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Abstract

In this paper we study the one-way multi-party communication model, in which every party
speaks exactly once in its turn. For every fixed k, we prove a tight lower bound of Ω

(

n1/(k−1)
)

on the probabilistic communication complexity of pointer jumping in a k-layered tree, where
the pointers of the i-th layer reside on the forehead of the i-th party to speak. The lower bound
remains nontrivial even for k = (log n)1/2−Ω(1) parties. Previous to our work a lower bound
was known only for k = 3 [BHK], and in very restricted models for k > 3 [DJS, Cha]. Our
results have the following consequences to other models and problems, extending previous work
in several directions.

The one-way model is strong enough to capture general (non one-way) multi-party protocols
of bounded rounds. Thus we generalize to this multi-party model results on two directions
studied in the classical 2-party model (e.g. [PS, NW]). The first is a round hierarchy: We give
an exponential separation between the power of r and 2r rounds in general probabilistic k-party
protocols, for any fixed k and r. The second is the relative power of determinism and non-
determinism: We prove an exponential separation between nondeterministic and deterministic
communication complexity for general k-party protocols with r rounds, for any fixed k, r.

The pointer jumping function is weak enough to be a special case of the well-studied disjoint-
ness function. Thus we obtain a lower bound of Ω

(

n1/(k−1)
)

on the probabilistic complexity
of k-set disjointness in the one-way model, which was known only for k = 3 parties. Our re-
sult also extends a similar lower bound for the weaker simultaneous model, in which parties
simultaneously send one message to a referee [BPSW].

Finally, we infer an exponential separation between the power of different orders in which
parties send messages in the one-way model, for every fixed k. Previous to our work such a
separation was only known for k = 3 [NW].

Our lower bound technique, which handles functions of high discrepancy, may be of inde-
pendent interest. It provides a “party-elimination” induction, based on a restricted form of a
direct-product result, specific to the pointer jumping function.
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1 Introduction

In Yao’s standard communication complexity [Yao], two parties are each holding an input, and
they attempt to compute (or approximate) a given function of these two inputs by exchanging at
most c bits of communication (cf. the comprehensive book [KN]). This model has been one of
the most extensively studied in computational complexity, and captures essential features of many
diverse computational settings, from Turing machines, VLSI and distributed computation, to linear
programming and auctions. Many techniques for proving various strong lower bounds are known.

This model was generalized by Chandra, Furst, and Lipton [CFL], to the multiparty model
(often called “number-on-forehead”). In k-party communication complexity each party is assigned
an input again, and the parties have to compute (or approximate) a function f : X1×X2×· · ·×Xk =
({0, 1}n)k → {0, 1} of all k inputs by exchanging c bits of communication. However, the input
xi ∈ Xi to the i-th party (figuratively) resides on that party’s forehead, and so (formally) each
party knows all but his own input. The overlapping information of the parties allows this model
to capture more complex settings, like multi-tape Turing machines, branching programs, constant-
depth circuits with modular gates and more. In the multiparty model, lower bounds are known
for as many as k = k(n) = ε · log n parties. We point out that even for the most restricted form
of this model, namely simultaneous multi-party protocols (in which all parties send one message
to a referee) no explicit function is known which cannot be computed using k = log2 n parties and
c = log2 n communication. Crossing this barrier will have impressive complexity implications, but
has so far resisted all attacks.

In this paper we obtain several new results on natural variants and questions in the multi-party
model, which we describe in the next subsections with their background.

1.1 Rounds in communication complexity.

Papadimitriou and Sipser [PS] initiated the study of how 2-party communication complexity is
affected by limiting the two parties to only r rounds of messages. This natural question was taken
on by several researchers, who obtained exponential separation between r and r + 1 rounds in
2-party protocols (see [NW] and the references within). No separation was known for k > 2 parties.
In this work we obtain the first such result, stated next.

Theorem 1.1 (Round hierarchy). For every fixed constants r and k there is an explicit function
f : ({0, 1}n)k → {0, 1} that requires nΩ(1) communication for k-party r-rounds protocols, but that
can be computed with O(log n) communication by k-party r′-rounds protocols, if r′(k − 1) ≥ r · k.

For k-party r-rounds protocols we also obtain an exponential separation between nondeter-
ministic and deterministic protocols. Again, this seems to be the first such separation for k > 2
parties.

Theorem 1.2 (Nondeterminism vs. determinism). For every fixed constants r and k there is an
explicit function f : ({0, 1}n)k → {0, 1} that requires nΩ(1) communication for k-party r-rounds
protocols, but that can be computed with O(log n) communication by nondeterministic k-party 2-
rounds protocols.

The above results are obtained as a corollary from a new communication complexity lower
bound in the one-way model, which we describe next.
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1.2 The one-way model and pointer jumping.

In the one-way model the k-parties speak in turn, and only once. This is an interesting model
that arises in several contexts, such as oblivious branching programs and streaming algorithms
[AMS, BYJKS]. In this work we establish a new one-way lower bound for the pointer jumping
function. To define this function, we think of a regular tree1 of depth k. The input to the pointer
jumping function specifies a {0, 1}-value for the leaves, and for every internal node a pointer to one
of its children. The output of the pointer jumping function is the bit obtained by following the
pointers from the root to a leaf. We refer the reader to Figure 1 on Page 5 for a picture. Party i
knows all pointers except those from the i-th layer to the (i + 1)-th.

The pointer jumping function naturally captures “inherently sequential” computation and in-
ference. It has been studied by many researchers in many models and contexts, including constant-
depth circuits, proof complexity, PRAMs and communication complexity (e.g. [PS, NW, NBY,
BIP, DJS, BHK, Cha])

In particular, attempts to proving lower bounds in the one-way multi-party model have existed
for over a decade. For k = 3 this was achieved by Wigderson (cf. appendix in [BHK]), who proved
a Ω(

√
n) lower bound via extremal set theory arguments. For k > 3 strong lower bounds were

obtained only for various (unnatural) restrictions of the one-way model (the “conservative” model
and the “myopic” model) [DJS, Cha]. The main result of this paper makes progress in the general
one-way model, obtaining a tight lower bound for any constant number k of parties. Our lower
bound remains nontrivial for any number of parties k = (log n)1/2−Ω(1).

Theorem 1.3. For every k, the pointer jumping function TPJk : ({0, 1}n)k → {0, 1} requires
communication at least

(

n1/(k−1)
)

/kO(k) for one-way k-party number-on-forehead protocols.

Another consequence of our Theorem 1.3 is about the relative power of one-way k-party pro-
tocols with respect to various orders in which the parties speak. Exponential separations between
different orders were again given by Nisan and Wigderson [NW, BHK] for the case k = 3, but were
unknown for larger k. As a corollary of Theorem 1.3 we obtain an exponential separation for every
constant k:

Corollary 1.4 (Order separation). For any fixed constant k and any order π for the k parties to
speak, there is an explicit function f : ({0, 1}n)k → {0, 1} that requires nΩ(1) communication if the
parties speak in the order π, but can be computed with O(log n) communication if the parties speak
in any other order.

1.3 Discrepancy and disjointness.

Another reason for our interest in the one-way model is that, for some basic functions, it is the
strongest model in which multiparty communication complexity lower bounds are known. Specifi-
cally, lower bounds in the general model are typically obtained by upper bounding the discrepancy
of the target function, a quantity which measures the bias of the function over large cylinder inter-
sections. Although we know of functions with exponentially small discrepancy, such as the general-
ized inner product [BNS, CT, Raz, VW], some important functions in fact have high discrepancy,
and consequently the above technique cannot be applied to prove communication complexity lower
bounds. The pointer jumping function, described above, is an example of such a function.

1It makes sense to consider this function over arbitrary graphs, but working with trees is more convenient for our
purposes – jumping ahead, it will more directly implies a lower bound for disjointness.
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Another fundamental example of a function with high discrepancy is the disjointness function.
Here, each of the k parties is assigned a subset of {1, 2, . . . , n}, and the parties wish to determine
whether or not their sets share a common element. The study of the disjointness function is central
to communication complexity, and is motivated both by the naturalness of the function and by its
interesting consequences in proof complexity and circuit complexity. For example, in propositional
proof complexity, it is shown in [BPS] that sufficiently strong (c = ω(log4 n)) lower bounds for
the k-party disjointness would solve the major open problem of obtaining proof size lower bounds
for a family of proof systems which capture certain semi-definite optimization techniques, and are
known as tree-like, degree k − 1 threshold systems. In circuit complexity, it can be shown using
the techniques in [RW, Vio] that sufficiently strong (logd n for a certain constant d) lower bounds
for the Ω(log n)-party disjointness function would separate polynomial-size constant-depth circuits
from polynomial-size depth-2 circuits with an arbitrary symmetric gate at the root.

The difficulty of obtaining such lower bounds for the general multi-party model has caused
researchers to try more restricted models first. For disjointness, a Ω

(

n1/(k−1)
)

lower bound was
known in the simultaneous model [BPSW], where there is no interaction between parties. In the
stronger one-way model a nΩ(1) lower bound was only known for k = 3 (cf. appendix in [BHK] and
[BPSW]).2 In this work we extend these previous results by obtaining a Ω

(

n1/(k−1)
)

lower bound
for one-way protocols.

Corollary 1.5. The disjointness function DISJk,n : ({0, 1}n)k → {0, 1} requires communication
at least

(

n1/(k−1)
)

/kO(k) for one-way k-party number-on-forehead protocols.

We note that this result is obtained as a corollary of our lower bound for pointer jumping.
It is easy to see that when the underlying graph is a tree, pointer jumping is a special case of
disjointness.

1.4 Techniques

We now summarize how we obtain our lower bound for pointer jumping (Theorem 1.3). The bound
is obtained by induction on the number of parties k. Carrying through this induction is somewhat
involved, and in particular we will need to consider non-Boolean variants of pointer jumping, in
which one has to chase pointers on several trees. Specifically, we will work with the function
TPJm,d

k : ({0, 1}n)k → {0, 1}m, which we think of as a forest of m d-regular trees of depth k.

Again, the input to TPJm,d
k specifies a {0, 1}-value for the leaves, and for every internal node a

pointer to one of its d children. The output of the pointer jumping function is the m-bit string
obtained by following the paths from the m roots to the leaves. It will be important for us to show
that computing TPJm,d

k is even difficult if we allow for success probability that is subexponentially
small in m (in the Boolean m = 1 case this probability bound is 0.99, say).

Specifically, we prove by induction on k that the following statement holds for every choice of m
and d (cf. Theorem 3.2), which may be viewed as a direct product theorem in this model, specific
to pointer jumping:

(I) No k-party one-way protocol using communication o(m · d) can compute TPJm,d
k

with probability exp(−o(m)) over the choice of a random input.

2We note that in [BPSW] they also prove a nΩ(1) bound for 3-party disjointness in a stronger model where the
first party speaks once, and then the two other parties interact arbitrarily.

3



Proving the inductive step in (I) is the main technical contribution of this work. To this aim
we develop our main party reduction Theorem 3.3. This theorem shows how to transform a given
protocol for TPJm,d

k into another protocol for pointer jumping with k − 1 parties on m′ := d · m
trees, TPJm′,d

k−1 . For example, in the special case in which we start with a Boolean (m = 1) function
with k parties, we construct a protocol for a non-Boolean (m′ = d) function with k − 1 parties. As
we point out later, our party reduction theorem in fact gives a general transformation for protocols
in which the first party speaks only once, and thus it applies to other models beyond one-way, and
other functions besides pointer jumping.

This transformation is obtained as follows. We fix a message for the first party that maximizes
the success probability of the protocol. Thinking of the input as (x1, y) ∈ X1 × Y , where Y =
X2 × · · ·Xk, we note that such fixing decreases the probability of success over the choice of y
(however, jumping ahead, this loss will be exp(−o(d · m)) = exp(−o(m′)) which is fine for (I)),
but does not decrease the success probability over the choice of x1, because the message does not
depend on x1. This bigger success probability over x1 allows us to run the protocol r ≈ d times for
different choices of pointers x1 ∈ X1 and still tolerate the loss in the error (recall that d = m′/m).
At this point, we argue that the r outputs of the protocol let us compute (1− o(1)) ·m′ bits of the

m′ bits of TPJm′,d
k−1 that we need. To argue this, we proceed by showing that only with probability

exponentially small the pointers (given by all r runs of the protocol) hit less than (1 − o(1)) · m′

bits. By a suitable choice of parameters, this probability can be made smaller than the probability
that all r runs of the protocol are correct. Thus, with sufficiently high probability, all r runs of
the protocol are correct and their accumulated pointers hit at least (1− o(1)) ·m′ bits. When this
happens, we can compute each of these (1− o(1)) ·m′ bits by outputting the corresponding output
bit of the protocol.

It remains to deal with the o(1)m′ bits we know nothing about. To compute these, we simply
guess at random. The probability of guessing them correct will be exp(−o(m′)), which is still fine
for (I). This concludes our proof overview (cf. Remark 4.3 for the history of this approach).

To clarify the parameters in the above discussion we remark that, intuitively, (1− o(1)) ·m′ bits
is as much information as we can hope to obtain from the protocol: There may well be a fraction
of o(1)m′ indices such that the protocol never gives a meaningful answer if a pointer falls there;
such a protocol would satisfy the inductive hypothesis because its success probability would be
exp(−o(m)), but its outputs give no information on the value of o(1)m′ bits.

Finally, we point out that the idea of employing a party-reduction theorem is already present
in the work [DJS], where is used to derive lower bounds in communication models that are more
restricted than the one-way model considered here. Also, a related round-reduction idea can be
found in the 2-party lower bound in [NW].

Organization. This paper is organized as follows. After some preliminaries in Section 2, in Sec-
tion 3 we formally state our lower bounds for pointer jumping, including our main party reduction
theorem, and then we derive our lower bound assuming the party-reduction theorem. In Section 4
we prove the party-reduction theorem. The consequences of our lower bound for general protocols
with bounded number of rounds (Theorems 1.1 and 1.2), relative power of different orders in the
one-way model (Corollary 1.4), and disjointness (Corollary 1.5), are given in Section 5. Finally, in
Section 6 we discuss some applications of our results to streaming models of computation.

4



0

1
q -

j
�

1

g1(1)

g2(g1(1))

g3(g2(g1(1)))

g4(g3(g2(g1(1))))

Figure 1: TPJ function (k = 4,m = 1, d = 2).

2 Background on communication complexity

We use standard definitions of communication protocols, which we now briefly recall. In a k-party
protocols, k parties with to collaboratively compute a function f : X1 × X2 × · · · × Xk → D on
input x = (x1, x2, . . . , xk). The function f is known to each party, and the i-th party sees all pieces
of x except xi. The parties communicate by broadcasting messages, and the final party is supposed
to communicate the output of the function. The communication complexity of a protocol is the
total length of the messages exchanged; note that we count the final message (which if the protocol
is correct is the value of the function) towards communication.

In a r-round protocol, the parties speak in any order w ∈ [k]r, which is chosen adaptively during
the protocol: At any round, the party to speak is a function of the messages exchanged up to that
round. We stress that r may be much larger than k, and that parties may speak more than once.
We now define more restricted models where the order is fixed a priori, i.e. the parties always speak
in the same order regardless of the messages exchanged. A one-way protocol with order w is a
(r = k)-round protocol in which the parties always speak in the order w, and w is a permutation
of [k]. A (standard) one-way protocol is a one-way protocol with order w where w is the identity
permutation w = 1, 2, 3, . . . , k.

For concreteness, we note that a 1-party one-way protocol P : X1 → {0, 1}m is simply a
fixed string P (x1) = P ∈ {0, 1}m, independent of the input. A 2-party c−bit one-way protocol
P : X1 × X2 → {0, 1}m is given by two functions f1 and f2, where P (x1, x2) = f2(f1(x2), x1), and
the output length of each function is bounded by c. The function f1 computes the message of the
first party, which depends on x2 only, while f2 computes the (output) message of the second party,
which depends on x1 and the message f1(x2) sent by the first party. Similarly, a 3-party c-bit
one-way protocol P : X1 × X2 × X3 → {0, 1}m is given by three functions f1, f2, and f3, where
P (x1, x2, x3) = f3(f2(f1(x2, x3), x1, x3), x1, x2), and the output length of each function is bounded
by c.

A probabilistic or randomized protocol is a probability distribution over deterministic protocols.

3 Lower bound for pointer jumping

We now define the pointer jumping function and then state our main result. The pointer jumping
function can be defined in different ways, and in this work we adopt the following variant. We
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think of a forest of m d-regular trees of depth k. The input to the pointer jumping function
specifies a {0, 1}-value for the leaves, and for every internal node a pointer to one of its d children.
(Specifically, for every level the j-th internal node at that level has its d children labelled from
the interval [d · (j − 1) + 1, d · j].) The output of the pointer jumping function is the m-bit string
obtained by following the paths from the m roots to the leaves. We refer the reader to Figure 1
on Page 5 for a picture. Compared to other definitions (e.g., [BHK]), ours has the advantage of
having a shorter input length (thus giving a stronger lower bound), and more directly implying a
lower bound for disjointness (cf. Corollary 5.3).

Definition 3.1 (Pointer jumping function). For integers k,m, d, the pointer jumping function is

TPJm,d
k : [d]m × [d]m·d × · · · [d]m·d2 × {0, 1}m·dk−1 → {0, 1}m,

where for every i, and for j ∈ [m] we have

TPJm,d
k (g1, g2, . . . , gk)j := (gk ◦ gk−1 ◦ · · · ◦ g1)(j) = gk(gk−1(· · · (g1(j)) · · · ),

where gi ∈ BFm·di−1

d :=
{

g : [m · di−1] → [m · di] such that g(j) ∈ [d · (j − 1) + 1, d · j]
}

for i < k,
and gk : [m · dk−1] → {0, 1}.

Note that the function TPJm,d
k has input length n = m · (dk−1 + dk−2 · log d + dk−3 · log d +

· · · + d0 · log d) = O(m · dk−1). This function is Boolean for m = 1, while for m > 1 its output is a
m-bit string corresponding to the outputs of m Boolean pointer jumping functions on independent
inputs.

We now state our lower bound for pointer jumping. Here and throughout the paper we let
exp(x) := 2x and log = log2. Also, all probabilities are taken over the uniform distribution.

Theorem 3.2. For every k,m, d ≥ 1, and for µk := (k + 1)−100k, there is no one-way k-party
protocol P such that

Pr
x∈X

[

P (x) = TPJm,d
k (x)

]

≥ exp(−µk · m)

and P uses communication at most µk · m · d.
In particular, every one-way k-party protocol for the Boolean pointer jumping function TPJ1,d

k :
{0, 1}n → {0, 1} must use communication at least d/kO(k) =

(

n1/(k−1)
)

/kO(k).

Note that, in particular, the above theorem gives a lower bound on the communication which

is exp
(

logΩ(1) n
)

for every k ≤ log1/2−Ω(1) n. Also note that the TPJ1,d
k function can be computed

with d + 1 bits of communication – simply by letting the first party communicate the d possible
outputs of the function for each value of the input on her forehead, and then letting the second
party announce the output of the function. Thus, for constant k our lower bound is tight up to
constant factors; but in general we do not know whether our d/kO(k) bound is tight or not. Finally,
we note that the bound in the above theorem is distributional, i.e. it limits the fraction of inputs on
which any low-communication protocol can compute TPJm,d

k correctly. By an averaging argument
(see, e.g., [KN, Theorem 3.20]), this implies a lower bound for randomized protocols as well.

The basic intuition for the proof of Theorem 3.2 is that if we can solve m problems correctly
(i.e., compute the m output bits of TPJm,d

k ) with some success probability and communication,
then by repeating the protocol roughly d times we should be able to solve m ·d = m′ problems (i.e.,
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compute the m′ output bits of TPJm′,d
k−1 ) with loss of a factor d in communication and exponential

in d in success probability.3

Inducting on the above will give a contradiction. Specifically, the proof of Theorem 3.2 proceeds
by induction on k. For every k, we prove the theorem for every setting of the other parameters. For
the inductive step, we show how to turn a given protocol for the function with k parties into another
protocol for the function with k − 1 parties on a bigger forest (for example, in the special case in
which we start with a Boolean function with k parties, we construct a protocol for a non-Boolean
function with k − 1 parties). This transformation is provided by the following main Theorem 3.3.
Even though in this work we mainly apply this theorem (3.3) to one-way protocols, it applies to
models beyond one-way multiparty communication: It gives a generic reduction which transforms
any protocol with one special party who speaks first and only once, into a related protocol without
this party. Thus a “protocol” may be specified in different ways, and the relation between the given
and the new protocol (as well as what they compute) is specified formally in the theorem.

Theorem 3.3 (Main – party reduction). Let m,d be integers, and m′ := d·m. Let f ′ : X → {0, 1}m′

be any function, and consider the function f : BFm
d × X → {0, 1}m defined as f(g, x)j := f ′(x)g(j)

where g ∈ BFm
d .

Suppose that there is a protocol P (g, x) using communication µ · m · d such that:

Pr
g∈BF m

d
,x∈X

[P (g, x) = f(g, x)] ≥ exp(−µ · m),

where g is on the forehead of a party who speaks first and only once, and µ < 1/2.
Then there is a protocol P ′(x) using communication µ′ · m′ · d such that

Pr
x∈X

[

P ′(x) = f ′(x)
]

≥ exp(−µ′ · m′),

where
µ′ = 100µ · log(1/µ)

and P ′ can be written as P ′(x) = h (P (g̃1, x), P (g̃1, x), . . . , P (g̃r, x)) for some fixed function h :
{0, 1}m·r → {0, 1}m′

and fixed inputs g̃1, g̃2, . . . , g̃r ∈ BFm
d (and some r). In particular, if X =

X2 × · · · × Xk and P is a one-way k-party protocol, then P ′ is a one-way (k − 1)-party protocol.

Proof of Theorem 3.2 from Theorem 3.3. To get a sense of the parameters, note that the statement
that we set to prove is monotone in µk. Specifically, for any fixed k,m, and d, if there is no protocol

P such that Prx∈X

[

P (x) = TPJm,d
k (x)

]

≥ exp(−µk ·m) and P uses communication µk ·m·d, where

µk = α, then the same is true for any choice of smaller µk := β < α.
We proceed by induction on k.
Base case k = 1. In this case the communication does not play a role and P is a fixed string

P ∈ {0, 1}m, whereas TPJm,d
1 (x) = x. The probability that a random input m-bit string x equals

a fixed string P is exp(−m) < exp(−µ1 · m), and thus the base case is proved.

3Our initial version of this argument was, intuitively, that being able to compute most of the m output bits of

TPJm,d

k implies the ability to compute most of the m′ output bits of TPJm′,d

k−1 . The proof of this was quite complex,
and the simplification here derives from an idea in [BRW] which was pointed out to us by Oded Regev. We will stress
in the proof where their idea is used.
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Figure 2: Variables of the proof of Theorem 3.3.

Inductive step. We prove the inductive step k ≥ 2 by contradiction. Suppose that there is a
protocol for TPJm,d

k with parameter µk = (k + 1)−100k < 1/2. We apply Theorem 3.3 to obtain a

protocol for TPJd·m,d
k−1 with parameter µk−1 which equals

100µk · log(1/µk) = 100(k + 1)−100k · 100k · log(k + 1)

≤ (k + 1)−100k · k100 ≤ k−100k · k100 = k−100(k−1).

This contradicts the inductive hypothesis for (k − 1).
The “in particular” part of the theorem follows from the easily verifiable fact that the input

length of TPJ1,d
k is n = O(dk−1) (cf. the discussion after Definition 3.1).

In the next section we prove Theorem 3.3. The reader may want to refer to Figure 2 while
reading the proof.

4 Proof of the party-reduction Theorem 3.3

We assume without loss of generality that d ≥ 1/µ. This is because if d < 1/µ then the protocol
P is using less than m bits of communication, and since we count the output length of P towards
communication, the protocol cannot even output an m-bit string, in which case the hypothesis of
the theorem is always false and the theorem vacuously true.
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From the hypothesis and a Markov argument4 it follows that

Pr
x∈X

[

Pr
g∈BF m

d

[P (g, x) = f(g, x)] ≥ exp(−2µ · m)

]

≥ exp(−µ ·m)/(1+exp(−µ ·m)) ≥ exp(−µ ·m)/2.

The message sent by the first party in P does not depend on g, since g lies on the forehead of the
first party. Using this and the fact that the communication of P is µ · m · d = µ · m′, we can fix a
particular message a for the first party such that

Pr
x∈X

[

Pr
g∈BF m

d

[Pa(g, x) = f(g, x)] ≥ exp(−2µ · m)

]

≥ exp(−µ · m′) · exp(−µ · m)/2 ≥ exp(−3µ · m′),

(1)
where Pa denotes the (k − 1)-party (µ ·m′)-bit protocol obtained from P by fixing the first party’s
message to a (and we are using that µ · m′ ≥ 1 because d ≥ 1/µ). We are now in the position to
describe the protocol P ′. We define it as a randomized protocol; a deterministic protocol can be
obtained by fixing its random choices.

Definition of P ′. Let
r := 5 · dlog(1/µ)e · d.

On input x, the protocol P ′ first chooses r independent inputs g1, g2, . . . , gr, then runs the protocol
Pa on all inputs (g1, x), (g2, x), . . . , (gr, x). Informally, to compute its j-th output bit, P ′ uses the
output of Pa if one of the gi’s happens to point to j, and otherwise it tosses a coin. More formally,
to compute the j-th output bit, P ′ considers the first pair u ∈ [r], w ∈ [m] such that gu(w) = j.
If any such u,w exist, then it outputs Pa(gu, x)w. If no such u,w exist, it outputs a random and
uniform bit. it may be the case that Pa gives inconsistent answers on different pairs u,w such that
gu(w) = j. While this is addressed in the definition above by using the first such pair, this case of
inconsistent pairs u,w is in fact irrelevant to our analysis below. This is because the analysis below
gives the desired probability bound just considering the event in which all outputs are correct and
hence consistent.)

Complexity of P ′. It is easy to verify that the randomized protocol P ′ can be written as P ′(x) =
h (Pa(g1, x), Pa(g2, x), . . . , Pa(gr, x)), for a function h which depends on the g’s. Since P ′ runs r
times the protocol Pa, and Pa uses communication µ · m′, we see that P ′ uses communication
µ ·m′ · r = µ ·m′ · 5 · dlog(1/µ)e ·d ≤ 10µ · log(1/µ) ·m′ ·d, as required. A deterministic protocol can
be obtained by fixing the randomness g̃1 = g1, g̃2 = g2, . . . , g̃r = gr so as to maximize the success
probability of P ′.

Analysis of P ′. Call an input x ∈ X good if Prg∈BF m
d

[Pa(g, x) = f(g, x)] ≥ exp(−2µ · m). Our
claim is the following.

Claim 4.1. For every good x ∈ X, Prg1,...,gr [P
′(x) = f ′(x)] ≥ exp(−4µ · m · r).

4 Specifically, suppose that PrX,Y [φ(X, Y )] ≥ γ. Let us call x heavy if PrY [φ(x, Y )] ≥ γ′, and suppose that
PrX [X is heavy] = p. Then we have γ ≤ γ′(1 − p) + p = γ′ + p(1 − γ′), and thus p > (γ − γ′)/(1 − γ′). (The case
γ := exp(−µ · m), and γ′ := γ2 is used in the proof.)
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Before proving this claim, let us see how the theorem follows from it. Note that, by Equation
(1), a random x ∈ X is good with probability at least exp(−3µ · m′). Combining this with Claim
4.1 we have that

Pr
x∈X,g1,...,gr

[P ′(x) = f ′(x)] ≥ exp(−3µ · m′ − 4µ · m · r)

≥ exp(−7µ · m · r) ≥ exp(−70µ · log(1/µ) · m′) (2)

as required.

Proof of Claim 4.1. The choice of g1, . . . , gr corresponds to the choice of t := m·r = 5·dlog(1/µ)e·m′

pointers gu(w) ∈ [m′], where u ≤ r and w ≤ m. Let us call a pointer gu(w) good if Pa correctly
computes the corresponding bit, that is, if Pa(gu, x)w = f ′(x)gu(w).

Let us pick a parameter
ρ ∈ [4µ, 5µ]

such that ρ · d is an integer (such a ρ is guaranteed to exist because d ≥ 1/µ). Now consider the
following two events.

I All gw(w)’s are good : For all t pointers gu(w) we have Pa(gu, x)w = f ′(x)gu(w), and

II Cover a 1 − ρ fraction: there are at least (1 − ρ) · m′ indices j ∈ [m′] for which there is a
pointer gu(w) such that gu(w) = j.

Whenever both events (I) and (II) happen, by definition the protocol will compute correctly
a 1 − ρ fraction of the output bits of f ′, and guess at random for the other ρ fraction. We prove
below that the probability that both events (I) and (II) happen is at least exp(−2µ ·m · r)/2. Also,
the probability that the ρ ·m′ random guesses are all correct is exp(−ρ ·m′), and thus we have, for
every good x:

Pr
g1,...,gr

[P ′(x) = f ′(x)] ≥ Pr[(I) and (II)] · exp(−ρ · m′)

≥ exp(−2µ · m · r − 1 − ρ · m′)

≥ exp(−4µ · m · r), (since ρ ≤ 5µ ≤ µ · r/d)

which proves Claim 4.1.5

It remains to prove that the probability that both events (I) and (II) happen is at least exp(−2µ·
m · r)/2. First, observe that event (I) happens with probability at least exp(−2µ · m · r). This
is because x is good and therefore, for every u ≤ r, with probability at least exp(−2µ · m) (over
gu) all pointers gu(1), gu(2), . . . , gu(m) are good (cf. Equation 1). As these events (for different
u’s) are independent, the probability bound follows. So we only need to show that event (II) does
not happen with probability at most exp(−2µ · m · r)/2. (We are using that Pr[(I) and (II)] ≥
Pr[(I)] − Pr[not (II)].)

Claim 4.2 (Cover a 1−ρ fraction w.h.p.). The probability that there are at most (1−ρ) ·m′ indices
j ∈ [m′] for which there is a pointer gu(w) such that gu(w) = j is at most exp(−2µ · m · r)/2.

5 We point out that this idea of guessing at random the missing ρ fraction of bits is borrowed from [BRW]. Just
like in that paper, the exponentially small success probability is significant for our setting of parameters. Previously,
without using this idea, we had to cope with errors which led to much more complex analysis.
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Proof of Claim 4.2. We do a union bound over all subsets of [m′] of size (1− ρ) ·m′. Fix any such
set S, and let 1 − ρ1, 1 − ρ2, . . . , 1 − ρm be the fraction of elements in each block of d indices, i.e.,
1−ρi := |{j ∈ [d ·(i−1)+1, d ·i]∩S}|/d. The probability that all pointers fall in S is

∏

i≤m(1−ρi)
r.

Since the average of the (1− ρi)
′s is (1− ρ), by the arithmetic mean vs. geometric mean inequality

we have that the probability that all pointers fall in S is

∏

i≤m

(1 − ρi)
r ≤ (1 − ρ)m·r.

By a union bound, the probability that there is a set S ⊆ [m′] of size (1 − ρ) · m′ such that all the
pointers fall inside S is at most

(

m′

ρ · m′

)

· (1 − ρ)m·r ≤ (e/ρ)ρ·m
′ · exp(−ρ · m · r)

≤ exp(log(1/µ) · ρ · m′) · exp(−ρ · m · r) (since ρ ≥ 4µ)

≤ exp(µ · m · r − 4µ · m · r) (since ρ ∈ [4µ, 5µ] and r = 5 · dlog(1/µ)e · d)

= exp(−3µ · m · r),

where in the first inequality we use that
(

n
k

)

≤ (e · n/k)k and that (1 − ρ) ≤ e−ρ ≤ 2−ρ =:
exp(−ρ).

Remark 4.3. We thank Oded Regev for pointing out an idea from the paper [BRW] which led to
a considerable simplifcation of the proof of our main party-reduction theorem. Our previous proof
(unpublished) gave up on recovering all the m′ bits of f ′, and only aimed to recover a 1−ρ fraction.
This parameter ρ then appeared in the induction hypothesis leading to a more cumbersome analysis.
Guessing at random the ρ fraction of the bits of f ′ on which we have no information allows us to
have the invariant that we compute all the output bits of f ′, and leads to a simplified analysis.

5 Consequences of our lower bound for pointer jumping

In this section we restate and prove some consequences of our lower bound for pointer jumping.
We start with the consequences of our lower bound for general protocols with bounded number of
rounds: the round hierarchy Theorem 1.1 and the separation of nondeterminism from determinism,
Theorem 1.2. Then we prove a separation between the power of different orders in the one-way
model, Corollary 1.4. Finally, we give our lower bound for the disjointness function, Corollary 1.5.
All these results follow easily from our main lower bound for pointer jumping, Theorem 3.2.

We start with the consequences regarding general protocols with a bounded number of rounds.
The following corollary combines Theorems 1.1 and 1.2 from the Introduction.

Corollary 5.1 (Separations for a bounded number of rounds). For every fixed constants r and k
there is an explicit function f : ({0, 1}n)k → {0, 1} that requires nΩ(1) communication for k-party
r-rounds protocols, but that can be computed with O(log n) communication by both

1. k-party r′-rounds protocols, whenever r′(k − 1) ≥ r · k, and
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2. nondeterministic k-party 2-rounds protocols.

Proof. Let k′ := k · r = O(1), and consider the pointer jumping function TPJk′ : {0, 1}n → {0, 1}.
Let us think of the input pointers to this function as arranged in r blocks of k layers each, where
the first block cointains the first k layers, the second block the layers between k +1 and 2 ·k and so
on. Now consider the following partition of the inputs to the k parties: Player i knows all pointers
except those leaving the i-th layer in each block. We claim that this function, under this partition
of the inputs, gives the separation.

Lower bound: The lower bound follows from our results in the one-way model (Theorem 3.2).
Specifically, we use the fact that any r-round k-party protocol for the TPJk′ function above can be
simulated by a one-way k′-party protocol, under the partition of the inputs described above (recall
that k′ = k · r). The simulation is natural and works as follows. At any round j, if the i-party
speaks in the original r-round protocol, we simulate this by letting the ((j−1) ·k+i)-party speak in
the one-way model (i.e., the i-th party in the j-th block). Note that, by our choice of the partition
of the inputs, this ((j − 1) · k + i)-party in the one-way protocol has access to all the information
that the i-party had access to in the original protocol. This shows that the simulation can indeed
be carried through and proves the lower bound.

Upper bound (1): Recall that evaluating the function amounts to following k′ pointers, i.e. out-
putting the node reached after following the pointers. Since party i knows all pointers except those
in the i-th layer in each block, it is not hard to see that in 1 round the parties can always follow
k−1 pointers. Thus, to compute the function they only need r′ rounds for r′(k−1) ≥ r ·k. Since at
each round they only need communicate the node reached up to that point, and this takes O(log n)
bits, the upper bound is proved.

Upper bound (2): Using nondeterminism, the first party guesses the piece of the input on its
forehead, and announces the whole path in the graph from the starting node to a leaf. Note that
all the steps in this path are correct except possibly those corresponding to the first layer in each
block, which the first party does not see but guessed. As the graph has k · r = O(1) layers, this
takes O(log n) communication. The second party, seeing the first party’s input and the path, can
verify the correctness of the steps corresponding to the first layer in each block, and thus check if
the leaf announced by the first party is the correct one.

The function witnessing the separation between nondeterminism and determinism in Theo-
rem 5.1 can in fact be computed with O(log n) communication by both nondeterministic and
co-nondeterministic protocols. By a result of [AUY],6 such functions can always be computed with
polylogarithmic communication by deterministic protocols, if we put no bound on the number of
rounds. Thus, our exponential separation in Theorem 5.1 provides a sharp contrast in the case of
bounded number of rounds.

Another consequence of our results is the following separation between the power of different
orders in which the parties speak.

Corollary 1.4 (Order separation). For any fixed constant k and any order π for the k parties to
speak, there is an explicit function f : ({0, 1}n)k → {0, 1} that requires nΩ(1) communication if the
parties speak in the order π, but can be computed with O(log n) communication if the parties speak
in any other order.

6Although [AUY] only considers 2-party protocols, their result extends to any k.
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Proof. Without loss of generality, let us assume that π1 = 1, 2, . . . , k. Consider the k-party pointer
jumping function TPJk : {0, 1}n → {0, 1}; by Theorem 3.2, its one-way communication complexity
is

(

n1/(k−1)
)

/kO(k) if the parties speak in the order 1, 2, . . . , k. For the upper bound, fix a different
order, and suppose that party j > i speaks before party i. Then party j can announce the node
reached after following the first j pointers, which takes O(log n) bits. Later, party i can annouce
the value of the function. This is because it knows the pointers in every layer except the i-th, and
thus in particular the pointers in the layers after the j-th, since j > i.

In the rest of this section we explain how we obtain a lower for the disjointness function.

Definition 5.2 (Disjointness function). For integers k, n the disjointness function is DISJk,n :

({0, 1}n)k → {0, 1} where DISJ(x1, x2, . . . , xk) = 0 if and only if there is j ∈ [n] such that
(xi)j = 1 for every i ∈ [k], where (xi)j denotes the j-th bit of the string xi ∈ {0, 1}n.

Note that DISJ(x1, x2, . . . , xk) = 1 if and only if the k sets encoded by the strings xi are
disjoint.

Corollary 5.3. There is a universal constant c > 0 such that the following is true. For every
k, d ≥ 1, and for ηk := (k + 1)−c·k, there is a distribution D over the inputs of DISJk,n such that
there is no one-way k-party protocol P achieving

Pr
x∈D

[P (x) = DISJk,n(x)] ≥ exp(−ηk)

and using communication at most ηk · d.
In particular, every one-way k-party protocol for the disjointness function DISJk,n : ({0, 1}n)k →

{0, 1} must use communication at least
(

n1/(k−1)
)

/kO(k).

Proof. We reduce an instance of the pointer jumping function TPJ1,d
k to an instance of the dis-

jointness function DISJk,n where n = dk−1. The corollary then follows from Theorem 3.2. We
now explain this reduction, which amounts to a simple block-wise encoding of the truth-tables of
the functions g’s. Specifically, given a TPJ1,d

k instance g1, g2, . . . , gk we construct the correspond-
ing DISJk,n instance x1, x2, . . . , xk as follows. The input xk equals the truth-table of the binary
function gk mapping [dk−1] to {0, 1}. To specify xi for i < k, let us think of the integers up to
n = dk−1 written in d-ary notation, and of gi as a map from d-ary integers of length i − 1 into
d-ary integers of length i, i.e. gi : [d]i−1 → [d]i. Now, we set to 1 exactly those bits of xi whose
index is of the form gi(a) ◦ b, a ∈ [d]i−1, b ∈ [d]k−i. For example, for x1 we set to 1 all bits whose
index has the most significant digit equal to g1(1). It can be verified that for such xi’s we have

TPJ1,d
k (g1, g2, . . . , gk) = 1 − DISJk,n(x1, x2, . . . , xk).

6 Streaming models and branching programs

In this section we discuss some consequences of our lower bounds for streaming models of com-
putation. Following [AMS], we consider the problem of approximating, with limited space, the
frequency moments of a sequence A = (a1, . . . , am) of m elements ai ∈ {1, . . . , n} (jumping ahead,
our current results only apply to the frequency moment F∞, defined below). The celebrated paper
[AMS] establishes several bounds on approximating various moments in the model where we have
one-way access to the sequence. Already in [AMS], it was considered an extension of the one-way
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model where one allows for several one-way passes on the input sequence, but in the same order.
This model was also studied by some of the many papers that followed [AMS], for example in the
paper [BYJKS] which also gives sharper space bounds.

Here, we consider a further extension of the one-way streaming model, where we are allowed
to access the sequence in any order, insofar as we read at most c · n inputs (the order is fixed and
independent of the actual sequence). We can think, for example, of approximating the moments of
a matrix of n elements, where we first access them in row order, and then in column order. This
overlap of information is reminiscent of the multiparty model, and in fact using our results we are
able to prove a space lower bound for approximating the moment F∞, which is simply the maximum
over i ∈ {1, . . . , n} of the number of times that element i appears in the sequence (cf. [AMS]); for
example, F∞ = 1 if all elements in the sequence are distinct.

Corollary 6.1. For every c there is a constant ε > 0 such that the following holds. Let M be a
randomized algorithm that uses space s and, given a sequence A of n elements in {1, . . . , n}, reads
c ·n elements in an arbitrary but fixed order (independent of the sequence). Suppose that M outputs
with probability 1 − ε a number F ∗

∞ such that |F ∗
∞ − F∞| ≤ ε · F∞, then M must use space s ≥ nε.

We take a slightly indirect route to prove Corollary 6.1. We proceed by introducing the model
of branching programs and note that it is equivalent to the streaming model in Corollary 6.1; then
we infer a lower bound for branching programs from our results. We choose to present things this
way because the model of branching programs is interesting in its own right.

Let us start by briefly recalling the definition of a branching program. Because of the applica-
tion to streaming models, we work with branching programs over n inputs from a non-necessarily
Boolean domain D.

Definition 6.2 (Branching program). A branching program on n inputs from a domain D is a
directed, acyclic graph whose internal nodes are labeled with queries of the form “input i?”, whose
edges are labeled with |D| possible query answers, and whose leaves are labeled with real numbers.
A branching program computes a function from Dn to the reals in the natural way, by following the
path from the root to a leaf. The length of a branching program is the length of a longest path from
the root to a leaf, and the width is the maximum, over all d, of the number of nodes at distance
d from the root. A branching program is oblivious if any path from the root to a leaf queries the
same inputs in the same order.

We observe that the streaming algorithm M in Corollary 6.1 can be implemented by an oblivious
branching program of length c · n and width 2s (with inputs over the domain {1, . . . , n}).

The next lemma states that branching programs can be simulated by multiparty protocols. This
simulation was known and indeed motivated the introduction of the multiparty model [CFL]. We
make the straightforward observation that the simulation also holds for one-way protocols, which
allows us to use the lower bounds in this paper to obtain branching program lower bounds.

Proposition 6.3 ([CFL]; Simulating branching programs by multiparty protocols). Let p : Dn → <
be an oblivious branching program of width w and length c · n. For k = 2c and a constant α that
depends on c only, there is a partition H0,H1, . . . ,Hk of [n] where each set Hi, i ≥ 1, has size at
least α ·n, and the branching program p can be simulated by a one-way k-party protocol exchanging
(k−1) · log w +1 bits of communication, where party i has the inputs indexed by Hi on his forehead
(and the inputs indexed by H0 are seen by everybody).
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Proof sketch. Divide up the sequence of c · n indices accessed by the program in k blocks of n/2
elements each. Start by setting Hi, i ≥ 1, equal to the complement of indices in the i-th block
(clearly this complement has size at least n/2). To make the Hi’s disjoint, apply iteratively the
marriage theorem (a.k.a. Hall’s theorem). (Alternatively, assign each index to a random set among
those that contain it, and argue that with high probability the resulting sets will be large.) Finally,
set H0 := [n] − ∪i≥1Hi.

We are now in the position to present the proof of Corollary 6.1.

Proof of Corollary 6.1. The algorithm M can be seen as an oblivious branching program of length
c ·n and width 2s (with inputs over the domain {1, . . . , n}). By Proposition 6.3, there is a partition
H0,H1, . . . ,Hk of [n] where k = 2c and each set Hi, i ≥ 1 has size at least α · n, and the branching
program can be simulated by a one-way k-party protocol using communication (k − 1) · s + 1 (on
that partition). Similarly to the approach in [AMS], we now argue that such a protocol can be used
to compute the k-party disjointness function DISJk,α·n : ({0, 1}α·n)k → {0, 1}. Given an input
x1, . . . , xk ⊆ [α · n] of the disjointness function, we construct the sequence as follows. For every i,
we set |xi| of the elements indexed by Hi to the elements in the input set xi ⊆ [α · n], in arbitrary
order. The remaining |H0|+

∑

i |Hi|− |xi| elements of the sequence can be, say, assigned to distinct
elements from {α · n + 1, . . . , n}. It is easy to see that the moment F∞ of this sequence is at most
k − 1 if DISJk,α·n(x1, . . . , xk) = 1, and otherwise it is k. Thus, for a sufficiently small constant ε
depending on k, approximating F∞ lets us compute disjointness, and by Corollary 5.3 we conclude
that s ≥ nε.

Finally, we mention that we do not know how to get hardness of approximation results for other
moments in our model.

7 Open problems

Besides the obvious open problem of establishing lower bounds for pointer jumping or disjointness
in the general model, our work raises some other questions. One question, in proof complexity, is
whether a size lower bound for tree-like threshold systems already follows from our one-way lower
bound (cf. Section 1.3 and [BPS]). This seems to require a “better than known” simulation of
such proof systems by multi-party protocols, specifically a simulation that uses only few rounds.
Another question is how tight is our one-way lower bound for pointer jumping if k is not constant.
A small step in this direction would be understanding whether one can improve our main Theorem
3.3 so as to have η′ linear in η, as opposed to quasi-linear. This would allow to establish lower
bounds for pointer jumping of the form

(

n1/(k−1)
)

/2O(k), as opposed to
(

n1/(k−1)
)

/kO(k) in our
results.
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