
Tight lower bounds for adaptive linearity tests

Shachar Lovett1

Abstract

Linearity tests are randomized algorithms which have oracle access to the truth
table of some function f , which are supposed to distinguish between linear functions
and functions which are far from linear. Linearity tests were first introduced by Blum,
Luby and Rubenfeld in [BLR93], and were later used in the PCP theorem among other
applications. The quality of a linearity test is described by its correctness c - the prob-
ability it accepts linear functions, its soundness s - the probability it accepts functions
far from linear, and its query complexity q - the number of queries it makes. The BLR
test had q = 3 and s = 1/2. Linearity tests were studied in order to decrease the
soundness of linearity tests, while keeping the query complexity small (for one reason,
to improve PCP constructions). Samorodnitsky and Trevisan constructed in [ST00]

the Complete Graph Test, which for every k ∈ N has q =
(

k
2

)

+ k and s = 2−(k

2
). They

prove that no Hyper Graph Test can perform better than the Complete Graph Test.
Later in [ST06] they prove, among other results, that no non-adaptive linearity test can
perform better than the Complete Graph Test. We generalize their result for adaptive
tests, and prove that the Complete Graph Test is optimal even against adaptive lin-
earity tests. Our lower bound is actually proven in a more general setting, considering
the Average Query Complexity of a linearity test. Our proof technique is somewhat
different from the one used in [ST06]. In both cases the behavior of linearity tests
against quadratic functions are considered, but while [ST06] uses algebraic analysis of
the Gowers Norm of certain functions, we use a more direct combinatorial approach,
which allows us to also handle the case of adaptive linearity tests.

1 Introduction

We study the relation between the number of queries and soundness of adaptive lin-
earity tests. A linearity test (over the field F2 for example) is a randomized algorithm
which has oracle access to the truth table of a function f : {0, 1}n → {0, 1}, and needs
to distinguish between the following two extreme cases:

1. f is linear

2. f is far from linear functions

1Faculty of Mathematics and Computer Science, The Weizmann Institute of Science, POB 26, Rehovot
76100, Israel. Email: Shachar.Lovett@weizmann.ac.il. This research was supported by grant 1300/05 from
the Israel Science Foundation.

1

Electronic Colloquium on Computational Complexity, Report No. 90 (2007)

ISSN 1433-8092

A function f is called linear if it can be written as f(x1, ..., xn) = a1x1 + ...+anxn,
with a1, ..., an ∈ F2. The agreement of two functions f, g : {0, 1}n → {0, 1} is defined
as d(f, g) = |Px[f(x) = g(x)]−Px[f(x) 6= g(x)]|. f is far from linear functions if it has
small agreement with all linear functions (we make this definition precise in Section 2).

Linearity tests were first introduced by Blum, Luby and Rubenfeld in [BLR93].
They presented the following test (coined the BLR test), which makes only 3 queries
to f :

1. Choose x,y ∈ {0, 1}n at random

2. Verify that f(x + y) = f(x) + f(y).

Bellare et al. [BCH+96] gave a tight analysis of the BLR test. It is obvious that the
BLR test always accepts a linear function. They have shown that if the test accepts a
function f with probability 1/2 + ε, then f has agreement at least 2ε with some linear
function.

For a linearity test, we define that it has completeness c if it accepts any linear
function with probability of at least c. A test has perfect completeness if c = 1. A
linearity test has soundness s if it accepts any function f with agreement at most ε with
all linear functions, with probability of at most s + ε′, where ε′ → 0 when ε → 0. We
define the query complexity q of a test as the maximal number of queries it performs.
In the case of the BLR test, it has perfect completeness, soundness s = 1/2 (with
ε′ = 2ε) and query complexity q = 3.

If one repeats a linearity test with query complexity q and soundness s indepen-
dently t times, the query complexity grows to q′ = qt while the soundness reduces to
s′ = st. So, it makes sense to define the amortized query complexity q̄ of a test as
q̄ = q/ log2 (1/s). Independent repetition of a test doesn’t change it’s amortized query
complexity. Notice that the BLR test has amortized query complexity q̄ = 3.

Linearity tests are a key ingredient in the PCP theorem, started in the works of
Arora and Safra [AS98] and Arora, Lund, Motwani, Sudan and Szegedy [ALM+98]. In
order to improve PCP constructions, linearity tests were studied in order to improve
their amortized query complexity.

Samorodnitsky and Trevisan [ST00] have generalized the basic BLR linearity test.
They introduced the Complete Graph Test. The Complete Graph Test (on k vertices)
is:

1. Choose x1, ...,xk ∈ {0, 1}n independently

2. Verify f(xi + xj) = f(xi) + f(xj) for all i, j

This test has perfect completeness and query complexity q =
(

k
2

)

+ k. They show that

all the
(k
2

)

tests that the Complete Graph Test performs are essentially independent,

i.e. that the test has soundness s = 2−(k

2
). This makes this test have amortized query

complexity q̄ = 1 + θ(1/
√
q). They show that this test is optimal among the family of

Hyper-Graph Tests (see [ST00] for definition of this family of linearity tests), and raise
the question of whether the Complete Graph Test is optimal among all linearity tests,
i.e. does a test with the same query complexity but with better soundness exist?

They partially answer this question in [ST06], where (among many other results)
they show that no non-adaptive linearity test can perform better than the Complete

2

Graph Test. A test is called non-adaptive if it first chooses q locations in the truth
table of f , then queries them, and based on the results accept or rejects f . Otherwise,
a test is called adaptive. An adaptive test may decide on its query locations based on
the values of f in previous queries.

In this paper we generalize the lower bound result of [ST06], and show that the
Complete Graph Test is indeed optimal among all adaptive tests as well.

1.1 Our techniques

We analyze the behavior of linearity tests on quadratic functions, similar to what has
been done in [ST06]. However, we use a more direct combinatorial approach for analysis
of linearity tests, while [ST06] used a more algebraic approach (using Gowers Norm).

We model adaptive tests using test trees. A test tree T is a binary tree, where in
each inner vertex v there is some label x(v) ∈ {0, 1}n, and the leaves are labeled with
either accept or reject. Running a test tree on a function f is done by querying at each
stage f on the label of the current vertex (starting at the root), and following one of
the two edges leaving the vertex, depending on the query response. When reaching a
leaf, its label (accept or reject) is the value of that f gets in T . An adaptive test T can
always be modeled as first randomly choosing a test tree from some set {Ti}, according
to some distribution on the test trees, then running the test tree on f .

It turns out that in order to prove the lower bound, it is enough to consider functions
f which are quadratic. A function f is quadratic if it can be presented as f(x1, ..., xn) =
∑

i,j

ai,jxixj +
∑

i

bixi + c for some values ai,j, bi, c ∈ F2. We study the behavior of

running test trees on a random linear function, and on a random quadratic function.
The main idea is as follows. Let v be some inner vertex in a test tree T , with

the path from the root of T to v being v0, ..., vk−1, v. If x(v) is linearly dependent on
x(v0), ...,x(vk−1), then when running T on any linear function, the value of f(x(v))
can be deduced from the already known values of f(x(v0)), ..., f(x(vk−1)). Therefore, if
the vertex v is reached, then the same edge leaving v will always be taken by any linear
function. Additionally, if x(v) is linearly independent of x(v0), ...,x(vk−1), then either
v is never reached running T on linear functions, or the two edges leaving v are taken
with equal probability when running T on a random linear function. A similar analysis
can be made when running T on quadratic functions, replacing linear dependence with
a corresponding notion of quadratic dependence.

Using this observation, we can define the linear rank of a leaf v, marked l(v), as the
linear rank of labels on the path from the root to v. Similarly, we define the quadratic
rank of a leaf v, marked q(v), as the quadratic rank of those labels. We prove that the
quadratic rank of any set cannot be much larger than its linear rank, and in particular
that q(v) ≤

(

l(v)
2

)

+ l(v) for all leaves v. We use this inequality to prove that a test
which has completeness c and query complexity q accepts a random quadratic function
with a probability of at least c − 1 + 2−q+φ(q), where φ(q) is defined as the unique
non-negative solution to

(φ(q)
2

)

+ φ(q) = q.
We use this to show that any linearity test with completeness c and query complexity

q must have s ≥ 2−q+φ(q). In particular, the Complete Graph Test on k vertices has

3

perfect completeness, soundness s = 2−(k

2
) and query complexity q =

(k
2

)

+ k. Since
φ(q) = k the Complete Graph Test is optimal among all adaptive tests with the same
query complexity.

In fact, we prove a stronger claim. We say that a test T has average query com-
plexity q if for any function f , the average number of queries performed is at most q.
In particular any test with query complexity q also has average query complexity q.
We prove that for any test with completeness c and average query complexity q, the
soundness is at least s ≥ 2−q+φ(q).

We present and analyze linearity tests over F2. Linearity tests can also be considered
over larger fields or groups. Our lower bound actually generalizes easily to any finite
field, but for ease of presentation, and since the techniques are exactly the same, we
present everything over F2. We comment further on the modifications required for
general finite fields in Section 2.

2 Preliminaries

2.1 Linearity tests

We call a function f : {0, 1}n → {0, 1} linear if it can be written as f(x1, ..., xn) =
a1x1 + ... + anxn for some a1, ..., an ∈ {0, 1} where addition and multiplication are in
F2.

A linearity test is a randomized algorithm with oracle access to the truth table of
f , which is supposed to distinguish the following two extreme cases:

1. f is linear (accept)

2. f is ε-far from linear functions (reject)

where the agreement of two functions f, g : {0, 1} → {0, 1} is defined as d(f, g) =
|Prx[f(x) = g(x)] − Prx[f(x) 6= g(x)]|, and f is ε-far from linear functions if the
agreement it has with any linear function is at most ε.

We now follow with some standard definition regarding linearity tests (or more
generally, property tests). We say a test has completeness c if for any linear function
f the test accepts with probability at least c. A test has perfect completeness if c = 1.
We say a test has soundness s if for any f which is ε-far from linear the test accepts
with probability at most s + ε′, where ε′ → 0 when ε → 0 (in fact, we talk about a
family of linearity tests, for n→ ∞, but we ignore this subtle point).

A test is said to have query complexity q if it accesses the truth-table of f at most q
times (for any choice of it’s internal randomness). A test is said to have average query
complexity q if for any function f , the average number of accesses (over the internal
randomness of the test) done to the truth table of f is at most q. Obviously, any test
with query complexity q is also a test with average query complexity q.

We say a test is non-adaptive if it chooses all the locations it’s going to query in
the truth table of f before reading any of their values. Otherwise, we call the test
adaptive.

We now turn to model adaptive tests in a way that will be more convenient for our
analysis. We first define a test tree and running a test tree on a function.

4

Definition 1. A test tree on functions {0, 1}n → {0, 1} is a rooted binary tree T . On
each inner vertex of the tree v there is a label x(v) ∈ {0, 1}n. On each leaf there is a
label of either accept or reject.

Definition 2. Running a test tree T on a function f is done as follows. We start at
the root of the tree v0, read the value of f(x(v0)), and according to the value take the
left or the right edge leaving v0. We continue in this fashion on inner vertices of T
until we reach a leaf of T . The value of f in T is the value of the end leaf (i.e. accept
or reject), and the depth of f in T is the depth of the end vertex of f in T .

Using these definitions, we can now model adaptive tests. We identify an adaptive
test T on functions {0, 1}n → {0, 1} with a distribution of binary trees {Ti} (also on
functions {0, 1}n → {0, 1}). Running the test T on a function f is done by randomly
choosing one of the trees Ti (according to their distribution), and then running the test
tree Ti on f . The result of the function f in the test tree Ti is the result the test T

returns on f .
Notice that a test has query complexity q iff all trees Ti has depth at most q, and

has average query complexity q iff for any function f , the average depth reached in a
random tree from {Ti} is at most q.

In order to define our main theorem, we will define the following function. For
x > 0 define φ(x) as the unique real positive solution to φ(x)2/2 + φ(x)/2 = x. Notice
that for positive integer φ(x), this is the same as

(φ(x)
2

)

+ φ(x) = x. The following is
the main theorem of this paper:

Theorem 1. (main theorem) Let T be an adaptive test with completeness c, soundness
s and average query complexity q ≥ 1. Then s+ 1 − c ≥ 2−q+φ(q).

Notice that for large q, φ(q) ≈ √
2q, also

√
q ≤ φ(q) ≤ √

2q, so we get that in

particular, s+ 1 − c ≥ 2−q+θ(
√
q).

The Complete Graph Test was presented in [ST00]. The test (on a graph with k
vertices) can be described as choosing x1, ...,xk at random, and querying f at xi (for
i = 1..k) and on xi + xj (for 1 ≤ i < j ≤ k). The test accepts f if for any i, j

f(xi) + f(xj) + f(xi + xj) = 0

In [ST00] it is proven that the Complete Graph Test has perfect completeness and

soundness s = 2−(k

2
). The total number of queries performed is q = k +

(

k
2

)

, so by our

definitions, k = φ(q) and s = 2−q+φ(q). We have the following corollary:

Corollary 2. The Complete Graph Test is optimal among all adaptive linearity tests.

Remark. We state and prove all results for functions f : {0, 1}n → {0, 1}. In fact,
the lower bound result on adaptive linearity tests holds for functions f : F

n → F for
any finite field F, and not just F2, with only minor adjustments to the definitions and
proofs. We need to make the following modifications:

1. Define ”ε-far from linear functions” for general fields

2. Test trees should have |F | edges leaving each edge instead of 2

5

3. The proof that random quadratic functions are far from linear, proved in Sec-
tion 5, should be slightly modified

Since the results follow simply for any finite field, we chose to present the results over
F2 to make the presentation simpler and clearer.

3 Quadratic functions

We will see that in order to prove Theorem 1, it will be enough to limit the functions
f to be quadratic. We say a function f is quadratic if it can be written as:

f(x1, ..., xn) =
∑

i,j

ai,jxixj +
∑

i

bixi + c

for some ai,j, bi, c ∈ F2.
In fact, for our usage, we will force our quadratic functions f to have f(0) =

0 (equivalently, c = 0 in the above description). So, throughout this paper, when
speaking of quadratic functions, we actually speak of quadratic functions f with the
added condition f(0) = 0.

We will study the dynamics of a test tree T in a linearity test T, in two cases -
when applied to a uniformly random linear function, and when applied to a uniformly
random quadratic function.

The following technical lemma is the key ingredient to the proof of the Theorem 1.

Lemma 3. Let T be an adaptive linearity test with completeness c and average query
complexity q. Then running T on a random quadratic function returns accept with
probability at least c− 1 + 2−q+φ(q).

In order to prove Theorem 1, we will also need the following simple lemma:

Lemma 4. Let f be a random quadratic function. Then the probability that f is not
2−Ω(n)-far from linear functions is 2−Ω(n).

Theorem 1 now follows directly from Lemmas 3 and 4. We sketch now it’s proof
following the two lemmas.

Proof. (of the main theorem) The average probability that T returns accept on a ran-
dom quadratic function which is 2−Ω(n)-far from linear functions is at least c − 1 +
2−q+φ(q) − 2−Ω(n). So, there exists some quadratic function f which is 2−Ω(n)-far from
linear and on which T returns accept with probability at least c−1+2−q+φ(q) −2−Ω(n).
Taking n→ ∞ shows that s+ 1 − c ≥ 2−1+φ(q).

The remainder of the paper is organized as follows. Lemma 3 is proved in Section 4,
and Lemma 4 is proved in Section 5.

6

4 Linearity test applied to a random quadratic

function

We study tests and test trees applied to linear and quadratic functions, in order to
prove Lemma 3. Let T be an adaptive test with completeness c and average query
complexity q. Let T be a some test tree which is a part of the test T.

We start by studying the dynamics of applying T to linear functions. Assume we
know that f is a linear function, and we are at some vertex v ∈ T , where the path from
the root to v is v0, .., vk−1, v. Assume x(v) is linearly dependant on x(v0), ...,x(vk−1).
Since we know f is linear, we can deduce the value of x(v) from x(v0), ...,x(vk−1),
and so we will always follow the same edge leaving v when we apply T to any linear
function. On the other hand, if x(v) is linearly independent of x(v0), ...,x(vk−1), we
know that when we apply T to a random linear function, either we never reach v, or
we have equal chances of taking any of the two edges leaving v.

This gives rise to the following formal definition:

Definition 3. Let v be a leaf in T , where the path from the root to v is v0, v1, ..., vk−1, v.
We define the linear degree of v, marked l(v), to be the linear rank of x(v0), ...,x(vk−1).

We define LT to be the set of leaves of T to which linear functions can arrive. i.e,
v ∈ L if the path from the root to v, v0, ..., vk−1, v always takes the ”correct” edge
leaving any vertex vi with x(vi) linearly dependent on x(v0), ...,x(vi−1).

The following lemma formalizes the discussion above:

Lemma 5. For any test tree T :

1. For any v ∈ LT , the probability that a random linear function will arrive to v is
2−l(v)

2.
∑

v∈LT

2−l(v) = 1

For v ∈ LT , we define c(v) to be 1 if the value of v is accept, and c(v) = 0 otherwise.
Since the completeness of T is c, we have that the probability that T returns accept on
a random linear function is at least c. On the other hand, for any test tree T in T, the

probability that a random linear function will return accept is exactly
∑

v∈LT

c(v)2−l(v).

So, the following lemma follows:

Lemma 6. ET

∑

v∈LT

c(v)2−l(v) ≥ c

where by ET here and throughout the paper we mean the average value of a random
test tree T in T.

We now generalize the concept of linear dependence to quadratic functions.

Definition 4. Let x1, ...,xk ∈ {0, 1}n.
1. We say x1, ..., xk are quadratically dependent if there are constants a1, ..., ak ∈ F2,

not all zero, s.t. for any quadratic function f we have: a1f(x1)+...+akf(xk) = 0.
otherwise will call x1, ..., xk quadratically independent.

7

2. We say xk is quadratically dependent on x1, ...,xk−1 if there are constants a1, ..., ak−1 ∈
F2 s.t. for any quadratic function f we have: f(xk) = a1f(x1)+ ...+ak−1f(xk−1).
Otherwise we say xk is quadratically independent of x1, ...,xk−1.

3. We define the quadratic dimension of x1, ...,xk to be the size of the largest subset
of {x1, ...,xk} which is quadratically independent.

This definition may seem obfuscated, but the following alternative yet equivalent
definition will clarify it. The space of quadratic functions over {0, 1}n is a linear space
over F2. Let M be it’s generating matrix, i.e. the rows of M are a base for the
linear space (in particular, the dimensions of M are (

(n
2

)

+ n) × 2n). A column of M
corresponds to an input x ∈ {0, 1}n. Now, x1, ...,xk are quadratically dependent iff
the columns corresponding to them are linearly dependent, and similarly for the other
definitions.

Notice that the usual definition of linear dependence is equivalent to this more
complex definition, when applied to the linear space of all linear functions.

We now can repeat the informal discussion at the start of this section, except
this time for quadratic functions, with all the reasoning left intact. Let v ∈ T be
a vertex, with path from the root being v0, ..., vk−1, v. Assume x(v) is quadratically
dependent on x(v0), ...,x(vk−1), and f is any quadratic function. The value of f(x(v))
can be deduced from the already known values of f(x(v0)), ..., f(x(vk−1)), and so only
one edge leaving v will be taken on all quadratic functions. Alternatively, if x(v)
is quadratically independent on x(v0), ...,x(vk−1), then a random quadratic function
either never reaches v, or has equal chances of taking each of the two edges leaving v.

This leads to the following definition and lemma for quadratic degree of a vertex
v ∈ T , similar to the ones for linear degree.

Definition 5. Let v be a leaf in T , where the path from the root to v is v0, v1, ..., vk−1, v.
We define the quadratic degree of v, marked q(v), to be the quadratic rank of x(v0), ...,x(vk−1).

We define QT to be the set of leaves of T to which quadratic functions can ar-
rive. Naturally LT ⊆ QT . The following lemma on quadratic degree follows from the
discussion above:

Lemma 7. For any test tree T :

1. For any v ∈ QT , the probability that a random quadratic function will arrive to v
is 2−q(v)

2.
∑

v∈Q
2−q(v) = 1

3. For any v ∈ LT we have q(v) ≥ l(v)

Last, we mark the depth of a vertex v ∈ T by d(v). Since T has average query
complexity q, we know that for any function f , the average depth of running a random
tree T of T on f is at most q. So, this also holds for a random linear function. However,

the average depth a random linear function arrives on a tree T is exactly
∑

d(v)2−l(v),

so the following lemma follows.

8

Lemma 8. ET

∑

v∈LT

d(v)2−l(v) ≤ q

We now wish to make a connection between q(v) and l(v) for vertices v ∈ LT .
First, we prove that following lemma:

Lemma 9. For any x1, ...,xk ∈ {0, 1}n there are coefficients ai,j, bi ∈ F2 s.t. for any
quadratic function f we have:

f(x1 + ...+ xk) =
∑

i,j

ai,jf(xi + xj) +
∑

i

bif(xi)

Proof. Let f(x) by some polynomial of degree d. It’s derivative in the y direction is
defined to be fy(x) = f(x + y) − f(x). It’s easy to see that the degree of fy as a
function of x is at most d−1. So, taking 3 derivatives from a quadratic function makes
it the zero function, and so in particular for any quadratic function f, we we take it’s
derivatives in directions x,y and z, and evaluate the result at 0, we get that

(((fx)y)z(0) = 0

Opening this expression yields:

f(x + y + z) − f(x + y) − f(x + z) − f(y + z) + f(x) + f(y) + f(z) − f(0) = 0

Since f(0) = 0, we can express f(x + y + z) as a sum of application of f on an
element, or sum of two elements in {x,y, z}. This proves the lemma for k = 3. For
k > 3 we use simple induction.

Now we can bound l(v) in term of q(v):

Lemma 10. For any leaf v ∈ LT , l(v) ≥ φ(q(v))

Proof. Let v0, ..., vk−1, v be the path from the root of T to v. Let S ⊂ {x(v0), ...,x(vk−1)}
be a maximal quadratic independent set. |S| = q(v). The linear rank of S is l(v). Let
S′ ⊂ S be a maximal set of linearly independent elements of S. |S′| = l(v). Since every
x ∈ S is linearly dependent on S′, it can be written as a sum of some of the elements
of S′. Assume that S′ = {x1, ..., xl(v)}. Using Lemma 9, we get that for any x ∈ S

there exists coefficients a
(x)
i,j , b

(x)
i ∈ F2 s.t for any quadratic function f :

f(x) =
∑

1≤i<j≤l(v)

a
(x)
i,j f(xi + xj) +

∑

1≤i≤l(v)

b
(x)
i f(xi)

We have assumed that all the elements of S are quadratically independent. For this
to hold, the above equations in the symbolic variables f(xi + xj) and f(xi) must be
linearly independent. So the number of equations (q(v)) must be at most the number
of variables (

(l(v)
2

)

+ l(v)). So, we get that:

q(v) = |S| ≤
(

l(v)

2

)

+ l(v)

Reversing this formula, since φ(x) is monotone, we get that l(v) ≥ φ(q(v)).

9

We can now prove our main technical lemma (Lemma 3). We start with some
technical lemmas. We define ψ(x) to be x − φ(x) for x ≥ 1, and 0 for x < 1. Notice
that ψ is continuous, and ψ(x) = x−φ(x) for any non-negative integer x. Hence, using
Lemma 10 we get that:

Lemma 11. For any vertex v in a tree T , q(v) − l(v) ≤ ψ(q(v)).

Lemma 12. ψ is increasing and convex.

Proof. Since ψ is continuous and constant for x ≤ 1, it’s enough to prove the claim
for x > 1 (for increasing it’s clear, and once we’ve proved ψ is increasing, it shows it’s
enough to prove convexity for x > 1). We first show ψ is increasing.

For x > 1, define y = φ(x), so x = y2/2 + y/2 and ψ(y) = y2/2 − y/2.

dψ

dx
=
dψ

dy

dy

dx
=

dψ
dy

dx
dy

=
y − 1/2

y + 1/2

If x > 1 then y = φ(x) > 1, hence dψ
dx > 0 for x > 1, and so ψ is increasing.

To show that ψ in convex,

d2ψ

dx2
=
d

(

y−1/2
y+1/2

)

dy

dy

dx
=

1

(y + 1/2)3
> 0

We are now finally ready to prove Lemma 3.

Proof. (of Lemma 3) We need to prove that any test T with completeness c and average
query complexity q ≥ 1 accepts a random quadratic function with probability at least
c−1+2−ψ(q). Let us mark the probability the test accepts a random quadratic function
by p. Let pT mark the probability that a tree T accepts a random quadratic function.
pT is at least the probability that a random quadratic function reaches a leaf in LT
which is labeled accept. So:

pT ≥
∑

v∈LT

c(v)2−q(v)

We now follow to analyze p = ET [pT].

p ≥ ET [
∑

v∈LT

c(v)2−q(v)] = ET [
∑

v∈LT

2−l(v)c(v)2−q(v)+l(v)]

.
We divide the sum in the right side into two parts, p0 − p1, with p0, p1 ≥ 0, where:

p0 = ET [
∑

v∈LT

2−l(v)2−q(v)+l(v)]

. and
p1 = ET [

∑

v∈LT

2−l(v)(1 − c(v))2−q(v)+l(v)]

10

.
We start by analyzing p1. Since for any v always q(v) ≥ l(v) we have:

p1 ≤ ET [
∑

v∈LT

2−l(v)(1 − c(v))]

Recall that by Lemma 7 for any tree T we have

∑

v∈LT

2−l(v) = 1

and by Lemma 6 we have

ET [
∑

v∈LT

2−l(v)c(v)] ≥ c

so we conclude that:
p1 ≤ 1 − c

We move to analyze p0. Since ET [
∑

v∈LT

2−l(v)] = 1 and since the function X → 2X

is concave, we have by Jensen’s inequality that:

p0 ≥ 2

ET [

∑

v∈LT

2−l(v)(−q(v) + l(v))]

Now, we have that q(v)−l(v) ≤ ψ(q(v)) by Lemma 12, and also by the same lemma,
since q(v) ≤ d(v), we get ψ(q(v)) ≤ ψ(d(v)). So we get:

ET [
∑

v∈LT

2−l(v)(q(v) − l(v))] ≤ ET [
∑

v∈LT

2−l(v)ψ(d(v))]

.
Since by Lemma 12 ψ is convex, we get that again by Jensen’s inequality we get

that this is at most ψ(ET [
∑

v∈LT

2−l(v)d(v)]). By Lemma 8

ET [
∑

v∈LT

2−l(v)d(v)] ≤ q

where q is the average query complexity of T. So, we conclude that p0 ≥ 2−ψ(q), and
in total

p ≥ p0 − p1 ≥ 2−ψ(q) + c− 1

5 Random quadratic function is far from linear

In this section we prove Lemma 4, i.e. that a random quadratic function is far from
linear. We will use commonly known facts about quadratic functions.

11

Any quadratic function can be written as:

f(x) = xtAx+ < x, b >

The correlation of f with some linear function g is the g-th Fourier coefficient of
f . The Fourier coefficients of quadratic functions are well studied. In particular, it is
known that all the Fourier coefficients of f have the same absolute value, and that the
number of non-zero Fourier coefficients is 2rank(A+At). So, in order to show that f has
no large correlation with some linear function, it’s enough to show that B = A+At has
high rank. In particular, in order to show that f is 2−Ω(n)-far from linear functions, we
need to show that B has rank Ω(n). We will show that the probability that a random
quadratic function has rank less than n/4 is 2−Ω(n). We will use the following lemma:

Lemma 13. The number of matrices of rank at most k is at most nk2nk.

Using Lemma 13, it’s easy to prove Lemma 4. The number of matrices of rank at
most n/4 is at most 2n

2/4(1+o(1)). For a random quadratic function, B is a random
symmetric matrix with zero diagonal, and so the probability that B has rank less than
n/4 is 2−n

2/4(1+o(1)) = 2−Ω(n).
Now we finish by proving Lemma 13.

Proof. Let B be a matrix of rank at most k. There are
(n
k

)

options to choose k rows
which span the row span of the matrix, each other row have at most 2k options since
it must be in the row span of k specific rows. So, the number of possibilities for rank
k matrices is at most:

(

n

k

)

(2k)
n−k ≤ nk2nk

Acknowledgement. I thank my supervisor, Omer Reingold, for useful comments
and for his constant support and interest in the work. I thank Alex Samorodnitsky for
helpful discussions.

References

[ALM+98] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verifi-
cation and hardness of approximation problems. Journal of the ACM, 45(3):501555,
1998. Pre- liminary version in Proc. of FOCS ’92.

[AS98] S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization
of NP. Journal of the ACM, 45(1):70122, 1998. Preliminary version in Proc. of FOCS
’92.

[BCH+96] M. Bellare, D. Coppersmith, J. Hastad, M. Kiwi, and M. Sudan. Lin-
earity testing over characteristic two. IEEE Transactions on Information Theory,
42(6):17811795, 1996.

[BLR93] M.Blum, M. Luby and R. Rubinfeld. Self testing/correcting with applications
to numerical problems. Journal of Computer and System Sciences, 47(3):549-595,
1993. Preliminary version in Proc. of STOC ’90.

12

[ST00] A. Samorodnitsky and L. Trevisan. A PCP characterization of NP with optimal
amortized query complexity. In Proceedings of the 32nd ACM symposium on Theory
of Computation, pages 191-199, 2000.

[ST06] A. Samorodnitsky and L. Trevisan. Gowers uniformity, influence of variables,
and PCPs. In Proceedings of the 38nd ACM symposium on Theory of Computation,
pages 11-20, 2006.

13

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

