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Abstract

The folk theorem suggests that finding Nash Equilibria in repeated games should be easier than
in one-shot games. In contrast, we show that the problem of finding any (epsilon) Nash equilibrium
for a three-player infinitely-repeated game is computationally intractable (even when all payoffs are
in {−1, 0,−1}), unless all of PPAD can be solved in randomized polynomial time. This is done by
showing that finding Nash equilibria of (k + 1)-player infinitely-repeated games is as hard as finding
Nash equilibria of k-player one-shot games, where PPAD-hardness is known (Daskalakis, Goldberg and
Papadimitriou, 2006; Chen, Deng and Tang, 2006; Chen, Tang and Valiant, 2007). This also shows
that no computationally-efficient learning dynamics, e.g., “no regret” algorithms, are rational in general
games with three or more players. In other words, when one’s opponents use such a strategy, it is not in
general a best reply to follow suit (under the same computational assumption).

1 Introduction

Complexity theory provides compelling evidence for the difficulty of finding Nash Equilibria (NE) in
one-shot games. It is NP-hard, for a two-player n × n game, to determine whether there exists a NE in
which both players get non-negative payoffs [GZ89]. Recently it was shown that the problem of finding
any NE is PPAD-hard [DGP06], even in the two-player n×n case [CD06], even for ε-equilibria [CDT06],
and even when all payoffs are ±1 [CTV07]. PPAD-hardness implies that a problem is at least as hard
as discrete variations on finding Brouwer fixed-point, and thus presumably computationally intractable
[P94].

Repeated games, ordinary games played by the same players a large — usually infinite — number of
times, are believed to be a different story. Indeed, a cluster of results known as the Folk Theorem1 predict
that, in a repeated game with infinitely many repetitions and/or discounting of future payoffs, there are
mixed Nash equilibria (functions mapping histories of play by all players to a distribution over the next
strategies for each player) which achieve a rich set of payoff combinations called the individually rational
region — essentially anything above what each player can absolutely guarantee for him/herself (see
below for a more precise definition). In the case of prisoner’s dilemma, for example, a NE leading to full
collaboration (both players playing “mum” ad infinitum) is possible. In fact, repeated games and their
Folk Theorem equilibria have been an arena of early interaction between Game Theory and the Theory
of Computation, as play by resource-bounded automata was also considered [S80, R86, PY94, N85].

Now, there is one simple kind of mixed NE that is immediately inherited from the one-shot game:
Just play a mixed NE each time. In view of what we now know about the complexity of computing a
mixed NE, however, this is hardly attractive computationally. Fortunately, in repeated games the Folk
Theorem seems to usher in a space of outcomes that is both much richer and computationally benign.
In fact, it was recently pointed out that, using the Folk Theorem, a pure NE can indeed be found in
polynomial time for any repeated game with two players [LS05].

The main result in this paper is that, for three or more players, finding a NE in a repeated game
is PPAD-hard, under randomized reductions. This follows from a simple reduction from finding NE in
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(k + 1)-player games to finding NE in k-player one-shot games, for any k. In other words, for three or
more players, playing the mixed NE each time is not as bad an idea in terms of computational complexity
as it may seem at first. In fact, there is no general way that is computationally easier. Our results also
hold for finding approximate NE, called ε-NE, for any inverse-polynomial ε and discounting parameter,
and even in the case where the game has all payoffs in the set {−1, 0, 1}.

To understand our result and its implications, it is useful to explain the Folk Theorem. Looking at
the one-shot game, there is a certain “bottom line” payoff that any player can guarantee for him/herself,
namely the minmax payoff: The best payoff against a worst-case mixed strategy by everybody else. The
vector of all minmax payoffs is called the threat point of the game, call it θ. Consider now the convex hull
of all payoff combinations achievable by pure strategy plays (in other words, the convex hull of all the
payoff data); obviously θ is a point in this convex hull, and so are all mixed NE. The individually rational
region consists of all points x in this convex hull such that such that x ≥ θ coordinatewise. Now the
Folk Theorem, in its simplest version, takes any payoff vector x in the individually rational region, and
approximates it with a rational (no pun) point x̃ ≥ x ≥ θ (such a rational payoff is guaranteed to exist
if the payoff data are rational). The players then agree to play a periodic schedule of plays that achieve,
in the limit, the payoff x̃ on the average. The agreement-NE further mandates that, if any player ever
deviates from this schedule, everybody else will switch to the mixed strategy that achieves the player’s
minmax. It is not hard to verify that this is a mixed NE of the repeated game. Since every mixed NE
can play the role of x, it appears that the Folk Theorem indeed creates a host of more general, and at
first sight computationally attractive, equilibria.

To implement the Folk Theorem in a computationally feasible way, all one has to do is to compute the
threat point and corresponding punishing strategies. The question thus arises: what is the complexity of
computing the minmax payoff? For two players, it is easy to compute the minmax values (since in the
two-player case this reduces to a two-player zero-sum game), and the Folk theorem can be converted to
a computationally efficient strategy for playing a NE of any repeated game [LS05]. In contrast, we show
that, for three or more players, computing the threat point is NP-hard in general (Theorem 1).

In fact, as we have already mentioned, our negative result is more general. Not only these two familiar
approaches to NE in repeated games (playing each round the one-shot NE, and implementing the Folk
Theorem) are both computationally difficult, but also any algorithm for computing a mixed NE of a
repeated game with three or more players can be used to compute a mixed NE of a two-person game, and
hence it cannot be done in polynomial time, unless there is a randomized polynomial-time algorithm for
every problem in PPAD (Theorem 3). In other words, the Folk Theorem gives us hope that other points
in the individually rational region will be easier to compute than the NE; well, they are not.

We believe that our simple analysis gives interesting negative game-theoretic implications regarding
learning dynamics. In particular, the elegant no-regret strategies have been shown to quickly converge to
the set of correlated equilibria [FV97] of the one-shot game, even in games with many players (see [BM07]
Chapter 4 for a survey). Our result implies that, for more than two players (under the same computational
assumption), these strategies — and more importantly any computationally efficient general game-playing
strategies — are not rational in the sense that if ones opponents all employ such strategies, it is not in
general a best response in the repeated game to follow suit. Thus the strategic justification of using such
strategies is called into question.

We give next some definitions and notation. In Section 2 we show that computing the threat point
if NP-complete. In Section 3 we show that computing NE of a repeated game with k + 1-players is
equivalent to computing NE of a k-player one-shot game, and extend this result to ε-NE.

1.1 Definitions and Notation

A game G = (I, A, u) consists of a set I = {1, 2, . . . , k} of players, a set A = ×i∈IAi of action profiles

where Ai is the set of pure actions2 for player i, and a payoff function u : A → R
k that assigns a

payoff to each player given an action for each player. We write ui : A → R for the payoff to player i, so
u(a) =

�
u1(a), . . . , uk(a)�. We use the standard notation a−i ∈ A−i = ×j∈I\{i}Aj to denote the actions

of all players except player i.
Let ∆i = ∆(Ai) denote the set of probability distributions over Ai and ∆ = ×i∈I∆i. A mixed action

αi ∈ ∆i for player i is a probability distribution over Si. An k-tuple of mixed actions α = (α1, . . . , αk)
determines a product distribution over A where α(a) = � i∈I αi(ai). We extend the payoff functions to
α ∈ ∆ by expectation: ui(α) = Ea∼α [ui(a)] , for each player i.

2To avoid confusion, we use the word action in stage games (played once) and the word strategy for repeated games.
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Definition 1 (Nash Equilibrium). Mixed action profile α ∈ ∆ is an ε-NE (ε ≥ 0) of G if,

∀ i ∈ I ∀ āi ∈ Ai ui(α−i, āi) ≤ ui(α) + ε.

A NE is an ε-NE for ε=0.

For any game G = (I, A, u), we denote the infinitely repeated game by G∞. In this context, G
is called the stage game. In G∞, each period t = 0, 1, 2, . . . , each player chooses an action at

i ∈ Ai.
A history ht = (a0, a1, . . . , at−1) ∈ (A)t is the choice of strategies in each of the first t periods, and
h∞ = (a0, a1, . . .) describes the infinite game play.

A pure strategy for player i in the repeated game is a function si : A∗ → Ai, where A∗ = �∞
t=0(A)t,

and si(h
t) ∈ Ai determines what player i will play after every possible history of length t. A mixed

strategy for player i in the repeated game is a function σi : A∗ → ∆i, where σi(h
t) ∈ ∆i similarly

determines the probability distribution by which player i chooses its action after each history ht ∈ (A)t.
We use the standard discounting model to evaluate payoffs in such an infinitely repeated game. A

mixed strategy profile σ = (σ1, . . . , σk) induces a probability distribution over histories ht ∈ (A)t in the
natural way. The infinitely-repeated game with discounting parameter δ ∈ (0, 1) is denoted G∞(δ).
The expected discounted payoff to player i of σ = (σ1, . . . , σk) by,

pi(σ) = δ

∞�
t=0

(1 − δ)tEht �Eat∼σ(ht) �ui(a
t)�� ,

where the expectation is over action profiles at ∈ A drawn according to the independent mixed strategies
of the players on the tth period based on σ0, . . . , σt. The δ multiplicative term ensures that, if the payoffs
in G are bounded by some M ∈ R, then the discounted payoffs will also be bounded by M . This follows
directly from the fact that the discounted payoff is the weighted average of payoffs over the infinite
horizon.

For G = (I,A, u), G∞(δ) = (I, (A∗)A, p) can be viewed as a game as above, where (A∗)A
i denotes

the set of functions from A∗ to Ai. In this spirit, an ε-NE of G∞ is thus a vector of mixed strategies
σ = (σ1, . . . , σk) such that,

∀ i ∈ I ∀ s̄i : A∗ → Ai pi(σ−i, s̄i) ≤ pi(σ) + ε.

This means that no player can increase its expected discounted payoff more than ε by unilaterally changing
its mixed strategy (function). A NE of G∞ is an ε-NE for ε = 0.

1.1.1 Computational Definitions

Placing game-playing problems in a computational framework is somewhat tricky, as a general game is
most naturally represented with real-valued payoffs while most models of computing only allow finite
precision. Fortunately, our results hold for a class of games where the payoffs all in {−1, 0, 1}, so we
define our models in this case.

A win-lose game is a zero-sum game in which the payoffs are in {−1, 1}, and we define a win-

lose-draw game to be a zero-sum game whose payoffs are in {−1, 0, 1}. We say a game is n × n if
A1 = A2 = [n] and similarly for n × n × n games. We now state a recent result about computing Nash
equilibria in two-player n × n win-lose games due to Chen, Teng, and Valiant. Such games are easy to
represent in binary and their (approximate) equilibria can be represented by rational numbers.

Fact 1. (From [CTV07]) For any constant c > 0, the problem of finding an n−c-NE in a two-player
n × n win-lose games is PPAD-complete.

For sets X and Y, a search problem S : X → P(Y) is the problem of, given x ∈ X , finding any
y ∈ S(x). A search problem is total if S(x) 6= ∅ for all x ∈ X . The class PPAD [P94] is a set of total
search problems. We do not define that class here — a good definition may be found in [DGP06]. However,
we do note that a (randomized) reduction from search problem S1 : X1 → P(Y1) to S2 : X2 → P(Y2) is
a pair of (randomized) polynomial-time computable functions f : X1 → X2 and g : X1 × Y2 → Y1 such
that for any x ∈ X1 and any y ∈ S2(f(x)), g(x, y) ∈ S1(x). To prove PPAD-hardness (under randomized
reductions) for a search problem, it suffices to give a (randomized) reduction from that problem of finding
an n−c-NE for two-player n × n win-lose games.

We now define a strategy machine for playing repeated games. Following the game-theoretic
definition, a strategy machine Mi for player i in G∞ is a Turing machine that takes as input any
history ht ∈ At (any t ≥ 0), where actions are represented as binary integers, and outputs a probability
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distribution over Ai represented by a vector of fractions of binary integers that sum to 1.3 A strategy
machine is said to have runtime R(t) if, for any t ≥ 0 and history ht ∈ [n]3t, its runtime is at most R(t).
With a slight abuse of notation, we also denote by Mi : ht → ∆i the function computed by the machine.
We are now ready to formally define the repeated 0-1 Nash Equilibrium Problem.

Definition 2 (R01NE). For any sequence 〈ε, δ, R〉n≥2, where εn > 0, δn ∈ (0, 1), and Rn : N → N,
the (εn, δn, Rn)-R01NE problem is, given a win-lose-draw game G (of any size n ≥ 2), to output three
machines, each running in time Rn(t), such that the strategies computed by these three machines are an
εn-NE to G∞(δn).

2 The Complexity of the Threat Point

The minmax value for player i of game G is defined to be,

θi(G) = min
α
−i∈∆

−i

max
αi∈∆i

ui(αi, α−i).

The threat point (θ1, . . . , θk) is key to the definition of the standard folk theorem, as it represents
the worst punishment that can be inflicted on each player if the player deviates from some coordinated
behavior plan.

Theorem 1. Given a three-player n × n × n game with payoffs ∈ {0, 1}, it is NP -hard to approximate
the minmax value for each of the players to within 3/n2.

The above theorem also implies that it is hard for the players to find mixed actions that achieve the
threat point within < 3/n2. For, suppose that two players could find strategies to force the third down
to its threat value. Then they could approximate the threat value easily by finding an approximate best
response for the punished player and estimating its expected payoff, by sampling.

Proof. The proof is by a reduction to the NP-hard problem of 3-colorability. For notational ease, we will
show that it is hard to distinguish between a minmax value of 1

n
and 1

n
+ 1

3n2 in 3n×3n×2n games. More
formally, given an undirected graph (V, E) with |V | = n ≥ 4, we form a 3-player game in which, if the
graph is 3-colorable, the minmax value for the third player is 1/n, while if the graph is not 3-colorable,
the minmax value is ≥ 1/n + 1/(3n2).

P1 and P2 each choose a node in V and a color for that node (ideally consistent with some valid
3-coloring). P3 tries to guess which node one of the players has chosen by picking a player (1 or 2) and
a node in V . Formally, A1 = A2 = V × {r, g, b} and A3 = V × {0, 1}.

The payoff to P3 is 1 if either (a) P1 and P2 are exposed for not choosing a valid coloring or (b) P3
correctly guesses the node of the chosen player. Formally,

u3((v1, c1), (v2, c2), (v3, i)) =

�����
����

1 if v1 = v2 and c1 6= c2

1 if (v1, v2) ∈ E and c1 = c2

1 if vi = v3

0 otherwise

In the case of either of the first two events above, we say that P1 and P2 are exposed. The payoffs to
P1 and P2 are irrelevant for the purposes of the proof. Notice that if the graph is 3-colorable, then the
threat point for player 3 is 1/n. To achieve this, let c : V → {r, g, b} be a coloring. Then P1 and P2
can choose the same mixed strategy which picks (v, c(v)) for v uniformly random among the n nodes.
They will never be exposed for choosing an invalid coloring, and P3 will guess which node they choose
with probability 1/n, hence P3 will achieve expected payoff exactly 1/n. They cannot force player 3 to
achieve less because there will always be some node that one player chooses with probability at least 1/n.

It remains to show that if the graph is not 3-colorable, then for any (α1, α2) ∈ ∆1 × ∆2, there is a
(possibly mixed) action for P3 that achieves expected payoff at least 1/n + 1/(3n2).

Case 1: there exists i ∈ {1, 2} and v ∈ V such that player i has probability at least 1/n + 1/(3n2)
of choosing v. Then we are done because P3 can simply choose (v, i) as his action.

3We note that several alternative formulations are possible for the definition of strategy machines. For simplicity, we have
chosen deterministic Turing machines. (The limitation to rational-number output is not crucial because our results apply to
ε-NE as well.) A natural alternative formulation would be randomized machines that output pure actions. Our results could
be extended to such a setting in a straightforward manner using sampling.
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Given: k-player game G = (I = {1, 2, . . . , k}, A, u)

Ĝ = (Î = {1, 2, . . . , k + 1}, Â, û) is the actor-critic version of G:

r = k + 1 (notational convenience)

Âi =

{
Ai if i 6= r

{(j, āj)|1 ≤ j ≤ k, āj ∈ Aj} if i = r

ûi(a, (j, āj)) =






0 if i /∈ {j, r}

uj(a) − uj(āj , a−j) if i = j

uj(āj , a−j) − uj(a) if i = r

Figure 1: The actor-critic version of k-player game G. Players i = 1, 2, . . . , k, are the actors, player r = k+1
is the critic. At most one actor may receive a nonzero payoff. The critic singles out actor j and suggests
alternative action āj. The critic and player j exchange the difference between how much j would have
received had all the actors played their chosen actions in G and how much they would have received had j
played āj instead. All other payoffs are 0.

Case 2: each player i ∈ {1, 2} has probability at most 1/n + 1/(3n2) of choosing any v ∈ V . We will
have P3 pick action (v, 2) for a uniformly random node v ∈ V . Hence, P3 will succeed with its guess with
probability 1/n, regardless of what P1 and P2 do, and independent of whether or not the two players
are exposed.

It remains to show that this mixed action for P3 achieves payoff at least 1/n + 1/(3n2) against any
α1, α2 that assign probability at most 1/n + 1/(3n2) to every node. To see this, a simple calculation
shows that if αi assigns probability at most 1/n + 1/(3n2) to every node, this means that αi also assign
probability at least 2/(3n) to every node. Hence, the probability of the first two players being exposed
is,

Pr[being exposed] ≥
�

v1,v2∈V

Pr[P1 chooses v1]Pr[P2 chooses v2]Pr[being exposed|v1, v2]

≥
4

9n2

�
v1,v2∈V

Pr[being exposed|v1, v2]

≥
4

9n2
.

The last step follows from the probabilistic method. To see this, note that the sum in the equality is the
expected number of inconsistencies over all n2 pairs of nodes, if one were to take two random colorings
based on the two distributions of colors. If the expectation were less than 1, it would mean that there
was some consistent coloring, which we know is impossible. Finally, the probability of P3 achieving a
payoff of 1 is ≥ 1/n + (1 − 1/n)4/(9n2), which is ≥ 1/n + 1/(3n2) for n ≥ 4.

3 The Complexity of Playing Repeated Games

Take a k-player game G = (I = {1, 2, . . . , k}, A, u). We will construct an actor-critic version of G, a

simple (k +1)-player game �G such that, in the NE of the infinitely repeated �G∞, the first k players must
be playing a NE of G. The construction is given in Figure 3. A few observations about this construction
are worth making now.

• It is not difficult to see that a best response by the critic in �G gives the critic payoff 0 if and only
if the actors mixed actions are a NE of G. Similarly, a best response gives the critic ε if and only
if the mixed actions of the actors are an ε-NE of G but not an ε′-NE of G for all ε′ < ε. Hence, the
intuition is that in order to maximally punish the critic, the actors must play a NE of G.

• While we show that such games are difficult to “solve,” the threat point and individually rational
region of any actor-critic game are trivial. They are the origin and the singleton set containing the
origin, respectively.4

4Considering that Folk theorems are sometimes stated in terms of the set of strictly individually rational payoffs (those which
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• If G is an n × n game, then Ĝ is a n × n × 2n game.

• If the payoffs in G are in {0, 1}, then the payoffs in �G are in {−1, 0, 1}. If the payoffs in G are in

[−B, B], then the payoffs in �G are in [−2B, 2B].

Theorem 2. For any k-player game G, let �G be the actor-critic version of G as defined in Figure 3. (a)

At any NE of the infinitely repeated �G∞, the mixed strategies played by the actors at each period t, are
a NE of G with probability 1. (b) For any ε > 0, δ ∈ (0, 1), at any ε-NE of �G∞(δ), the mixed strategies
played by the actors in the first period are a

�
k+1

δ
ε�-NE of G.

Proof. We first observe that any player in �G, fixing its opponents’ actions, can guarantee itself expected
payoff ≥ 0. Any actor can do this simply by playing an action that is a best response, in G, to the
other actors’ actions, as if they were actually playing G. In this case, the referee cannot achieve expected
positive payment from this actor. On the other hand, the referee can guarantee 0 expected payoff by
mimicking, say, player 1 and choosing �αr(1, a1) = �α1(a1) for all a1 ∈ A1.

Since each player can guarantee itself expected payoff ≥ 0 in �G, and �G is a zero-sum game, then the
payoffs at any NE of �G∞ must be 0 for all players. Otherwise, there would be some player with negative
expected discounted payoff, and that player could improve by guaranteeing itself 0 in each stage game.

Now, suppose that part (a) of the theorem was false. Let t be the first period in which the mixed
actions of the actors may not be a NE of G, with positive probability. The critic may achieve a positive
expected discounted payoff by changing its strategy as follows. On period t, the critic plays a best
response (j, āj) where j is the player that can maximally improve its expected payoff on period t and āj

is player j’s best response during that period. After period t, the critic could simply mimic player 1’s
mixed actions, and achieve expected payoff 0. This would give the critic a positive expected discounted
payoff, which contradicts the fact that they were playing a NE of �G∞.

For part (b), note that at any ε-NE of �G∞, the critics (expected) discounted payoff cannot be greater
than kε, or else there would be some actor whose discounted payoff would be < −ε, contradicting
the definition of ε-NE. Therefore, any change in critic’s strategy can give the critic at most (k + 1)ε.
Now, suppose on the first period, the critic played the best response to the actors’ first-period actions,

�a
0
r = b(�α

0
−r), and on each subsequent period guaranteed expected payoff 0 by mimicking player 1’s mixed

action. Then this must give the critic discounted payoff ≤ (k + 1)ε, implying that the critic’s expected
payoff on period 0 is at most (k+1)ε/δ, and that the actor’s mixed actions on period 0 are a (k+1)ε/δ-NE
of G.

The above theorem implies that given an algorithm for computing ε-NE for (k + 1)-player repeated
games, one immediately gets an algorithm for computing ( k+1

δ
ε)-NE for one-shot k-player games. Com-

bined with the important point that the payoffs in �G are bounded by a factor of 2 with respect to the
payoffs in G, this is already a meaningful reduction. However, we would like to demonstrate the difficulty
of computing ε-equilibria for as large ε and as small discounting factors δ as possible.

Lemma 1. Let k ≥ 1, ε > 0, δ ∈ (0, 1), T = d1/δe, G be a k-player game, and strategy machine profile

M = (M1, . . . , Mk+1) be an ε
8k

-NE of �G∞(δ), and R ≥ 1 such that the runtime of Mi on any history
of length ≤ T = d1/δe is at most R. Then the algorithm of Figure 3 outputs an ε-NE of G in expected
runtime that is poly(1/δ, log(1/ε), R, |G|).

Proof. Let br : ∆−r → Ar be any best response function for the critic in the stage game Ĝ. On each
period t, if the critic plays br(σ̂−r(h

t)), then let its expected payoff be denoted by zt, where,

ρt = ur

�
M−r(h

t), br(M−r(h
t))�

zt = Eht �ρt� ≥ 0.

Note that ρt is a random variable that depends on ht. As observed before, M−r(h
t) is a ρt-NE of G. Note

that we can easily verify if a mixed action profile is an ε-equilibrium in poly(|G|), i.e., time polynomial
in the size of the game. Hence, it suffices to show that the algorithm encounters M−r which is an ε-NE
of G in expected polynomial time. We next argue that any execution of Step 2 of the algorithm succeeds
with probability ≥ 1/2. This means that the expected number of executions of Step 2 is at most 2. Since
each such execution is polynomial time, this will suffice to complete the proof.

are strictly larger than the minmax counterparts), our example may seem less convincing because this set is empty. However,
one can easily extend our example to make this set nonempty. By doubling the size of each player’s action set, one can give
each player i the option to reduce all of its opponents payoffs by ρ > 0, at no cost to player i, making the minmax value −ρk
for each player. For ρ < ε/(2k), our analysis remains qualitatively unchanged.
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Given: k-player G, ε > 0, T ≥ 1, strategy machines M = (M1, . . . , Mk+1) for Ĝ∞.

1. Let h0 := (), r = k + 1.

2. For t = 0, 1, . . . , T :

• If M−r(h
t) is an ε-NE of G, then stop and output σ.

• Let at
k+1 be best response to M−r(h

t) in Ĝ (break ties lexicographically).

• Choose actions at
−(k+1) independently according to M−r(h

t), respec-
tively.

• Let ht+1 := (ht, at).

3. GOTO 1.

Figure 2: Algorithm for extracting an approximate NE of G from an approximate NE of Ĝ∞.

Imagine that the algorithm were run for t = 0, 1, 2, . . . rather than stopping at T = d1/δe. Also as
observed before, the critic’s expected payoff is < (k + 1)ε/(8k) ≤ ε/4, or else there would be some player
that could improve over M by more than ε/(8k). But the critic’s expected payoff, δ

�∞
0 (1− δ)tzt, is an

average of zt, weighted according to an exponential distribution with parameter 1 − δ. This average, in
turn, can be decomposed into λ = (1−δ)T+1 times the (weighted) average of zt on periods T +1, T +2, . . .
plus 1 − λ times the (weighted) average of zt on periods 1, 2, . . . , T . Since zt ≥ 0, the weighted average
payoff of the critic on the first T periods is at most ε/(4(1 − λ)). By Markov’s inequality, this weighted
average is at most ε/(2(1 − λ)) ≤ ε (using λ ≤ (1 − 1/T )T ≤ 1/e) with probability at least 1/2. This
completes the proof.

Theorem 3. Let c1, c2, c3 > 0 be any positive constants. The problem 〈ε, δ, T 〉n-R01NE problem, for any
εn = n−c1 , δn ≥ n−c2 and R(t) = (nt)c3 is PPAD-hard under randomized reductions.

Proof. Let c1, c2, c3 > 0 be arbitrary constants. Suppose that one had a randomized algorithm �A for the
〈ε, δ, T 〉n-R01NE problem, for εn = n−c1 , δn ≥ n−c2 and R(t) = (nt)c3 . Then we will show that there is
a randomized polynomial-time algorithm for finding a n−c-NE in two-player n × n win-lose games, for
c = c1/2, establishing Theorem 3 by way of the Fact 1.

In particular, suppose we are given an n × n game G. If n ≤ 162/c1 is bounded by a constant, then
we can brute-force search for an approximate equilibrium (or even an exact equilibrium) in constant
time, since we have a constant bound on the magnitude of the denominators of the rational-number
probabilities of some NE. Otherwise, we have n−c ≥ 16n−c1 , so it suffices to find an 16n−c1 -NE of G in
expected polynomial time, by the definition of a randomized polynomial-time algorithm.

We run �A on �G ( �G can easily be done in time polynomial in n). With constant probability, the
algorithm is successful and outputs strategy machines S1, . . . , Sk+1 such that the strategies they compute
are an n−c1 -NE of �G∞(δ). By Lemma 1, we can the extraction algorithm run on this input will give a
8kn−c1 = 16n−c1 -NE of G, in expected polynomial time.

4 Conclusions

We have shown that a k-player one shot game can easily be converted to a (k + 1)-player repeated
game, where the only NE of the repeated game are NE of the one-shot game. Since a one-shot game
can be viewed as a repeated game with discounting parameter δ = 1, our reduction generalizes recent
PPAD-hardness results regarding NE for δ = 1 to all δ ∈ (0, 1]. Note that our Theorems are essentially
independent of game representation. They just require the actor-critic version of a game to be easily
representable. Moreover, our simple reduction from repeated games to one-shot games should easily
incorporate any new results above about the complexity of one-shot games that may emerge.
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