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Abstract

We study property testing in the model of bounded degredwgrdpis well known that in this model
many graph properties cannot be tested with a constant nuofilggieries and it seems reasonable to
conjecture that only few are testable with/n) queries. Therefore in this paper we focus our attention
on testing graph properties for special classes of grapttstfre aim of proving the testability of general
families of graph properties under the assumption thatrtpatigraph belongs to a (natural) family of
graphs. We call a graph familyon-expandingf every graph in this family has a weak expansion (its
expansion ig2(1/ log? n), wheren is the graph size). Araph family is hereditaryf it is closed under
vertex removal. Similarly, graph property is hereditarif it is closed under vertex removal. We call a
graph propertyl to betestablefor a graph familyF if for every graphG € F, in time independent of
the size ofG we can distinguish between the case wlienatisfies propertyl and when it is far from
every graph satisfying properiy. In this paper we prove that

in the bounded degree graph model, any hereditary propsrtgstable if the input graph
belongs to a hereditary and non-expanding family of graphs.

Our result implies that, for example, any hereditary propée.g., k-colorability, H-freeness, etc.)
is testable in the bounded degree graph model for planahgrapaphs with bounded genus, interval
graphs, etc. No such results have been known before, andtprior work, very few graph properties
have been known to be testable for general graph classes botinded degree graph model.
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1 Introduction

The area oProperty Testingleals with the problem of distinguishing between two cafest:an input object
(for example, a graph, a function, or a point set) satisfiesrtaim predetermined property (for example,
being bipartite, monotone, or in convex position) or is *flom satisfying the property. Loosely speaking,
an object ise-far from having a propertyl, if it differs in an e-fraction of its description from any object
having the propertyl. For example, when the object is a (dense) graph represbytad adjacency matrix
and the property is bipartiteness, then a graphfes from bipartite if one has to delete more thaw’ edges
to make it bipartite.

Given oracle access to the object, many objects and prepexte known to have randomized property
testing algorithms whose time complexity sablinearin the input description size; often, we can even
achieve running time completely independent of the inpzd.din particular, sublinear-time property testing
algorithms have been considered for graphs and hypergrépitions, point sets, formal languages, and
many other structures (for the references, see the extslleveys [14, 16, 17, 24, 30]). After a series of
results for specific problems, recently much attention reentdevoted to study a more general question:
which properties can be tested in time independent of thaetigjze. This question has been especially
extensively investigated for properties of dense grappsesented by an adjacency matrix, a model that
was introduced by Goldreich, Goldwasser and Ron [19]. hedrout that property testing in dense graphs
is closely related to Szemerédi’s regularity lemma. Vegently, this relation has been made explicit by
showing that any property is testable if and only if it can bduced to testing the property of satisfying
a finite number of Szemerédi-partitions (see [2]). Furtiane, it has been shown in [6] that a (natural)
graph property is testable with one-sided error if and oflyis either hereditary or it is close (in some
well-defined sense) to a hereditary property (see also [A]lfo2 alternative proofs). These results, imply
that in the adjacency matrix model, essentially any “ndtugeaph property can be tested with a constant
number of queries.

While property testing in dense graphs is relatively welterstood, surprisingly little is known about
property testing in sparse graphs. Properties of spargghgrare traditionally studied in the model of
bounded degree graphstroduced by Goldreich and Ron [22]. In this model, the ingraphG is repre-
sented by itsadjacency lisiand the vertex degrees are bounded by a congtarttependent of the number
of vertices ofGG (denoted byn). A testing algorithm has a constant-time access to any enthe adjacency
list by making a query to thé”" neighbor of a given vertex, and the number of accesses to the adjacency
list is the query complexity of the tester. A property tegtaigorithm is an algorithm that for a given graph
G determines if it satisfies a predetermined prop#&rtyr it is e-far from propertyll; a graphG is e-far from
propertyll if one has to modify more thaid » edges inG to obtain a graph having property.

Unlike the adjacency matrix model discussed above, in theded degree graph model only few graph
properties are known to be testable in constant time, sdenB@are it is shown thak-edge-connectivity,
H-freeness and some other properties are testable with saoomaimber of queries. The study of testing
bounded degree graphs thus focused on designing propstgysevith a sublinear query complexity (like,
O(y/n) tester for bipartiteness [20]). Even more, it has been detmated that unlike in the adjacency
matrix model, in the bounded degree model many basic pliepdrave a hon-constant query complexity.
For example, acyclicity in directed graphs m(ml/?’) query complexity [9], the property of being bipartite
has query complexity2(/n) [22], and the query complexity of testirigcolorability isQ2(n) [10]. In fact,
it seems reasonable to conjecture that very few properéiesde tested in the bounded degree model with
o(v/n).

In this paper, we take a new approach and we study propettingeis the bounded degree model



under the assumption that the input graph belongs to a odriatural) family of graphs. The goal of this
investigation is to identify natural families of graphs,chuas planar graphs, for which many properties
can be efficiently under the assumption that the input graghbnigs to the family, even though the testing
problem may be very hard in the general case.

For the rest of this paper, we say that a graph propetigsisbleif it can be tested in time independent
of the size of the input graph. A family of graphs is calleoh-expandingf it does not contain graphs
with expansion larger thaty log? n; (this is informally equivalent to the families of graphstiwvsome good
separator properties). A family of graphs is calleteditaryif it is closed under vertex removal. Similarly,
a graph property is calleldereditaryif it is closed under vertex removal. We show the followinguk:

In the bounded degree graph model, any hereditary propertgstable
if the input graph belongs to a hereditary and non-expandangily of graphs.

The reader is referred to Theorem 1 for the precise stateofi@ntr main result. Hereditary graph prop-
erties have been extensively investigated in combinatograph theory, and theoretical computer science
(see also the recent results about testability of hergdifieaph properties in the dense graph model [6]). The
class of hereditary graph properties contains also thywil monotone graphs properti€properties closed
under removal of edges and vertices). Many interestinghgpepperties are hereditary, for example, being
acyclic, stable (independent set), planar, perfect, bipak-colorable, chordal, perfect, interval, permuta-
tion, having no induced subgragi, etc. (see also [16, 29]). Our result implies that these gntags can
be tested (in the bounded degree graph model) when the ingpolh dpelongs to a family of graphs which
is hereditary and non-expanding. Examples of natural targchon-expanding families are planar graphs,
graphs with bounded genus, graphs with forbidden minoris,disk graphs, interval graphs, (planar) geo-
metric intersection graphs, etc. We are not aware of any pesults showing testability of these properties
for non-trivial classes of graphs.

2 Preliminaries

Let G = (V, E) be an undirected graph with vertices and maximum degree at mdstWithout loss of
generality, we assume thit= {1,...,n}. We write[n] := {1,...,n}. Given a subse$ C V of vertices,
we useG s = (S, E|g) to denote the subgraph induced BywhereE|g = {(u,v) € EN(S x S)}. We
assume thafr is stored in theadjacency listmodel for bounded degree graphs with maximum degree
In this model, we have constant time access to a funcfipn [n] x [d] — [n] U {+}, such thatfz(v, )
denotes theé'" neighbor ofv or a special symbol- in the case that has less thanneighbors.

Definition 2.1 A graphG is e-far from a property II if one has to modify more thasln entries in fg to
obtain a graph with propertyl.
2.1 Testing a property in a graph family

In this paper, our main focus is on testing various graph gntigs for bounded degree graphs from certain
graph families (e.qg., planar graphs or unit disk graphs).
An algorithm that is givem and has access {fg; is called are-tester for a graph familyF if it

(a) Accepts with probability at Iea% any graphG € F that has propertyl.

(b) Rejects with probability at Iea%[ any graphGG € F that ise-far fromII.
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If the e-tester always accepts any gra@he F that has propert¥l, then it is said to havene-sided errar
The e-testers presented in this paper have one-sided error. Witley fact accept with probability 1 any
graph that satisfieH (even if it does not belong t&).

A property is calledestablefor a family F if for any fixed0 < ¢ < 1 there is are-tester forF whose
total number of queries to the functigiy is bounded from above by a function, which depends only on
and not on the size of the input graph. Following [5], we define a propeHyto beuniformly testablef
there is are-tester forll that receives as part of the input. A property is said to benon-uniformly testable
if for every fixede, 0 < € < 1, there is are-tester that can distinguish between graphs that have pyofe
from thosee-far from havingII (which may not work properly for other values gf

For a pair of disjoint vertex sefg;, Vo we denote by (17, V5) the number of edges connecting vertices
from V7 with vertices fromV,. For each vertex € V, we denote itsieighborhoodby N'(v) = {u € V :
(v,u) € E}. We generalize this notion to sets by definingS) = U,cg N (v) \ S. Furthermore, we
let D(v,r) denote the set of vertices which have distance at mésim v, i.e., D(v,0) = v, D(v,1) =
{v} UN(v), etc.

A graphG = (V, E) is called a\-expander if for all S C V with | S| < n/2, we havel NV (S)| > A|S].
With this, we can now define non-expanding graph families.

Definition 2.2 A family of graphsF is called non-expanding if there exists a constant such that all
graphs inF of size at leash. are not(1/log? n)-expanders-.

2.2 Hereditary and non-expanding graph families

A family F of graphs is calledhereditaryif it is closed under vertex removal. Similarly, a graph prdyp is
calledhereditaryif it is closed under vertex removal

There are many interesting classes of families of graphsatehereditary and non-expanding. For
example, thdamily of planar graphss trivially hereditary, and also the classical planar sefma theorem
[26] implies immediately that it is non-expanding. Indedt planar separator theorem implies that every
planar graph witln vertices (for a sufficiently large) has a subset of vertices, %n <Al < %n such
that [V (A)| < O(y/n). Therefore, every planar graph withvertices . > n, for some constant) is
not anO(1//n)-expander, and hence the family of planar graphs is nonrelipg. As the example of
planar graphs shows, if a family of graphs has a good sepdtaa it is non-expanding. Therefore, all
graph families with good separator properties (for graghisooinded degree) are non-expanding. Hence,
other families of graphs (of bounded degree) that are hargdand non-expanding include, among others:
the class of graphs with bounded genus, graphs with forhiddimor, interval graphs, etc. For example,
the result for graphs of bounded genus and graphs with fdebianinor follow directly from the separator
theorem such graphs. And so, Gilbert et al. [15] proved thgtggaph onn vertices with genug has a
separator of orde®(,/gn), and Alon et al. [4] showed a similar results for graphs witbfdden minors:
if G’ has no minor isomorphic to a givénvertex graphH, thenG has a separator of siz(h*/?n!/?).

The choice of the factorl/log?n can be relaxed. In fact, using known bounds one can repladeg® n with
1/(log nlog?log n).

2There is, of course, no difference between a graph propedyaafamily of graphs. We use the different terms in order to
distinguish between the property we want to test and thelfashigraphs to which the input is assumed to belong to.



3 Proof of the Main Result

In this section we prove our main result by showing that tHeong algorithm is ane-tester for any
hereditary propertyl and any hereditary non-expanding family of graghs

e-TESTER(G, n,1I)
sample a sef of s; vertices uniformly at rando
for eachv € S do

Uy = D(v, s2)
U= UUES Uy
if G|y does not satisfy propertyf then reject
else accept

Clearly, the number of queries #; is upper bounded by s, d*2, which for s; andss being constants
independent of, gives the number of queries to be independent.dfVe will give the exact values for;
and ss, which are independent of but do depend om andIl, at the end of our analysis, in the proof of
Theorem 1.

Sincell is hereditary, we know that our algorithm accepts any graphhas propertyl (even if it does
not belong taF). Thus, we only have to show that any graph thatfiar fromIT and belongs t¢F is rejected
with probability at leasg.

We begin our analysis with the following lemma.

Lemma 3.1 Let F be any family of graphs that is both hereditary and non-ediay and letn s be the
constant from Definition 2.2. Let be an arbitrary positive parameter. I = (V,E) € F satisfies
n = |V| > max{2nz, 22/%°} then one can partitioV’ into two sets/; and V5, such thatV; |, |Va| > 2 and
e(V1,Va) < 8dn/loghd n.

Proof :  SinceF is non-expanding, every gragh € F onn > nx vertices is not d /log? n-expander.
Therefore, there exists a s6tC V' of cardinality at most such thati\'(S)| < |S|/log?n. We first
observe that ifS| > 2, then we can tak&; = S andV, = V' \ S. Indeed, sinceN(S)| < |S|/log?n,

there are at mostn/ log? n edges betweek; andVs. Therefore, if in additiom > 2%, we can infer that
e(V1,V3) < dn/log>n < ddn/log"®n |

as needed.

Assume then thatS| < 7 and consider the grapfi|, ¢ (the induced graph o \ S). SinceF is
hereditary G|\ g € F, and|V'\ S| > nz (recall thatr > 2n ), we can apply the same arguments as above
to conclude that there is a s6t C (V' S) of cardinality at most such thaf\/(S")| < 2|S|/log®n. If
we have|S U S| > % then using the same arguments as above, we are done by $4ttiagS U S’ and
Vo = V'\ V1. Otherwise, we can replaceby S U S’ and continue in the same manner. Eventually, we have
a setS U S" with more thanZ vertices and\ (S U S')| < 2|S U §'|/log? n. If we setV; = S U S" and
Vo = V'\ V4, then these sets will satisfy the condition in the lemma. O

Let us call a connected componemin-trivial if it has more than a single vertex. The following is a
corollary of Lemma 3.1.



Corollary 3.2 For every hereditary and non-expanding family of gragfighere exists a positive constant
¢ = ¢z, such that one can remove from any graghs F a set of at most d n/2 edges, such that

(i) Their removal partitiong into connected components, Cs, . .. of size at mos2/<”.
(i) Each connected compone@ is an induced subgraph @f.

(iif) No edge connects i two non-trivial connected componerits and C;.

Proof: Letnx be the constant associated withas in Definition 2.2, leG be any graph i, and lety be

a parameter to be chosen later. We apply Lemma 3.1 to obtaisetsl; andV, with at mosts d n/ log'® n
edges connecting; andVa. AssumeV;| < |V] and letU* = N/ (V;). Since the number of edges between
Vi andV \ Vi is at mosts dn/log!® n, we also haveU*| < 6 dn/log’>n. Remove fromG all edges
incident toU*. Since|U*| < §dn/log!®n andG has maximum degree at magtwe removed at most
§ d*n/log"® n edges fronG. Next, letl; = V; andU, = V, \ U*. Observe that fo§ < log!5 n/(4d) we
haveZ < |Uy],|Us| < 32 and that there is no edge @ between/; andUs.

Then we recursively apply Lemma 3.1 on the induced subgrafphisandG;,; we proceed recursively
until we obtain a subgraph of size at mestx{2nr, 22/52}. In this way, we removed some number of
edges from& and obtained a subgraph GfdenotedH, on V' (G) with connected componeng, . .., C,,.
Observe that the set$* obtained in the recursive calls will always result in trivé@nnected components,
because we removed all edges incident to the verticds*in Let Hy, ..., H; be non-trivial connected
components in our new graph. By definition, evéfyhas sizdC;| < max{2n;:,22/52}. Similarly, our
construction ensures that no edge is removed between anyfpaitices in a singléZ; and that there is no
edge inG between any pair of graph$; and ;. We now estimate the number of edges removed.

By Lemma 3.1, the number of edges removed frGns upper bounded by functiof(n) defined by
the following recurrence:

0 if n < max{2ng, 22/52}

Q) = §d?n/logh® n + max1 o, <3{Q(rn) +Q((1 —7)n)}  if n > max{2ng, 22/}
SinceQ(n) = ©(dd*n), we can conclude that the gragh is obtained fromG by removal of at most
c §d*>n edges, for some absolute positive constdnt This yields the proof by setting = ¢/(2dc).
Finally, recall that all the connected componentsiohad sizeC;| < max{2nz, 2%/5°} < 2¢/<* if we take
c=cr=2dd nr. O

Let us explain the importance of the three properties of #selting graph stated in Corollary 3.2.
Property (i) ensures that every connected component id.garaperty (i) ensures that if we have some in-
duced subgraph of a non-trivial connected comporérthen it is also an induced subgraph(ef Property
(iii) ensures that if we have a set of induced subgraphsQ,, . . ., Q;, of graphsH;,, H,, ..., H;,, then
these copies of the subgraphs do not intersedf inTherefore, if we define a grap(ﬁ with ¢ connected
components, where thé" connected o@ is isomorphic withQ; ;, then@ is also an induced subgraph of
G.

3.1 Hereditary graph properties

It is well known (and easy to see) that any hereditary grappgmnty Il can be characterized by a (possibly
infinite) set of minimal forbidden induced subgraphs (seg,, ¢6, Section 4]). Let us denote W}%Tb a



minimal family of forbidden subgraphs for properfy. Notice that in generan-[?orb may be annfinite

family of forbidden graphs. Observe that, for exampld]lifs the property of being bipartite, thé‘m}%w

can be chosen to be the set of all odd cycles, ahHiff the property of being chordal, thén}fwb is the set
of all cycles of length at least 4.

For simplicity of presentation (but without loss of genéylwe will assume that the graphs M/l‘_(ljrb
contain no isolated vertices. The reason why we can makeauelssumption is that every large enough
bounded degree graph will always have an arbitrary large induced subgraph thaisists of isolated
vertices only. Therefore, in such cases, all large enoughigrwill not satisfyH}%Tb, and thus testin@{}%ﬂ,
becomes trivial.

Next, let us consider an arbitrary graphe F that ise-far fromI1. By Corollary 3.2, we can remove
from G at moste d n/2 edges to obtain a graptf on the same vertex set for which each connected compo-
nent has at most = 2¢/<* vertices. Furthermore, ifl1, ..., H, are the non-trivial connected components
of H, then there is no edge (& that connects any of these connected components and&aslan induced
subgraph ofGG. SinceG is e-far from I, H is still ¢/2-far from II. Since all connected components in
H have size at most (which is independent of), H cannot contain as a subgraph any graph that has a
connected component with more thawertices. Let7,. denote the family of all graphs whose connected
components have size at megnotice that7, is independent ofy). We conclude that it suffices to consider
the subgraphs itj;,, N 7.

Corollary 3.3 If G € F is e-far fromI1, then H (define above) contains as an induced subgraph a graph
from H}%Tb N J.. The same holds if we remove frdihany set of at mostdn/2 edges. 0

Let us denote by(r) the number otonnectedunlabeled) graphs on a set of at mpsfertices; clearly
o(r) < 2(2). Let us enumerate all possible connected graphs with atmastices by®,, ..., &. Then,
we can define any graghin H}%Tb N J, as ac(r)-ary integer vectoyf = (f1,..., f«r)), Wheref; denotes
the number of copies of graph; occurring as a connected componentjinin what follows, we callf a
characteristic vectoof G (with respect tOH}%Tb andJ,).

Similarly, let us define a(r)-ary integer vectog# = (gi) . ,gﬁi) with g§H> being the number of

induced copie®f graph®; in H. Notice the fundamental difference between the ways of togicopies
of &; in G and inH: all copies of graph#®,, ..., &) counted in the characteristic vector@tre disjoint

while the induced copies of these graphs countegii can intersect.

Lemma 3.4 Let F be a fixed hereditary non-expanding family of graphs andlidie a fixed hereditary
property. Suppose that € F is a graph of degree at most that is e-far from II. Assume that we
apply Corollary 3.2 onG and obtain a subgraph off denotedH with the property that all connected
components off are of size at most. Then, there exists a graph € H}%H) N J, with characteristic

vector f = (f1,..., f)) such that for alll < i < ¢(r) it holds that if f; > 0 theng§H> > ~n, where
y=e-d/2.
Proof : Let®,..., &, be all connected graphs of size at mostWe will first construct a graplt’

by removing some edges frofd so that for any grapks; either H' contains no copy o, or it contains

at leasty n such copies. We proceed sequentially over the graphs. ., &,). For each®; we do the
following: if the number of induced copies in the currentgjraobtained fromH is smaller thany n, then
we remove all the edges of any connected component thatieeia as an induced subgraph. Since we
perform at most(r) iterations and in each iteration we remove at mg$t ~ n edges, the total number of

6



edges removed is bounded &y) - (’2") -yn < edn/2. Atthe end of the process we obtain a grdphwith
the property that for any graph; either H’ contains no copy o®; or it contains at least n such copies.
SinceG was assumed to befar from II, and H was obtained frontz by removing at most dn/2

edges, we have thdf is 5-far from II. Also, sinceH" is obtained fromA by removing less thandn/2
edges,H’ does not satisfyI and hence it contains a graghe Hﬁrb N J.. Now, by the conclusion of the
previous paragraph, this means thagihas characteristic vectaf, . .., f.,)) then for everyi for which
fi > 0 we must have thall’ contains at leasj n copies of&;. Finally, observe that from the definition of
the process of obtainingf’ it follows that H must contain at least this many induced copie®gfHence,

for every: for which f; > 0 we haveg<H> > yn. O

)

3.2 Function ¥y

We now introduce a key notion that we will use to test a heaggipropertyll. Note, that the discussion
below does not relate to the family of grapfgo which the input instance should belong. Given a family of

pairwise non-isomorphic connected gragits;, ..., &} letm({&q,...,&}) be the least integen with
the property that the graph that containsvertex disjoint copies of each of the graphis does not satisfy
I1. If no such integem exists, then we seh({®,...,8;}) = co. For an integer, letII, be the family

of all sets of pairwise non-isomorphic connected grafas, . .., &, } with the property that all the graphs
&; are of size at mostandm ({®1,...,8x}) < co.

Definition 3.5 For a fixed hereditary propertyl we define a functio®; : N — N as follows:

N\ = B,....8 .
() {61,.T%§}enrm({ 1, Ok})

In casell, = () we set¥(r) = 0.

Note that the above is well defined as for a fixed integtre sefll,. is finite.

3.3 Proof of the main theorem

We now formally state and prove the main result of this paper.

Theorem 1 LetF be a hereditary and non-expanding family of graphs. Therydwereditary graph prop-
erty I is non-uniformly testable fof with one-sided error. Furthermord] is uniformly testable with
one-sided error ifiyr; is computable (or if its approximation is computable, whitie quality of the approx-
imation must be independent of the input graph size).

Proof :  Suppose thafs € F is e-far from II and consider the subgrapgth of G that is obtained via
Corollary 3.2. By Lemma 3.4, there is a graghthat does not satisfyI with the property that all its
connected component; are of size at most = 2/ < and each of these connected component appears
as an induced subgraph éf at leastyn times, wherey = ed/2’”2. Observe that since each connected
component o is of size at most, each of these connected components contains at3hiospies of each
of the connected componergs of G. Therefore, for eackh; we have that at leastn /2" of the connected
components off contains an induced copy ¢;.

Consider now the set of distinct connected componeng, dienoted{ &, ..., &, }. SinceG ¢ 11 we
have thatm({®4,...,8;}) < oo (cf. Section 3.2). Now the definition of; guarantees that the graph



obtained by takinglr;(r) vertex disjoint copies of each of the graphis does not satisfyl. By the first
paragraph of the proof, a randomly chosen vertex belongstmaected component & which contains

a copy of®,; with probability at leasty/2". Therefore, by Markov’s inequality a randomly chosen sampl
of size10 - ¢(r) - 2" - Yy (r)/~ will, with probability at leas®/3, containk - ¥ (r) vertices{vm}}%f,g’“(r)
that belong to distinct connected componenthfwith the property that for every < j < Uy(r), the
connected component &f to whichv; ; belongs, is an induced copy &;. In particular, the graph that is
obtained by taking the disjoint union of the connected camepds to which the vertices; ; belong does
not satisfyll.

Finally, sinceGG does not contain edges connecting vertices from distinettrigial connected compo-
nents ofH, we get that any graph that is obtained by taking the uniorooftnivial connected components
of H is also an induced subgraph@f Therefore, with probability at leagy/3 the tester will rejecti. Also,
from the above analysis one can see that we camsetr = 2¢/<” ands; = 10 - ¢(r) - 2" - Upy(r) /7. O

3.4 Discussion

When do we need¥'r;:  Notice that the functio 7, defined in Section 3.2 is not necessarily computable.
However, we only need this definition in order to obtain a gaheesult on all hereditary properties. Ob-
serve, for example, that for any hereditary propdityhat is closed under disjoint unidwe have that

U (r) = 1. Therefore, in these cases we have a trivial functionFurthermore, notice that any natural
hereditary property, such as those discussed througheygaper, is closed under disjoint union, therefore
for such properties we get uniform testers (for any heredi@mily of graphsF).

When doeslI have a uniform tester: The proof of Theorem 1 shows that when the functiof is com-
putable then one can design a one-sided error uniform tiEstér. Using arguments similar to those used
in [8], it can be shown that if the tester is allowed to use ike sf the input in order to make its decisions
then all hereditary properties have a uniform tester withstant query complexity but with running time
that depends on. Following [8], let us define aoblivioustester as one that has no access to the size of
the input when making its decisions. Givenan oblivious tester computes a numier Q(e), and then
asks an oracle fab (v, ¢) for all the vertices € S, whereS'is a random subset of vertices6{G) of size
q (recall thatD(v, q) is the neighborhood of of radiusg). Using the answers to these queries the tester
should either accept or reject the input. Observe that therithm we design in the proof of Theorem 1 is
oblivious. Therefore, iy is computable, thefl has an oblivious one-sided error uniform tester.

Let us show that for any hereditary propeHy the computability of'; is not only sufficient but also
necessary, if one wants to design an oblivious one-sidexl &ster forll. Here is a sketch of the proof. It
is easy to see that an oblivious one-sided error tester fereditary property must accept the input if the
graph that is spanned lpy, . ¢ D(v, q) satisfies the property Suppose then that can be tested with query
complexityQ(e). We claim that in this cas@(r) < Q(1/27‘2) and since? is assumed to be computable,
then so doedly;. Indeed, for any{®4,...,8,} € 11, and for any positive integef, consider a graph
consisting ofd disjoint copies of each grap#i;. Let us think of this graph as consisting étlustersC.,
where each cluster’; contains one copy of each of grap#is, . . . , &;. This graph has degree boundedrby
and we claim that for all large enoughit is 1/27‘2 -far from1II. Let us denote by the number of vertices of

3Thatis, ifG1 = (V1, E1) andG2 = (Vz, E») satisfy the property, then so do@s = (Vi U Vz, E1 U E»).

“Suppose the tester rejects an input even thdyghg D(v, q) satisfiedl. In that case if we were to execute the tester on the
graph that is defined as the disjoint union{@(v, ¢) : v € S} it would have a non-zero probability of rejecting this gragen
though it satisfies the property.



the graph and by the number of vertices in each clust@y, and observe that < r2(2). Therefore, after
adding/removing at mosf:- edges, we will still have;* clustersC; which have not changed. Therefore,
asm({®1,...,8x}) < co for large enoughl, the new graph still does not satidfly We thus conclude that
for large enoughl, the graph is at leadt/ (4mr)-far from satisfyingIl (and1/(4mr) < 1/2"2). However,
since the algorithm must find a graph that does not sdilsfymust ask at least({®4, ..., &, }) queriesin
order to succeed on such graphs. Thereforgl&;,...,®,}) < Q(1/27°) for any set{&,, ..., &,} € II,
and by the definition off;; this means tha';; < Q(1/27") as needed.

4 Conclusions

In this paper we made a first attempt to give general testaléisults for graphs belonging to restricted
families of graphs. We showed that all hereditary graph eriogs are (non-uniformly) testable, if the input
graph comes from a family of graphs that is hereditary andexganding. Some interesting open questions
include.

e Which properties can be tested for expander graphs? Whagepies can be tested {n(,/n) time
for expander graphs?

e Which properties can be tested for non-expanding familiggaphs when only the average degree of
the graph is bounded?

e Which properties can be tested filirectedgraphs in sublinear time (in particular, when we can see a
directed edgéu, v) only from vertexu)?
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