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Abstract

We study property testing in the model of bounded degree graphs. It is well known that in this model
many graph properties cannot be tested with a constant number of queries and it seems reasonable to
conjecture that only few are testable witho(

√
n) queries. Therefore in this paper we focus our attention

on testing graph properties for special classes of graphs, with the aim of proving the testability of general
families of graph properties under the assumption that the input graph belongs to a (natural) family of
graphs. We call a graph familynon-expandingif every graph in this family has a weak expansion (its
expansion isO(1/ log2 n), wheren is the graph size). Agraph family is hereditaryif it is closed under
vertex removal. Similarly, agraph property is hereditaryif it is closed under vertex removal. We call a
graph propertyΠ to betestablefor a graph familyF if for every graphG ∈ F , in time independent of
the size ofG we can distinguish between the case whenG satisfies propertyΠ and when it is far from
every graph satisfying propertyΠ. In this paper we prove that

in the bounded degree graph model, any hereditary property is testable if the input graph
belongs to a hereditary and non-expanding family of graphs.

Our result implies that, for example, any hereditary property (e.g.,k-colorability,H-freeness, etc.)
is testable in the bounded degree graph model for planar graphs, graphs with bounded genus, interval
graphs, etc. No such results have been known before, and prior to our work, very few graph properties
have been known to be testable for general graph classes in the bounded degree graph model.
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1 Introduction

The area ofProperty Testingdeals with the problem of distinguishing between two cases:that an input object
(for example, a graph, a function, or a point set) satisfies a certain predetermined property (for example,
being bipartite, monotone, or in convex position) or is “far” from satisfying the property. Loosely speaking,
an object isε-far from having a propertyΠ, if it differs in an ε-fraction of its description from any object
having the propertyΠ. For example, when the object is a (dense) graph representedby an adjacency matrix
and the property is bipartiteness, then a graph isε-far from bipartite if one has to delete more thanε n2 edges
to make it bipartite.

Given oracle access to the object, many objects and properties are known to have randomized property
testing algorithms whose time complexity issublinear in the input description size; often, we can even
achieve running time completely independent of the input size. In particular, sublinear-time property testing
algorithms have been considered for graphs and hypergraphs, functions, point sets, formal languages, and
many other structures (for the references, see the excellent surveys [14, 16, 17, 24, 30]). After a series of
results for specific problems, recently much attention has been devoted to study a more general question:
which properties can be tested in time independent of the input size. This question has been especially
extensively investigated for properties of dense graphs represented by an adjacency matrix, a model that
was introduced by Goldreich, Goldwasser and Ron [19]. It turned out that property testing in dense graphs
is closely related to Szemerédi’s regularity lemma. Very recently, this relation has been made explicit by
showing that any property is testable if and only if it can be reduced to testing the property of satisfying
a finite number of Szemerédi-partitions (see [2]). Furthermore, it has been shown in [6] that a (natural)
graph property is testable with one-sided error if and only if it is either hereditary or it is close (in some
well-defined sense) to a hereditary property (see also [11, 27] for alternative proofs). These results, imply
that in the adjacency matrix model, essentially any “natural” graph property can be tested with a constant
number of queries.

While property testing in dense graphs is relatively well-understood, surprisingly little is known about
property testing in sparse graphs. Properties of sparse graphs are traditionally studied in the model of
bounded degree graphsintroduced by Goldreich and Ron [22]. In this model, the input graphG is repre-
sented by itsadjacency listand the vertex degrees are bounded by a constantd independent of the number
of vertices ofG (denoted byn). A testing algorithm has a constant-time access to any entry in the adjacency
list by making a query to theith neighbor of a given vertexv, and the number of accesses to the adjacency
list is the query complexity of the tester. A property testing algorithm is an algorithm that for a given graph
G determines if it satisfies a predetermined propertyΠ or it is ε-far from propertyΠ; a graphG is ε-far from
propertyΠ if one has to modify more thanε d n edges inG to obtain a graph having propertyΠ.

Unlike the adjacency matrix model discussed above, in the bounded degree graph model only few graph
properties are known to be testable in constant time, see [22] where it is shown thatk-edge-connectivity,
H-freeness and some other properties are testable with a constant number of queries. The study of testing
bounded degree graphs thus focused on designing property testers with a sublinear query complexity (like,
O(

√
n) tester for bipartiteness [20]). Even more, it has been demonstrated that unlike in the adjacency

matrix model, in the bounded degree model many basic properties have a non-constant query complexity.
For example, acyclicity in directed graphs hasΩ(n1/3) query complexity [9], the property of being bipartite
has query complexityΩ(

√
n) [22], and the query complexity of testing3-colorability isΩ(n) [10]. In fact,

it seems reasonable to conjecture that very few properties can be tested in the bounded degree model with
o(
√
n).
In this paper, we take a new approach and we study property testing in the bounded degree model
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under the assumption that the input graph belongs to a certain (natural) family of graphs. The goal of this
investigation is to identify natural families of graphs, such as planar graphs, for which many properties
can be efficiently under the assumption that the input graph belongs to the family, even though the testing
problem may be very hard in the general case.

For the rest of this paper, we say that a graph property istestableif it can be tested in time independent
of the size of the input graph. A family of graphs is callednon-expandingif it does not contain graphs
with expansion larger than1/ log2 n; (this is informally equivalent to the families of graphs with some good
separator properties). A family of graphs is calledhereditaryif it is closed under vertex removal. Similarly,
a graph property is calledhereditaryif it is closed under vertex removal. We show the following result:

In the bounded degree graph model, any hereditary property is testable
if the input graph belongs to a hereditary and non-expandingfamily of graphs.

The reader is referred to Theorem 1 for the precise statementof our main result. Hereditary graph prop-
erties have been extensively investigated in combinatorics, graph theory, and theoretical computer science
(see also the recent results about testability of hereditary graph properties in the dense graph model [6]). The
class of hereditary graph properties contains also trivially all monotone graphs properties(properties closed
under removal of edges and vertices). Many interesting graph properties are hereditary, for example, being
acyclic, stable (independent set), planar, perfect, bipartite, k-colorable, chordal, perfect, interval, permuta-
tion, having no induced subgraphH, etc. (see also [16, 29]). Our result implies that these properties can
be tested (in the bounded degree graph model) when the input graph belongs to a family of graphs which
is hereditary and non-expanding. Examples of natural hereditary non-expanding families are planar graphs,
graphs with bounded genus, graphs with forbidden minors, unit disk graphs, interval graphs, (planar) geo-
metric intersection graphs, etc. We are not aware of any prior results showing testability of these properties
for non-trivial classes of graphs.

2 Preliminaries

Let G = (V,E) be an undirected graph withn vertices and maximum degree at mostd. Without loss of
generality, we assume thatV = {1, . . . , n}. We write[n] := {1, . . . , n}. Given a subsetS ⊆ V of vertices,
we useG|S = (S,E|S) to denote the subgraph induced byS, whereE|S = {(u, v) ∈ E ∩ (S × S)}. We
assume thatG is stored in theadjacency listmodel for bounded degree graphs with maximum degreed.
In this model, we have constant time access to a functionfG : [n] × [d] → [n] ∪ {+}, such thatfG(v, i)
denotes theith neighbor ofv or a special symbol+ in the case thatv has less thani neighbors.

Definition 2.1 A graphG is ε-far from a property Π if one has to modify more thanεdn entries infG to
obtain a graph with propertyΠ.

2.1 Testing a property in a graph family

In this paper, our main focus is on testing various graph properties for bounded degree graphs from certain
graph families (e.g., planar graphs or unit disk graphs).

An algorithm that is givenn and has access tofG is called anε-tester for a graph familyF if it

(a) Accepts with probability at least23 any graphG ∈ F that has propertyΠ.

(b) Rejects with probability at least23 any graphG ∈ F that isε-far fromΠ.
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If the ε-tester always accepts any graphG ∈ F that has propertyΠ, then it is said to haveone-sided error.
The ε-testers presented in this paper have one-sided error. Theywill in fact accept with probability 1 any
graph that satisfiesΠ (even if it does not belong toF).

A property is calledtestablefor a familyF if for any fixed0 < ε < 1 there is anε-tester forF whose
total number of queries to the functionfG is bounded from above by a function, which depends only onε
and not on the sizen of the input graph. Following [5], we define a propertyΠ to beuniformly testableif
there is anε-tester forΠ that receivesε as part of the input. A propertyΠ is said to benon-uniformly testable
if for every fixedε, 0 < ε < 1, there is anε-tester that can distinguish between graphs that have property Π
from thoseε-far from havingΠ (which may not work properly for other values ofε).

For a pair of disjoint vertex setsV1, V2 we denote bye(V1, V2) the number of edges connecting vertices
from V1 with vertices fromV2. For each vertexv ∈ V , we denote itsneighborhoodby N (v) = {u ∈ V :
(v, u) ∈ E}. We generalize this notion to sets by definingN (S) =

⋃
v∈S N (v) \ S. Furthermore, we

let D(v, r) denote the set of vertices which have distance at mostr from v, i.e.,D(v, 0) = v, D(v, 1) =
{v} ∪ N (v), etc.

A graphG = (V,E) is called aλ-expander, if for all S ⊆ V with |S| ≤ n/2, we have|N (S)| ≥ λ|S|.
With this, we can now define non-expanding graph families.

Definition 2.2 A family of graphsF is called non-expanding if there exists a constantnF such that all
graphs inF of size at leastnF are not(1/ log2 n)-expanders1.

2.2 Hereditary and non-expanding graph families

A family F of graphs is calledhereditaryif it is closed under vertex removal. Similarly, a graph property is
calledhereditaryif it is closed under vertex removal2.

There are many interesting classes of families of graphs that are hereditary and non-expanding. For
example, thefamily of planar graphsis trivially hereditary, and also the classical planar separator theorem
[26] implies immediately that it is non-expanding. Indeed,the planar separator theorem implies that every
planar graph withn vertices (for a sufficiently largen) has a subset of verticesA, 1

3 n ≤ |A| ≤ 1
2 n, such

that |N (A)| ≤ O(
√
n). Therefore, every planar graph withn vertices (n ≥ n0 for some constantn0) is

not anO(1/
√
n)-expander, and hence the family of planar graphs is non-expanding. As the example of

planar graphs shows, if a family of graphs has a good separator then it is non-expanding. Therefore, all
graph families with good separator properties (for graphs of bounded degree) are non-expanding. Hence,
other families of graphs (of bounded degree) that are hereditary and non-expanding include, among others:
the class of graphs with bounded genus, graphs with forbidden minor, interval graphs, etc. For example,
the result for graphs of bounded genus and graphs with forbidden minor follow directly from the separator
theorem such graphs. And so, Gilbert et al. [15] proved that any graph onn vertices with genusg has a
separator of orderO(

√
gn), and Alon et al. [4] showed a similar results for graphs with forbidden minors:

if G has no minor isomorphic to a givenh-vertex graphH, thenG has a separator of sizeO(h3/2n1/2).

1The choice of the factor1/ log2 n can be relaxed. In fact, using known bounds one can replace1/ log2 n with
1/(log n log2 log n).

2There is, of course, no difference between a graph property and a family of graphs. We use the different terms in order to
distinguish between the property we want to test and the family of graphs to which the input is assumed to belong to.
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3 Proof of the Main Result

In this section we prove our main result by showing that the following algorithm is anε-tester for any
hereditary propertyΠ and any hereditary non-expanding family of graphsF .

ε-TESTER(G,n,Π)
sample a setS of s1 vertices uniformly at random
for eachv ∈ S do
Uv = D(v, s2)

U =
⋃

v∈S Uv

if G|U does not satisfy propertyΠ then reject
else accept

Clearly, the number of queries tofG is upper bounded by2 s1 ds2 , which fors1 ands2 being constants
independent ofn, gives the number of queries to be independent ofn. We will give the exact values fors1
ands2, which are independent ofn but do depend onε andΠ, at the end of our analysis, in the proof of
Theorem 1.

SinceΠ is hereditary, we know that our algorithm accepts any graph that has propertyΠ (even if it does
not belong toF). Thus, we only have to show that any graph that isε-far fromΠ and belongs toF is rejected
with probability at least23 .

We begin our analysis with the following lemma.

Lemma 3.1 LetF be any family of graphs that is both hereditary and non-expanding, and letnF be the
constant from Definition 2.2. Letδ be an arbitrary positive parameter. IfG = (V,E) ∈ F satisfies
n = |V | ≥ max{2nF , 22/δ2} then one can partitionV into two setsV1 andV2, such that|V1|, |V2| ≥ n

4 and
e(V1, V2) ≤ δ dn/ log1.5 n.

Proof : SinceF is non-expanding, every graphG ∈ F onn ≥ nF vertices is not a1/ log2 n-expander.
Therefore, there exists a setS ⊆ V of cardinality at mostn2 such that|N (S)| ≤ |S|/ log2 n. We first
observe that if|S| ≥ n

4 , then we can takeV1 = S andV2 = V \ S. Indeed, since|N (S)| ≤ |S|/ log2 n,

there are at mostdn/ log2 n edges betweenV1 andV2. Therefore, if in additionn > 22/δ2

, we can infer that

e(V1, V2) ≤ dn/ log2 n ≤ δ dn/ log1.5 n ,

as needed.
Assume then that|S| < n

4 and consider the graphG|V \S (the induced graph onV \ S). SinceF is
hereditary,G|V \S ∈ F , and|V \S| > nF (recall thatn > 2nF ), we can apply the same arguments as above
to conclude that there is a setS′ ⊆ (V \ S) of cardinality at mostn2 such that|N (S′)| ≤ 2|S′|/ log2 n. If
we have|S ∪ S′| ≥ n

4 then using the same arguments as above, we are done by settingV1 = S ∪ S′ and
V2 = V \V1. Otherwise, we can replaceS byS ∪S′ and continue in the same manner. Eventually, we have
a setS ∪ S′ with more thann

4 vertices and|N (S ∪ S′)| ≤ 2 |S ∪ S′|/ log2 n. If we setV1 = S ∪ S′ and
V2 = V \ V1, then these sets will satisfy the condition in the lemma. 2

Let us call a connected componentnon-trivial if it has more than a single vertex. The following is a
corollary of Lemma 3.1.
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Corollary 3.2 For every hereditary and non-expanding family of graphsF , there exists a positive constant
c = cF , such that one can remove from any graphsG ∈ F a set of at mostε d n/2 edges, such that

(i) Their removal partitionsG into connected componentsC1, C2, . . . of size at most2c/ε2.

(ii) Each connected componentCi is an induced subgraph ofG.

(iii) No edge connects inG two non-trivial connected componentsCi andCj.

Proof : LetnF be the constant associated withF as in Definition 2.2, letG be any graph inF , and letδ be
a parameter to be chosen later. We apply Lemma 3.1 to obtain two setsV1 andV2 with at mostδ dn/ log1.5 n
edges connectingV1 andV2. Assume|V1| ≤ |V2| and letU∗ = N (V1). Since the number of edges between
V1 andV \ V1 is at mostδ dn/ log1.5 n, we also have|U∗| ≤ δ dn/ log1.5 n. Remove fromG all edges
incident toU∗. Since|U∗| ≤ δ dn/ log1.5 n andG has maximum degree at mostd, we removed at most
δ d2 n/ log1.5 n edges fromG. Next, letU1 = V1 andU2 = V2 \U∗. Observe that forδ ≤ log1.5 n/(4d) we
haven

4 ≤ |U1|, |U2| ≤ 3n
4 and that there is no edge inG betweenU1 andU2.

Then we recursively apply Lemma 3.1 on the induced subgraphsG|U1
andG|U2

; we proceed recursively

until we obtain a subgraph of size at mostmax{2nF , 22/δ2}. In this way, we removed some number of
edges fromG and obtained a subgraph ofG denotedH, onV (G) with connected componentsC1, . . . , Cq.
Observe that the setsU∗ obtained in the recursive calls will always result in trivial connected components,
because we removed all edges incident to the vertices inU∗. Let H1, . . . ,Hk be non-trivial connected
components in our new graph. By definition, everyCi has size|Ci| ≤ max{2nF , 22/δ2}. Similarly, our
construction ensures that no edge is removed between any pair of vertices in a singleHi and that there is no
edge inG between any pair of graphsHi andHj. We now estimate the number of edges removed.

By Lemma 3.1, the number of edges removed fromG is upper bounded by functionQ(n) defined by
the following recurrence:

Q(n) =

{
0 if n ≤ max{2nF , 22/δ2}
δ d2 n/ log1.5 n+ max 1

4
≤τ≤ 3

4

{Q(τ n) +Q((1 − τ)n)} if n > max{2nF , 22/δ2} .

SinceQ(n) = Θ(δ d2 n), we can conclude that the graphH is obtained fromG by removal of at most
c′ δ d2 n edges, for some absolute positive constantc′. This yields the proof by settingδ = ε/(2dc′).
Finally, recall that all the connected components ofH had size|Ci| ≤ max{2nF , 22/δ2} ≤ 2c/ε2 if we take
c = cF = 2 d c′ nF . 2

Let us explain the importance of the three properties of the resulting graph stated in Corollary 3.2.
Property (i) ensures that every connected component is small. Property (ii) ensures that if we have some in-
duced subgraph of a non-trivial connected componentHi then it is also an induced subgraph ofG. Property
(iii) ensures that if we have a set of induced subgraphsQi1 , Qi2 , . . . , Qi` of graphsHi1,Hi2 , . . . ,Hi` , then
these copies of the subgraphs do not intersect inH. Therefore, if we define a grapĥQ with ` connected
components, where thejth connected of̂Q is isomorphic withQij , thenQ̂ is also an induced subgraph of
G.

3.1 Hereditary graph properties

It is well known (and easy to see) that any hereditary graph propertyΠ can be characterized by a (possibly
infinite) set of minimal forbidden induced subgraphs (see, e.g., [6, Section 4]). Let us denote byHΠ

forb a
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minimal family of forbidden subgraphs for propertyΠ. Notice that in general,HΠ
forb may be aninfinite

family of forbidden graphs. Observe that, for example, ifΠ is the property of being bipartite, thenHΠ
forb

can be chosen to be the set of all odd cycles, and ifΠ is the property of being chordal, thenHΠ
forb is the set

of all cycles of length at least 4.
For simplicity of presentation (but without loss of generality) we will assume that the graphs inHΠ

forb

contain no isolated vertices. The reason why we can make suchan assumption is that every large enough
bounded degree graphG will always have an arbitrary large induced subgraph that consists of isolated
vertices only. Therefore, in such cases, all large enough graphs will not satisfyHΠ

forb , and thus testingHΠ
forb

becomes trivial.
Next, let us consider an arbitrary graphG ∈ F that isε-far from Π. By Corollary 3.2, we can remove

fromG at mostε d n/2 edges to obtain a graphH on the same vertex set for which each connected compo-
nent has at mostr = 2c/ε2 vertices. Furthermore, ifH1, . . . ,Hk are the non-trivial connected components
ofH, then there is no edge inG that connects any of these connected components and eachHi is an induced
subgraph ofG. SinceG is ε-far from Π, H is still ε/2-far from Π. Since all connected components in
H have size at mostr (which is independent ofn), H cannot contain as a subgraph any graph that has a
connected component with more thanr vertices. LetJr denote the family of all graphs whose connected
components have size at mostr (notice thatJr is independent ofG). We conclude that it suffices to consider
the subgraphs inHΠ

forb ∩ Jr.

Corollary 3.3 If G ∈ F is ε-far from Π, thenH (define above) contains as an induced subgraph a graph
fromHΠ

forb ∩ Jr. The same holds if we remove fromH any set of at mostε d n/2 edges. ut

Let us denote byc(r) the number ofconnected(unlabeled) graphs on a set of at mostr vertices; clearly

c(r) ≤ 2(
r

2
). Let us enumerate all possible connected graphs with at mostr vertices byG1, . . . ,Gc(r). Then,

we can define any graphG in HΠ
forb ∩ Jr as ac(r)-ary integer vectorf = 〈f1, . . . , fc(r)〉, wherefi denotes

the number of copies of graphGi occurring as a connected component inG. In what follows, we callf a
characteristic vectorof G (with respect toHΠ

forb andJr).

Similarly, let us define ac(r)-ary integer vectorg〈H〉 = 〈g〈H〉
1 , . . . , g

〈H〉
c(r)〉 with g

〈H〉
i being the number of

induced copiesof graphGi in H. Notice the fundamental difference between the ways of counting copies
of Gi in G and inH: all copies of graphsG1, . . . ,Gc(r) counted in the characteristic vector ofG are disjoint
while the induced copies of these graphs counted ing〈H〉 can intersect.

Lemma 3.4 Let F be a fixed hereditary non-expanding family of graphs and letΠ be a fixed hereditary
property. Suppose thatG ∈ F is a graph of degree at mostd that is ε-far from Π. Assume that we
apply Corollary 3.2 onG and obtain a subgraph ofG denotedH with the property that all connected
components ofH are of size at mostr. Then, there exists a graphG ∈ HΠ

forb ∩ Jr with characteristic

vectorf = 〈f1, . . . , fc(r)〉 such that for all1 ≤ i ≤ c(r) it holds that iffi > 0 theng
〈H〉
i ≥ γ n, where

γ = ε · d/2r2

.

Proof : Let G1, . . . ,Gc(r) be all connected graphs of size at mostr. We will first construct a graphH ′

by removing some edges fromH so that for any graphGi eitherH ′ contains no copy ofGi or it contains
at leastγ n such copies. We proceed sequentially over the graphsG1, . . . ,Gc(r). For eachGi we do the
following: if the number of induced copies in the current graph obtained fromH is smaller thanγ n, then
we remove all the edges of any connected component that contains Gi as an induced subgraph. Since we
perform at mostc(r) iterations and in each iteration we remove at most

(
r
2

)
· γ n edges, the total number of
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edges removed is bounded byc(r) ·
(r
2

)
· γn < ε dn/2. At the end of the process we obtain a graphH ′ with

the property that for any graphGi eitherH ′ contains no copy ofGi or it contains at leastγ n such copies.
SinceG was assumed to beε-far from Π, andH was obtained fromG by removing at mostε d n/2

edges, we have thatH is ε
2 -far from Π. Also, sinceH ′ is obtained fromH by removing less thanε d n/2

edges,H ′ does not satisfyΠ and hence it contains a graphG ∈ HΠ
forb ∩ Jr. Now, by the conclusion of the

previous paragraph, this means that ifG has characteristic vector〈f1, . . . , fc(r)〉 then for everyi for which
fi > 0 we must have thatH ′ contains at leastγ n copies ofGi. Finally, observe that from the definition of
the process of obtainingH ′ it follows thatH must contain at least this many induced copies ofGi. Hence,
for everyi for whichfi > 0 we haveg〈H〉

i ≥ γ n. 2

3.2 FunctionΨΠ

We now introduce a key notion that we will use to test a hereditary propertyΠ. Note, that the discussion
below does not relate to the family of graphsF to which the input instance should belong. Given a family of
pairwise non-isomorphic connected graphs{G1, . . . ,Gk} letm({G1, . . . ,Gk}) be the least integerm with
the property that the graph that containsm vertex disjoint copies of each of the graphsGi does not satisfy
Π. If no such integerm exists, then we setm({G1, . . . ,Gk}) = ∞. For an integerr, let Πr be the family
of all sets of pairwise non-isomorphic connected graphs{G1, . . . ,Gk} with the property that all the graphs
Gi are of size at mostr andm({G1, . . . ,Gk}) <∞.

Definition 3.5 For a fixed hereditary propertyΠ we define a functionΨΠ : N 7→ N as follows:

ΨΠ(r) = max
{G1,...,Gk}∈Πr

m({G1, . . . ,Gk}) .

In caseΠr = ∅ we setΨΠ(r) = 0.

Note that the above is well defined as for a fixed integerr the setΠr is finite.

3.3 Proof of the main theorem

We now formally state and prove the main result of this paper.

Theorem 1 LetF be a hereditary and non-expanding family of graphs. Then every hereditary graph prop-
erty Π is non-uniformly testable forF with one-sided error. Furthermore,Π is uniformly testable with
one-sided error ifψΠ is computable (or if its approximation is computable, wherethe quality of the approx-
imation must be independent of the input graph size).

Proof : Suppose thatG ∈ F is ε-far from Π and consider the subgraphH of G that is obtained via
Corollary 3.2. By Lemma 3.4, there is a graphG that does not satisfyΠ with the property that all its
connected componentsGi are of size at mostr = 2c/ε2 and each of these connected component appears
as an induced subgraph ofH at leastγn times, whereγ = εd/2r2

. Observe that since each connected
component ofH is of size at mostr, each of these connected components contains at most2r copies of each
of the connected componentsGi of G. Therefore, for eachGi we have that at leastγn/2r of the connected
components ofH contains an induced copy ofGi.

Consider now the set of distinct connected components ofG, denoted{G1, . . . ,Gk}. SinceG 6∈ Π we
have thatm({G1, . . . ,Gk}) < ∞ (cf. Section 3.2). Now the definition ofΨΠ guarantees that the graph
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obtained by takingΨΠ(r) vertex disjoint copies of each of the graphsGi does not satisfyΠ. By the first
paragraph of the proof, a randomly chosen vertex belongs to aconnected component ofH which contains
a copy ofGi with probability at leastγ/2r. Therefore, by Markov’s inequality a randomly chosen sample

of size10 · c(r) · 2r · ΨΠ(r)/γ will, with probability at least2/3, containk · Ψ(r) vertices{vi,j}1≤j≤ΨΠ(r)
1≤i≤k

that belong to distinct connected component ofH, with the property that for every1 ≤ j ≤ ΨΠ(r), the
connected component ofH to whichvi,j belongs, is an induced copy ofGi. In particular, the graph that is
obtained by taking the disjoint union of the connected components to which the verticesvi,j belong does
not satisfyΠ.

Finally, sinceG does not contain edges connecting vertices from distinct non-trivial connected compo-
nents ofH, we get that any graph that is obtained by taking the union of non-trivial connected components
ofH is also an induced subgraph ofG. Therefore, with probability at least2/3 the tester will rejectG. Also,
from the above analysis one can see that we can sets2 = r = 2c/ε2 ands1 = 10 · c(r) · 2r · ΨΠ(r)/γ. 2

3.4 Discussion

When do we needΨΠ: Notice that the functionΨΠ, defined in Section 3.2 is not necessarily computable.
However, we only need this definition in order to obtain a general result on all hereditary properties. Ob-
serve, for example, that for any hereditary propertyΠ that is closed under disjoint union3 we have that
ΨΠ(r) = 1. Therefore, in these cases we have a trivial functionΨ. Furthermore, notice that any natural
hereditary property, such as those discussed throughout the paper, is closed under disjoint union, therefore
for such properties we get uniform testers (for any hereditary family of graphsF).

When doesΠ have a uniform tester: The proof of Theorem 1 shows that when the functionΨΠ is com-
putable then one can design a one-sided error uniform testerfor Π. Using arguments similar to those used
in [8], it can be shown that if the tester is allowed to use the size of the input in order to make its decisions
then all hereditary properties have a uniform tester with constant query complexity but with running time
that depends onn. Following [8], let us define anoblivious tester as one that has no access to the size of
the input when making its decisions. Givenε, an oblivious tester computes a numberq = Q(ε), and then
asks an oracle forD(v, q) for all the verticesv ∈ S, whereS is a random subset of vertices ofV (G) of size
q (recall thatD(v, q) is the neighborhood ofv of radiusq). Using the answers to these queries the tester
should either accept or reject the input. Observe that the algorithm we design in the proof of Theorem 1 is
oblivious. Therefore, ifΨΠ is computable, thenΠ has an oblivious one-sided error uniform tester.

Let us show that for any hereditary propertyΠ, the computability ofΨΠ is not only sufficient but also
necessary, if one wants to design an oblivious one-sided error tester forΠ. Here is a sketch of the proof. It
is easy to see that an oblivious one-sided error tester for a hereditary property must accept the input if the
graph that is spanned by

⋃
v∈S D(v, q) satisfies the property4. Suppose then thatΠ can be tested with query

complexityQ(ε). We claim that in this caseΨΠ(r) ≤ Q(1/2r2

) and sinceQ is assumed to be computable,
then so doesΨΠ. Indeed, for any{G1, . . . ,Gk} ∈ Πr and for any positive integerd, consider a graph
consisting ofd disjoint copies of each graphGi. Let us think of this graph as consisting ofd clustersCj,
where each clusterCj contains one copy of each of graphsG1, . . . ,Gk. This graph has degree bounded byr

and we claim that for all large enoughd, it is 1/2r2

-far fromΠ. Let us denote byn the number of vertices of

3That is, ifG1 = (V1, E1) andG2 = (V2, E2) satisfy the property, then so doesG3 = (V1 ∪ V2, E1 ∪ E2).
4Suppose the tester rejects an input even though

�
v∈S

D(v, q) satisfiesΠ. In that case if we were to execute the tester on the
graph that is defined as the disjoint union of{D(v, q) : v ∈ S} it would have a non-zero probability of rejecting this grapheven
though it satisfies the property.
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the graph and bym the number of vertices in each clusterCi, and observe thatm ≤ r2(
r
2
). Therefore, after

adding/removing at mostn4m edges, we will still haven
2m clustersCj which have not changed. Therefore,

asm({G1, . . . ,Gk}) <∞ for large enoughd, the new graph still does not satisfyΠ. We thus conclude that
for large enoughd, the graph is at least1/(4mr)-far from satisfyingΠ (and1/(4mr) ≤ 1/2r2

). However,
since the algorithm must find a graph that does not satisfyΠ, it must ask at leastm({G1, . . . ,Gk}) queries in
order to succeed on such graphs. Therefore,m({G1, . . . ,Gk}) ≤ Q(1/2r2

) for any set{G1, . . . ,Gk} ∈ Πr

and by the definition ofΨΠ this means thatΨΠ ≤ Q(1/2r2

) as needed.

4 Conclusions

In this paper we made a first attempt to give general testability results for graphs belonging to restricted
families of graphs. We showed that all hereditary graph properties are (non-uniformly) testable, if the input
graph comes from a family of graphs that is hereditary and non-expanding. Some interesting open questions
include.

• Which properties can be tested for expander graphs? Which properties can be tested inO(
√
n) time

for expander graphs?

• Which properties can be tested for non-expanding families of graphs when only the average degree of
the graph is bounded?

• Which properties can be tested fordirectedgraphs in sublinear time (in particular, when we can see a
directed edge〈u, v〉 only from vertexu)?
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