 1} to the edges coming out of v that sums up to 1 (mod p).

Until the rest of this subsection we fix an integer p ≥ 2 and a connected undirected r-regular
graph G = (V, E) with n vertices and no double edges, such that n ≡ 1 mod p and r is a constant.
As in Definition 6.2, we let G′ = (V, E′) be the corresponding directed graph that results from G
by replacing every (undirected) edge in G with two opposite directed edges. We now proceed to
refute ¬TseitinG,p inside R0(lin) with a polynomial-size (in n) refutation.

Given a vertex v ∈ V , and the edges in E′ coming out of v, denoted e[v, 1], . . . , e[v, r], define
the following abbreviation:

αv :=
r∑

j=1

p−1∑

i=0

i · xe[v,j],i . (28)

Lemma 17 Let v ∈ V be any vertex in G′. Then there is a constant-size R0(lin) proof from
¬TseitinG,p of the following disjunction:

r−1∨

`=0

(αv = 1 + ` · p) . (29)

7If i = 0 then xē,p−i denotes xē,0.
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Proof. Let Tv ⊆ ¬TseitinG,p be the set of all disjunctions of the form (1,2,4) from Definition 6.2
that contain only variables pertaining to vertex v (that is, all the variables xe,i, where e ∈ E′ is an
edge coming out of v, and i ∈ {0, . . . , p − 1}).

Claim 3 Tv semantically implies (29), that is:8

Tv |=
r−1∨

`=0

(αv = 1 + ` · p) .

Proof of claim: Let σ be an assignment of 0, 1 values to the variables in Tv that satisfies both the
disjunctions of (1,2) and the disjunctions of MODp,1(v) in Definition 6.2. As mentioned above (the
comment after Definition 6.2), such a σ corresponds to an assignment of values from {0, . . . , p − 1}
to the edges coming out of v, that sums up to 1 mod p. This means precisely that αv = 1 mod p
under the assignment σ. Thus, there exists a nonnegative integer k, such that αv = 1 + kp under
σ.

It remains to show that k ≤ r − 1 (and so the only possible values that αv can get under σ
are 1, 1 + p, 1 + 2p, . . . , 1 + (r − 1)p). Note that because σ gives the value 1 to only one variable
from xe[v,j],0, . . . , xe[v,j],p−1 (for every j ∈ [r]), then the maximal value that αv can have under σ is
r(p − 1). Thus, 1 + kp ≤ rp − r and so k ≤ r − 1.

From Claim 3 and from the implicational completeness of R0(lin) (Corollary 13), there exists
an R0(lin) derivation of (29) from Tv. It remains to show that this derivation is of constant-size.

Since the degree r of G′ and the modulus p are both constants, both Tv and (29) have constant
number of variables and constant coefficients (including the free-terms). Thus, there is a constant-
size R0(lin) derivation of (29) from Tv. ¤

Lemma 18 There is a polynomial-size (in n) R0(lin) derivation from ¬TseitinG,p of the following
disjunction:

(r−1)·n∨

`=0

(
∑

v∈V

αv = n + ` · p
)

.

Proof. Simply add successively all the equations pertaining to disjunctions (29), for all vertices
v ∈ V . Formally, we show that for every subset of vertices V ⊆ V , with |V| = k, there is a
polynomial-size (in n) R0(lin) derivation from ¬TseitinG,p of

(r−1)·k∨

`=0

(
∑

v∈V
αv = k + ` · p

)
, (30)

and so putting V = V , will conclude the proof.
We proceed by induction on the size of V. The base case, |V| = 1, is immediate from Lemma

17.
Assume that we already derived (30) with a polynomial-size (in n) R0(lin) proof, for some

V ⊂ V , such that |V| = k < n. Let u ∈ V \ V. By Lemma 17, we can derive

r−1∨

`=0

(αu = 1 + ` · p) (31)

8Recall that we only consider assignments of 0, 1 values to variables when considering the semantic implication
relation |=.
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from ¬TseitinG,p with a constant-size proof. Now, by Lemma 7, each linear equation in (31) can
be added to each linear equation in (30), with a polynomial-size (in n) R0(lin) proof. This results
in the following disjunction:

(r−1)·(k+1)∨

`=0




∑

v∈V∪{u}
αv = k + 1 + ` · p


 ,

which is precisely what we need to conclude the induction step. ¤

Lemma 19 Let e, ē be any pair of opposite directed edges in G′ and let i ∈ {0, . . . , p − 1}. Let
Te ⊆ ¬TseitinG,p be the set of all disjunctions of the form (1,2,3) from Definition 6.2 that contain
only variables pertaining to edges e, ē (that is, all the variables xe,j , xē,j, for all j ∈ {0, . . . , p − 1}).
Then, there is a constant-size R0(lin) proof from Te of the following disjunction:

(i · xe,i + (p − i) · xē,p−i = 0) ∨ (i · xe,i + (p − i) · xē,p−i = p) . (32)

Proof. First note that Te semantically implies

(xe,i + xē,p−i = 0) ∨ (xe,i + xē,p−i = 2) . (33)

The number of variables in Te and (33) is constant. Hence, there is a constant-size R0(lin)-proof
of (32) from Te. Also note that

(xe,i + xē,p−i = 0) ∨ (xe,i + xē,p−i = 2) |=
(i · xe,i + (p − i) · xē,p−i = 0) ∨ (i · xe,i + (p − i) · xē,p−i = p) .

(34)

Therefore, there is also an R0(lin)-proof of constant-size from Te of the lower line in (34). ¤

We are now ready to complete the polynomial-size R0(lin) refutation of ¬TseitinG,p. Using
the two prior lemmas, the refutation idea is simple, as we now explain. Observe that

∑

v∈V

αv =
∑

{e,ē}⊆E′
i∈{0,...,p−1}

(i · xe,i + (p − i) · xē,p−i) , (35)

where by {e, ē} ⊆ E′ we mean that e, ē is pair of opposite directed edges in G′.
Derive by Lemma 18 the disjunction

(r−1)·n∨

`=0

(
∑

v∈V

αv = n + ` · p
)

. (36)

This disjunction expresses the fact that
∑

v∈V αv = 1 mod p (since n = 1 mod p). On the other
hand, using Lemma 19, we can “sum together” all the equations (32) (for all {e, ē} ⊆ E′ and all
i ∈ {0, . . . , p − 1}), to obtain a disjunction expressing the statement that

∑

{e,ē}⊆E′
i∈{0,...,p−1}

(i · xe,i + (p − i) · xē,p−i) = 0 mod p .

By Equation (35), we then obtain the desired contradiction. This idea is formalized in the proof
of the following theorem:
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Theorem 20 Let G = (V, E) be an r-regular graph with n vertices, where r is a constant. Fix
some modulus p. Then, there are polynomial-size (in n) R0(lin) refutations of ¬TseitinG,p.

Proof. First, use Lemma 18 to derive

(r−1)·n∨

`=0

(
∑

v∈V

αv = n + ` · p
)

. (37)

Second, use Lemma 19 to derive

(i · xe,i + (p − i) · xē,p−i = p) ∨ (i · xe,i + (p − i) · xē,p−i = 0) , (38)

for every pair of opposite directed edges in G′ = (V, E′) (as in Definition 6.2) and every residue
i ∈ {0, . . . , p − 1}.

We now reason inside R0(lin). Pick a pair of opposite directed edges e, ē and a residue i ∈
{0, . . . , p − 1}. If i · xe,i + (p − i) · xē,p−i = 0, then subtract this equation successively from every
equation in (37). We thus obtain a new disjunction, similar to that of (37), but which does not
contain the xe,i and xē,p−i variables, and with the same free-terms.

Otherwise, i · xe,i + (p − i) · xē,p−i = p, then subtract this equation successively from every
equation in (37). Again, we obtain a new disjunction, similar to that of (37), but which does not
contain the xe,i and xē,p−i variables, and such that p is subtracted from every free-term in every
equation. Since, by assumption, n ≡ 1 mod p, the free-terms in every equation are (still) equal 1
mod p.

So overall, in both cases (i ·xe,i +(p− i) ·xē,p−i = 0 and i ·xe,i +(p− i) ·xē,p−i = p) we obtained
a new disjunction with all the free-terms in equations equal 1 mod p.

We now continue the same process for every pair e, ē of opposite directed edges in G′ and
every residue i. Eventually, we discard all the variables xe,i in the equations, for every e ∈ E′

and i ∈ {0, . . . , p − 1}, while all the free-terms in every equation remain to be equal 1 mod p.
Therefore, we arrive at a disjunction of equations of the form (0 = γ) for some γ = 1 mod p.
By using the Simplification rule we can cut-off all such equations, and arrive finally at the empty
disjunction. ¤

6.3 The Clique-Coloring Principle in R(lin)

In this section we observe that there are polynomial-size R(lin) proofs of the clique-coloring principle
(for certain, weak, parameters). This implies, in particular, that R(lin) does not possess the feasible
monotone interpolation property (see more details on the interpolation method in Section 7).

Atserias, Bonet & Esteban [ABE02] demonstrated polynomial-size Res(2) refutations of the
clique-coloring formulas (for certain weak parameters; Theorem 22). Thus, it is sufficient to show
that R(lin) polynomially-simulates Res(2) proofs (Proposition 21). This can be shown in a straight-
forward manner. As noted in the first paragraph of Section 6, because the proofs of the clique-
coloring formula we discuss here only follow the proofs inside Res(2), then in fact these proofs do
not take any advantage of the capacity “to count” inside R(lin) (this capacity is exemplified, for
instance, in Section 4.2).

We start with the clique-coloring formulas (these formulas will also be used in Section 8). These
formulas express the clique-coloring principle that has been widely used in the proof complexity
literature (cf., [BPR97], [Pud97], [Kra97], [Kra98], [ABE02], [Kra07]). This principle is based on
the following basic combinatorial idea. Let G = (V, E) be an undirected graph with n vertices and
let k′ < k be two integers. Then, one of the following must hold:
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(i) The graph G does not contain a clique with k vertices;

(ii) The graph G is not a complete k′-partite graph. In other words, there is no way to partition G
into k′ subgraphs G1, . . . , Gk′ , such that every Gi is an independent set, and for all i 6= j ∈ [k′],
all the vertices in Gi are connected by edges (in E) to all the vertices in Gj .

Obviously, if Item (ii) above is false (that is, if G is a complete k′-partite graph), then there
exists a k′-coloring of the vertices of G; hence the name clique-coloring for the principle.

The propositional formulation of the (negation of the) clique-coloring principle is as follows.
Each variable pi,j , for all i 6= j ∈ [n], is an indicator variable for the fact that there is an edge in
G between vertex i and vertex j. Each variable q`,i, for all ` ∈ [k] and all i ∈ [n], is an indicator
variable for the fact that the vertex i in G is the `th vertex in the k-clique. Each variable r`,i, for
all ` ∈ [k′] and all i ∈ [n], is an indicator variable for the fact that the vertex i in G pertains to the
independent set G`.

Definition 6.3 The negation of the clique-coloring principle consists of the following unsatisfiable
collection of clauses (as translated to disjunctions of linear equations), denoted ¬cliquen

k,k′:

i. (q`,1 = 1) ∨ · · · ∨ (q`,n = 1), for all ` ∈ [k]

(expresses that there exists at least one vertex in G which constitutes the `th vertex of the
k-clique);

ii. (q`,i = 0) ∨ (q`,j = 0), for all i 6= j ∈ [n], ` ∈ [k]

(expresses that there exists at most one vertex in G which constitutes the `th vertex of the
k-clique);

iii. (q`,i = 0) ∨ (q`′,i = 0), for all i ∈ [n], ` 6= `′ ∈ [k]

(expresses that the ith vertex of G cannot be both the `th and the `′th vertex of the k-clique);

iv. (q`,i = 0) ∨ (q`′,j = 0) ∨ (pi,j = 1), for all ` 6= `′ ∈ [k], i 6= j ∈ [n]

(expresses that if both the vertices i and j in G are in the k-clique, then there is an edge in
G between i and j);

v. (r1,i = 1) ∨ · · · ∨ (rk′,i = 1), for all i ∈ [n]

(expresses that every vertex of G pertains to at least one independent set);

vi. (r`,i = 0) ∨ (r`′,i = 0), for all ` 6= ` ∈ [k′], i ∈ [n]

(expresses that every vertex of G pertains to at most one independent set);

vii. (pi,j = 0) ∨ (rt,i = 0) ∨ (rt,j = 0), for all i 6= j ∈ [n], t ∈ [k′]

(expresses that if there is an edge between vertex i and j in G, then i and j cannot be in the
same independent set);

Remark: Our formulation of the clique-coloring formulas above is similar to the one used by
[BPR97], except that we consider also the pi,j variables (we added the (iv) clauses and changed
accordingly the (vii) clauses). This is done for the sake of clarity of the contradiction itself, and
also to make it clear that the formulas are in the appropriate form required by the interpolation
method (see Section 7 for details on the interpolation method). By resolving over the pi,j variables
in (iv) and (vii), one can obtain precisely the collection of clauses in [BPR97].
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Atserias, Bonet & Esteban [ABE02] demonstrated polynomial-size (in n) Res(2) refutations of
¬cliquen

k,k′ , when k =
√

n and k′ = (log n)2/8 log log n. These are rather weak parameters, but
they suffice to establish the fact that Res(2) does not possess the feasible monotone interpolation
property.

The Res(2) proof system (also called 2-DNF resolution), first considered in [Kra01], is resolution
extended to operate with 2-DNF formulas, defined as follows.

A 2-term is a conjunction of up to two literals. A 2-DNF is a disjunction of 2-terms. The size
of a 2-term is the number of literals in it (that is, either 1 or 2). The size of a 2-DNF is the total
size of all the 2-terms in it.

Definition 6.4 (Res(2)) A Res(2) proof of a 2-DNF D from a collection K of 2-DNFs is a
sequence of 2-DNFs D1, D2, . . . , Ds , such that Ds = D, and every Dj is either from K or was
derived from previous line(s) in the sequence by the following inference rules:

Cut Let A, B be two 2-DNFs.

From A∨∧2
i=1 li and B ∨∨2

i=1 ¬li derive A ∨B, where the li’s are (not necessarily distinct)
literals (and ¬li is the negation of the literal li).

AND-introduction Let A, B be two 2-DNFs and l1, l2 two literals.

From A ∨ l1 and B ∨ l2 derive A ∨ B ∨ ∧2
i=1 li.

Weakening From a 2-DNF A derive A ∨ ∧2
i=1 li , where the li’s are (not necessarily distinct)

literals.

A Res(2) refutation of a collection of 2-DNFs K is a Res(2) proof of the empty disjunction ¤ from
K (the empty disjunction stands for false). The size of a Res(2) proof is the total size of all the
2-DNFs in it.

Given a collection K of 2-DNFs we translate it into a collection of disjunctions of linear equations
via the following translation scheme. For a literal l, denote by l̂ the translation that maps a variable
xi into xi, and ¬xi into 1−xi. A 2-term l1∧ l2 is first transformed into the equation l̂1 + l̂2 = 2, and
then moving the free-terms in the left hand side of l̂1 + l̂2 = 2 (in case there are such free-terms)
to the right hand side; So that the final translation of l1 ∧ l2 has only a single free-term in the
right hand side. A disjunction of 2-terms (that is, a 2-DNF) D =

∨
i∈I(li,1 ∧ li,2) is translated into

the disjunction of the translations of the 2-terms, denoted by D̂. It is clear that every assignment
satisfies a 2-DNF D if and only if it satisfies D̂.

Proposition 21 R(lin) polynomially simulates Res(2). In other words, if π is a Res(2) proof of D
from a collection of 2-DNFs K1, . . . , Kt, then there is an R(lin) proof of D̂ from K̂1, . . . , K̂t whose
size is polynomial in the size of π.

The proof of Proposition 21 proceeds by induction on the length (that is, the number of proof-
lines) in the Res(2) proof. This is pretty straightforward and similar to the simulation of resolution
by R(lin), as illustrated in the proof of Proposition 4. We omit the details.

Theorem 22 ([ABE02]) Let k =
√

n and k′ = (log n)2/8 log log n. Then ¬cliquen
k,k′ has Res(2)

refutations of size polynomial in n.

Thus, Proposition 21 yields the following:

Corollary 23 Let k, k′ be as in Theorem 22. Then ¬cliquen
k,k′ has R(lin) refutations of size

polynomial in n.
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The following corollary is important (we refer the reader to Section A in the Appendix for the
necessary relevant definitions concerning the feasible monotone interpolation property and to Sec-
tion 7 for explanation and definitions concerning the general [non-monotone] interpolation method).

Corollary 24 R(lin) does not possess the feasible monotone interpolation property.

Remark: The proof of ¬cliquen
k,k′ inside Res(2) demonstrated in [ABE02] (and hence, also the

corresponding proof inside R(lin)) proceeds along the following lines. First reduce ¬cliquen
k,k′

to the k to k′ pigeonhole principle. For the appropriate values of the parameters k and k′ —
and specifically, for the values in Theorem 22 — there is a short resolution proof of the k to k′

pigeonhole principle (this was shown by Buss & Pitassi [BP97]); (this resolution proof is polynomial
in the number of pigeons k, but not in the number of holes k′, which is exponentially smaller than
k).9 Therefore, in order to conclude the refutation of ¬cliquen

k,k′ inside Res(2) (or inside R(lin)),
it suffices to simulate the short resolution refutation of the k to k′ pigeonhole principle. It is
important to emphasize this point: After reducing, inside R(lin), ¬cliquen

k,k′ to the pigeonhole
principle, one simulates the resolution refutation of the pigeonhole principle, and this has nothing
to do with the small-size R0(lin) refutations of the pigeonhole principle demonstrated in Section
6.1. This is because, the reduction (inside R(lin)) of ¬cliquen

k,k′ to the k to k′ pigeonhole principle,
results in a substitution instance of the pigeonhole principle formulas; in other words, the reduction
results in a collection of disjunctions that are similar to the pigeonhole principle disjunctions where
each original pigeonhole principle variable is substituted by some big formula (and, in particular,
these disjunctions are not R0(lin)-lines at all). (Note that R0(lin) does not admit short proofs of
the clique-coloring formulas as we show in Section 8.)

7 Interpolation Results for R0(lin)

In this section we study the applicability of the feasible (non-monotone) interpolation technique
to R0(lin) refutations. In particular, we show that R0(lin) admits a polynomial (in terms of the
R0(lin)-proofs) upper bound on the (non-monotone) circuit-size of interpolants. In the next section
we shall give a polynomial upper bound on the monotone circuit-size of interpolants, but only in the
case that the interpolant corresponds to the clique-coloring formulas (whereas, in this section we are
interested in the general case; that is, upper bounding circuit-size of interpolants corresponding to
any formula [of the prescribed type; see below]). First, we shortly describe the feasible interpolation
method and explain how this method can be applied to obtain (sometime, conditional) lower bounds
on proof size. Explicit usage of the interpolation method in proof complexity goes back to [Kra94].

Let Ai(~p, ~q), i ∈ I, and Bj(~p, ~r), j ∈ J , (I and J are sets of indices) be a collection of formulas
(for instance, a collection of disjunctions of linear equations) in the displayed variables only. Denote
by A(~p, ~q) the conjunction of all Ai(~p, ~q), i ∈ I, and by B(~p, ~r), the conjunction of all Bj(~p, ~r),
j ∈ J . Assume that ~p, ~q, ~r are pairwise disjoint sets of distinct variables, and that there is no
assignment that satisfies both A(~p, ~q) and B(~p, ~r). Fix an assignment ~α to the variables in ~p. The
~p variables are the only common variables of the Ai’s and the Bj ’s. Therefore, either A(~α, ~q) is
unsatisfiable or B(~α,~r) is unsatisfiable.

The interpolation technique transforms a refutation of A(~p, ~q) ∧B(~p, ~r), in some proof system,
into a circuit (usually a Boolean circuit) separating those assignments ~α (for ~p) for which A(~α, ~q)
is unsatisfiable, from those assignments ~α for which B(~α,~r) is unsatisfiable (the two cases are not
necessarily exclusive, so if both cases hold for an assignment, the circuit can output either that the

9Whenever k ≥ 2k′ the k to k′ pigeonhole principle is referred to as the weak pigeonhole principle.
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first case holds or that the second case holds). In other words, given a refutation of A(~p, ~q)∧B(~p, ~r),
we construct a circuit C(~p), called the interpolant, such that

C(~α) = 1 =⇒ A(~α, ~q) is unsatisfiable, and
C(~α) = 0 =⇒ B(~α,~r) is unsatisfiable.

(39)

(Note that if U denotes the set of those assignments ~α for which A(~α, ~q) is satisfiable, and V denotes
the set of those assignments ~α for which B(~α,~r) is satisfiable, then U and V are disjoint [since
A(~p, ~q) ∧ B(~p, ~r) is unsatisfiable], and C(~p) separates U from V ; see Definition 7.2 below.)

Assume that for a proof system P the transformation from refutations of A(~p, ~q), B(~p, ~r) into
the corresponding interpolant circuit C(~p) results in a circuit whose size is polynomial in the size
of the refutation. Then, an exponential lower bound on circuits for which (39) holds, implies an
exponential lower bound on P-refutations of A(~p, ~q), B(~p, ~r).

7.1 Interpolation for Semantic Refutations

We now lay out the basic concepts needed to formally describe the feasible interpolation technique.
We use the general notion of semantic refutations (which generalizes any standard propositional
refutation system). We shall use a close terminology to that in [Kra97].

Definition 7.1 (Semantic refutation) Let N be a fixed natural number and let E1, . . . , Ek ⊆
{0, 1}N , where

⋂k
i=1 Ei = ∅. A semantic refutation from E1, . . . , Ek is a sequence D1, . . . , Dm ⊆

{0, 1}N with Dm = ∅ and such that for every i ∈ [m], Di is either one of the Ej’s or is deduced
from two previous Dj , D`, 1 ≤ j, ` < i, by the following semantic inference rule:

• From A, B ⊆ {0, 1}N deduce any C, such that C ⊇ (A ∩ B).

Observe that any standard propositional refutation (with inference rules that derive from at
most two proof-lines, a third line) can be regarded as a semantic refutation: just substitute each
refutation-line by the set of its satisfying assignments; and by the soundness of the inference rules
applied in the refutation, it is clear that each refutation-line (considered as the set of assignments
that satisfy it) is deduced by the semantic inference rule from previous refutation-lines.

Definition 7.2 (Separating circuit) Let U ,V ⊆ {0, 1}n, where U ∩ V = ∅, be two disjoint sets.
A Boolean circuit C with n input variables is said to separate U from V if C(~x) = 1 for every
~x ∈ U , and C(~x) = 0 for every ~x ∈ V. In this case we also say that U and V are separated by C.

Convention: In what follows we sometime identify a Boolean formula with the set of its satisfying
assignments.

Notation: For two (or more) binary strings u, v ∈ {0, 1}∗, we write (u, v) to denote the concate-
nation of the u with v (where v comes to the right of u, obviously).

Let N = n + s + t be fixed from now on. Let A1, . . . , Ak ⊆ {0, 1}n+s and let B1, . . . , B` ⊆
{0, 1}n+t. Define the following two sets of assignments of length n (formally, 0, 1 strings of length n)
that can be extended to satisfying assignments of A1, . . . , Ak and B1, . . . , B`, respectively (formally,
those 0, 1 string of length n + s and n + t, that are contained in all A1, . . . , Ak and B1, . . . , B`,
respectively):

UA :=

{
u ∈ {0, 1}n

∣∣∣∣ ∃q ∈ {0, 1}s , (u, q) ∈
k⋂

i=1

Ai

}
,
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VB :=

{
v ∈ {0, 1}n

∣∣∣∣ ∃r ∈ {0, 1}t , (v, r) ∈
⋂̀

i=1

Bi

}
.

Definition 7.3 (polynomial upper bounds on interpolants) Let P be a propositional refu-
tation system. Assume that ~p, ~q, ~r are pairwise disjoint sets of distinct variables, where ~p has n
variables, ~q has s variables and ~r has t variables. Let A1(~p, ~q), . . . , Ak(~p, ~q) and B1(~p, ~r), . . . , B`(~p, ~r)
be two collections of formulas with the displayed variables only. Assume that for any such
A1(~p, ~q), . . . , Ak(~p, ~q) and B1(~p, ~r), . . . , B`(~p, ~r), if there exists a P-refutation of size S for A1(~p, ~q)∧
· · · ∧ Ak(~p, ~q) ∧ B1(~p, ~r) ∧ . . . ∧ B`(~p, ~r) then there exists a Boolean circuit separating UA from VB

of size polynomial in S.10 In this case we say that P has a polynomial upper bound on interpolant
circuits.

7.1.1 The Communication Game Technique

The feasible interpolation via communication game technique is based on transforming proofs into
Boolean circuits, where the size of the resulting circuit depends on the communication complex-
ity of each proof-line. This technique goes back to [IPU94] and [Razb95] and was subsequently
applied and extended in [BPR97] and [Kra97] ([IPU94] and [BPR97] did not use explicitly the
notion of interpolation of tautologies or contradictions). We shall employ the interpolation theo-
rem of Kraj́ıček in [Kra97], that demonstrates how to transform a small semantic refutation with
each proof-line having low communication complexity into a small Boolean circuit separating the
corresponding sets.

The underlying idea of the interpolation via communication game technique is that a (semantic)
refutation, where each proof-line is of small (that is, logarithmic) communication complexity, can be
transformed into an efficient communication protocol for the Karchmer-Wigderson game (following
[KW88]) for two players. In the Karchmer-Wigderson game the first player knows some binary
string u ∈ U and the second player knows some different binary string v ∈ V , where U and V are
disjoint sets of strings. The two players communicate by sending information bits to one another
(following a protocol previously agreed on). The goal of the game is for the two players to decide
on an index i such that the ith bit of u is different from the ith bit of v. An efficient Karchmer-
Wigderson protocol (by which we mean a protocol that requires the players to exchange at most a
logarithmic number of bits in the worst-case) can then be transformed into a small circuit separating
U from V (see Definition 7.2). This efficient transformation from protocols for Karchmer-Wigderson
games (described in a certain way) into circuits, was demonstrated by Razborov in [Razb95]. So
overall, given a semantic refutation with proof-lines of low communication complexity, one can
obtain a small circuit for separating the corresponding sets.

First, we need to define the concept of communication complexity in a suitable way for the
interpolation theorem.

Definition 7.4 (Communication complexity) Let N = n + s + t and A ⊆ {0, 1}N . Let u, v ∈
{0, 1}n, qu ∈ {0, 1}s, rv ∈ {0, 1}t. Denote by ui, vi the ith bit of u, v, respectively, and let (u, qu, rv)
and (v, qu, rv) denote the concatenation of strings u, qu, rv and v, qu, rv, respectively. Consider the
following three tasks:

1. Decide whether (u, qu, rv) ∈ A;

2. Decide whether (v, qu, rv) ∈ A;

10Here UA and VB are defined as above, by identifying the Ai(~p, ~q)’s and the Bi(~p, ~r)’s with the sets of assignments
that satisfy them.
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3. If one of the following holds:

(i) (u, qu, rv) ∈ A and (v, qu, rv) 6∈ A; or

(ii) (u, qu, rv) 6∈ A and (v, qu, rv) ∈ A,

then find an i ∈ [n], such that ui 6= vi;

Consider a game between two players, Player I and Player II, where Player I knows u ∈
{0, 1}n , qu ∈ {0, 1}s and Player II knows v ∈ {0, 1}n , rv ∈ {0, 1}t. The two players communi-
cate by exchanging bits of information between them (following a protocol previously agreed on).
The communication complexity of A, denoted CC(A), is the minimal (over all protocols) number
of bits that players I and II need to exchange in the worst-case in solving each of Tasks 1, 2 and 3
above.11

For A ⊆ {0, 1}n+s define

Ȧ :=
{
(a, b, c)

∣∣ (a, b) ∈ A and c ∈ {0, 1}t} ,

where a and b range over {0, 1}n and {0, 1}s, respectively. Similarly, for B ⊆ {0, 1}n+t define

Ḃ :=
{
(a, b, c)

∣∣ (a, c) ∈ B and b ∈ {0, 1}t} ,

where a and c range over {0, 1}n and {0, 1}t, respectively.

Theorem 25 ([Kra97]) Let A1, . . . , Ak ⊆ {0, 1}n+s and B1, . . . , B` ⊆ {0, 1}n+t. Let D1, . . . , Dm

be a semantic refutation from Ȧ1, . . . , Ȧk and Ḃ1, . . . , Ḃ`. Assume that CC(Di) ≤ ζ, for all
i ∈ [m]. Then, the sets UA and VB (as defined above) can be separated by a Boolean circuit of size
(m + n)2O(ζ).

In light of Theorem 25, to demonstrate that a certain propositional refutation system P pos-
sesses a polynomial upper bound on interpolant circuits (see Definition 7.3) it suffices to show that
any proof-line of P induces a set of assignments with at most a logarithmic (in the number of
variables) communication complexity (Definition 7.4).

7.2 Polynomial Upper Bounds on Interpolants for R0(lin)

Here we apply Theorem 25 to show that R0(lin) has polynomial upper bounds on its interpolant
circuits. Again, in what follows we sometime identify a disjunction of linear equations with the set
of its satisfying assignments.

Theorem 26 R0(lin) has a polynomial upper bounds on interpolant circuits (Definition 7.3).

According to the paragraph after Theorem 25, all we need in order to establish Theorem 26 is
the following lemma:

Lemma 27 Let D be an R0(lin)-line with N variables and let D̃ be the set of assignments that
satisfy D.12Then, CC(D̃) ≤ O(log N).

11In other words, CC(A) is the minimal number ζ, for which there exists a protocol, such that for every input
(u, qu to Player I and v, rv to Player II) and every task (from Tasks 1, 2 and 3), the players need to exchange at
most ζ bits in order to solve the task.
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Proof. Let N = n + s + t (and so D̃ ∈ {0, 1}n+s+t). For the sake of convenience we shall assume
that the N variables in D are partitioned into (pairwise disjoint) three groups ~p := (p1 . . . , pn),
~q := (q1, . . . , qs) and ~r := (r1, . . . , rt). Let u, v ∈ {0, 1}n, qu ∈ {0, 1}s, rv ∈ {0, 1}t. Assume that
Player I knows u, qu and Player II knows v, rv.

By the definition of an R0(lin)-line (see Definition 3.2) we can partition the disjunction D into
a constant number of disjuncts, where one disjunct is a (possibly empty, translation of a) clause in
the ~p, ~q, ~r variables (see Section 3.1), and all other disjuncts have the following form:

∨

i∈I

(
~a · ~p +~b · ~q + ~c · ~r = `i

)
, (40)

where I is (an unbounded) set of indices, `i are integer numbers, for all i ∈ I, and ~a,~b,~c denote
vectors of n, s and t constant coefficients, respectively.

Let us denote the (translation of the) clause from D in the ~p, ~q, ~r variables by

P ∨ Q ∨ R ,

where P , Q and R denote the (translated) sub-clauses consisting of the ~p, ~q and ~r variables,
respectively.

We need to show that by exchanging O(log N) bits, the players can solve each of Tasks 1, 2
and 3 from Definition 7.4, correctly.

Task 1: The players need to decide whether (u, qu, rv) ∈ D̃. Player II, who knows rv, computes
the numbers ~c · rv, for every ~c pertaining to every disjunct of the form shown in Equation (40)
above. Then, Player II sends the (binary representation of) these numbers to Player I. Since there
are only a constantly many such numbers and the coefficients in every ~c are also constants, this
amounts to O(log t) ≤ O(log N) bits that Player II sends to Player I. Player II also computes the
truth value of the sub-clause R, and sends this (single-bit) value to Player I.

Now, it is easy to see that Player I has sufficient data to compute by herself/himself whether
(u, qu, rv) ∈ D̃ (Player I can then send a single bit informing Player II whether (u, qu, rv) ∈ D̃).

Task 2: This is analogous to Task 1.

Task 3: Assume that (u, qu, rv) ∈ D̃ and (v, qu, rv) 6∈ D̃ (the case (u, qu, rv) 6∈ D̃ and (v, qu, rv) ∈
D̃ is analogous).

The first rounds of the protocol are completely similar to that described in Task 1 above: Player
II, who knows rv, computes the numbers ~c · rv, for every ~c pertaining to every disjunct of the form
shown in Equation (40) above. Then, Player II sends the (binary representation of) these numbers
to Player I. Player II also computes the truth value of the sub-clause R, and sends this (single-bit)
value to Player I. Again, this amounts to O(log N) bits that Player II sends to Player I.

By assumption (that (u, qu, rv) ∈ D̃ and (v, qu, rv) 6∈ D̃) the players need to deal only with the
following two cases:

Case 1: The assignment (u, qu, rv) satisfies the clause P ∨ Q ∨ R while (v, qu, rv) falsifies
P ∨Q ∨R. Thus, it must be that ~u satisfies the sub-clause P while ~v falsifies P . This means that
for any i ∈ [n] such that ui sets to 1 a literal in P (there ought to exist at least one such i), it must
be that ui 6= vi. Therefore, all that Player I needs to do is to send the (binary representation of)
index i to Player II. (This amounts to O(log N) bits that Player I sends to Player II.)

12The notation D̃ has nothing to do with the same notation used in Section 3.
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Case 2: There is some linear equation

~a · ~p +~b · ~q + ~c · ~r = ` (41)

in D, such that ~a · u +~b · qu + ~c · rv = `. Note that (by assumption that (v, qu, rv) 6∈ D̃) it must
also hold that: ~a · v +~b · qu + ~c · rv 6= ` (and so there is an i ∈ [n], such that ui 6= vi). Player I can
find linear equation (41), as he/she already received from Player II all the possible values of ~c · ~r
(for all possible ~c ’s in D).

Recall that the left hand side of a linear equation ~d · ~x = ` is called the linear form of the
equation. By the definition of an R0(lin)-line there are only constant many distinct linear forms
in D. Since both players know these linear forms, we can assume that each linear form has some
index associated to it by both players. Player I sends to Player II the index of the linear form
~a · ~p +~b · ~q + ~c · ~r from (41) in D. Since there are only constantly many such linear forms in D, it
takes only constant number of bits to send this index.

Now both players need to apply a protocol for finding an i ∈ [n] such that ui 6= vi, where
~a · ~u +~b · qu + ~c · rv = ` and ~a · ~v +~b · qu + ~c · rv 6= `. Thus, it remains only to prove the following
claim:

Claim 4 There is a communication protocol in which Player I and Player II need at most O(log N)
bits of communication in order to find an i ∈ [n] such that ui 6= vi (under the above conditions).

Proof of claim: We invoke the well-known connection between Boolean circuit-depth and com-
munication complexity. Let f : {0, 1}N → {0, 1} be a Boolean function. Denote by dp(f) the
minimal depth of a Boolean circuit computing f . Consider a game between two players: Player I
knows some ~x ∈ {0, 1}N and Player II knows some other ~y ∈ {0, 1}N , such that f(~x) = 1 while
f(~y) = 0. The goal of the game is to find an i ∈ [N ] such that xi 6= yi. Denote by CC′(f) the
minimal number of bits needed for the two players to communicate (in the worst case13) in order
to solve this game.14 Then, for any function f it is known that dp(f) = CC′(f) (see [KW88]).

Therefore, to conclude the proof of the claim it is enough to establish that the function f :
{0, 1}N → {0, 1} that receives the input variables ~p, ~q, ~r and computes the truth value of ~a · ~p +~b ·
~q + ~c · ~r = ` has Boolean circuit of depth O(log N). In case all the coefficients in ~a,~b,~c are 1, it is
easy to show15 that there is a Boolean circuit of depth O(log N) that computes the function f . In
the case that the coefficients in ~a,~b,~c are all constants, it is easy to show, by a reduction to the
case where all coefficients are 1,16 that there is a Boolean circuit of depth O(log N) that computes
the function f . We omit the details. ¤

8 Size Lower Bounds

In this section we establish an exponential-size lower bound on R0(lin) refutations of the clique-
coloring formulas. We shall employ the theorem of Bonet, Pitassi & Raz in [BPR97] that provides
exponential-size lower bounds for any semantic refutation of the clique-coloring formulas, having
low communication complexity in each refutation-line.

13Over all inputs ~x, ~y such that f(~x) = 1 and f(~y) = 0.
14The measure CC′ is basically the same as CC defined earlier.
15Using the known O(log N)-depth Boolean circuits for the threshold functions.
16For instance, consider the simple case where we have only a single variable. That is, let c be a constant and

assume that we wish to construct a circuit that computes c · x = `, for some integer `. Then, we take a circuit that
computes the function f : {0, 1}c → {0, 1} that outputs the truth value of y1 + . . . + yc = ` (thus, in f all coefficients
are 1’s); and to compute c · x = ` we only have to substitute each yi in the circuit with the variable x.
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First we recall the strong lower bound obtained by Alon & Boppana [AB87] (improving over
[Razb85]; see also [And85]) for the (monotone) clique separator functions, defined as follows (a
function f : {0, 1}n → {0, 1} is called monotone if for all α ∈ {0, 1}n, α′ ≥ α implies f(α′) ≥ f(α)):

Definition 8.1 (Clique separator) A monotone boolean function Qn
k,k′ is called a clique sepa-

rator if it interprets its inputs as the edges of a graph on n vertices, and outputs 1 on every input
representing a k-clique, and 0 on every input representing a complete k′-partite graph (see Section
6.3).

Recall that a monotone Boolean circuit is a circuit that uses only monotone Boolean gates (for
instance, only the fan-in two gates ∧,∨).

Theorem 28 ([AB87]) Let k, k′ be integers such that 3 ≤ k′ < k and k
√

k′ ≤ n/(8 log n), then
every monotone Boolean circuit that computes a clique separator function Qn

k,k′ requires size at
least

1

8

(
n

4k
√

k′ log n

)(
√

k′+1)/2

.

For the next theorem, we need a slightly different (and weaker) version of communication
complexity, than that in Definition 7.4.

Definition 8.2 (Communication complexity (second definition)) Let X denote n Boolean
variables x1, . . . , xn, and let S1, S2 be a partition of X into two disjoint sets of variables. The
communication complexity of a Boolean function f : {0, 1}n → {0, 1} is the number of bits needed
to be exchanged by two players, one knowing the values given to the S1 variables and the other
knowing the values given to S2 variables, in the worst-case, over all possible partitions S1 and S2.

Theorem 29 ([BPR97]) Every semantic refutation of ¬cliquen
k,k′ (for k′ < k) with m

refutation-lines and where each refutation-line (considered as a the characteristic function of the
line) has communication complexity (as in Definition 8.2) ζ, can be transformed into a monotone
circuit of size m · 23ζ+1 that computes a separating function Qn

k,k′.

In light of Theorem 28, in order to be able to apply Theorem 29 to R0(lin), and arrive at an
exponential-size lower bound for R0(lin) refutations of the clique-coloring formulas, it suffices to
show that R0(lin) proof-lines have logarithmic communication complexity:

Lemma 30 Let D be an R0(lin)-line with N variables. Then, the communication complexity (as
in Definition 8.2) of D is at most O(log N) (where D is identified here with the characteristic
function of D).

Proof. The proof is similar to the proof of Lemma 27 for solving Task 1 (and the analogous Task
2) in Definition 7.4. ¤

By direct calculations we obtain the following lower bound from Theorems 28, 29 and Lemma
30:

Corollary 31 Let k be an integer such that 3 ≤ k′ = k − 1 and assume that 1
2 · n/(8 log n) ≤

k
√

k ≤ n/(8 log n). Then, for all ε < 1/3, every R0(lin) refutation of ¬cliquen
k,k′ is of size at least

2Ω(nε).
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When considering the parameters of Theorem 22, we obtain a super-polynomial separation
between R0(lin) refutations and R(lin) refutations, as described below.

From Theorems 28,29 and Lemma 30 we have (by direct calculations):

Corollary 32 Let k =
√

n and k′ = (log n)2/8 log log n. Then, every R0(lin) refutation of

¬cliquen
k,k′ has size at least n

Ω
(

log n√
log log n

)

.

By Corollary 23, R(lin) admits polynomial-size in n refutations of ¬cliquen
k,k′ under the pa-

rameters in Corollary 32. Thus we obtain the following separation result:

Corollary 33 R(lin) is super-polynomially stronger than R0(lin).

Comment 1 Note that we do not need to assume that the coefficients in R0(lin)-lines are constants
for the lower bound argument. If the coefficients in R0(lin)-lines are only polynomially bounded (in
the number of variables) then the same lower bound as in Corollary 32 also applies. This is
because R0(lin)-lines in which coefficients are polynomially bounded integers, still have low (that is,
logarithmic) communication complexity (as in Definition 8.2).

9 Applications to Multilinear Proofs

In this section we arrive at one of the main benefits of the work we have done so far; Namely,
applying results on resolution over linear equations in order to obtain new results for multilinear
proof systems. Subsection 9.1 that follows, contains definitions, sufficient for the current paper,
concerning the notion of multilinear proofs introduced in [RT06].

9.1 Background on Algebraic and Multilinear Proofs

9.1.1 Arithmetic and Multilinear Formulas

Definition 9.1 (Arithmetic formula) Fix a field F. An arithmetic formula is a tree, with edges
directed from the leaves to the root, and with unbounded (finite) fan-in. Every leaf of the tree
(namely, a node of fan-in 0) is labeled with either an input variable or a field element. A field
element can also label an edge of the tree. Every other node of the tree is labeled with either + or
× (in the first case the node is a plus gate and in the second case a product gate). We assume
that there is only one node of out-degree zero, called the root. The size of an arithmetic formula
F is the total number of nodes in its graph and is denoted by |F |. An arithmetic formula computes
a polynomial in the ring of polynomials F[x1, . . . , xn] in the following way. A leaf just computes
the input variable or field element that labels it. A field element that labels an edge means that
the polynomial computed at its tail (namely, the node where the edge is directed from) is multiplied
by this field element. A plus gate computes the sum of polynomials computed by the tails of all
incoming edges. A product gate computes the product of the polynomials computed by the tails of
all incoming edges. (Subtraction is obtained using the constant −1.) The output of the formula is
the polynomial computed by the root. The depth of a formula F is the maximal number of edges
in a path from a leaf to the root of F .

We say that an arithmetic formula has a plus (resp., product) gate at the root if the root of the
formula is labeled with a plus (resp., product) gate.

A polynomial is multilinear if in each of its monomials the power of every input variable is at
most one.
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Definition 9.2 (Multilinear formula) An arithmetic formula is a multilinear formula (or
equivalently, multilinear arithmetic formula) if the polynomial computed by each gate of the formula
is multilinear (as a formal polynomial, that is, as an element of F[x1, . . . , xn]).

An additional definition we shall need is the following linear operator, called the multilineariza-
tion operator :

Definition 9.3 (Multilinearization operator) Given a field F and a polynomial q ∈
F[x1, . . . , xn], we denote by M[q] the unique multilinear polynomial equal to q modulo the ideal
generated by all the polynomials x2

i − xi, for all variables xi.

For example, if q = x2
1x2 + ax3

4 (for some a ∈ F) then M[q] = x1x2 + ax4 .

The simulation of R0(lin) by multilinear proofs will rely heavily on the fact that multilinear
symmetric polynomials have small depth-3 multilinear formulas over fields of characteristic 0 (see
[SW01] for a proof of this fact). To this end we define precisely the concept of symmetric polyno-
mials.

A renaming of the variables x1, . . . , xn is a permutation σ ∈ Sn (the symmetric group on [n])
such that xi is mapped to xσ(i) for every 1 ≤ i ≤ n.

Definition 9.4 (Symmetric polynomial) Given a set of variables X = {x1, . . . , xn}, a sym-
metric polynomial f over X is a polynomial in (all the variables of) X such that renaming of
variables does not change the polynomial (as a formal polynomial).

9.1.2 Polynomial Calculus with Resolution

Here we define the PCR proof system, introduced by Alekhnovich et al. in [ABSRW02].

Definition 9.5 (Polynomial Calculus with Resolution (PCR)) Let F be some fixed field
and let Q := {Q1, . . . , Qm} be a collection of multivariate polynomials from the ring of polyno-
mials F[x1, . . . , xn, x̄1, . . . , x̄n]. The variables x̄1, . . . , x̄n are treated as new formal variables. Call
the set of polynomials x2 − x, for x ∈ {x1, . . . , xn, x̄1, . . . , x̄n}, plus the polynomials xi + x̄i − 1,
for all 1 ≤ i ≤ n, the set of Boolean axioms of PCR. A PCR proof from Q of a polynomial g
is a finite sequence π = (p1, ..., p`) of multivariate polynomials from F[x1, . . . , xn, x̄1, . . . , x̄n] (each
polynomial pi is interpreted as the polynomial equation pi = 0), where p` = g and for each i ∈ [`],
either pi = Qj for some j ∈ [m], or pi is a Boolean axiom, or pi was deduced from pj , pk , where
j, k < i, by one of the following inference rules:

Product From p deduce xi · p , for some variable xi ;

From p deduce x̄i · p , for some variable x̄i ;

Addition From p and q deduce α · p + β · q, for some α, β ∈ F.

A PCR refutation of Q is a proof of 1 (which is interpreted as 1 = 0) from Q. The number of
steps in a PCR proof is the number of proof-lines in it (that is, ` in the case of π above).

Note that the Boolean axioms of PCR have only 0, 1 solutions, where x̄i = 0 if xi = 1 and x̄i = 1
if xi = 0.
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9.1.3 Multilinear Proof Systems

In [RT06] the authors introduced a natural (semantic) algebraic proof system that operates with
multilinear arithmetic formulas denoted fMC (which stands for formula multilinear calculus), de-
fined as follows:

Definition 9.6 (Formula Multilinear Calculus (fMC)) Fix a field F and let Q :=
{Q1, . . . , Qm} be a collection of multilinear polynomials from F[x1, . . . , xn, x̄1, . . . , x̄n] (the variables
x̄1, . . . , x̄n are treated as formal variables). Call the set of polynomials consisting of xi + x̄i − 1 and
xi · x̄i for 1 ≤ i ≤ n , the Boolean axioms of fMC. An fMC proof from Q of a polynomial g is a
finite sequence π = (p1, ..., p`) of multilinear polynomials from F[x1, . . . , xn, x̄1, . . . , x̄n] , such that
p` = g and for each i ∈ [`], either pi = Qj for some j ∈ [m], or pi is a Boolean axiom of fMC, or
pi was deduced by one of the following inference rules using pj , pk for j, k < i:

Product from p deduce q · p , for some polynomial q ∈ F[x1, . . . , xn, x̄1, . . . , x̄n] such that p · q
is multilinear;

Addition from p, q deduce α · p + β · q, for some α, β ∈ F.

All the polynomials in an fMC proof are represented as multilinear formulas. (A polynomial pi in
an fMC proof is interpreted as the polynomial equation pi = 0.) An fMC refutation of Q is a proof
of 1 (which is interpreted as 1 = 0) from Q. The size of an fMC proof π is defined as the total
sum of all the formula sizes in π and is denoted by |π|.

Note that the Boolean axioms have only 0, 1 solutions, where x̄i = 0 if xi = 1 and x̄i = 1 if
xi = 0, for each 1 ≤ i ≤ n .

Definition 9.7 (Depth-k Formula Multilinear Calculus (depth-k fMC)) For a natural
number k, depth-k fMC denotes a restriction of the fMC proof system, in which proofs consist of
multilinear polynomials from F[x1, . . . , xn, x̄1, . . . , x̄n] represented as multilinear formulas of depth
at most k.

9.2 From R(lin) Proofs to PCR Proofs

We now demonstrate a general and straightforward translation from R(lin) proofs into PCR proofs
over fields of characteristic 0. We use the term “translation” in order to distinguish it from a
simulation; since here we are not interested in the size of PCR proofs. In fact we have not defined
the size of PCR proofs at all. We shall be interested only in the number of steps in PCR proofs.

From now on, all polynomials and arithmetic formulas are considered over some fix field F of
characteristic 0. Recall that any field of characteristic 0 contains (an isomorphic copy of) the
integer numbers, and so we can use integer coefficients in the field.

Definition 9.8 (Polynomial translation of R(lin) proof-lines) Let D be a disjunction of lin-
ear equations:

(
a

(1)
1 x1 + . . . + a(1)

n xn = a
(1)
0

)
∨ · · · ∨

(
a

(t)
1 x1 + . . . + a(t)

n xn = a
(t)
0

)
. (42)

We denote by D̂ its translation into the following polynomial:17

(
a

(1)
1 x1 + . . . + a(1)

n xn − a
(1)
0

)
· · ·

(
a

(t)
1 x1 + . . . + a(t)

n xn − a
(t)
0

)
. (43)

If D is the empty disjunction, we define D̂ to be the polynomial 1.

17This notation should not be confused with the same notation in Section 6.3.
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It is clear that every 0, 1 assignment to the variables in D, satisfies D, if and only if D̂ evaluates
to 0 under the assignment.

Proposition 34 Let π = (D1, . . . , D`) be an R(lin) proof sequence of D`, from some collection
of initial disjunctions of linear equations Q1, . . . , Qm. Then, there exists a PCR proof of D̂` from
Q̂1, . . . , Q̂m with at most a polynomial in |π| number of steps.

Proof. We proceed by induction on the number of lines in π.
The base case is the translation of the axioms of R(lin) via the translation scheme in Definition

9.8. An R(lin) Boolean axiom (xi = 0) ∨ (xi = 1) is translated into xi · (xi − 1) which is already a
Boolean axiom of PCR.

For the induction step, we translate every R(lin) inference rule application into a polynomial-size
PCR proof sequence as follows. We use the following simple claim:

Claim 5 Let p and q be two polynomials and let s be the minimal size of an arithmetic formula
computing q. Then one can derive in PCR, with only a polynomial in s number of steps, from p
the product q · p.18

Proof of claim: By induction on s.

Assume that Di = Dj ∨ L was derived from Dj using the Weakening inference rule of R(lin),

where j < i ≤ ` and L is some linear equation. Then, by Claim 5, D̂i = D̂j · L̂ can be derived from

D̂j with a derivation of at most polynomial in |Dj ∨ L| many steps.
Assume that Di was derived from Dj where Dj is Di ∨ (0 = k), using the Simplification

inference rule of R(lin), where j < i ≤ ` and k is a non-zero integer. Then, D̂i can be derived from
D̂j = D̂i · −k by multiplying with −k−1 (via the Addition rule of PCR).

Thus, it remains to simulate the resolution rule application of R(lin). Let A, B be two disjunc-
tions of linear equations and assume that A ∨ B ∨ ((~a +~b) · ~x = a0 + b0) was derived in π from
A ∨ (~a · ~x = a0) and B ∨ (~b · ~x = b0) (the case where A ∨ B ∨ ((~a −~b) · ~x = a0 − b0) was derived
from A ∨ (~a · ~x = a0) and B ∨ (~b · ~x = b0), is similar).

We need to derive Â · B̂ · ((~a +~b) · ~x − a0 − b0) from Â · (~a · ~x − a0) and B̂ · (~b · ~x − b0). This is
done by multiplying Â · (~a · ~x− a0) with B̂ and multiplying B̂ · (~b · ~x− b0) with Â (using Claim 5),
and then adding the resulted polynomials together. ¤

Remark: When translating R(lin) proofs into PCR proofs we actually do not make any use of
the “negative” variables x̄1, . . . , x̄n. Nevertheless, the multilinear proof systems make use of these
variables in order to polynomially simulate PCR proofs (see Theorem 36 and its proof in [RT06]).

We shall need the following corollary in the sequel:

Corollary 35 Let π = D1, . . . , D` be an R0(lin) proof of D`, and let s be the maximal size of an
R0(lin)-line in π. Then there is a PCR proof π′ of D̂` with polynomial-size in |π| number of steps
and such that every line of π′ is a translation (via Definition 9.8) of an R0(lin)-line (Definition
3.2), where the size of the R0(lin)-line is polynomial in s.

Proof. The simulation of R(lin) by PCR shown above, can be thought of as, first, considering
D̂1, . . . , D̂` as the “skeleton” of a PCR proof of D̂`. And second, for each Di that was deduced by

18Again, note that we only require that the number of steps in the proof is polynomial. We do not consider here
the size of the PCR proof.

38



one of R(lin)’s inference rules from previous lines, one inserts the corresponding PCR proof sequence
that simulates the appropriate inference rule application (as described in the proof of Proposition
34). By definition, those PCR proof-lines that correspond to lines in the skeleton D̂1, . . . , D̂` are
translations of R0(lin)-lines (with size at most polynomial in s). Thus, to conclude the proof of
the corollary, one needs only to check that for any R0(lin)-line Di that was deduced by one of
R(lin)’s inference rules from previous R0(lin)-lines (as demonstrated in the proof of Proposition
34), the inserted corresponding PCR proof sequence uses only translations of R0(lin)-lines (with
size polynomial in s). This can be verified by a straightforward inspection. ¤

9.3 From PCR Proofs to Multilinear Proofs

We now recall the general simulation result proved in [RT06] stating the following: Let π be a PCR
refutation of some initial collection of multilinear polynomials Q over some fixed field. Assume that
π has polynomially many steps (that is, the number of proof lines in the PCR proof sequence is
polynomial). If the ‘multilinearization’ (namely, the result of applying the M[·] operator – see
Definition 9.3) of each of the polynomials in π has a polynomial-size depth d multilinear formula
(with a plus gate at the root), then there is a polynomial-size depth-d fMC refutation of Q. More
formally, we have:

Theorem 36 ([RT06]) Fix a field F (not necessarily of characteristic 0) and let Q be a set of
multilinear polynomials from F[x1, . . . , xn, x̄1, . . . , x̄n]. Let π = (p1, . . . , pm) be a PCR refutation
of Q. For each pi ∈ π, let Φi be a multilinear formula for the polynomial M[pi]. Let s be the total
size of all formulas Φi, that is, s = Σm

i=1|Φi|, and let d ≥ 2 be the maximal depth of all formulas
Φi. Assume that the depth of all the formulas Φi that have a product gate at the root is at most
d − 1. Then there is a depth-d fMC refutation of Q of size polynomial in s.

9.3.1 Depth-3 Multilinear Proofs

Here we show that multilinear proofs operating with depth-3 multilinear formulas (that is, depth-3
fMC) over fields of characteristic 0 polynomially simulate R0(lin) proofs. In light of Proposition
35 and Theorem 36, to this end it suffices to show that any R0(lin)-line D translates into a
corresponding polynomial p (via the translation in Definition 9.8) such that M[p] has a multilinear
formula of size polynomial (in the number of variables) and depth at most 3 (with a plus gate at
the root) over fields of characteristic 0.

We need the following proposition from [RT06]:

Proposition 37 ([RT06]) Let F be a field of characteristic 0. For a constant c, let X1, . . . , Xc

be c finite sets of variables (not necessarily disjoint), where Σc
i=1|Xi| = n . Let f1, . . . , fc be c

symmetric polynomials over X1, . . . , Xc (over the field F), respectively. Then, there is a depth-3
multilinear formula for M[f1 · · · fc] of size polynomial (in n), with a plus gate at the root.

The following is the key lemma of the simulation:

Lemma 38 Let D be an R0(lin)-line with n variables and let p = D̂ (see Definition 9.8). Then,
M[p] has a depth-3 multilinear formula over fields of characteristic 0, with a plus gate at the root
and size at most polynomial in the size of D.

Proof. Assume that the underlying variables of D are ~x = x1 . . . , xn. By the definition of an R0(lin)-
line (see Definition 3.2) we can partition the disjunction D into a constant number of disjuncts,
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where one disjunct is a (possibly empty, translation of a) clause C,19 and all other disjuncts have
the following form:

m∨

i=1

(~a · ~x = `i) , (44)

where the `i’s are integers, m is not necessarily bounded and ~a denotes a vector of n constant
integer coefficients.

Let us denote by q the polynomial representing the clause C.20

Consider a disjunct as shown in (44). Since the coefficients ~a are constants, ~a ·~x can be written
as a sum of constant number of linear forms, each with the same constant coefficient. In other
words, ~a · ~x can be written as z1 + . . . + zd, for some constant d, where for all i ∈ [d]:

zi := b ·
∑

j∈J

xj , (45)

for some J ⊆ [n] and some constant integer b. We shall assume without loss of generality that
d is the same constant for every disjunct of the form (44) inside D (otherwise, take d to be the
maximal such d).

Thus, (44) is translated (via the translation scheme in Definition 9.8) into:

m∏

i=1

(z1 + ... + zd − `i) . (46)

By fully expanding the product in (46), we arrive at:

∑

r1+...+rd+1=m

(
αrd+1

·
d∏

k=1

zrk

k

)
, (47)

where the ri’s are non-negative integers, and where the αr’s, for every 0 ≤ r ≤ m are just integer
coefficients, formally defined as follows (this definition is not essential; we present it only for the
sake of concreteness):

αr :=
∑

U⊆[m]
|U |=r

∏

j∈U

(−`j) . (48)

Claim 6 The polynomial D̂ (the polynomial translation of D) is a linear combination (over F) of
polynomially (in |D|) many terms, such that each term can be written as

q ·
∏

k∈K

zrk

k ,

where K is a collection of a constant number of indices, rk’s are non-negative integers, and the
zk’s and q are as above (that is, the zk’s are linear forms, where each zk has a single coefficient for
all variables in it, as in (45), and q is a polynomial translation of a clause).

19If there is more than one clause in D, we simply combine all the clauses into a single clause.
20C is a translation of a clause (that is, disjunction of literals) into a disjunction of linear equations, as defined

in Section 3.1. The polynomial q is then the polynomial translation of this disjunction of linear equations, as in
Definition 9.8.
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Proof of claim: Denote the total number of disjuncts of the form (44) in D by h. By definition
(of R0(lin)-line), h is a constant. Consider the polynomial (47) above. In D̂, we actually need to
multiply h many polynomials of the form shown in (47) and the polynomial q.

For every j ∈ [h] we write the (single) linear form in the jth disjunct as a sum of constantly
many linear forms zj,1 + . . . + zj,d, where each linear form zj,k has the same coefficient for every

variable in it. Thus, D̂ can be written as:

q ·
h∏

j=1




∑

r1+...+rd+1=mj

(
α(j)

rd+1
·

d∏

k=1

zrk

j,k

)

︸ ︷︷ ︸
(?)




, (49)

(where the mj ’s are not bounded, and the coefficients α
(j)
rd+1

are as defined in (48) except that here
we add the index (j) to denote that they depend on the jth disjunct in D). Denote the maximal
mj , for all j ∈ [h], by m0. The size of D, denoted |D|, is at least m0. Note that since d is a
constant, the number of summands in each (middle) sum in (49) is polynomial in m0, which is at
most polynomial in |D|. Thus, by expanding the outermost product in (49), we arrive at a sum of
polynomially in |D| many summands. Each summand in this sum is a product of h terms of the
form (?) multiplied by q.

It remains to apply the multilinearization operator (Definition 9.3) on D̂, and verify that
the resulting polynomial has a depth-3 multilinear formula with a plus gate at the root and of
polynomial-size (in |D|). Since M[·] is a linear operator, it suffices to show that when applying
M[·] on each summand in D̂, as described in Claim 6, one obtains a (multilinear) polynomial that
has a depth-3 multilinear formula with a plus gate at the root, and of polynomial-size in the number
of variables n (note that clearly n ≤ |D|). This is established in the following claim:

Claim 7 The polynomial M
[
q · ∏k∈K zrk

k

]
has a depth-3 multilinear formula of polynomial-size in

n (the overall number of variables) and with a plus gate at the root (over fields of characteristic 0),
under the same notation as in Claim 6.

Proof of claim: Recall that a power of a symmetric polynomial is a symmetric polynomial in
itself. Since each zk (for all k ∈ K) is a symmetric polynomial, then its power zrk

k is also symmetric.
The polynomial q is a translation of a clause, hence it is a product of two symmetric polynomials:
the symmetric polynomial that is the translation of the disjunction of literals with positive signs,
and the symmetric polynomial that is the translation of the disjunction of literals with negative
signs. Therefore, q · ∏

k∈K zrk

k is a product of constant number of symmetric polynomials. By
Proposition 37, M

[
q · ∏k∈K zrk

k

]
(where here the M[·] operator operates on the ~x variables in the

zk’s and q) is a polynomial for which there is a polynomial-size (in n) depth-3 multilinear formula
with a plus gate at the root (over fields of characteristic 0). ¤

We now come to the main corollary of this section.

Corollary 39 Multilinear proofs operating with depth-3 multilinear formulas (that is, depth-3 fMC
proofs) polynomially-simulate R0(lin) proofs.

Proof. Immediate from Corollary 35, Theorem 36 and Proposition 38.
For the sake of clarity we repeat the chain of transformations needed to prove the simulation.

Given an R0(lin) proof π, we first use Corollary 35 to transform π into a PCR proof π′, with number
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of steps that is at most polynomial in |π|, and where each line in π′ is a polynomial translation of
some R0(lin)-line with size at most polynomial in the maximal line in π (which is clearly at most
polynomial in |π|). Thus, by Proposition 38 each polynomial in π′ has a corresponding multilinear
polynomial with a polynomial-size in |π| depth-3 multilinear formula (and a plus gate at the root).
Therefore, by Theorem 36, we can transform π′ into a depth-3 fMC proof with only a polynomial
(in |π|) increase in size. ¤

9.4 Small Depth-3 Multilinear Proofs

Since R0(lin) admits polynomial-size (in n) refutations of the m to n pigeonhole principle (for any
m > n) (as defined in 6.1), Corollary 39 and Theorem 16 yield:

Theorem 40 For any m > n there are polynomial-size (in n) depth-3 fMC refutations of the m
to n pigeonhole principle PHPm

n (over fields of characteristic 0).

This improves over the result in [RT06] that demonstrated a polynomial-size (in n) depth-3
fMC refutations of a weaker principle, namely the m to n functional pigeonhole principle.

Furthermore, corollary 39 and Theorem 20 yield:

Theorem 41 Let G be an r-regular graph with n vertices, where r is a constant, and fix some mod-
ulus p. Then there are polynomial-size (in n) depth-3 fMC refutations of Tseitin mod p formulas
¬TseitinG,p (over fields of characteristic 0).

The polynomial-size refutations of Tseitin graph tautologies here are different than those demon-
strated in [RT06]. Theorem 41 establishes polynomial-size refutations over any field of characteristic
0 of Tseitin mod p formulas, whereas [RT06] required the field to contain a primitive pth root of
unity. On the other hand, the refutations in [RT06] of Tseitin mod p formulas do not make any use
of the semantic nature of the fMC proof system, in the sense that they do not utilize the fact that
the base field is of characteristic 0 (which in turn enables one to efficiently represent any symmetric
[multilinear] polynomial by a depth-3 multilinear formula).

10 Relations with Extensions of Cutting Planes

In this section we tie some loose ends by showing that, in full generality, R(lin) polynomially
simulates R(CP) with polynomially bounded coefficients, denoted R(CP*). First we define the
R(CP*) proof system – introduced in [Kra98] – which is a common extension of resolution and
CP* (the latter is cutting planes with polynomially bounded coefficients). The system R(CP*),
thus, is essentially resolution operating with disjunctions of linear inequalities (with polynomially
bounded integral coefficients) augmented with the cutting planes inference rules.

A linear inequality is written as
~a · ~x ≥ a0 , (50)

where ~a is a vector of integral coefficients a1, . . . , an, ~x is a vector of variables x1, . . . , xn, and a0

is an integer. The size of the linear inequality (50) is the sum of all a0, . . . , an written in unary
notation (this is similar to the size of linear equations in R(lin)). A disjunction of linear inequalities
is just a disjunction of inequalities of the form in (50). The semantics of a disjunction of inequalities
is the natural one, that is, a disjunction is true under an assignment of integral values to ~x if and
only if at least one of the inequalities is true under the assignment. The size of a disjunction of
linear inequalities is the total size of all linear inequalities in it. We can also add in the obvious

42



way linear inequalities, that is, if L1 is the linear inequality ~a ·~x ≥ a0 and L2 is the linear inequality
~b · ~x ≥ b0, then L1 + L2 is the linear inequality (~a +~b) · ~x ≥ a0 + b0.

The proof system R(CP*) operates with disjunctions of linear inequalities with integral coef-
ficients (written in unary representation), and is defined as follows (our formulation is similar to
that in [Koj07]):21

Definition 10.1 (R(CP*)) Let K := {K1, . . . , Km} be a collection of disjunctions of linear in-
equalities (whose coefficients are written in unary representation). An R(CP*)-proof from K of a
disjunction of linear inequalities D is a finite sequence π = (D1, ..., D`) of disjunctions of linear
inequalities, such that D` = D and for each i ∈ [`]: either Di = Kj for some j ∈ [m]; or Di is
one of the following R(CP*)-axioms:

1. xi ≥ 0, for any variable xi;

2. −xi ≥ −1, for any variable xi;

3. (~a · ~x ≥ a0) ∨ (−~a · ~x ≥ 1 − a0), where all coefficients (including a0) are integers;

or Di was deduced from previous lines by one of the following R(CP*)-inference rules:

1. Let A, B be two disjunctions of linear inequalities and let L1, L2 be two linear inequalities.22

From A ∨ L1 and B ∨ L2 derive A ∨ B ∨ (L1 + L2).

2. Let L be some linear equation.

From a disjunction of linear equations A derive A ∨ L.

3. Let A be a disjunction of linear equations

From A ∨ (0 ≥ 1) derive A.

4. Let c be a non-negative integer.

From (~a · ~x ≥ a0) ∨ A derive (c~a · ~x ≥ ca0) ∨ A.

5. Let A be a disjunction of linear inequalities, and let c ≥ 1 be an integer.

From (c~a · ~x ≥ a0) ∨ A derive (a · ~x ≥ da0/ce) ∨ A.

An R(CP*) refutation of a collection of disjunctions of linear inequalities K is a proof of the empty
disjunction from K. The size of a proof π in R(CP*) is the total size of all the disjunctions of
linear inequalities in π, denoted |π|.

In order for R(lin) to simulate R(CP*) proofs, we need to fix the following translation scheme.
Every linear inequality L of the form ~a ·~x ≥ a0 is translated into the following disjunction, denoted
L̂:

(~a · ~x = a0) ∨ (~a · ~x = a0 + 1) ∨ · · · ∨ (~a · ~x = a0 + k) , (51)

where k is such that a0 + k equals the sum of all positive coefficients in ~a, that is, a0 + k =
max

~x∈{0,1}n
(~a · ~x) (in case the sum of all positive coefficients in ~a is less than a0, then we put k = 0).

An inequality with no variables of the form 0 ≥ a0 is translated into 0 = a0 in case it is false (that
is, in case 0 < a0), and into 0 = 0 in case it is true (that is, in case 0 ≥ a0). Note that since the
coefficients of linear inequalities (and linear equations) are written in unary representation, any

21When we allow coefficients to be written in binary representation, instead of unary representation, the resulting
proof system is denoted R(CP).

22In all R(CP*)-inference rules, A, B are possibly the empty disjunctions.
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linear inequality of size s translates into a disjunction of linear equations of size O(s2). Clearly,
every 0, 1 assignment to the variables ~x satisfies L if and only if it satisfies its translation L̂. A
disjunction of linear inequalities D is translated into the disjunction of the translations of all the
linear inequalities in it, denoted D̂. A collection K := {K1, . . . , Km} of disjunctions of linear

inequalities, is translated into the collection
{

K̂1, . . . , K̂m

}
.

Theorem 42 R(lin) polynomially-simulates R(CP*). In other words, if π is an R(CP*) proof of
a linear inequality D from a collection of disjunctions of linear inequalities K1, . . . , Kt, then there
is an R(lin) proof of D̂ from K̂1, . . . , K̂t whose size is polynomial in |π|.

Proof. By induction on the number of proof-lines in π.
Base case: Here we only need to show that the axioms of R(CP*) translates into axioms of

R(lin), or can be derived with polynomial-size (in the size of the original R(CP*) axiom) R(lin)
derivations (from R(lin)’s axioms).

R(CP*) axiom number (1): xi ≥ 0 translates into the R(lin) axiom (xi = 0) ∨ (xi = 1).
R(CP*) axiom number (2): −xi ≥ −1, translates into (−xi = −1) ∨ (−xi = 0). From the

Boolean axiom (xi = 1) ∨ (xi = 0) of R(lin), one can derive with a constant-size R(lin) proof the
line (−xi = −1)∨ (−xi = 0) (for instance, by subtracting twice each equation in (xi = 1)∨ (xi = 0)
from itself).

R(CP*) axiom number (3): (~a ·~x ≥ a0)∨(−~a ·~x ≥ 1−a0). The inequality (~a ·~x ≥ a0) translates
into

h∨

b=a0

(~a · ~x = b) ,

where h is the maximal value of ~a · ~x over 0, 1 assignments to ~x (that is, h is just the sum of all
positive coefficients in ~a). The inequality (−~a · ~x ≥ 1 − a0) translates into

f∨

b=1−a0

(−~a · ~x = b) ,

where f is the maximal value of −~a · ~x over 0, 1 assignments to ~x (that is, f is just the sum of
all negative coefficients in ~a). Note that one can always flip the sign of any equation ~a · ~x = b in
R(lin). This is done, for instance, by subtracting twice ~a · ~x = b from itself. So overall R(CP*)
axiom number (3) translates into

h∨

b=a0

(~a · ~x = b) ∨
f∨

b=1−a0

(−~a · ~x = b) ,

that can be converted inside R(lin) into

a0−1∨

b=−f

(~a · ~x = b) ∨
h∨

b=a0

(~a · ~x = b) . (52)

Let A′ := {−f,−f + 1, . . . , a0 − 1, a0, a0 + 1, . . . , h} and let A be the set of all possible values that
~a ·~x can get over all possible Boolean assignments to ~x. Notice that A ⊆ A′. By Lemma 9, for any
~a · ~x, there is a polynomial-size (in the size of the linear form ~a · ~x) derivation of

∨
α∈A(~a · ~x = α).

By using the R(lin) Weakening rule we can then derive
∨

α∈A′(~a · ~x = α) which is equal to (52).

Induction step: Here we simply need to show how to polynomially simulate inside R(lin) every
inference rule application of R(CP*).
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Rule (1): Let A, B be two disjunctions of linear inequalities and let L1, L2 be two linear in-
equalities. Assume we already have a R(lin) proofs of Â ∨ L̂1 and B̂ ∨ L̂2. We need to derive

Â∨ B̂∨ L̂1 + L2. Corollary 8 shows that there is a polynomial-size (in the size of L̂1 and L̂2; which

is polynomial in the size of L1 and L2) derivation of L̂1 + L2 from L̂1 and L̂2, from which the
desired derivation immediately follows.

Rule (2): The simulation of this rule in R(lin) is done using the R(lin) Weakening rule.

Rule (3): The simulation of this rule in R(lin) is done using the R(lin) Simplification rule (re-
member that 0 ≥ 1 translates into 0 = 1 under our translation scheme).

Rule (4): Let c be a non-negative integer. We need to derive ̂(c~a · ~x ≥ ca0) ∨ Â from
̂(~a · ~x ≥ a0) ∨ Â in R(lin). This amounts only to “adding together” c times the disjunction
̂(~a · ~x ≥ a0) in ̂(~a · ~x ≥ a0) ∨ Â. This can be achieved by c many applications of Corollary 8.

We omit the details.

Rule (5): We need to derive ̂(~a · ~x ≥ da0/ce)∨Â, from ̂(c~a · ~x ≥ a0)∨Â. Consider the disjunction

of linear equations ̂(c~a · ~x ≥ a0), which can be written as:

(c~a · ~x = a0) ∨ (c~a · ~x = a0 + 1) ∨ . . . ∨ (c~a · ~x = a0 + r) , (53)

where a0 + r is the maximal value c~a · ~x can get over 0, 1 assignments to ~x. By Lemma 9 there is
a polynomial-size (in the size of ~a · ~x) R(lin) proof of

∨

α∈A
(~a · ~x = α) , (54)

where A is the set of all possible values of ~a · ~x over 0, 1 assignments to ~x.
We now use (53) to cut-off from (54) all equations (~a · ~x = β) for all β < da0/ce (this will give

us the desired disjunction of linear equations). Consider the equation (~a · ~x = β) in (54) for some
fixed β < da0/ce. Use the resolution rule of R(lin) to add this equation to itself c times inside (54).
We thus obtain

(c~a · ~x = cβ) ∨
∨

α∈A\{β}
(~a · ~x = α) . (55)

Since β is an integer and β < da0/ce, we have cβ < a0. Thus, the equation (c~a · ~x = cβ) does
not appear in (53). We can then successively resolve (c~a · ~x = cβ) in (55) with each equation
(c~a · ~x = a0), . . . , (c~a · ~x = a0 + r) in (53). Hence, we arrive at

∨
α∈A\{β} (~a · ~x = α). Overall, we

can cut-off all equations (~a · ~x = β), for β < da0/ce, from (54). We then get the disjunction

∨

α∈A′
(~a · ~x = α) ,

where A′ is the set of all elements of A greater or equal to da0/ce (in other words, all values greater
or equal to da0/ce that ~a ·~x can get over 0, 1 assignments to ~x). Using the Weakening rule of R(lin)

(if necessary) we can arrive finally at the desired disjunction ̂(~a · ~x ≥ da0/ce), which concludes the
R(lin) simulation of R(CP*)’s inference Rule (5). ¤
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A Feasible Monotone Interpolation

Here we formally define the feasible monotone interpolation property. The definition is taken
mainly from [Kra97]. Recall that for two binary strings of length n (or equivalently, Boolean
assignments for n propositional variables) α, α′, we denote by α′ ≥ α that α′ is bitwise greater
than α, that is, that for all i ∈ [n], α′

i ≥ αi (where α′
i and αi are the ith bits of α′ and α,

respectively). Let A(~p, ~q), B(~p, ~r) be two collections of formulas in the displayed variables only,
where ~p, ~q, ~r are pairwise disjoint sequences of distinct variables (similar to the notation at the
beginning of Section 7). Assume that there is no assignment that satisfies both A(~p, ~q) and B(~p, ~r).
We say that A(~p, ~q), B(~p, ~r) are monotone if one of the following conditions hold:

1. If ~α is an assignment to ~p and ~β is an assignment to ~q such that A(~α, ~β) = 1, then for any
assignment ~α′ ≥ ~α it holds that A(~α′, ~β) = 1.

2. If ~α is an assignment to ~p and ~β is an assignment to ~r such that B(~α, ~β) = 1, then for any
assignment ~α′ ≤ ~α it holds that B(~α′, ~β) = 1.

Fix a certain proof system P. Recall the definition of the interpolant function (corresponding
to a given unsatisfiable A(~p, ~q) ∧ B(~p, ~r); that is, functions for which (39) in Section 7 hold).
Assume that for every monotone A(~p, ~q), B(~p, ~r) there is a transformation from every P-refutation
of A(~p, ~q)∧B(~p, ~r) into the corresponding interpolant monotone Boolean circuit C(~p) (that is, C(~p)
uses only monotone gates23) and whose size is polynomial in the size of the refutation (note that for
every monotone A(~p, ~q), B(~p, ~r) the corresponding interpolant circuit must compute a monotone
function;24 the interpolant circuit itself, however, might not be monotone, namely, it may use non-
monotone gates). In such a case, we say that P has the feasible monotone interpolation property.
This means that, if a proof system P has the feasible monotone interpolation property, then an
exponential lower bound on monotone circuits that compute the interpolant function corresponding
to A(~p, ~q) ∧ B(~p, ~r) implies an exponential-size lower bound on P-refutations of A(~p, ~q) ∧ B(~p, ~r).

Definition A.1 (Feasible monotone interpolation property) Let P be a propositional refu-
tation system. Let A1(~p, ~q), . . . , Ak(~p, ~q) and B1(~p, ~r), . . . , B`(~p, ~r) be two collections of formulas
with the displayed variables only (where ~p has n variables, ~q has s variables and ~r has t variables),
such that either (the set of satisfying assignments of) A1(~p, ~q), . . . , Ak(~p, ~q) meet condition 1 above
or (the set of satisfying assignments of) B1(~p, ~r), . . . , B`(~p, ~r) meet condition 2 above. Assume
that for any such A1(~p, ~q), . . . , Ak(~p, ~q) and B1(~p, ~r), . . . , B`(~p, ~r), if there exists a P-refutation for
A1(~p, ~q) ∧ · · · ∧ Ak(~p, ~q) ∧ B1(~p, ~r) ∧ . . . ∧ B`(~p, ~r) of size S then there exists a monotone Boolean
circuit separating UA from VB (as defined in Section 7.1) of size polynomial in S. In this case we
say that P possesses the feasible monotone interpolation property.
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23For instance, a monotone Boolean circuit is a circuit that uses only ∧,∨ gates of fan-in two (see also Section 8).
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