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Abstract

We study the notion of learning in an oblivious changing environment. Existing
online learning algorithms which minimize regret are shown to converge to the average
of all locally optimal solutions. We propose a new performance metric, strengthening
the standard metric of regret, to capture convergence to locally optimal solutions, and
propose efficient algorithms which provably converge at the optimal rate.

One application is the portfolio management problem, for which we show that all
previous algorithms behave suboptimally under dynamic market conditions. Another
application is online routing, for which our adaptive algorithm exploits local congestion
patterns and runs in near-linear time. We also give an algorithm for the tree update
problem that is statically optimal for every sufficiently long contiguous subsequence of
accesses.

Our algorithm combines techniques from data streaming algorithms, composition of
learning algorithms, and a twist on the standard experts framework.

1 Introduction

In online optimization the decision maker sequentially chooses a decision without knowledge
of the future, and pays a cost based on her decision and the observed outcome. The game
theory and machine learning literature has produced a host of algorithms which perform
nearly as well as the best single decision in hindsight. Formally, the average regret of the
online player, which is the average difference between her cost and the cost of the best
strategy in hindsight, approaches zero as the number of game iteration grows. Examples
of online optimization scenarios for which such online algorithms were successfully applied
include portfolio management [Cov91], online routing [TW03], and boosting [FS97].

Low regret algorithms are particularly useful in scenarios in which the environment vari-
ables are sampled from some (unknown) distribution. In such cases, low regret algorithms
effectively “learn” the environment and approach the optimal strategy. However, if the un-
derlying distribution changes, no such claim can be made. Indeed, we later describe simple
examples in which low regret algorithms do not converge to the locally optimal strategy.

For example, consider the case of the portfolio management problem. If the stock price
changes are sampled according to a certain distribution, Cover showed that low regret al-
gorithms converge to the optimal strategy (in this case a constant rebalanced portfolio).
However, if the market shifts to a different distribution, such a guarantee cannot be proved.

∗This work was done while the author was a research intern at the IBM Almaden Research Center
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Intuitively, the reason is that all low regret algorithms for portfolio management “remem-
ber” the entire market history which can be largely irrelevant if the underlying distribution
changes. Similarly, in online routing we would like our algorithm to adapt to different
network congestion scenarios and approach the optimum corresponding to the current con-
gestion, rather than the long-term aggregated congestion.

In this paper we address this question of adapting to a changing environment. We argue
that the correct measure of performance is Adaptive-Regret, or regret on any interval of his-
tory. If an online algorithm has low regret on every interval in history, then intuitively it will
converge to the local optimum for each interval, and hence successfully track environment
changes.

We give an efficient generic scheme for converting any low regret algorithm into a low
Adaptive-Regret algorithm. Building on existing algorithms, we propose online optimization
algorithms with nearly optimal Adaptive-Regret for portfolio management, online routing,
tree updates, and more general settings. For the case of online routing, the algorithm
effectively exploits the structure of the problem to allow for efficient implementation (despite
the fact that there exists exponentially many paths).

Our techniques include twists on the Multiplicative Weights algorithm from the learning
community as well as application of results from the data-streaming literature (as far as we
know, for the first time in learning-theoretic applications).

It has come to our notice that independently in the information theory community some
related work was done in [KS07b, KS07a]. The techniques used are completely different,
and our setting is more general (i.e. the referenced papers do not to deal with general
convex loss functions). In addition, our algorithms are more efficient.

1.1 Our Results

In an online decision problem, in each round t = 1, 2, ..., the decision maker plays a point
xt from a convex domain K ⊆ R

n. A loss function ft is presented, and the decision maker
incurs a loss of ft(xt). The standard performance measure is regret, which is the difference
between the loss incurred by the online player using algorithm A and the best fixed optimum
in hindsight:

RegretT (A) =
T

∑

t=1

ft(xt)− min
x∗∈K

T
∑

t=1

ft(x
∗)

We consider an extension of the above quantity to measure the performance of a decision
maker in a changing environment:

Definition 1.1. The Adaptive-Regret of an online convex optimization algorithm A is de-
fined as the maximum regret it achieves over any contiguous time interval. Formally

Adaptive-RegretT (A) , sup
I=[r,s]⊆[T ]

{

s
∑

t=r

ft(xt)− min
x∗∈K

s
∑

t=r

ft(x
∗)

}

Obviously Adaptive-Regret is a strict generalization of regret. Intuitively, an algorithm
with O(R) Adaptive-Regret converges to the locally optimal solution in each interval of
length Ω(R). In the following sections we propose and analyze algorithms which attain
Adaptive-Regret bounds for a variety of problems. These Adaptive-Regret bounds match
the lower bounds for regular regret up to logarithmic factors. In addition, the most efficient

2



version of our algorithms have only a logarithmic running time overhead over the most effi-
cient known algorithms. We call this class of algorithms Follow-The-Leading-History (FLH).
There are broadly two versions of FLH, one for exp-concave functions and one of general
convex functions. For ease of notation, we will refer to them both as FLH, as the version
will be clear by the context. Furthermore, FLH has an advanced implementation (called
AFLH) which has slightly worse Adaptive-Regret guarantees but much better running time.

Throughout the paper the O-notation hides absolute constants.

Theorem 1.2. Suppose the functions f1, · · · , fT are α-exp concave (for some constant α)
and there exists an algorithm giving R(T ) regret with running time V . The running time of
algorithm FLH is O(V T ) and Adaptive-RegretT (FLH) ≤ R(T )+O( 1

α log T ). The running
time of AFLH is O(V log T ) and Adaptive-RegretT (AFLH) ≤ R(T ) log T + O( 1

α log2 T ).

For general convex loss functions, we get a similar theorem -

Theorem 1.3. Suppose the functions f1, · · · , fT are convex and bounded by f(x) ∈ [0,M ]
in the convex set and there exists an algorithm giving R(T ) regret with running time V .
The running time of algorithm FLH is O(V T ) and Adaptive-RegretT (FLH) ≤ R(T ) +
O(M

√
T log T ). The running time of AFLH is O(V log T ) and Adaptive-RegretT (AFLH) ≤

R(T ) log T + O(M
√

T log3 T ).

For convex functions, we actually prove a slightly stronger statement, where we get
tradeoffs between a multiplicative factor over the optimal loss and an additive error. In
order to streamline the exposition, we defer the formal statement of results concerning the
applications of the above theorems to section 2.

To motivate our new measure of performance, we give an example in which current
algorithms behave suboptimally, and explain how low Adaptive-Regret algorithms overcome
these problems.

Suboptimal behaviour of existing algorithms. Consider the online convex optimiza-
tion framework, in which the decision maker chooses a point from the subset of the real
line xt ∈ [−1, 1]. The convex loss functions are ft(x) = (x− 1)2 for the first T/2 iterations,
and ft(x) = (x + 1)2 in the last T/2 iterations. For the sake of simplicity, consider the
“follow-the-leader” (FTL) algorithm which at each iteration predicts the minimum of the
aggregated loss function thus far (this algorithm is known to attain O(log T ) regret for this
setting [HKKA06]).

The strategy chose by this algorithm will be xt = 1 in the first T/2 iterations, and then
slowly shift towards xt = 0 in the last T/2 iterations. Despite the fact that the total regret
is O(log T ), it is easy to see that the Adaptive-Regret is Ω(T ) in the last T/2 iterations
(where the optimum is obviously −1).

Although we have considered the FTL algorithm, all known logarithmic regret algo-
rithms (Online Newton Step, Cover’s algorithm, Exponential Weighting) will behave simi-
larly. In addition, although we described the simplest setting, the same issue arises in the
portfolio management and online shortest paths problems described below.

In contrast, our algorithms which attain O(log T ) Adaptive-Regret, initially predict 1,
and at T/2 start shifting towards −1, and complete this shift at T/2 + O(log T ), thus
behaving locally optimal.
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1.2 Relation to previous work

The most relevant previous work are the papers of Herbster and Warmuth [HW98] and
Bousquet and Warmuth [BW03] on “tracking the best expert”. The focus of their work
was on the discrete expert setting and exp-concave loss functions. In this scenario, they
proved regret bounds versus the best k-shifting expert, where the optimum in hindsight
is allowed to change its value k times. Singer [Sin] looked at portfolio management, and
gave an algorithm that is competitive with strategies that switch between different (single)
assets.

Our setting differs from this expert setting in several respects. First, we generally
consider continuous decision sets rather than discrete. Although it is possible to discretize
continuous sets (i.e. the simplex for portfolio management) and apply previous algorithms,
such reductions are inefficient. Presumably it might be possible to apply random walk
techniques such as Kalai and Vempala [KV03], but that too would be far less efficient than
the techniques presented hereby.

For the discrete problems we consider (i.e. online routing), the loss functions are typi-
cally linear rather than exp-concave as in [HW98]. Zinkevich’s gradient descent algorithm
[Zin03] can be shown to attain near optimal Adaptive-Regret, however it is again not clear
how to do so efficiently for structured problems.

As for performance guarantees, it is easy to see that our notion of Adaptive-Regret gen-
eralizes (and is not equivalent to) regret versus the best k-shifting optimum. We also remark
that the techniques we use are quite different that previous approaches. One component is
inspired by [HW98] of using Multiplicative Weights to obtain Adaptive-Regret bounds for
shifting experts. However, the set of experts in our setting are other algorithms rather than
strategies, and its composition and size changes during the run time of the main algorithm:
experts are removed and added. The second major component is a sparsification of the
expert set, which relies on data streaming techniques.

1.3 The Data-Streaming problem

Our efficient implementation uses an interesting twist on the standard experts scenario -
usually, there is a fixed set of experts which learning algorithms track. In our situation,
we have a set of experts that is dynamic and keeps changing. In each round, a new expert
is brought in and some experts are removed. This is done to keep the number of experts
small, and allows us to design efficient learning algorithms. Based on the structure and
properties of experts, this removal of experts needs to be done delicately to ensure that
regret guarantees are maintained. One of the interesting aspects of this work is the use of
techniques from streaming algorithms are used for learning. We describe the main streaming
problem that we need to deal with. The details of the connection between this to learning
will be explained later on in the paper.

This problem can be stated without any mentioning of our learning algorithm, and is
of independent interest. Suppose the integers 1, 2, · · · are being “processed” in a streaming
fashion. At time t, we have “read” the positive integers upto t and maintain a very small
subset of them St. The set St should be well spread out in a exponential fashion (this will
be explained precisely below). The sets are updated in a streaming manner - at time t, we
have St and at t + 1, we modify St to get St+1. The catch is that the only integer we can
add to St to get St+1 is t + 1. We are free to remove whatever we wish. If some i ≤ t is not
present in St, then it can never be in any St′ , for t′ > t. It is very natural to think of the
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integers as data objects being streamed and our aim is to maintain a short “sketch” of the
data seen so far. Once we discard a data item from our sketch, it is not possible to retrieve
it.

Let us now precisely describe the conditions on the sets St.

Property 1.4. 1. For every positive s ≤ t, [s, (s + t)/2] ∩ St 6= φ.

2. For all t, |St| is at most polylogarithmic in t.

3. For all t, St+1\St = {t + 1}.

A randomized procedure to construct these sets in a streaming fashion is given in
[GJKK]. Woodruff [Woo07] gave an elegant deterministic solution which we describe in
Appendix B.

2 Applications

Portfolio management. In the universal portfolio management setting, an online in-
vestor iteratively distributes her wealth on a set of N assets. After committing to this
distribution pt, the market outcome is observed in a form of a price relatives vector rt and
the investor attains utility of log(pt ·rt). This formulation is a special case of the online con-
vex optimization setting with a (negative) logarithmic loss function, which is exp-concave.
In his remarkable original paper, Cover [Cov91] analyzes an algorithm called Universal

which attains

RegretT (Universal) = max
p∗

T
∑

t=1

log(p∗ · rt)−
T

∑

t=1

log(pt · rt) = O(n log T )

This was shown to be tight up to constant factors [OC98]. As in our previous example
above, it is easy to construct examples in which the Adaptive-Regret of Cover’s algorithm
is Adaptive-RegretT (Universal) = Ω(T ). Using Theorem 1.2, we can prove -

Corollary 2.1. There exists an online algorithm A that for any sequence of price relative
vectors r1, ..., rT , produces wealth distributions p1, ..., pT such that

Adaptive-RegretT (A) = O(n log T )

Further, the running time of this algorithm is polynomial in n and T . The running time can
be made polynomial in n and log T with the guarantee Adaptive-RegretT (A) = O(n log2 T )

This bound matches the optimal bound on regular regret, and essentially gives the first
theoretical improvement over Cover’s algorithm 1.2

1We note that the running time of Cover’s algorithm is exponential. Kalai and Vempala [KV03] gave a
polynomial time implementation, which we use for this result. Building on the Online Newton algorithm
[HKKA06], we can obtain not only poly-time, but running time which depends only logarithmically on the
number of iterations T , albeit introducing dependency in the gradients of the loss functions.

2Our guarantee is not to be confused with Singer’s ”switching portfolios” [Sin]. In his paper Singer deals
with switching between single assets, and not CRPs (which is stronger) as is in our case. Our approach is
also more efficient.
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Online routing and shortest paths. In the online shortest paths (OSP) problem, an
online decision maker iteratively chooses a path in a weighted directed graph without know-
ing the weights in advance and pays a cost which is the length of her path. Let the graph
have m edges, n vertices and weights in the range [0, 1]. Takimoto and Warmuth [TW03]
gave a Multiplicative Weights algorithm which attains (optimal) regret of O(

√
T ). Kalai

and Vempala [KV05] showed how a simpler approach can give efficient algorithms for OSP
and other structured graph problems. Both approaches yield the following more general
guarantee:

E[total weight] ≤ (1 + ε)(best weight in hindsight) +
O(mn log n)

ε
Here best weight in hindsight refers to the total weight of the best single path. Both

approaches suffer from the suboptimal behavior explained before, namely the online router
may converge to the shortest path of the aggregated graph, which could be very different
from the locally optimal path.

Based on the stronger version of Theorem 1.3, we can construct an algorithm with the
following guarantee for any interval I ⊆ [T ]

E[total weight on I ] ≤ (1+ε)(best weight in hindsight on I)+
O(mn log n log T + n log2 T )

ε

Taking ε = 1√
Tmn log2 T log n

we obtain

Corollary 2.2. For the OSP problem, there exists an algorithm A with running time poly-
nomial in m,n, log T that guarantees -

Adaptive-RegretT = O
(

√

Tmn log2 T log n
)

This algorithm attains almost optimal Adaptive-Regret. Using FTL ideas the algorithms
are easily and efficiently applied to the variety of graph problems considered in [TW03,
KV05].

Between static and dynamic optimality for search trees. The classic tree update
problem was posed by Sleator and Tarjan in [ST85]. The online decision maker is given
a sequence of access requests for items in the set {1, ..., n}. Her goal is to maintain a
binary search tree and minimize the total lookup time and tree modification operations.
This problem was looked at from an online learning perspective in [BCK03, KV05]. An
algorithm is statically optimal if the total time taken by this algorithm is comparable (upto
a constant) to the best tree in hindsight. Splay trees are known to be statically optimal,
with a constant factor of 3 log2 3. Kalai and Vempala [KV05] gave an efficient statically
optimal tree algorithm the strong guarantee of low regret (in particular, the constant factor
is basically 1). More specifically, they give a randomized algorithm such that -

E[cost of algorithm] ≤ (cost of best tree) + 2n
√

nT

For this, they use a version of the Follow-The-Leader (FTL) which does not give the
stronger guarantee of low Adaptive-Regret. We can use our techniques to give such an
algorithm, that is basically statically optimal for every large enough contiguous subsequence
of accesses (note that splay trees are also statically optimal for every contiguous subsequence
but the constant multiplicative factor is 3 log2 3). We design a lazy version of our algorithm
with the following properties -
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Theorem 2.3. Suppose that for all x ∈ K and t ∈ [T ], ft(x) ∈ [0,M ]. Let R(T ) be an
upper bound on the regret of some learning algorithm over a sequence of T functions. There
exists a randomized algorithm A, such that with high probability3, for any ε > 0 less than
some sufficiently small constant -

1. Adaptive-RegretT (A) ≤ R(T ) + O(M
√

T log T
ε )

2. Throughout the running time of A, xt 6= xt−1 at most εT times.

We can formulate the tree update problem in the learning setting by considering a point
of the domain as a tree. Since it takes O(n) time to update one tree to another (any tree can
be changed to another in O(n) rotations), the total modification time is O(εnT ). Setting
ε = ((log T )/T )1/4, we get -

Corollary 2.4. Let a1, · · · , aT be accesses made. There is a randomized algorithm A for the
tree update problem that for any contiguous subsequence of queries I = {ar, ar+1, · · · , as},
gives the following guarantee with high probability -

costI(A) ≤ costI(best tree for I) + O(nT 3/4(log T )1/4 + n
√

nT )

Although the additive term is worse than that of [KV05], it is still significantly sublinear,
and we get a very strong version of static optimality.

3 The basic method

In this section we discuss the basic method and apply it to exp-concave loss functions,
such as the logarithmic function appearing in portfolio management, and to convex loss
functions, useful for applications such as online routing. The two different families of loss
functions require different techniques, and distinct Adaptive-Regret bounds are obtained.

3.1 Exp-concave loss functions

First we consider α-exp concave loss functions, i.e. functions ft such that e−αft is a convex
function. The basic algorithm, which we refer to as Follow-the-Leading-History (FLH), is
detailed in the figure below. The basic idea is to use many online algorithms, each attaining
good regret for a different segment in history, and choose the best one using expert-tracking
algorithms. The experts are themselves algorithms, each starting to predict from a different
point in history. The meta-algorithm used to track the best expert is inspired by the
Herbster-Warmuth algorithm [HW98]. However, our set of experts continuously changes,
as more algorithms are considered. This is further complicated in the next section when
some experts are also removed.

We henceforth prove the following theorem, which shows the strong Adaptive-Regret
guarantees of FTHL -

Theorem 3.1. Suppose that algorithms {Er} attain regret of R(T ) over any interval of
length T , and have running time V . Then the running time of algorithm FLH is O(V T )
and Adaptive-RegretT (FLH) = R(T ) + O( 1

α log T ).

This theorem immediately follows from the following stronger performance guarantee:

3the probability of error is < T−2
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Follow-the-Leading-History

1. Let E1, ..., ET be online convex optimization algorithms.

2. For each t, vt = (v1
t , ..., v

t
t) is a probability vector in R

t. Initialize v1
1 = 1.

3. In round t, set ∀j ≤ t , xj
t ← Ej(ft−1) (the prediction of the j’th algorithm).

play xt =
∑t

j=1 v
(j)
t x

(j)
t .

4. After receiving ft, set v̂
(t+1)
t+1 = 0 and perform update for 1 ≤ i ≤ t -

v̂
(i)
t+1 =

v
(i)
t e−αft(x

(i)
t )

∑t
j=1 v

(j)
t e−αft(x

(j)
t )

5. Addition step - Set v
(t+1)
t+1 to 1/(t + 1) and for i 6= t + 1 -

v
(i)
t+1 = (1− (t + 1)−1)v̂

(i)
t+1

Theorem 3.2. For any interval I = [r, s] in time, the algorithm FLH gives O(α−1(ln r +
ln |I|)) regret with respect to the best optimum in hindsight for I.

By assumption expert Er gives R(|I|) regret in the interval I (henceforth, the time
interval I will always be [r, s]). We will show that FLH will be competitive with expert Er

in I. To prove Theorem 3.2, it suffices to prove the following lemma.

Lemma 3.3. For any I = [r, s], the regret incurred by FLH in I with respect to expert Er

is at most 2
α (ln r + ln |I|).

We first prove the following lemma, which gives bounds on the regret in any round.

Lemma 3.4. 1. For i < t, ft(xt)− ft(x
(i)
t ) ≤ α−1(ln v̂

(i)
t+1 − ln v̂

(i)
t + 2/t)

2. ft(xt)− ft(x
(t)
t ) ≤ α−1(ln v̂

(t)
t+1 + ln t)

Proof. Using the α-exp concavity of ft -

e−αft(xt) = e−αft(
∑t

j=1 v
(j)
t x

(j)
t ) ≥

t
∑

j=1

v
(j)
t e−αft(x

(j)
t )

Taking logarithm,

ft(xt) ≤ −α−1 ln

t
∑

j=1

v
(j)
t e−αft(x

(j)
t )
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Hence,

ft(xt)− ft(x
(i)
t ) ≤ α−1(ln e−αft(x

(i)
t ) − ln

t
∑

j=1

v
(j)
t e−αft(x

(j)
t ))

= α−1 ln
e−αft(x

(i)
t )

∑t
j=1 v

(j)
t e−αft(x

(j)
t )

= α−1 ln
( 1

v
(i)
t

· v
(i)
t e−αft(x

(i)
t )

∑t
j=1 v

(j)
t e−αft(x

(j)
t )

)

= α−1 ln
v̂
(i)
t+1

v
(i)
t

(1)

The lemma is now obtained using the bounds of Claim 3.5 below.

Claim 3.5. 1. For i < t, ln v
(i)
t ≥ ln v̂

(i)
t − 2/t

2. ln v
(t)
t ≥ − ln t

Proof. By definition, for i < t, v
(i)
t = (1− 1/t)v̂

(i)
t . Also, v

(t)
t = 1/t. Taking the natural log

of both these inequalities completes the proof.

We are now ready to prove Lemma 3.3. It will just involve summing up the regret
incurred in each round, using Lemma 3.4. The main idea is the use the first bound for the
first round of I and then use the second bound for the remaining rounds.

Proof. (Lemma 3.3) We are looking at regret in I with respect to an expert Er.

s
∑

t=r

(ft(xt)− ft(x
(r)
t )) = (fr(xr)− fr(x

(r)
r )) +

s
∑

t=r+1

(ft(xt)− ft(x
(r)
t ))

≤ α−1
(

ln v̂
(r)
r+1 + ln r +

s
∑

t=r+1

(ln v̂
(r)
t+1 − ln v̂

(r)
t + 2/t)

)

= α−1(ln r + ln v̂
(r)
s+1 +

s
∑

t=r+1

2/t)

Since v̂
(r)
s+1 ≤ 1, ln v̂

(r)
s+1 ≤ 0. This implies that the regret is bounded by 2α−1(ln r +

ln |I|).

3.2 General convex loss functions

Here, we explore the case of general convex loss functions. For the sake of simplicity assume
that the loss functions ft are bounded in the domain by ft(x) ∈ [0,M ]. Note that we cannot
expect to obtain logarithmic Adaptive-Regret, as even standard regret is known to be lower
bounded by Ω(

√
T ). Instead, we derive relative loss bounds, or competitive ratio bounds,

and as a special case obtain O(
√

T log T ) Adaptive-Regret bounds.
We employ the same algorithm as before, and choose our experts accordingly. There is a

slight difference, because instead of taking a convex combination of the experts’ predictions,
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we choose experts according to the probability vector vt. Expert Ei is chosen (in round t)

with probability v
(i)
t .

Our experts will be any algorithm A that attains low regret (i.e. the Multiplicative
Weights algorithm, Perturbed Follow the Leader). The FLH version for convex functions is
almost the same, with a slight change to the multiplicative update rule.

After receiving ft, perform update for 1 ≤ i ≤ t -

v̂
(i)
t+1 =

v
(i)
t e−ηtft(x

(i)
t )

∑t
j=1 v

(j)
t e−ηtft(x

(j)
t )

The learning rate ηt will be set according to the bounds we want for strong competi-
tiveness. The main theorem of this section is -

Theorem 3.6. If each expert is implemented by a learning algorithm guaranteeing R(T )
regret (for T rounds), then the FLH algorithm has Adaptive-RegretT (FLH) ≤ R(T ) +
O(M

√
T log T ).

This theorem immediately follows for the next lemma (proven in appendix).

Lemma 3.7. Let 0 < α < 1
4 . For any interval I = [r, s], if expert Er incurs loss L

on I, then by setting ηt = −M−1 log(1 − α), the loss incurred by FLH on I is at most
(1 + α)L + Mα−1 ln s.

4 Efficient implementation

Our aim now is to implement the above algorithms efficiently and using little space. At
time t, the present implementation of FLH stores all the experts E1, · · · , Et and has to
compute weights for all of them. Let V denote an upper bound on the running time of each
expert (for one round). The time taken is at least O(V t). It is natural to ask whether all
these experts are necessary, since experts that are close to each other (starting from very
close time steps) will make similar predictions. Is there a way to sparsify the set of experts
and still maintain our strong regret bounds? We address this question, using techniques
from streaming algorithms.

The implementation will not depend on whether we deal with exp-concave or general
convex functions.

Theorem 4.1. Consider the standard implementation of FLH and suppose it provides R(T )
regret for T rounds. Then AFLH that has expected O(V log T ) running time (for every
round) and has an expected regret of O(R(T ) log T ).

For general convex functions, it is often the case that some learning algorithm A has a
stronger guarantees than sublinear regret. Given the functions f1, · · · , fT , let OPT denote
the loss of the optimal point in hindsight and loss(A) be the loss of A. Then, for sufficiently
small ε -

loss(A) ≤ (1 + ε)OPT + ε−1c(T )

For such a situation, we can also prove a version of Theorem 4.1 giving similar tradeoffs.
The proof of this is basically the same as that of Theorem 4.1.
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Theorem 4.2. Suppose there exists algorithm A with running time of V per round such that
loss(A) ≤ (1 + ε)OPT + ε−1c(T ) for any sufficiently small ε. Consider the implementation
of FLH (using A as experts) and let lossI(FLH) be the loss of FLH (using A as experts)
on time interval I = [r, s]. Suppose lossI(FLH) ≤ (1 + ε)lossI(E

r) + ε−1d(T ). The loss of
algorithm AFLH in I is bounded by -

lossI(AFLH) ≤ (1 + ε)OPT (I) + O
( log T

ε
(c(T ) + d(T ))

)

The running time of AFLH is O(V log T ).

We show that it suffices to store only O(log t) experts at time t. At time t, there is a
working set St of experts. In the old implementation of FLH, this set can be thought of
to contain E1, · · · , Et. For the next round, a new expert Et+1 was added to get St+1. To
decrease the sizes of these sets, the efficient implementation will also remove some experts.
Once an expert is removed, it is never used again (it cannot be added again to the working
set). The algorithm will perform the multiplicative update and mixing step only on the
working set of experts. The working set of experts has a very dynamic behaviour, and we
will ensure that it has small size. On the other hand, it will have enough experts to allow
us to get low regret.

The algorithm AFLH works exactly the same as standard FLH, with the added pruning
step. This is the step where certain experts are removed to update the new working set
St+1 for round t + 1. We remind the reader of the properties of St ⊆ [1, n] required -

1. For every positive s ≤ t, [s, (s + t)/2] ∩ St 6= φ.

2. For all t, |St| is at most polylogarithmic in t.

3. For all t, St+1\St = {t + 1}.

There is a randomized construction for these sets given by [GJKK]. This is achieved by
throwing away each expert in St with a carefully chosen probability. Woodruff [Woo07]
gave an elegant deterministic construction where the size of St = O(log t). We explain this
in the appendix, and for the sake of clarity, do not give details in the algorithm description.

Advanced Follow-The-Leading-History

At round t, there is a set St of experts. Abusing notation, St will also denote the set of
indices of the experts. At t = 1, St = {1}.

1. In round t, play xt =
∑

j∈St
v
(j)
t x

(j)
t (or choose expert Ej with probability v

(j)
t ).

2. Perform multiplicative update and addition to get vector vt+1.

3. Pruning step - Update St by removing some experts and adding t + 1 to get St+1.

4. For all i ∈ St+1 -

v
(i)
t+1 =

v
(i)
t+1

∑

i∈St+1
v
(i)
t+1

The vector vt+1 (restricted to the experts in St+1) is a valid probability vector.
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Now, when we wish to compute the regret incurred in a given interval, we can only
compete with an expert that is present in working set throughout the interval. In such a
situation, we get the same regret bounds as before. Our first step is to reprove Claim 3.5
in the new setting. We restate the claim for convenience.

Claim 4.3. For any i ∈ St, the following are true -

1. For i < t, ln v
(i)
t ≥ ln v̂

(i)
t − 2/t

2. ln v
(t)
t ≥ −2 ln t

Proof. The claim is certainly true for v
(i)
t . We note that v

(i)
t ≥ v

(i)
t since

∑

i∈St
v
(i)
t ≤ 1.

The proof for the following lemma would be exactly the same of the proofs for Lem-
mas 3.3 and 3.7.

Lemma 4.4. Consider some time interval I = [r, s]. Suppose that Er was in the working
set St, for all t ∈ I. Then the regret incurred in I is at most R(T ).

Finally, we reach the main proof of this section. Given the properties of St, we can show
that in any interval the regret incurred is small.

Lemma 4.5. For interval I, the regret incurred by the AFLH for any interval I is at most
(R(T ) + 1)(log2 |I|+ 1).

Proof. Let |I| ∈ [2k, 2k+1). We will prove by induction on k.
base case: For k = 1 the regret is bounded by ft(xt) ≤ R(T ) ≤ (R(T )+1)(log2 |I|+1).
induction step: By the properties of the St’s, there is an expert Ei in the pool such

that i ∈ [r, (r + s)/2]. This expert Ei entered the pool at time i and stayed throughout
[i, s]. By Lemma 4.4, the algorithm incurs regret at most R(T ) in [i, s].

The interval [r, i− 1] has size in [2k−1, 2k), and by induction the algorithm has regret of
(R(T ) + 1)k on [s, i]. This gives a total of (R(T ) + 1)(k + 1) regret on I.

The running time of AFLH is bounded by |St|V . Since |St| = O(log t), we can bound
the running time by O(V log T ). This fact, together with Lemma 4.5, complete the proof
of Theorem 4.1.
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A Appendix

A.1 General convex loss functions

We give a proof for Lemma 3.7. Analogous to Lemma 3.4, the following gives bounds on
the regret incurred in any round.

Lemma A.1. Suppose that ∀x ∈ K the value ft(x) is always positive and bounded by
constant M .

1. For i < t -

ft(xt) ≤
M(ln v̂

(i)
t+1 − ln v̂

(i)
t + 2/t) + ηtMft(x

(i)
t )

1− e−ηtM

2.

ft(xt) ≤
M(ln v̂

(t)
t+1 + 2 ln t) + ηtMft(x

(t)
t )

1− e−ηtM
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Proof. We use relative entropy distances. For two n-dimensional vectors, u, v,

∆(u, v) =

n
∑

i=1

u(i) ln
u(i)

v(i)

Conventionally, 0 ln 0 = 0. We want to compare performance with respect to the ith
expert, and therefore we set ~u to have 1 at the ith coordinate and zero elsewhere.

∆(u, vt)−∆(u, v̂t+1) = − ln v
(i)
t + ln v̂

(i)
t+1

= − ln v
(i)
t + ln

v
(i)
t e−ηtft(x

(i)
t )

∑t
j=1 v

(j)
t e−ηtft(x

(j)
t )

= −ηtft(x
(i)
t )− ln(

t
∑

j=1

v
(j)
t e−ηtft(x

(j)
t ))

For x < M , we can use the approximation e−ηtx ≤ 1 − (1 − e−ηtM )(x/M). This gives
us -

− ln v
(i)
t + ln v̂

(i)
t+1 ≥ −ηtft(x

(i)
t )− ln

(

t
∑

j=1

v
(j)
t

(

1− (1− e−ηtM )(ft(x
(i)
t )/M)

)

)

= −ηtft(x
(i)
t )− ln

(

t
∑

j=1

v
(j)
t −M−1(1− e−ηtM )

t
∑

j=1

v
(j)
t ft(x

(i)
t )

)

Noting that vt is a probability vector and that ft(xt) =
∑t

j=1 v
(j)
t ft(x

(i)
t ) -

− ln v
(i)
t + ln v̂

(i)
t+1 ≥ −ηtft(x

(i)
t )− ln(1−M−1(1− e−ηtM )ft(xt))

≥ −ηtft(x
(i)
t ) + M−1(1− e−ηtM )ft(xt)

=⇒ ft(xt) ≤
M(ln v̂

(i)
t+1 − ln v

(i)
t ) + ηtMft(x

(i)
t )

1− e−ηtM

Application of Claim 3.5 completes the proof.

Proof. (Lemma 3.7) For interval I, we sum up the bounds given in Lemma A.1. For α > 0
sufficiently small, we set ηt = −M−1 ln(1− α).
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s
∑

t=r

ft(xt) = fr(xr) +
s

∑

t=r+1

ft(xt)

≤
M(ln v̂

(r)
r+1 + 2 ln r)− ln(1− α)fr(x

(r)
r )

1− eln(1−α)
+

∑s
t=r+1[M(ln v̂

(r)
t+1 − ln v̂

(r)
t + 2/t)− ln(1− α)fr(x

(r)
t )]

1− eln(1−2ε)

≤ α−1[M(ln v̂
(r)
s+1 + ln s)]− α−1 ln(1− α)

s
∑

t=r

fr(x
(r)
t )

≤ α−1(α + α2)

s
∑

t=r

fr(x
(r)
t ) + Mα−1 ln s

= (1 + α)
s

∑

t=r

fr(x
(r)
t ) + Mα−1 ln s

A.2 Variable learning rate

In the previous section we assumed prior knowledge of the number of game iterations T .
We now show how to get O(

√
T lnT ) Adaptive-Regret without knowing T in advance by

changing the learning rate.

Lemma A.2. For interval I = [r, s], FLH achieves regret of O(
√

s ln s) without knowledge
of the total time T .

Lemma A.3. 1. For any i < t - ft(xt)− ft(x
(i)
t ) ≤ η−1

t (ln v̂
(i)
t+1 − ln v̂

(i)
t + η2

t M
2 + 2/t)

2. ft(xt)− ft(x
(t)
t ) ≤ η−1

t (ln v̂
(t)
t+1 + η2

t M
2 + ln t)

The constant M is an upper bound on (ft(x)).

Proof.

ln v
(i)
t − ln v̂

(i)
t+1 = ln v

(i)
t − ln

v
(i)
t e−ηtft(x

(i)
t )

∑t
j=1 v

(j)
t e−ηtft(x

(j)
t )

= ηtft(x
(i)
t ) + ln(

t
∑

j=1

v
(j)
t e−ηtft(x

(j)
t ))

t
∑

`=1

v
(`)
t ln

v̂
(`)
t+1

v
(`)
t

=
t

∑

`=1

v
(`)
t ln

e−ηtft(x
(`)
t )

∑t
j=1 v

(j)
t e−ηtft(x

(j)
t )

= −ηt

t
∑

`=1

v
(`)
t ft(x

(`)
t )− ln(

t
∑

j=1

v
(j)
t e−ηtft(x

(j)
t ))
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Using the convexity of ft, and putting the above equations together, we get -

ft(xt)− ft(x
(i)
t ) = ft(

t
∑

`=1

v
(`)
t x

(`)
t )− ft(x

(i)
t )

≤
t

∑

`=1

v
(`)
t ft(x

(`)
t )− ft(x

(i)
t )

= η−1
t

(

ln v̂
(i)
t+1 − ln v

(i)
t −

t
∑

`=1

v
(`)
t ln

v̂
(`)
t+1

v
(`)
t

)

−
t

∑

`=1

v
(`)
t ln

v̂
(`)
t+1

v
(`)
t

= ηt

t
∑

`=1

v
(`)
t ft(x

(`)
t ) + ln(

t
∑

`=1

v
(`)
t e−ηtft(x

(`)
t ))

= ηt

t
∑

`=1

v
(`)
t ft(x

(`)
t ) + ln

(

1− (1−
t

∑

`=1

v
(`)
t e−ηtft(x

(`)
t ))

)

≤ ηt

t
∑

`=1

v
(`)
t ft(x

(`)
t )− 1 +

t
∑

`=1

v
(`)
t e−ηtft(x

(`)
t )

≤ ηt

t
∑

`=1

v
(`)
t ft(x

(`)
t )− 1 +

t
∑

`=1

v
(`)
t (1− ηtft(x

(`)
t ) + (ηtft(x

(`)
t ))2)

= η2
t

t
∑

`=1

v
(`)
t ft(x

(`)
t )2

Putting the above together, we get -

ft(xt)− ft(x
(i)
t ) ≤ η−1

t

(

ln v̂
(i)
t+1 − ln v

(i)
t + η2

t

t
∑

`=1

v
(`)
t ft(x

(`)
t )2

)

Using Claim 3.5, we have ln v
(i)
t ≥ ln v̂

(i)
t − 2/t and that ln v

(t)
t ≥ −t ln t. Substituting

each of these above, we complete the proof.

Proof. (Lemma A.2) As before, we sum up the regret bounds given by Lemma A.3 and set
ηt = 1/

√
t.

s
∑

t=r

(ft(xt)− ft(x
(r)
t )) = (fp(xp)− fp(x

(r)
p )) +

s
∑

t=r+1

(ft(xt)− ft(x
(r)
t ))

≤ η−1
p (ln v̂

(r)
r+1 + η2

pM
2 + 2 ln r) +

s
∑

t=r+1

η−1
t (ln v̂

(r)
t+1 − ln v̂

(r)
t + η2

t M
2 + 2/t)

= M2ηp + 2η−1
p ln r + η−1

q ln v̂
(r)
s+1 +

s
∑

t=r+1

ln v̂
(r)
t (η−1

t−1 − η−1
t )

+

s
∑

t=r+1

M2ηt +

s
∑

t=r+1

2/(tηt)
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Setting ηt = 1/
√

t -

s
∑

t=r

(ft(xt)− ft(x
(r)
t )) ≤M2/

√
r +2

√
r ln r−

s
∑

t=r+1

ln v̂
(r)
t (
√

t−
√

t− 1)+ (M2 +2)(
√

s−
√

r)

We now provide a lower bound for ln v̂
(r)
t , which will allow us to upper bound the regret.

Since, in this case, r < t -

v̂
(r)
t =

v
(r)
t−1e

−ηt−1ft−1(x
(r)
t−1)

∑t−1
j=1 v

(j)
t−1e

−ηt−1ft−1(x
(j)
t )

Since ∀t, ηt ≤ 1 and ft = Θ(1), e−ηt−1ft−1(x
(j)
t ) ∈ [c1, c2] (for some positive constants

c1, c2). We also have that v
(r)
t−1 = 1/(t− 1).

v̂
(r)
t ≥ c1

c2(t− 1)
∑t−1

j=1 v
(j)
t−1

= O(t−1)

Therefore, − ln v̂
(r)
t ≤ O(ln s) and we get -

s
∑

t=r

(ft(xt)− ft(x
(r)
t )) ≤ O(

√
s ln s)

B The streaming problem

We now explain Woodruff’s solution for maintaining the set St ⊆ [1, n] in a streaming
manner.

We specify the lifetime of integer i - if i = r2k, where r is odd, then the lifetime of i
is the interval 2k+2 + 1. Suppose the lifetime of i is m. Then for any time t ∈ [i, i + m],
integer i is alive at t. The set St is simply the set of all integers that are alive at time t.
Obviously, at time t, the only integer added to St is t - this immediately proves Property 3.
We now prove the other properties -

Proof. (Property 1) We need to show that some integer in [s, (s + t)/2] is alive at time t.
This is trivially true when t−s < 2, since t−1, t ∈ St. Let 2` be the largest power of 2 such
that 2` ≤ (t− s)/2. There is some integer x ∈ [s, (s + t)/2] such that 2`|x. The lifetime of
x is larger than 2` × 2 + 1 > t− s, and x is alive at t.

Proof. (Property 2) For 0 ≤ k ≤ blog tc, let us count the number of integers of the form r2k

(r odd) alive at t. The lifetime of these integers are 2k+2 + 1. The only integers alive lie in
the interval [t− 2k+2− 1, t]. Since all of these integers of this form are separated by gaps of
2k, there are at most a constant number of such integers alive at t. Totally, the size of St

is O(log t).
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C Lazy version

Below we define a lazy version of FLH, called LFLH. We use the “coin-flipping” technique
applied in [CBL06] for the “label-efficient prediction” problem. Essentially, we notice that
the martingale arguments apply to any low regret algorithm, and even to low Adaptive-
Regret algorithms, rather than the multiplicative weights algorithm which they analyze.

Lazy-Follow-The-Leading-History

1. Set τ = 1.

2. In round t, flip a random ε-balanced coin and obtain the RV Ct.

3. If Ct = 1 do

(a) set gτ , 1
εft

(b) update τ ← τ + 1.

(c) Apply FTLH to the function gτ to obtain xτ = xt ← FTLH(gτ )

Else if Ct = 0, set xt ← xt−1

Theorem C.1. Suppose that for all x ∈ K and t ∈ [T ] ft(x) ∈ [0,M ]. Let R(T ) be an
upper bound on the regret of the algorithm used to implement FLH over a history of length
T . Then with high probability, for any ε > 0

1.

Adaptive-RegretT (LFLH) ≤ R(T ) + O(
M
√

T log T

ε
)

2. Throughout the running time of LFLH, xt 6= xt−1 at most εT times.

Lemma C.2. Suppose that for all x ∈ K and t ∈ [T ] ft(x) ∈ [0,M ]. Let I = [r, s] ⊆ [T ]
be any time interval, and let R(T ) be an upper bound on the regret of the algorithm used to
implement FLH over a history of length T . Then for any ε > 0 and c > 10, with probability
at least 1− 1

T c it holds that

RegretI(LFLH) ≤ R(T ) + O(
cM
√

T log T

ε
)

Proof. Let f1, ..., fT be the stream of online cost functions for LFLH. Recall that for each t ∈
T , Ct denotes the outcome of an independent binary coin flip which is one with probability
ε. Let

f̃t ,







0 Ct = 0

1
εft Ct = 1

The regret of LFLH in a certain interval I = [r, s] ⊆ [T ] is

RegretI =
∑

t∈I

ft(xt)− ft(x
∗
I)
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Where x∗
I , arg minx∈K

∑

t∈I ft(x). This quantity is a random variable, since the strategies
xt played by LFLH are determined by random coin flips 4. In order to bound this regret,
we first relate it to another random variable, namely

YI ,
∑

t∈I

f̃t(xt)− f̃t(x
∗
I)

Observe, that YI is the regret of FLH on the interval I for the functions f̃t. Since the
bound on the magnitude of the functions f̃t is M

ε , we get by Theorem 3.6 -

YI ≤ R(T ) + O(
M

ε

√
T log T ) (2)

We proceed to prove that

Pr[RegretI − YI ≥ 2

√
cT log T

ε
] ≤ e−c log T (3)

By equations (2) and (3) the Lemma is obtained.

Define the random variable Zt as

Zt , ft(xt)− ft(x
∗
I)− f̃t(xt) + f̃t(x

∗
I)

Notice that
∑

t∈I Zt = RegretI − YI and |Zt| ≤ 4M
ε . In addition, the sequence of random

variables Zr, ..., Zs is a martingale difference sequence [CBL06] with respect to the random
coin flip variables Cr, ..., Cs

5 since

E[Zt|Cr, ..., Ct−1] = 0

The reason is that given all previous coin flips, the point xt is uniquely determined by the
algorithm. The only random variable is f̃t and we know that its expectation is exactly ft.
We now use an extension to Azuma’s inequality (see [CBL06]) which implies:

Pr[
∑

t∈I

Zt ≥ δ|I|] ≤ e−
δ2|I|ε2

8M2

Applying this to our case, with δ = 8M
√

c log T

ε
√

T
we get

Pr[
∑

t∈I

Zt ≥ δ|I|] ≤ e−c log T (4)

Hence with probability ≥ 1− 1
T c we have

∑

t∈I

Zt = RegretI − YI ≤ δ|I| ≤ cM
√

T log T

ε

By equation (2) we get that with probability ≥ 1− 1
T c we have

RegretI ≤ R(T ) + O(
M

ε

√
T log T ) +

cM
√

T log T

ε

Theorem C.1 follows easily from this lemma and the application of the union bound.

4We can henceforth assume that the previous coin tosses C1, ..., Cr−1 are arbitrarily fixed, The following
arguments hold for any such fixation of previous tosses.

5Recall our assumption that the bit flips C1, ..., Cr−1 are fixed arbitrarily
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