Electronic Colloquium on Computational Complexity, Report No. 91 (2007)

Logic, Graphs, and Algorithms

Martin Grohe
Humboldt-Universitat zu Berlin

September 10, 2007

Abstract

Algorithmic meta theoremare algorithmic results that apply to whole families of camaiborial
problems, instead of just specific problems. These famdresusually defined in terms of logic and
graph theory. An archetypal algorithmic meta theorem isr€alie’s Theorem [9], which states that
all graph properties definable in monadic second-ordeclogn be decided in linear time on graphs of
bounded tree width.

This article is an introduction into the theory underlyingk meta theorems and a survey of the most
important results in this area.

1 Introduction

In 1990, Courcelle [9] proved a fundamental theorem stdtirag graph properties definable in monadic
second-order logic can be decided in linear time on graphmuahded tree width. This is the first in a
series ofalgorithmic meta theorem#ore recent examples of such meta theorems state thatsalbfider
definable properties of planar graphs can be decided inrltimea [43] and that all first-order definable
optimisation problems on classes of graphs with excludemrsican be approximated in polynomial time
to any given approximation ratio [19]. The term “meta thenteefers to the fact that these results do not
describe algorithms for specific problems, but for wholeife® of problems, whose definition typically
has a logical and a structural (usually graph theoreticat)monent. For example, Courcelle’s Theorem is
aboutmonadic second-order logmn graphs of bounded tree width

This article is an introductory survey on algorithmic mdtadrems. Why should we care about such
theorems? First of all, they often provide a quick way to erthat a problem is solvable efficiently. For
example, to show that the 3-colourability problem can bgesbin linear time on graphs of bounded tree
width, we observe that 3-colourability is a property of draplefinable in monadic second-order logic and
apply Courcelle’'s theorem. Secondly, and more substintelborithmic meta theorems yield a better
understanding of the scope of general algorithmic techesgund, in some sense, the limits of tractability.
In particular, they clarify the interactions between logid combinatorial structure, which is fundamental
for computational complexity.

The general form of algorithmic meta theorems is:

All problemsdefinable in a certaifogic on a certain class dftructurescan be solvecffi-
ciently.

Problemsmay be of different types, for example, they may be optinosabr counting problems, but in
this article we mainly consider decision problems. We byiefscuss other types of problems in Sec-
tion 7.2. Efficient solvabilitymay mean, for example, polynomial time solvability, lineaiquadratic time
solvability, or fixed-parameter tractability. We will disgs this in detail in Section 2.3. Let us now focus
on the two main ingredients of the meta theorems, logic andttsire.

Author’s address: Martin Grohe, Institut fur Informatik, Humboldt-Univetat, Unter den Linden 6, 10099 Berlin, Germany.
Email:gr ohe@ nf or mat i k. hu- berlin. de

ECCC

1 ISSN 1433-8092

The twologicsthat, so far, have been considered almost exclusively fda tiheorems are first-order
logic and monadic second-order logic. Techniques fromclagiderlying the theorems are Feferman-
Vaught style composition lemmas, automata theoretic tgcles, and locality results such as Hanf’s The-
orem and Gaifman’s Theorem.

Thestructuresn algorithmic meta theorems are usually defined by grapbrtti properties. Actually,
to ease the presentation, the only structures we will censidthis survey are graphs. Many of the meta
theorems are tightly linked withraph minor theory This deep theory, mainly developed by Robertson and
Seymour in a long series of papers, describes the structgmaphs with excluded minors. It culminates
in the graph minor theorem [73], which states that everysatdgraphs closed under taking minors can be
characterised by a finite set of excluded minors. The thelsoytaas significant algorithmic consequences.
Robertson and Seymour [71] proved that every class of griptsis closed under taking minors can
be recognised in cubic time. More recently, results fronphreinor theory have been combined with
algorithmic techniques that had originally been develofmedplanar graphs to obtain polynomial time
approximation schemes and fixed parameter tractable tigwsifor many standard optimisation problems
on families of graphs with excluded minors. The methods kgl in this context are also underlying the
more advanced algorithmic meta theorems.

There are some obvious similarities between algorithmitantiteeorems and results frodescriptive
complexity theoryin particular such results from descriptive complexitgdhy that also involve restricted
classes of graphs. As an example, consider the theoremgstidit fixed-point logic with counting captures
polynomial time on graphs of bounded tree width [49], thatiproperty of graphs of bounded tree width
is definable in fixed-point logic with counting if and only ifis decidable in polynomial time. Compare
this to Courcelle’s Theorem. Despite the similarity, thare two crucial differences: On the one hand,
Courcelle’s Theorem is weaker as it makes no completenaiss,¢hat is, it does not state tredt properties
of graphs of bounded tree width that are decidable in linieae &re definable in monadic second-order
logic. On the other hand, Courcelle’s Theorem is strongédisialgorithmic content. Whereas it is very
easy to show that all properties of graphs (not only graphmahded tree width) definable in fixed-point
logic with counting are decidable in polynomial time, the@irof Courcelle’s theorem relies on substantial
algorithmic ideas like the translation of monadic secondkeologic over trees into tree automata [78] and a
linear time algorithm for computing tree decompositioris [B general, algorithmic meta theorems involve
nontrivial algorithms, but do not state completeness, wagm typical results from descriptive complexity,
the algorithmic content is limited, and the nontrivial p@rcompleteness. But there is no clear dividing
line. Consider, for example, Papadimitriou and Yannakskz!] well known result that all optimisation
problems in the logically defined class MAXSNP have a condtator approximation algorithm. This
theorem does not state completeness, but technically itichroloser to Fagin’s Theorem [37], a central
result of descriptive complexity theory, than to the altforiic meta theorems considered here. In any case,
both algorithmic meta theorems and descriptive compleakiggry are branches of finite model theory, and
there is no need to draw a line between them.

When | wrote this survey, it was my goal to cover the developisiap to the most recent and strongest
results, which are concerned with monadic second-ordés lmygraphs of bounded rank width and with
first-order logic on graphs with excluded minors. The pradfsiost theorems are at least sketched, so that
hopefully the reader will not only get an impression of theutés, but also of the techniques involved in
their proofs.

2 Thebasics

R, Q, Z, andN denote the sets of real numbers, rational numbers, integedsnatural numbers (that is,
positive integers), respectively. For a S&t R, by S.o we denote the set of nonnegative numberS iRor
integersm, n, by [m,n] we denote the intervdlm,m+1,...,n}, which is empty ifn < m. Furthermore, we
let [n] = [1,n]. The power set of a s&is denoted by $, and the set of ak-element subsets &by @

2.1 Graphs

A graph Gis a pair(V(G),E(G)), whereV(G) is a finite set whose elements are calleticesand

E(G) C (V(ZG)) is a set of unordered pairs of vertices, which are cadidges Hence graphs in this paper

are alwaydinite, undirected andsimple where simple means that there are no loops or parallel edges
If e={u,v} is an edge, we say that the vertieceandv areadjacent and that bothu andv areincident
with e. A graphH is asubgraphof a graphG (we writeH C G) if V(H) CV(G) andE(H) C E(G).
If E(H) =E(G)N (V<2H)), thenH is aninducedsubgraph ofG. For a seW C V(G), we write G[W]
to denote the induced subgrap¥,E(G)n (%)) andG\ W to denoteG|V(G) \W]. For a setF C E,
we let G[F] be the subgrapiQUF,F). HereJF denote the union of all edges I, that is, the set
of all vertices incident with at least one edgeFn We call G[F] the subgraph o5 generatedoy F;
note that it is not necessarily an induced subgrap6.oThe unionof two graphsG andH is the graph
GUH = (V(G)UV(H),E(G)UE(H)), and theintersection G1H is defined similarly. Theomplement
of a graphG = (V, E) is the graptG = (V, (\é) \ E). There is a uniquempty graph®,0). Forn > 1, we
let K, be the complete graph withvertices. To be precise, let us sy = ([n], ([g])) We letKnm be the
complete bipartite graph with parts of siaen, respectively.

Occasionally, we consider (vertex) labelled graphsaelled graphis a tuple

G = (V(G),E(G),P(G),...,Pi(G)),

whereR (G) CV(G) for all i € [¢]. The symbols? are calledabels and ifv e BR(G) we say that is
labelledby B. Subgraphs, union, and intersection extend to labelleghgran a straightforward manner.
Theunderlying graphof a labelled grapi is (V(G),E(G)). Whenever we apply graph theoretic notions
such as connectivity to labelled graphs, we refer to the dyidg graph.

Theorder |G| of a graphG is the number of vertices d&. We usually use the letterto denote the
order of a graph. Thsizeof G is the numbef|G|| = |G|+ |E(G)|. Up to a constant factor, this is the size
of the adjacency list representation@funder a uniform cost model.

¢ denotes the class of all graphs. For every cléssf graphs, we letj, be the class of all labelled
graphs whose underlying graph iséh A graph invariantis a mapping defined on the clagf all graphs
that is invariant under isomorphisms. All graph invariacdasidered in this paper are integer valued. For
a graph invariant : 4 — Z and a clas¥ of graphs, we say th& has bounded ff there is ak € Z such
thatf(G) <kforall Ge %.

LetG = (V,E) be a graph. Theegreeded®(v) of a vertexv € V is the number of edges incident with
v. We omit the superscriptif G is clear from the context. Thignaximum) degreef G is the number

A(G) = max{dedVv) |[ve V}.

The minimum degre®(G) is defined analogously, and thaeerage degree (@) is 2|[E(G)|/|V(G)|. Ob-
serve that|G|| = O(d(G) - |G|). Hence if a clas¥ of graphs has bounded average degree, then the size of
the graphs ir¢’ is linearly bounded in the order. In the following, “degred"a graph, without qualifica-
tions, always means “maximum degree”.

A pathin G = (V,E) of length n> 0 from a vertexvp to a vertexvy is a sequence, . .., v, of distinct
vertices such thafvi_1,vi} € E for all i € [n]. Note that the length of a path is the number of edges on
the path. Two paths amdisjoint if they have no vertex in commorG is connectedf it is nonempty and
for all vyw € V there is a path fromr to w. A connected componeaf G is a maximal (with respect t@)
connected subgrapl@ is k-connectegdfor somek > 1, if V| > k and for every?v C V with |W| < k the
graphG\ W is connected.

A cyclein a graphG = (V,E) of length n> 3 is a sequence; ...v, of distinct vertices such that
{vn,v1} € Eand{vi_1,vi} € Eforalli € [2,n]. A graphG is acyclic or aforest if it has no cycleGis a
treeif it is acyclic and connected. It will be a useful conventtorcall the vertices of treesodes A node
of degree at most 1 is calledeaf. The set of all leaves of a tréeis denoted by (T). Nodes that are not
leaves are callethner nodes A rooted treeis a tripleT = (V(T),E(T),r(T)), where(V(T),E(T)) is a
tree and (T) € V(T) is a distinguished node called theot. A nodet of a rooted tredl is the parentof
a nodeu, andu is achild of t, if t is the predecessor afon the unique path from the roofT) to u. Two
nodes that are children of the same parent are calldohgs A binary treeis a rooted tred in which
every node has either no children at all or exactly two chkitdr

2.2 Logic

| assume that the reader has some background in logic andrticyar, is familiar with first-order pred-
icate logic. To simplify matters, we only consider logiceoylabelled) graphs, even though most results
mentioned in this survey extend to more general structluetaus briefly review the syntax and semantics
of first-order logicFO andmonadic second-order logldSO. We assume that we have an infinite supply
of individual variables usually denoted by the lowercase letterg z, and an infinite supply ofet vari-
ables usually denoted by uppercase lett¥r¥, Z. First-order formulasn the language of graphs are built
up from atomic formula&(x,y) andx =y by using the usual Boolean connectivegnegation),A\ (con-
junction), v (disjunction),— (implication), and— (bi-implication) and existential quantificatiatx and
universal quantificatioivx over individual variables. Individual variables range overtices of a graph.
The atomic formul& (x,y) expresses adjacency, and the formutay expresses equality. From this, the
semantics of first-order logic is defined in the obvious wasstForder formulas over labelled graphs may
contain additional atomic formuld®(x), meaning thaxk is labelled byR. If a labelR does not appear in a
labelled grapl©, then we always interpré&}(G) as the empty set. Imonadic second-order formulase
have additional atomic formula§(x) for set variableX and individual variables, and we admit existen-
tial and universal quantification over set variables. Setides are interpreted by sets of vertices, and the
atomic formulaX(x) means that the vertexis contained in the sex.

The free individual and set variables of a formula are defined in thealisvay. Asentencas a for-
mula without free variables. We writ¢(x, ..., X, X1,...,X¢) to indicate thatp is a formula with free
variables amongq, ..., %, X1,...,X,. We use this notation to conveniently denote substituteoms as-
signments to the variables. 8 = (V,E) is a graphyy,...,w €V, andW,...,.W, CV, then we write
GEo¢(va,..., Vi, W,..., W) to denote thad (xq, . .., X, X1, ..., X¢) holds inG if the variablesq are inter-
preted by the verticeg and the variableX; are interpreted by the vertex s§ts

Occasionally, we consider monadic second-order formiias ¢ontain no second-order quantifiers,
but have free set variables. We view such formulas as fidgrdiormulas, because free set variables are
essentially the same as labels (unary relation symbols).example of such a formula is the formula
dom(X) in Example 2.1 below. We say that a formyiéX) is positive in Xif X only occurs in the scope
of an even number of negation symbols. Ihegative in Xif X only occurs in the scope of an odd number
of relation symbols.

We freely use abbreviations such/&i&l @i instead of(¢1 A ... A @) andx # y instead of-x =Y.

Example 2.1.A dominating sein a graphG = (V, E) is a setSC V such that for every € V, eithervis in
Sorvis adjacent to a vertex i8
The following first-order sentenaom says that a graph has a dominating set of kize

K
dome=3x...3%(A X #xAWV (Y=%VE(Y.X))).
1<i<j<k i=1

The following formuladom(X) says thai is a dominating set:

dom(X) = Vy(X(y) VvIzZ(X(2) NE(z y))) .

More precisely, for every grapB and every subs@&C V(G) it holds thatG = dom(S) if and only if Sis a
dominating set of>. J

Example 2.2.The following monadic second-order sentencesnandacycsay that a graph is connected
and acyclic, respectively:

conn= 3Ixx= XA VX ((EXX(X) AVXYY((X(X) AE(X,Y)) — X(Y))) — VXX(X)) :
acyc= —3X (Ex X(x) AVX(X(X) — Jy13ya(y1 # Y2 AE(X, Y1) AE(X,Y2) AX(y1) A X(yz)))) :

The sentencacycis based on the simple fact that a graph has a cycle if and bitlhas a nonempty
induced subgraph in which every vertex has degree at leagién the sentendeee = connA acycsays
that a graph is a tree. J

Figure2.1. An illustration of Lemma 2.3

The quantifier rankof a first-order or monadic second-order formglas the nesting depth of quan-
tifiers in ¢. For example, the quantifier rank of the formaleycin Example 2.2 is 4. LeG be a graph
andv = (v1,...,W%) € V(G)¥, for some nonnegative integkr For everyq > 0, thefirst-order g-type of
vin Gis the set téo(G,\ﬂ of all first-order formulagp(xy,...,%) of quantifier rank at mos such that
G E ¢(v1,...,W). Themonadic second-order g-type ofin G, tp}'S°(G, V) is defined analogously. As
such, types are infinite sets, but we can syntactigadlynaliseformulas in such a way that there are only
finitely many normalised formulas of fixed quantifier rank amith a fixed set of free variables, and that
every formula can effectively be transformed into an edeivBnormalised formula of the same quantifier
rank. We represent a type by the set of normalised formulamitains. There is a fine line separating de-
cidable and undecidable properties of types and formulase¥ample, it is decidable whether a formula is
contained in a type: We just normalise the formula and tastdfequal to one of the normalised formulas
in the type. It is undecidable whether a set of normalisedhtdas actually is (more precisely: represents)
a type. To see this, remember that types are satisfiable hyitdefiand that the satisfiability of first-order
formulas is undecidable.

For a tuplev = (v1,...,v), we sloppily write{v} to denote the sefvy,...,v}. It will always be clear
from the context whethefv} refers to the sefvy,...,w} or the 1-element seft(vy,...,v)}. For tuples
V= (v1,...,Vk) andw= (wy, ..., W), we writevw to denote their concatenatiow, . .., vk, wx, ..., w,). We
shall heavily use the following “Feferman-Vaught style’hgoosition lemma.

Lemma 2.3. Lettp be one otp™©,tpVSO. Let GH be labelled graphs and € V(G)X, ve V(G)!, w e
V(H)™such that (G) NV (H) = {u} (cf. Figure 2.1). Then for all ¢ 0, tp,(GUH, uww) is determined
by tpy(G,uv) and tp,(H,uw). Furthermore, there is an algorithm that computeg(G U H,uvw) from
tpg(G, uv) andtp,(H, uw).

Let me sketch a proof of this lemma for first-order types. Téesion for monadic second-order types
can be proved similarly, but is more complicated (see, fangxle, [57]).

Proof sketch.Let G,H be labelled graphs ande V (G)X such thav/ (G) NV (H) = {a}. By induction on
¢, we prove the following claim:

Claim: Let ¢(x,y,2) be a first-order formula of quantifier rarmk wherexis ak-tuple andy, z are
tuples of arbitrary length. Then there is a Boolean commnab(x,y, z) of expression§ | ¢(x,y) and
H | x(x,z) for formulasy, x of quantifier rank at mosy, such that for all tuples of vertices ofG andw
of vertices ofH of the appropriate lengths it holds that

GUH E ¢(0V,W) <= OV, W).
Here®d(u,v,w) denotes the statement obtained frdx,y, z) by substitutingufor x, vfor y, andw for z
Furthermore, the construction @ffrom ¢ is effective.

The claim holds for atomic formulas, because there are nesfiigmV (G)\V(H) toV(H)\V(G) in
GUH. Itobviously extends to Boolean combinations of formulss suppose that(x,y, z) = Ixo@ (X, %o, Y, Z).
Let v,w be tuples inG, H of the appropriate lengths. By the induction hypothesistatareWs (X, yyo, Z)
andW,(X,y,z%) such that

GUH £ ¢(a@, ;)
<~ € V(G) Wl(LT,\TVO,VV) oriwg € V(H) LPz(LT,\T,VVWo)

We may assume th&#t; is of the form

[<s

(GE Xi(X¥¥0) AH | &(%2).

Hence3dvp € V(G) W1(u,vvp, W) is equivalent to

(o €V(G) G = X (T ¥0) AH = &(@W)).
i=1

We letd; =\, (G E Jyvoxi (X, y¥o) AH =& ()ZZ)). Similarly, we define &, from W,, and then we let
O =PV Py
Clearly, the claim implies the statements of the lemma. O

2.3 Algorithms and complexity

| assume that the reader is familiar with the basics of thegdeznd analysis of algorithms. We will make
extensive use of the Oh-notation. For example, we will dettoe class of all polynomially bounded func-
tions of one variable by n°%). | also assume that the reader is familiar with standard ¢exitp classes
such as PTIME, NP, and PSPACE and with concepts such as bddudietween problems and hardness
and completeness for complexity classes. If not specifieeratise, reductions are always polynomial time
many-one reductions. The following example illustratesratation for introducing algorithmic problems.

Example 2.4.Thedominating set problerns defined as follows:

DOMINATING-SET
Instance: A graphG and a natural numbér
Problem: Decide if G has a dominating set of sike

It is well-known that DDMINATING -SET is NP-complete. J

We are mainly interested in algorithms for and the compyexitmodel checking problem&or every
logic L and every clas®” of graphs, we let:

MC(L,?%)
Instance: A sentencep of L and a graplG € 7.
Problem: Decide ifG = ¢.

If ¢ is the class of all graphs, we just write MIC).

Example 2.5.Example 2.1 shows that @MINATING -SET is reducible to MGFO). Hence MGFO) is
NP-hard. As MQFO) is trivially reducible to MGMSO), the latter is also NP-hard. g

Fact 2.6 (Vardi [79]). MC(FO) andMC(MSO) are PSPACEcomplete.

This fact is often phrased as: “Tkkembined complexityf FO resp. MSO is PSPACE-complete.” Com-
bined complexity refers to both the sentence and the graiplg Ipart of the input of the model checking
problem. Two principal ways of dealing with the hardness oflel checking problems are restrictions of
the logics and restrictions of the classes of input graphghis survey, we shall only consider restrictions
of the classes of input graphs. As for restrictions of thedsget me just mention that the model check-
ing problem remains NP-hard even for the fragment of firsieologic whose formulas are thsitive
primitive formulasthat is, existentially quantified conjunctions of atonacrfiulas. On the other hand, the
model checking problem is in polynomial time for theunded variable fragmends first-order logic [80].

Unfortunately, restricting the class of input graphs doaisseem to improve the complexity, because
the hardness result in Fact 2.6 can be strengthened lbet any graph with at least two vertices. Then

it is PSPACE-hard to decide whether a given FO-sentgnbelds in the fixed grapls. Of course this
implies the corresponding hardness result for MSO. Hentemly the combined complexity, but also the
expression complexigf FO and MSO is PSPACE-complete. Expression complexigrsab the problem

of deciding whether a given sentence holds in a fixed graple. réason for the hardness result is that in
graphs with at least two vertices we can take atoms of the feay to represent Boolean variables and use
this to reduce the PSPACE-complete satisfiability problengtiantified Boolean formula® the model
checking problem. Let us explicitly state the following sequence of this hardness result, where we call
a class of graphsontrivial if it contains at least one graph with at least two vertices.

Fact 2.7. For every nontrivial clas¥’ of graphs, the problemd C(FO, ¢) andMC(MSO, ¢’) are PSPACE
hard.

So what can we possibly gain by restricting the class of igpaphs of our model checking problems?
As there are no polynomial time algorithms (unless PTIMPSPACE) even for very simple classéf
input graphs, we have to relax our notion of “tractability drastic way of doing this is to considdata
complexityinstead of combined complexity, that is, consider the caxip} of evaluating a fixed sentence
of the logic in a given graph. The following fact implies thié data complexity of FO is in PTIME:

Fact 2.8. There is an algorithm that solvéd C(FO) in time Q(k? - n¥), where n denotes the order of the
input graph G and k the length of the input sentefice

Even though FO and MSO have the same combined complexityrensbime expression complexity,
the following example shows that the two logics differ inittdata complexity:

Example 2.9.lt is easy to see that there is an MSO-form8iaol saying that a graph is 3-colourable. As
the 3-colourability problem is NP-complete, this shows tha data complexity of MSO is NP-hard. J

There are, however, nontrivial class€sof graphs such that the data complexity of MSO restricted to
% is in PTIME. As we shall see later, an example of such a clag®iglass of all trees. Thus things are
starting to get interesting.

Still, while we have seen that polynomial combined compieisitoo restrictive, polynomial data com-
plexity may be too liberal as a notion of tractability. Réé¢edm the introduction that this survey is about
algorithmic meta theoremshat is, uniform tractability results for classes of altfanic problems defined
in terms of logic. Fact 2.8 implies such a meta theorBwery graph property definable in first-order logic
can be decided in polynomial tim&.serious draw back of this result is that it does not boundiggrees
of the polynomial running times of algorithms deciding fiestler properties. An important justification
for PTIME being a reasonable mathematical model of the d&%sactable” (that is, efficiently solvable)
problems is that most problems solvable in polynomial time a&ctually solvable by algorithms whose
running time is bounded by polynomials of low degree, uguadit more than three. However, this is not
the case for parameterized families of polynomial time dddfia problems such as the family of first-order
definable graph properties, for which the degree of the potials is unbounded. Or more plainly, even
for a property that is defined by a fairly short first-orderts@e, say, of lengtk = 10, an algorithm de-
ciding this property in timeéd(n'%) hardly qualifies as efficient. A much more useful meta theonemld
state that first-order definable graph properties can balddcuniformly” in polynomial time, that is, in
time bounded by polynomials of a fixed degree. Unfortunatlgh a theorem does not seem to hold, at
least not for first-order definable properties of the clasallajraphs.

The appropriate framework for studying such questions @ &f parameterized complexity theory
[28, 40, 61]. Aparameterized probletis a pair(P, k), whereP is a decision problem in the usual sense and
K is a polynomial time computable mapping that associateswalanumber, called thparametey with
each instance @®.!

Here we are mainly interested in model checking problemaraterized by the length of the input
formula. For a logic L and a class of graphs, we let:

1At some places in this paper (the first time in Remark 3.19) nealaaling with “parameterized problems” where the paramet
ization is not polynomial time computable. Whenever thipess here, the parameterization is computable by an fotitim (see
below), and this is good enough for our purposes. The same issilso discussed in Section 11.4 of [40].

p-MC(L,%)

Instance: A sentencep of L and a graplG € 7.
Parameter: |@|.

Problem: Decide ifG = ¢.

A parameterized probledP, k) is fixed-parameter tractablié there is an algorithm deciding whether
an instance is in P in time
f(k())-[x° (2.1)

for some computable functiohand some constawct We call an algorithm that achieves such a running
time anfpt algorithm Slightly imprecisely, we calf theparameter dependencéthe algorithm and the
exponentAn fpt algorithm with exponent 1 is calledliaear fpt algorithm Similarly, fpt algorithms with
exponents 2 and 3 are callgdadraticandcubic. FPT denotes the class of all parameterized problems that
are fixed-parameter tractable.

Hence a parameterized model checking problem is fixed-peteartractable if and only if it is “uni-
formly” in polynomial time, in the sense discussed abovey (Bquiring the functionf bounding the
running time to be computable, we impose a slightly stronggformity condition than above. This is
inessential, but technically convenient.)

Parameterized complexity theory is mainly concerned withdistinction between running times like
O(2%-n) (fpt) andO(n¥) (not fpt). Running times of the latter type yield the parasnized complexity class
XP. Intuitively, a problem is in XP if it can be solved by an atighm whose running time is polynomial
for fixed parameter values. Formally, XP is the class of alapweterized problems that can be decided in
time

O([x|*6),
for some computable functioh Hence essentially, the parameterized model checkindgarofor a logic
is in XP if and only if the data complexity of the logic is polymial time. The class XP strictly contains
FPT; this is an easy consequence of the time hierarchy threore

There is an appropriate notion fift reductionand a wide range of parameterized complexity classes
between FPT and XP.

Example 2.10A cliquein a graph is the vertex set of a complete subgraph. gdrameterized clique
problemis defined as follows:

p-CLIQUE

Instance: A graphG and a natural numbéc
Parameter: k

Problem: Decide if G has a clique of sizk.

It is easy to see that-CLIQUE € XP. It can be proved thgi-CLIQUE is complete for the parameterized
complexity class W[1] under fpt reductions [27]. J

Example 2.11.The parameterized dominating set problésdefined as follows:

p-DOMINATING -SET

Instance: A graphG and a natural numbér
Parameter: k

Problem: Decide if G has a dominating set of sike

It is easy to see thgd-DOMINATING-SET € XP. It can be proved thgi-DOMINATING-SET is complete
for the parameterized complexity class W[2] under fpt reiduns [26]. J

The parameterized complexity classes W[1] and W[2] formftret two levels of the so-calletV-
hierarchyof classes between FPT and XP. Yet another parameterizeplexity class, located between
the W-hierarchy and XP, is called AW Thus we have

FPTC W[1] € W[2] C W[3] C --- C AW[«] C XP.

Itis conjectured that all containments between the classestrict.
Fact 2.12 (Downey, Fellows, and Taylor [29]). p-MC(FO) is AW[x]-complete under fpt reductions.

Observe that by Example 2, 8;MC(MSO) is not even in XP unless PTIME NP.
This concludes our brief introduction to parameterized plaxity theory. For proofs of all results
mentioned in this section, | refer the reader to [40].

3 Monadic second-order logic on tree-like classes of graphs

The model checking problem for monadic second-order lagiest out to be tractable on trees and graph
classes that are sufficiently similar to trees. A well-knangasure for the similarity of a graph with a tree
is tree width In this article, however, we will work witlbranch widthinstead. The tree width and branch
width of a graph are the same up to a factor ¢2 3so the results are essentially the same. Some of the
results, including Courcelle’s theorem, may sound unfamihis way, but the reader can substitute “tree”
for “branch” almost everywhere, and the results will rentaire (up to constant factors, which we usually
disregard anyway). Using branch width instead of tree widly make this article a bit more interesting
for those who do not want to read the definition of tree widtthtfie 100th time. However, the main reason
for working with branch width is that it combines nicely witte other graph invariant that we shall study
in this sectionrank width Indeed, both branch width and rank width of a graph are int&ta of the same
abstract notion of branch width of a set function.

3.1 Trees

Let .7 denote the class of all trees. Recall that tigndenotes the class of labelled trees.
Theorem 3.1 (Folklore). p-MC(MSOQO, 9jp,) is solvable by a linear fpt algorithm.

We sketch two proofs of this theorem. Even though one may them as “essentially the same”, the
first is more natural from an algorithmic point of view, whitee second will be easier to generalise later.

First proof sketch.Using a standard encoding of arbitrary trees in binary tkegghe “first-child/next-
sibling” representation, we can reduce the model checkmplpm for monadic second-order logic on
arbitrary labelled trees to the model checking problem fonadic second-order logic on labelled binary
trees. By a well-known theorem due to Thatcher and Wrightl, W8 can effectively associate a (determin-
istic) bottom-up tree automataky with every MSO-sentencg over binary trees such that a binary tiee
satisfiesp if and only if the automatoiy acceptsT. By simulating the run oAy onT, it can be checked
in linear time whetheAy accepts a tre€. O

Second proof sketchAgain, we first reduce the model checking problem to binaggdr LefT be a la-
belled binary tree, and lgp be a monadic second-order sentence, say, of quantifierqardor every
teV(T), letT; be the subtree o rooted int. Starting from the leaves, our algorithm computg&{(T; t)

for everyt € T, using Lemma 2.3. Then it decidesfife tp}>°(T,r) for the rootr of T. O

The fpt algorithms described in the two proofs of Theoremasellinear in the size of the input trees.
Clearly, this is optimal in terms ofi (up to a constant factor). But what about the parameter depen
dence, that is, the functiofin an fpt running timef (k) - n? Recall that a functiorf : N" — N is ele-
mentaryif it can be formed from the successor function, additiohtsaction, and multiplication using
composition, projections, bounded addition of the fafm,g(ny, ..., N, ¢), and bounded multiplication

of the form[],<md(ny,. .., Nk,). Let exp" denote thér-fold exponentiation defined by e¥{n) = n and

expg (n) = 228" V(M for all n,h € N. It is easy to see that eXpis elementary for alh > 0 and that if a
function f : N — N is elementary then there is &n> 0 such thatf (n) < exp" (n) for all n € N. Itis well
known that there is no elementary functibrsuch that the number of states of the smallest autorfggon
equivalentto an MSO-formulf of lengthk is at mostf (k). It follows that the parameter dependence of our
automata based fpt algorithm fpeMC(MSQ,.7) is non-elementary. Similarly, the number of monadic
second-ordeg-types is nonelementary in terms @f and hence the type based fpt algorithm also has a

nonelementary parameter dependence. But this does natuutlee existence of other fpt algorithms with
a better parameter dependence. The following theorem stiayunder reasonable complexity theoretic
assumptions, no such algorithms exist, not even for firderomodel checking:

Theorem 3.2 (Frick and Grohe [44]).

(1) UnlessPTIME = NP, there is no fpt algorithm for pC(MSQO, .7) with an elementary parameter
dependence.

(2) UnlessFPT = WI[1], there is no fpt algorithm for pMC(FO,.7) with an elementary parameter
dependence.

As almost all classe®” of graphs we shall consider in the following contain the sl&sof trees, we
have corresponding lower bounds for the model checkinglenadon these class&s The only exception
are classes of graphs of bounded degree, but even for susdes|ave have a triply exponential lower
bound [44] (cf. Remark 4.12).

3.2 Branch decompositions

We first introduce branch decompositions in an abstradhgedind then specialise them to graphs in two
different ways.

3.2.1 Abstract branch decompositions

Let A be a nonempty finite set and: 22 — R. In this context, the functior is often called aonnectivity
function A branch decompositionf (A k) is a pair(T,[) consisting of a binary tre& and a bijection
B:L(T) — A. (Recall that_(T) denotes the set of leaves of a t/Eg We inductively define a mapping

B :V(T)— 2* by letting

Et)— {B(t)} if t is a leaf
®)= B(t) UB(ty) if tis an inner node with children, t,.

Thewidth of the branch decompositidiT, k) is defined to be the number
width(T, k) = max{k (B(t)) [t e V(T)},

and thebranch widthof (A k), denoted by byA k), is defined to be the minimum of the widths of alll
branch decompositions @A, k). We extend the definition of branch width to empty ground getsy
letting bw(0,k) = k(D) for all k : {0} — R. Note that(0,«k) does not have a branch decomposition,
because the empty graph, not being connected, is not a tree.

Usually, the connectivity functions considered for branch decompositions are integer-valsad;
metric, and submodular. A function: 2* — R is symmetridf k(B) = k(A\ B) for all BC A, and it is
submodulaif

K(B)+ k(C) > k(BUC)+ Kk (BNC) (3.1)

forallB,C C A

Example 3.3.Let A C R" be finite. For ever C A, letr(B) be the dimension of the linear subspace of
R" generated b, or equivalently, the rank of the matrix with column vectBr&efined to be 0 iB = 0).
Definekii, : 2* — Z by

Kiin(B) = r(B) +r(A\B) —r(A).
Kiin measures the dimension of the intersection of the subsparated by and the subspace generated

by A\ B. It is easy to see tha, is symmetric and submodular.
For example, let

NNl
Sors
on—:oo
N eNeoNe)
OO“I—\I—\
HI;I—‘I—‘

N

&

10

1 0 0
1 0 0
1 1 0
1 1 0 1
1
0
1 0 0
0 1
0 0
0 0
1 1
1 1
0 1
1 0 0 1 0 0
0 0 1 0
0 1 0 0
0 0 0 1

Figure 3.1. Two branch decompositions O, kijin) from Example 3.3

Figure 3.1 shows two branch decompositiongAfkii,). | leave it as an exercise for the reader to verify
that the first decomposition has width 1 and the second hak ®idObserve that b, kjin) = 1, because
every branch decompositiaiT,) of (A, kjin) has a leat € L(T) with B(t) = (1,1,1,1)T, and we have
Kin({(1,1,1,1)T}) = 1. g

Example 3.4.Again, letA C R". Now, for B C A let d(B) be the dimension of the affine subspacér8f
spanned by (defined to be-1 if B = 0), and let

Kat(B) = d(B) +d(A\ B) —d(A).

Itis not hard to prove that,s is also symmetric and submodular.
Figure 3.2 shows an example of a #et= {a,b,c,d,e, f,g,h} C R? and a branch decomposition of
(A Kaff) of width 1. a

Example 3.5.The previous two examples have a common generalisatiorghvitiiknown as the branch
width of matroids? Let M be a matroid with base satand rank functiomy. Then the functiox : 2* — 7
defined by

Km(B) = rm(B) +1v(A\B) —rv(A)

is known as theonnectivity functioof the matroid® Obviously,ky is symmetric, and as the rank function
rv is submodularky is also submodular. 2

Before we return to graphs, let us state a very general afgoic result, which shows that approxi-
mately optimal branch decompositions can be computed bptaddorithm. The proof of this theorem is
beyond the scope of this survey. It is based on a deep algofithminimizing submodular functions due
to lwata, Fleischer, and Fujishige [52].

When talking about algorithms for branch decompositions,have to think about how the input of
these algorithms is specified. Let be a class of pair, k), wherek : 24 — Z is symmetric and submod-
ular and takes only nonnegative values. We géla tractable class of connectivity functigrifwe have a

2Readers who do not know anything about matroids should natyw@his example is the only place in this survey where they
appear.
30ften, the connectivity function is defined lay (B) = rm (B) +rm(A\ B) — rm(A) + 1, but this difference is inessential here.

11

[Yo}

o]
(o]
(eX J

Figure 3.2. A set of A of eight points in the plane and a branch decompositidio&as) of width 1

representation of the paifé, k) € « such that, given the representatior(&fk), the ground seA can be
computed in polynomial time, and for eveByC A, the valuex (B) can be computed in polynomial time.

For example, ife/ is the class of pairéA, Kiin), whereA is a finite set of vectors over some finite field or
the field of rationals andj, is the linear connectivity function, then we can represgrgia(A, Kjin) simply
by a matrix whose columns are the vectorairFor the graph based examples that we shall describe next,
the underlying graph is always used as a representation.

Theorem 3.6 (Oum and Seymour [63]). Let.<” be a tractable class of connectivity functions. Then there
is an fpt algorithm that, giverfA k) € <7 and a parameter k& N, computes a branch decomposition of
(A, k) of width at mosBk if bw(A k) < k. If bw(A k) > k, the algorithm may still compute a branch
decomposition ofA, k) of width at mos8k, or it may simply halt without an outp6t.

3.2.2 Branch decompositions of graphs

LetG = (V,E) be a graph. For a s€tC E, we define thddoundaryof F to be the sefF of all vertices of
G incident both with an edge iR and with an edge i \ F. We define a functiorg : 2 — Z by letting

ka(F) = |0F| for everyF C E. It is not hard to verify thakg is symmetric and submodular. Branch

decompositiomf G is a branch decomposition ¢, k¢), and thebranch widthbw(G) of G is the branch
width of (E, kg).

Example 3.7.Figure 3.3 shows an example of a graph and branch decongostftthis graph of width 5.

|

Example 3.8 ([70]).For everyn > 3, the complete grapk, onn-vertices has branch widtf2n/3].

We omit the proof of the lower bound. For the upper bound, wétjmn the vertex set oK, into three
partsVi,V,, V3 of size [n/3] or |[n/3], and we partition the edge set into three €8s E»3, E13 such that
edges irE;j; are only incident with vertices i UV;. Then we take arbitrary branch decompositions of the
three subgraphS;; = (Vi UV, Ejj) and join them together as indicated in Figure 3.4. J

Note that the construction of the previous example actisibyws that everg-vertex graph has branch
width at most[2n/3].

Example 3.9 ([70]).A graph has branch width 0 if and only if it has maximum degremast 1. A graph
has branch width 1 if and only if it has at least one vertex afrde greater than 1, and every connected
component has at most one vertex of degree greater thands dnel cycles have branch width at most 2.

4An fpt algorithm of this type is known as dpt approximation algorithnj7].

12

4 4

4 4 5

9]
3 /
: by)
4
h| 3@ [r]e3 4 3 3
3

3@ [m] [5] [x] [b] 3 [d] [e] [1] [o] 5

i 1] 3 3 24 [q]

[n] [u] [t] [w] [p] [v]

Figure 3.3. A graph with a branch decomposition of width 5. The numbetb@todes indicate the size
of the boundary of the edges in the subtree below that node.

Gis Gzs3

Figure 3.4. A branch decomposition of a clique (see Example 3.8)

13

8

Gox2 G3ax3 Gaxa

Figure3.5. The(n x n)-grids forn=2,3,4

Let me suggest it as an exercise for the reader to prove tirapkedacts. J

Example 3.10 ([70]).For alln > 2, then x n-grid

Gren = (In] x), {{(i1. 1), iz, }2)} | i1 — 2| + |1 — o] = 1})
(cf. Figure 3.5) has branch width J

Branch width is closely related to the more familieze width In fact, it is not very hard to prove the
following inequalities for all graph& [70]:

bw(G) < tw(G) +1 < max{(3/2) -bw(G), 2}, (3.2)

where tw(G) denotes the tree width &.

As the connectivity functiongg are symmetric and submodular, approximately optimal brades:
compositions can be computed by the general purpose dgoat Theorem 3.6. However, for the special
case of branch decompositions of graphs, better algoritymknown:

Theorem 3.11 (Bodlaender and Thilikos[6]). There is an algorithm that, given a graph G and a N,
decides ibw(G) < k and computes a branch decomposition of G of width at mosthisifs the case in
time

f(k)-n,

where n= |V (G)|, for some computable function f.

3.2.3 Rank decompositions of graphs

Whereas branch width is based on decompositions of the etigéa graph, for rank width we decompose
its vertex set. For a grapB = (V,E) and subsetd),W C V of its vertex set, we leMg(U,W) be the
|U| x [W|-matrix with entriesmy, for u e U,w e W, where

1 if {uw}€E,
%W:{ fuw

0 otherwise

HenceMg(V,V) is just the adjacency matrix @3. We viewMg(U,W) as a matrix over the field GB)
and let rkMg(U,W)) be its row rank over G2). Now we define a connectivity functigns : 2¥ — N by

pe(U) =k (Ma(U.V\U))

for all U C V. Since the row rank and column rank of a matrix coincide, thecfionpg is symmetric,
and it is not hard to prove that it is submodularrakk decompositionf G is a branch decomposition of
(V, ps), and therank widthrw(G) of G is the rank width ofV, pg).

Example 3.12 Figure 3.6 shows an example of a graph and a rank decomposttthis graph of width 1.

|

It is easy to prove that rank width can be bounded in terms afidit width. The following theorem,
which gives a tight bound, is not so obvious:

14

Figure 3.6. A graph with a rank decomposition of width 1. For later refexe, we have named the nodes
of the tree

Theorem 3.13 (Oum [62]). For every graph G it holds thaiv(G) < max{1,bw(G)}.

The following example shows that the rank width of a graphlmasubstantially smaller than the branch
width, and that it can also be the same.

Example 3.141lt is easy to see that every rank decomposition of a comptejghghas width 1. Combined
with Example 3.8, this shows that the branch width and rardtiwof a graph can differ by a fact€x(n),
wheren denotes the number of vertices.

Let I(Kn) be the graph obtained from the completgertex graptK, by subdividing all edges once,
that is, by replacing every edge by a path of length(K,) is theincidence graptof K,. Thenifn > 3 and
n=0,1 mod 3 we have rn{f (Kn)) = bw(l (Kn)) = [(2/3)-n] [62]. a

Example 3.151t can be shown that the rank width of &nx n)-grid is at leasfn/2 — 2] (follows from
[62]). Hence grids have both large branch width and largk veidth. J

As for the branch width of graphs, there is an algorithm fanpating rank width that is more efficient
than the general purpose algorithm of Theorem 3.6.

Theorem 3.16 (Hlineny and Oum [33]). There is an algorithm that, given a graph G and a K, decides
if rw(G) < k and computes a rank decomposition of G of width at most ksiigtthe case in time

f(k)-nd,
where n= |V (G)|, for some computable function f.

Rank width is related to the graph invariadiique width[17], which is defined in terms of a graph
algebra: The clique width c{®) of a graphG is the least number of constant symbols required in a term
in this algebra describing the gra@h Oum and Seymour [63] proved that for every gr&ph holds that

w(G) < cw(G) < 2™+l _ 7,

In particular, this implies that a class of graphs has bodmdek width if and only if it has bounded clique
width.
3.3 Courcelle’s Theorems

For everyk > 1, let %y be the class of all graphs of branch width at mloahd %y the class of all graphs
of rank width at mosk. The following theorem is usually formulated in terms ofetreidth, but by (3.2)
the following “branch width version” is equivalent.

Courcelle's Theorem ([9]). For every k, the problem MC(MSO, %) is solvable by a linear fpt algo-
rithm.

15

As for Theorem 3.1, we sketch two proofs. The first is a redudido Theorem 3.1, whereas the second
is a generalisation of the second proof of Theorem 3.1.

First proof sketch.Let us fixk > 1. We reduce the model checking problem on the cl&ggo that on
labelled trees and then apply Theorem 3.1. We associatesatth graplG € % a labelled tred ™ and
with each MSO-sentengeover graphs a sentenge over labelled trees suchth@t=¢ < TT = ¢™T.
We will do this in such a way that™ is computable fronG in linear time and thap* is computable from
¢. Then our model checking algorithm proceeds as followse@®® € %, and¢ € MSO, it compute§
and¢ ™ and then tests if * satisfiesp™ using the algorithm of Theorem 3.1.

The mappings — T will not be canonical, i.e., isomorphic grap@swill not necessarily yield iso-
morphic treedT *. The treeT * will depend on the specific representation of the input gi@@md on the
algorithm we use to compute a branch decompaosition of tipigtigraph. Note that this does not affect the
correctness of our algorithm.

We construcfT* from G as follows: Without loss of generality we assume tahas no isolated
vertices. We first compute a branch decompositity3) of G of width at mostk, which can be done in
linear time by Theorem 3.11. Then we define a labelling dhat allows us to reconstru@ from the
labelled tre€el ™ within MSQ Formally, we define the labelling in such a way tfeais MSO-interpretable
in T*. Then we can construgt™ from ¢ using the method of syntactic interpretations (see [32.12]

We assume thal is an ordered binary tree, that is, each inner node has angfaaight child. Recall
that, for a node of T, B(t) is the set of all edges of G such thate = 3(u) for some leafu of T that
appears in the subtree rootedat.et B, = d3(t) be the boundary oB(t), that is, the set of all vertices
incident with an edge if8(t) and with an edge iE(G) \ B(t). Since the width of T, 3) is at mostk we
have|B;| < k for all nodest. The labelling of the tre& ™ encodes for every inner nodevith left child t
and right childt, how By intersects the se®, andB,. We assume some linear order of the vertice§of
Then there will be labelBy;j, for i, j € K], indicating that theth vertex inBy, is equal to theth vertex in
B, and similarly label$;; for to. Note thatB; C By, UB,, so these labels “determing;. We do not label
the leaves.

For each leaf, the setB; consists of the two endpoints of the edg@) (unless one or both endpoints
have degree 1). It is easy to write down four MSO-senteecg$x,y), for i, j € {0,1}, such that for all
leavesu,t of T we haveT* = eq; (u,v) if and only if theith vertex inBy is equal to thejth vertex inB.
Recalling our assumption th& has no isolated vertices, it is now easy to reconst@from T within
MSO. O

Second proof sketch.et G be a graph of branch width and letp be an MSO-sentence, say, of quantifier
rankg. We compute a branch decompositioh 3) of G of width k. We fix some linear order on the
vertices ofG. For everyt € V(T) we leth; be the ordered tuple of the element)@(t). Recall that for a
subseB C E(G), by G[B] we denote the subgraghy B, B) generated b.

Starting from the leaves we inductively computg(@[S(t)], b) for allt € V(T), applying Lemma 2.3
at every node. For this to work, it is important that for alblest with childrent; andt it holds that

V(GIB(t)] NG[B(t2)]) C 9B(t2) UIB(ta)
anddf(t) C 0B (t) UB(t).

Finally, we check if¢ € tpq(G[[ﬁ(r)]}, Br) for the rootr. (Note thath, is actually the empty tuple, but this
does not matter.) O

The following theorem was first proved by Courcelle [8, 11hinersion phrased in terms of certain
graph grammars. Later, a version for clique width was prdwe@ourcelle, Makowsky, and Rotics [14],
and finally the relation between clique width and rank widdswestablished by Oum and Seymour [63].

Theorem 3.17 ([8, 11, 14, 63]). For every k, pMC(MSO, %) is solvable by a cubic fpt algorithm.

Proof sketch.The proof follows the same strategy as the first proof of Cellets Theorem: We fik. For
every graplG € %y we construct a labelled tré¢ such that can be reconstructed fromt within MSO.
Then using the method of syntactic interpretations, fongkSO-sentence over graphs we obtain an
MSO-sentence* over labelled trees such th@t= ¢ <— T* = ¢*.

16

T* is obtained by suitably labelling the trdeof a rank decompositiofiT, 8) of G of width k. The
difficulty here is to encod& in a labelling ofT that uses only finitely many labels. Liebe an inner node
of T with childrent; andt,. Fori = 1,2, letU; = B(t;). Furthermore, let) =U; UU, andW =V \U. Then
B(t) =U, and the matrices at the noded»,t can be written as

M(Ug,V\Uz) = (M(U1,Uz2) M(Ug,W)),
M(Uz,V\Uy) = ((Ug,Uq) M(UQ,W)),
)
)

(U, W >

M(U,V\U) = (M (U, W
Note thatM (U,U;) is the transpose dfl (U1,U,). (We omit the subscript for the matriceMg(-,-).)
For every nodeéc V(T) we compute a sd; of at mosk vertices ofG such that the rows corresponding
to the vertices irB; form a basis of the row space of the matxU,V \U), whereU = B(). We define a
labelling of the (inner) nodes df as follows: Lett be an inner node with childranandt; andU; = B(t1),
Uz = B(t2), U =U1UUz = B(t). Then at the labelling encodes

e the matrixM(By,,By,),

o fori=1,2 and eaclv € B, arepresentation of the row df(U,V \ U) corresponding te as a linear
combination of vectors of the basis correspondinBitover the field GF2).

Note that this amounts to at mogtdits of information: The matrix requires at mdétbits, and a linear
combination ok vectors over GR2) requiresk bits.

We now describe how the grapgh can be reconstructed from the labelled tieée The vertices of
G correspond to the leaves @f. To find out whether there is an edge between a vertexsay, with
vi = B(up) and a vertex,, say withv, = 3(u,), we proceed as follows: Leétbe the first common ancestor
of u; anduy, and lett; andt; be the children ot such thaty; is a descendant df, for i = 1,2. Let
Ui = B(t)) andU =U;UU;z = B(t). Thenv; € U;. Note thatB, = {vi}, because the matrices at the leaves
only have one row. Hence, using the labelling, we can reeeissiind a representation of the row of the
matrixM(U;,V \ U;) corresponding te; as a linear combination of the rows correspondinBitoThen we
can use the matriki (B, , B,), which is also part of the labelling, to compute the emtgy,, of the matrix
M(U1,Uz), and this entry tells us whether there is an edge betwgendv,. The following example
illustrates this construction. O

Example 3.18 Consider the grapks and branch decomposition displayed in Figure 3.6. We defige t
“bases” as follows:

t] 1 2 3 4 5 6 a b c d e
B[{1} {2} {3} {4 {5 {6} 0 {1} {1} {4 {5}

Then for example, at nodethe following information is stored: The matrix
M({1},{2}) = (1)

and a representation of the ronis= (1 1 1) andr, = (0 0 0) of the matrixM({1,2,3},{4,5,6}) in terms
of the rowr:

r1:1-r1, r,=0-rq.

To determine whether there is an edge, say, between betweefs andv, = 5 we take the least common
ancestor of the two leaves,with its two childrenb andd. The representation of rons = (1 1 1) of
M({1,2,3},{4,5,6}) with respect tdB, = {1} isr3 = 1-r3, and the representation of ray= (1 0 1) of
M({4,5,6},{1,2,3}) with respect tByq = {4} isr5 = 1-r4. Hencemgs = 1-1-my4 = 1, that is, there is an
edge between 3 and 5. J

It follows from Theorem 3.2 that the parameter dependendbeofpt algorithms in the previous two
theorems has to be nonelementary.
We close this section with two remarks about strengtherfigfze two theorems:

17

Remark 3.19.0ur proofs yield stronger theorems than stated: Not onlgesMSO model checking prob-
lem fixed-parameter tractable on every class of graphs whiesech width is bounded, but actually the
following doubly parameterized model checking problemxsdi-parameter tractable:

Instance: A sentence) € MSO and a grapl.
Parameter: |¢| + bw(G).
Problem: Decide ifG = ¢.

The same is true for rank width. J

Remark 3.20lt is easy to see that both theorems can be extended to ldipedehs.

Courcelle’s Theorem even holds for a stronger monadic skooter logic, denoted by MSQthat
admits quantification not only over sets of vertices of a rdqut also over sets of edges. This stronger
result can easily be derived from the (labelled) versionaii€elle’s Theorem. Define thiecidence graph
|(G) of a graphG to be the graplfVi,E;), whereVi =V (G) UE(G) andE, = {{v,e} | v e}. Itis not hard
to see that for every grapgh of branch width at least 2 it holds that b®) = bw(I (G)). Furthermore, every
MSO,-formula overG can be translated to an MSO-formula over the labelled imzdegraph(l (G), P),
whereP = E(G) (The labelling is not really needed, but convenient.) Heihéellows from Courcelle’s
Theorem thap-MC(MSO;,, %) has a linear fpt algorithm for eveky> 1.

This does not work for rank width, because the rank width efititidence graph can be much larger
than that of the original graph. Surprisingly, the rank \Widf the incidence graph of a graph is closely
related to the branch width of the original graph. Oum [62}yed that

bw(G) — 1 < 'w(I(G)) < bw(G)

for every graphG with at least one vertex of degree 2. J

4 First-order logic on locally tree-like classes of graphs

There is not much hope for extending the tractability of ntbaaecond-order model checking to further
natural classes of graphs such as planar graphs or graplesiodéd degree. Indeed, the MSO-definable
3-colourability problem is NP-complete even when restddio planar graphs of degree 4. For first-order
logic, however, the model checking problem is tractable arcimlarger classes of graphs. Seese [75]
showed that first-order model checking admits a linear fgbadhm on all classes of bounded degree.
Later Frick and Grohe [43] proved the same for planar gragéeentially by the general approach that we
shall describe in this section. The crucial property of fister logic that we exploit is itlcality.

4.1 The Locality of First-Order Logic

Let G = (V,E) be a graph. Thelistancedist®(v,w) between two vertices,w € V is the length of the
shortest path fromr tow. For every € V andr € N, ther-neighbourhoodf vin Gis the set

NE(v) = {weV |dist®(v,w) <r}

of all vertices of distance at mosfromv. For a seWW C V, we IetNE(W) = [Jyew NE(W). We omit the
superscrip® if Gis clear from the context. Thadiusof a connected grap® is the least for which there
is a vertexv € V(G) such tha/ (G) C N, (v). The radius of a disconnected graphois

Observe that distance is definable in first-order logic, ithdor everyr > 0 there is a first-order formula
dist<((x,y) such that for all graph& andv,w € V(G),

G = dist (v,w) <= dist(v,w) <r.

In the following, we will writedist(x,y) <r instead oflist<; (x,y) anddist(x,y) > r instead of~dist<, (X, y).
A first-order formulag (xa, ..., %) is r-local if for every graphG and allvy, ..., v, € V(G) it holds that

Gl ¢(vi,...,Vi) < G[N/({va,...,vi})] = d(va,..., Vo).

18

This means that it only depends on theeighbourhood of a vertex tuple whetherralocal formula holds
at this tuple. A formulaigocal if it is r-local for somer .
A basic local sentencis a first-order sentence of the form

k
Exl...Eka< A\ dist(x,x;) > 2rA/\¢(>ﬁ)> ;
i=1

1<i<j<k

where¢(x) is r-local. In particular, for every local formulé(x) the sentencélx ¢ (x) is a basic local
sentence.

Gaifman’s Locality Theorem ([45]). Every first-order sentence is equivalent to a Boolean coatlin
of basic local sentences.

Furthermore, there is an algorithm that computes a Booleamlgination of basic local sentences
equivalent to a given first-order sentence.

We shall illustrate the following proof sketch in Examplé #elow. To appreciate the cleverness of the
proof, the reader may try to find a Boolean combination of blsial sentences equivalent to the simple
sentence) = Exﬂy(ﬁE(x, y) AP(X) A Q(y)) considered in the example before reading the proof.

Proof sketch.The proof is by structural induction on first-order formuld& enable this induction, we
need to prove a stronger statement that also includes fasmith free variables. We say that a first-order
formula is inGaifman normal form (GNF¥ it is a Boolean combination of basic local sentences andllo
formulas.

Claim: Every first-order formula is equivalent to a formula in GNF.

The claim is trivial for atomic formulas, because all atoricianulas are O-local. It obviously extends
to Boolean combinations of formulas. Universal quantifaatan be reduced to existential quantfication
and negation. The only remaining case is that of existéntigiantified formulas

¢(x) =3y w(xy),
wherey(x,y) is in GNF. We may assume thetx,y) is of the form

(xin&(XY)),

L<s

where eacly; is a Boolean combination of basic local sentences and &&xly) is local. Here we use the
simple observation that a Boolean combination of local fa&ms is local. The (x) is equivalent to the
formula

3

(xi ATy &i(XY)).

i=1

It remains to prove that each formula
¢'(x) =3y E(XY),

whereé (x,y) is local, is equivalent to a formula in GNF. Let> 0 such tha€ (x,y) is r-local. We observe
that¢’(x) is equivalent to the formula

Jy(distXy) < 2r+1AE(Xy)) vV Iy(distxy) > 2r + LAE(XY)), (4.1)

wheredist(x,y) < 2r + 1 abbreviated/; dist(x;,y) < 2r +1. The first formula in the disjunction (4.1)
is (3r +1)-local. Hence we only need to consider the secatyddist(xy) > 2r + 1A &(X,y)). Using
Lemma 2.3 and the-locality of £(X,y), it is not hard to see that this formula is equivalent to a Beal
combination of formulas of the form

2% A Jy(disty) > 2 +1An()),

19

where((x) andn (y) arer-local. Letr’ = 2r + 1. It remains to prove that

¢"(x) =Jy(dist(x y) > r' An(y))

is equivalent to a formula in GNF. This is the core of the whpteof. Suppose that = (xg,...,X).
Let G be a graph and = (vy,...,) € V(G)X. When doesG = ¢” (V) hold? Clearly, it holds if there
arews,..., W1 of pairwise distance greater than’ Zuch thatG |= n(w;) for all j, because eacH-
neighbourhoodN,/ (vi) contains at most one; and hence there is at least omgof distance greater than
r’ from all thev;. For¢ > 1, let

6, = E!yl...ﬂyg(A distyi,y;) > 2r’/\r](yi)).

1<i<j<t

Note that6, is a basic local sentence. We have just seen @hat implies ¢”(x). But of coursep” (x)
may also hold if6. 1 does not. Let us return to our gra@and the tuplev € V(G)X. Let? > 1 be
maximum such tha® = 6, and suppose thdt< k. In the following case distinction, we shall determine
whenG = ¢” (V).

Case 1: There are navy,...,w; € N/ ({V}) of pairwise distance greater tharf 8uch thaG = n(w;)
for all j.

As G E 6y, this implies that there is at least owez N ({v}) such thaG |= n(w). HenceG = ¢ (v).

Case 2: There is av € Ng/(V) such thatv ¢ N,/ (v) andG = n(w).

Then, trivially,G = ¢” (V).

Case 3:Neither Case 1 nor Case 2, that is, therevare..,w, € N/ ({v}) of pairwise distance greater
than 2’ such thaG = n(w;) for all j, and there is nav € N,/ (V) \ Ni (V) such thaG = n(w).

ThenG £ ¢”(v). To see this, suppose for contradiction that therews=V (G) such thawv & N,/ ({v})
andG = n(w). Thenw ¢ Ngp/ ({v}) and therefore digivj;,w) > 2r’ for all j € [¢]. ThusG = 6,1, which
contradicts the maximality of.

HenceG = ¢”(v) if any only if we are in Case 1 or 2. Note that the conditionscdéing these cases
can be defined by local formulas, say;(X) andy; 2(X). Thus ifG = 6, A —6,.1, thenG = ¢” (V) if and

only if G = y,1(V) V vi,2(V).
Overall,¢” (x) is equivalent to the formula

K
BV (92 A=6p1 A (Ya(X) vV Ve,z(@)) ,

(=1

which is in GNF. It is not hard to show that our constructioelgs an algorithm that computes a formula
in GNF equivalent to a given first-order formula. O

Example 4.1.Let us follow the proof of Gaifman’s theorem and constructamBan combination of basic
local sentences equivalent to the sentence

¢ =AY (-E(xy) AP(X) AQ(Y)),

which is a sentence over labelled graphs with laBed&dQ.
The quantifier free formulgi(x,y) = (=E(x,y) AP(X) AQ(Y)) is O-local. Hence we start the construc-
tion with the formula

$1(x) = Iy(=E(xy) AP(X) AQ(Y)).-
$1(x) is equivalent to the formula
¢1=P(x) AJy(-E(xy) AQ(Y))-

Splitting Ey(ﬁE(x,y) /\Q(y)) with respect to the distance betweemandy as in (4.1) (withr = 0) and
simplifying the resulting formula, we obtain

P(X) A (Q(x) v Jy(dist(x,y) > 1A Q(y))) .

20

It remains to consider the formulg{ (x) = Jy(dist(x,y) > 1A Q(y)). Following the proof of Gaifman’s
theorem (withg” = ¢7, n(y) = Q(y), r = 0, andk = 1), we obtain the following equivalent formula in
GNF:

7' = 82V 81/ 02 A (~Ty(distix,y) < 1AQ(Y))
v Jy(dist(x,y) < 3Adist(x,y) > 1/\Q(y))))

where 6, = Jy;Q(y1) and 8, = Jy; 3y, (dist(y1,y2) > 2A Q(y1) AQ(y2)). Henceg:(x) is equivalent to
the formulaP(x) A (Q(x) v ¢7"(x)). The step fromps(x) to ¢ = Ix¢1(x) is simple, because there are no
free variables left. By transforming the formuRéx) A (Q(x) v ¢1”(x)) into disjunctive normal form and
pushing the existential quantfier inside, we obtain the fdan

Ix(P(x) AQ(x))
V(3x P(x) A 62)

v (ax(P(x) A-Ty(distix,y) < 1AQ(Y))) A6y A ﬁez)
% (EX(P(X) ATy(dist(x,y) < 3Adist(x,y) > 1AQ(y))) ABL A ﬁez) .

Observe that this is indeed a Boolean combination of basial Isentences equivalent §o A slightly
simpler Boolean combination of basic local sentences edpri¥ tog is constructed in Example 3 of [51]
by a different technique. J

It has recently been proved in [20] that the translation ofst-firder sentence into a Boolean combi-
nation of basic local sentences may involve a nonelemebtaw-up in the size of the sentence.

4.2 Localisations of graph invariants

Recall that¥ denotes the class of all graphs. For every graph invarfiar# — N we can define its
localisation/s : 4 x N — N by

04(G,r) = max{ £(G[Nr (v)) ‘ ve V(G)}.

Hence to computés (G, r), we applyf to everyr-neighbourhood irG and then take the maximum. We
say that a clasg” of graphs hatocally bounded fif there is a computab¥unctiong : N — N such that
2:(G,r) <g(r) forall G € ¥ and allr € N.

Example 4.2.0ne of the simplest graph invariants is the order of a graffise@e that a class of graphs
has locally bounded order if and only if it has bounded degree

Moreover, if a clas®” has bounded degree then it has locally bountiéalr every computable graph
invariantf. 3

In this section, we are mainly interested in the localisatbbranch width. Maybe surprisingly, there
are several natural classes of graphs of locally boundatthraidth. We start with two trivial examples
and then move on to more interesting ones:

Example 4.3.Every class of graphs of bounded branch width has locallywded branch width. J

Example 4.4.Every class of graphs of bounded degree has locally boungeath width. This follows
immediately from Example 4.2. J

Example 4.5 ([68, 76]).The class of planar graphs has locally bounded branch widtire precisely, a
planar graph of radiushas branch width at most 2- 1.

Let me sketch the proof. L& be a planar graph of radius and letvg be a vertex such th&t(G) C
Nr (Vo). We show how to recursively partition the edge seiGoin such a way that at each stage, the

21

”_-’—~~\
' 1 N
/ 1 LN
AY
! \
1 \
1 R 1
Vo X
Q e
, w
S ’
So -

B; By
(b) PartB is cut again alon@R

L Jp—

B2\ {e}
(c) Edgee = {w,x} is split off partB,

Figure4.1. Schematic branch decomposition of a planar graph

22

boundary of each part has cardinality at mast-2L.. This will give us a branch decomposition of width at
most 2 + 1.

Without loss of generality we may assume t@@as 2-connected; if it is not, we first decompose it into
its 2-connected blocks. Figure 4.1 illustrates the follogvsteps. We fix a planar embedding@&fand let
C be the exterior cycle. We pick two verticesv onC and shortest pathH3 Q from vp to v, w, respectively.
Then we cut alond® andQ. This gives us a partition d&(G) into two parts whose boundary is contained
inV(PUQ). We can add the edgesi{PUQ) arbitrarily to either of the two parts. Now we consider each
of the parts separately. The boundary cycle consisB f, and a piece of the cycle. If this piece ofC
is just one edge, we can split it off and then further decorapls rest. Otherwise, we pick a vertern
the piece ofC and a shortest patR from vp to x. We obtain two new parts with boundariésP UR) and
V(QUR). We partition these new parts recursively until they onlggist of their boundaries, and then we
partition the rest arbitrarily. Of course this proof sketehits many details and special cases. For example,
the vertexyy could be on the exterior cycle to begin with. | leave it to thader to work out these details.

The branch decomposition in Figure 3.3 was obtained by tlethod. Note that the graph has radius
2, with centrevg being the vertex incident with the edgesand j. The initial pathsP andQ have edge
setsE(P) = {s,m} andE(Q) = {j}. The right part consists of the edge®¥, c,k,d, e, f,1,0,n,u,t,w, p,v,q.
The edges oP U Q were added to the left part. In the next step, the right pag sgdit along the path
Rwith E(R) = {k,e}. The right part of this split consists of the eddes$, o,n,u,t,w, p,v,q. The edgef
immediately can be split off, and the new boundary cycle, i} |, k, m,s. The new splitting path consists
of the edge, et cetera. J

Example 4.6 ([35]). Thegenusof a graph is the minimum genus of an orientable or nonoridatsurface
the graph can be embedded into. For evete class of all graphs of genus at mosias locally bounded
branch width. Moreover, for everly the class of all graphs afrossing nhumbeat mostk has locally

bounded branch width. J

In the next example, we shall construct an artificial clasgraphs of locally bounded branch width.
It serves as an illustration that the global structure opfsaof locally bounded branch width can be quite
complicated. In particular, this example shows that theeectasses of graphs of locally bounded branch
width and of unbounded average degree. Recall that if a @fasfsgraphs has unbounded average degree
then the size of the graphs #i is superlinear in their order. The graph classes in all previexamples
have bounded average degree and thus size linear in the &aleplanar graphs and graphs of bounded
genus, this follows from Euler’s formula.

Example 4.7 ([43]).Recall that thegirth of a graph is the length of its shortest cycle, andd¢hematic
numbeliis the least number of colours needed to colour the graplcimaway that no two adjacent vertices
receive the same colour. We shall use the well-known fa&t tdiErdds [36], that for aly, k > 1 there exist
graphs of girth greater thamand chromatic number greater thlanThe proof of this fact (see [2]) shows
that we can effectively construct such a grég]y for giveng andk.

Thenforevenk > 1, every graply x must have a subgragpy of minimum degree at leakf otherwise
we could properly colou® with k colours by a straightforward greedy algorithm (see [25}dllary 5.2.3).
Let Hx C Gy be such a subgraph. As a subgrapleef the graptHy still has girth greater thak

Let%é = {Hk | k> 1}. Then%¢ has unbounded minimum degree and hence unbounded average de
Neverthelessg has locally bounded branch width. To see this, simply oles#rat ther-neighbourhood
of every vertex in a graph of girth greater thary21 is a tree. As the branch width of a tree is at most 2,
for every graptH € ¥ and every > 1 we have

low(H,r) < max({ bw(Hy) | k< 2r+1} U{Z}). J

4.3 Model checking algorithms

Theorem 4.8. Let f be a graph invariant such that the following parametation of the model checking
problem for first-order logic is fixed-parameter tractable:

51t would be more precise to call this notion “effectively #ly boundedf”, but this would make the terminology even more
awkward.

23

p-MC(FO, f)

Instance: A sentencep € FO and a labelled grap®.
Parameter: |¢| + f(G).

Problem: Decide ifG = ¢.

Then for every clas® of graphs of locally bounded f, the problemME(FO, %) is fixed-parameter
tractable.

The proof of the theorem relies on Gaifman’s Locality Theo=nd the following lemma:

Lemma 4.9 ([43]). Let f and% be as in Theorem 4.8. Then the following problem is fixedipatar
tractable:

Instance: A labelled graptG = (V,E,P) € %, andk,r € N.
Parameter: ktr.
Problem: Decide if there are vertices, ...,V € P such that digt;,vj) > 2r for 1 <i <
j <k

For simplicity, we only prove the lemma for graph invariamtthat areinduced-subgraph-monotone
that is, for all graph& and induced subgrapksC G we havef (H) < f(G). Note that both branch width
and rank width are induced-subgraph-monotone.

Proof sketch of Lemma 4.%5ivenG = (V,E, P) andk,r € N, we first compute a maximal (with respect to
inclusion) seSC P of vertices of pairwise distance greater thanl2 |S| > k, then we are done.

Otherwise, we know tha® C Ny (S). LetH be the induced subgraph & with vertex setNs (S).
As |§ < k, the radius of each connected componenHois at most(3r + 1) - k. Hence, because is
induced-subgraph-monotone,

F(H) < £4(G, (3r+1)-k) < g((3r +1) k),

whereg is a function witnessing th& has locally bounded.

SinceP C Ny (S) andV (H) = Ng(S), for all verticesv,w € P it holds that dist(v,w) > 2r if and only
if dist" (v,w) > 2r. Hence it remains to check whett¢rcontainsk vertices labelled of pairwise distance
greater than 2 This is equivalent to saying thkt satisfies the first-order sentence

k
Hxl...ﬂxk< /\ dist(x,x;) > 2rA/\P(xi)> :

1<i<j<k i=1
We can use an fpt algorithm fgMC(FO, f) to check this. O

Proof sketch of Theorem 4.8et G = (V,E) € ¥ and¢ € FO. We first transform into an equivalent
Boolean combination of basic local sentences. Then we cbegghrately for each basic local sentence in
this Boolean combination whether it is satisfied®yand use the results to determine whethérolds.

So let us consider a basic local sentence

k
Y= Exl...ﬂxk< /\ dist(x,x;) > 2rA/\qu)> ,
1<i<j<k i=1

where x(x) is r-local. For each vertex of G we check whetheG|N; (v)] satisfiesy(v) using an fpt
algorithm forp-MC(FO, f). We can do this within the desired time bounds becd&N; (v)]) < ¢+ (G,r).

If G[N, (v)] satisfiesy(v), we labelv by P. To determine whethe® satisfiess, we have to check whether
the labelled grapkV, E, P) hask vertices inP of pairwise distance greater than By Lemma 4.9, this can
be done by an fpt algorithm. O

Corollary 4.10 ([43]). For every class¢ of graphs of locally bounded branch width,M€(FO, %) is
fixed-parameter tractable.

24

Figure5.1. Contraction of edge

Coroallary 4.11. For every clas¥ of graphs of locally bounded rank width, MC (FO, ¢) is fixed-param-
eter tractable.

Let me close this section with a few remarks on the running tiithe model checking algorithms.

Remark 4.12 We first look at the exponent of the fpt algorithms. An anayithe algorithms described
above shows that for every clagsof locally bounded we obtain an fpt algorithm fqp-MC(FO, ¥’) with
exponent+ 1, wherec is the exponent of an fpt algorithm fpeMC(FO, f). Hence for classes of locally
bounded branch width, this yields a quadratic fpt algoritand for classes of locally bounded rank width,
it yields an fpt algorithm with exponent four.

For classe% of locally bounded branch width, the exponent can be broadgitrarily close to 1; more
precisely, for everyg > 0 there is an fpt algorithm fgp-MC(FO, %) with a running time off (k) - |G|1*¢
[43]. Note that we cannot hope to find an fpt algorithm thatinear in the order for general classes
of locally bounded branch width, because by Example 4.7%thes classe®’ of locally bounded branch
width and unbounded average degree, which implies thatzbe&the graphs if¢ is not linearly bounded
in the order (and thus an algorithm that is linear in the omemot even read the whole input graph). It
is an open question whether for every cl&®f graphs of locally bounded branch width there is an fpt
algorithmp-MC(FO, %) that is linear in the siz8G|| of the input graph.

For specific classe®’, such as the class of planar graphs and classes of boundes gebhounded
degree, it is known that there are fpt algorithms that amsdlirin the order [43, 75].

Finally, let us look at the parameter dependence of the fmirdhms. In general, it is again nonele-
mentary by Theorem 3.2, because our classes contain theeaflal trees. However, classes of graphs of
bounded degree do not contain all trees, and it turns oufdhatich classes there are fpt algorithms with
an elementary parameter dependence. For the ¢las$ graphs of degree at mdst> 3, there is a linear
fpt algorithm forp-MC(FO, %) with a triply exponential parameter dependence, and tlsemematching
lower bound, which even holds on labelled binary trees [44]. J

5 Digression: Graph minor theory

A graphH is aminor of a graphG if H can be obtained fron® by deleting vertices, deleting edges,
and contracting edge<ontractingan edge means removing the edge, identifying its two endcestt
and possibly removing the resulting parallel edges. Figuteillustrates this. We writél < G if H is
isomorphic to a minor of5. A minor mappingfrom H to G is a mappingu that associates with each
v eV (H) a connected subgraphv) C G and with eacte € E(H) an edgeu(e) € E(G) such that:

e forall v# w, the graphgi(v) andu(w) are vertex disjoint;

e for all e= {v,w} € E(H), the edgeu(e) is incident to a vertex’ € V(u(v)) and a vertew €
V(W)

It is easy to see thad < G if and only if there is a minor mapping frol to G. Observe that the graphs
K (v) of a minor mapping: can be chosen to be trees.ifis a minor mapping fronH to G, we call the
graph

uH) = (U VW), U EmW)u{nE|ecEM)})

veV(H) veV(H)

25

Figure5.2. An image ofKs in a nonplanar graph

animageof H in G.% Figure 5.2 shows an example.
For every grapl, we let
2Z'(H)={G|H A£G}

We say that a clasg’ of graphsexcludes Hf ¢ C 2°(H). For a class’## of graphs, we let

2(A)= (] Z(H)={G|H£GforallH € s#}.
Hex

A class% of graphs isminor-closedf for every graphG € ¢ and evenH < Git holds thatH € . Observe
that a clas$s’ of graphs is minor-closed if and only if it can blefined by excluding mingrthat is, there

is a classs” such thate = 2 () (just takes?” = 4\ ¥). Robertson and Seymour proved that every
minor-closed class of graphs can actually be defined by dixajinitely many minors:

Graph Minor Theorem (Robertson and Seymour [73]). For every minor-closed clasé of graphs there
is a finite class# of graphs such that
C =2 (7).

Many natural classes of graphs are minor-closed:

Example 5.1.Every cycle can be contracted to a triankle Hence the class of forests (acyclic graphs) is
preciselyZ (Ks). a

Example 5.2.For everyk > 1, the class# of all graphs of branch widtkis minor-closed. Let me suggest
it as an exercise for the reader to prove this. Furthermohelds that#, = 2" (K4) [70]. J

Example 5.3. Series-parallel graplasd outerplanar graphexcludeKy. It can be shown tha” (Ky4)
is precisely the class of all graphs that are subgraphs @ssparallel graphs (see [25], Exercise 7.32).

2 ({Ka,Kz3}) is the class of outerplanar graphs (see [25], Exercise 4.20) J
Example 5.4.By Kuratowski's well-known theorem [54] (or, more precigeby a variant due to Wag-
ner [81]), the class of planar graphs#§({Ks,Ks3}). 3
Example 5.5.For everyk > 0, the class of all graphs of genkigss minor-closed. J

Note that all previous examples of minor-closed classaslase locally bounded branch width. But
this is a coincidence, as the following example shows.

Example 5.6.A graphG is anapex graphif there is a vertew € V(G) such thatG\ {v} is planar. The
class of all apex graphs is minor-closed.

8In the literature, the term “model” is used instead of “imagé/e prefer “image” here to avoid confusion with “models” time
logical sense.

26

The class of apex graphs does not have locally bounded breidtih. To see this, consider the “pyra-
mid graphs'P, obtained from thén x n)-grid G« by adding a new vertex and connecting it to all vertices
of the grid. Obviously, the pyramid graphs are apex grapidfar everyn > 1 we have

Low(Pn, 1) > bw(Gnpxn) > N,
where the second inequality holds by Example 3.10. J

Example 5.7.A graph isknot freeif it can be embedded inf&® in such a way that no cycle of the graph is

knotted in a nontrivial way. It is easy to see that the clasalldénot free graphs is minor-closed.
Similarly, the class of all graphs that can be embeddedRitm such a way that no pair of cycles is

linked is minor-closed. J

Let me also mention a “non-example”: The class of all graghg@ssing numbek > 1 is not minor-
closed.

5.1 Structure theory

The proof of the graph minor theorem relies on a deep stre¢haory for classes of graphs with excluded
minors. While it is far beyond the scope of this survey to descthis theory in adequate detail, or even
give a precise statement of the main structural result, lleMike to give the reader a glimpse of the theory,
because the model checking algorithms for graphs with ebeduminors heavily rely on it. Let me start
with a disclaimer: The following intuitive remarks may makeice story, but they do not always reflect
the actual proofs and thus should be taken with some care.

Suppose we have a clagswith excluded minors. The# C 27 (Ky) for somek, because every graph
is a minor of some complete graph. We #kandk for the rest of this section. We want to describe the
structure of the graphs i by “decomposing” them into “simple” building blocks. We #hdefine later
what exactly we mean by “decomposing” a graph. For now, lgistsremark that if a graph has bounded
branch width, then we can decompose it into pieces of bousied Thus we are mainly interested in
classe’ of unbounded branch width. The following theorem, whichng of the fundamental results of
the whole theory, gives us a handle on the structure of grapinsbounded branch width:

Excluded Grid Theorem (Robertson and Seymour [69]). There is a computable function f such that
for every k> 1 and every graph G, ibw(G) > f(k) then Gk < G.

A proof of this theorem can be found in [25].

The Excluded Grid Theorem tells us that if our cl&$ias unbounded branch width, then the graphs
in ¢ contain large grids as minors. Now we can try to use these lgrgls as “coordinate systems” and
describe the structure of the graphs relative to the gridssuppose we have a gra@he ¢ with a large
grid minor, and leH C G be the image of a large grid. Let us further assume @ithighly connected,;
if it is not we first decompose it into highly connected parid ¢hen consider each of them separately. We
come back to this decomposition process later. We think @fgtfid as embedded into the plane and the
rest of G being glued ontdH. It can be proved now tha& \ H must be glued ont#l in a fairly “orderly”
way: If there are many pairwise far apart “crossings” in thteiior of G then we can find &x-minor inG,
which is impossible becausee € C 2 (K). Here a crossing consists of two pairwise disjoint pathl wit
endpoints/y, vz andvy, v4 respectively, such that, vo,vs, v4 occur in this clockwise order on some cycle
of the grid. Figure 5.3 shows a grid with two crossings. Th/ks us with the following structure: There
is a bounded number of vertices, calkguices that are connected to the grid in an arbitrary fashion. rAfte
removing the apices, there still may be many crossings Hayt inust be grouped together into a bounded
number of small regions, calledrtices Apart from the apices and the vortices, the resGafust fit
nicely into the planar structure of the grid, that is, the poments ofG\ H are planar pieces, each of
which can be embedded into a “square” of the grid. Howeveflaswe have only talked about the interior
of the grid. There may be connections between differenspzirthe exterior cycle of the grid, but they
cannot be too wild either, because otherwise we could findge lelique minor again. We can subdivide
the exterior cycle into a bounded number of segments ankl stime of these together. This gives us a
graph that can be embedded into a surface of bounded geicall {nat every surface can be obtained by

27

/5‘// .
=

Ll)
/

Figure5.3. A grid with two crossings

Figure5.4. A cligue sum

gluing together edges of a convex polygon in the plane). Hfites removing a bounded number of apices
and vorticesG can be embedded into a surface of bounded genus. We sa tiisalmost bounded
genus We assumed th& is highly connected; if it is not then we can decompose it piexes with this
property. This is Robertson and Seymour’s main structurerdm [72]:For every class’ of graphs with
an excluded minor, the graphs #i can be decomposed into graphs that have almost bounded.genus

Let us now make it precise what we mean by “decomposing” agriapuitively, we want to recursively
split the graph along small separators until there no lomgersmall separators and the graph is highly
connected. But if we do this, we lose too much structure indeeomposition process, because two
vertices that are far apart on one side of the partition magide together on the other side and hence in
the original graph. Thus “locality”, and similarly “conntagty”, may be destroyed in the decomposition
process, and this is something we would like to avoid. We takery drastic approach: Whenever we
separate a graph, on both sides we add edges between aéséntithe separator.

We call a graplG a clique sunmof graphsG; andG, (and writeG = G1 @ Gy) if G1 NG, is a complete
graph,V(G) = V(Gl) UV(Gz), E(G) - E(Gl) UE(Gz), and E(Gl) \ E(G) - E(Gz), E(Gy) \ E(G) -
E(G1). ThusG is a subgraph 06, UG, obtained by possibly deleting some of the edge&im G,.
Figure 5.4 illustrates this. Note that we are slightly abgsiotation here because there may be several
non-isomorphic graphG such thatG = G; & Gp.

A cligue sum decompositiaf a graphG is a pair(T, y) consisting of a binary tre€ and a mapping
y that associates a grapft) with every node € V(T) such thaty(r) = G for the rootr of T andy(t) =
y(t1) @ y(t2) for all nodeg with childrenty, t,. Figure 5.5 shows an example of a clique sum decomposition
of a graph. The decomposition in Figure 5.5@npletdn the sense that the graphs at the leaves cannot be
decomposed any further. In general, the clique sum decdtigraswe are interested in are not necessarily
complete.

We call the graphg(t) in a clique sum decompositiqfT, y) the parts of the decomposition and the
partsy(t) for the leaves theatomic parts or justatoms (T, y) is a clique sum decompositi@mvera class
< of graphs if all atoms ofT, y) belong to”. We call a graptdecomposable over if it has a clique
sum decomposition over and denote the class of all graphs that are decomposablebgry ().

28

Py

Figure5.5. A cligue sum decomposition

Example 5.8.Letk > 1, and lety be the class of all graphs of order at mkif a graphG is decomposable
over 0, then bwG) < max{k, 2}. Let me suggest it as an exercise for the reader to verifisthiple fact.
Conversely, itis not too hard to prove that if a graph hasdmavidth at mosk, then it is decomposable
over ﬁ((3/2>|q .
Let me remark that a graph has tree widtli and only if it is decomposable ovefry ;. This follows
from the fact that a graph has tree width at moi$iand only if it is a subgraph of a chordal graph of clique
numberk+ 1 (see Corollary 12.3.12 of [25]). The result for branch Wititen follows by (3.2). J

| leave it as an exercise to prove the following simple lemma:
Lemma5.9. If a class« of graphs is minor-closed, then the clag$.s/) is also minor-closed.

Robertson and Seymour’s structure theorem for classesaphgrwith excluded minors can now be
stated slightly more precisely as followBor every classt” of graphs with an excluded minor there is a
class.Z of graphs that have almost bounded genus such#hat 2(</). Of course this still leaves it
open what exactly is meant by “almost bounded genus”. We teéecurious reader to the last chapter of
Diestel's book [25] for a more comprehensive introductioritte theory, or to Robertson and Seymour’s
original article [72].

We close this section by stating a simplified version of a Rloa and Seymour’s structure theorem
that will be sufficient for our purposes. Recall tHg}, denotes the localization of branch width. Minor-
closed classes of locally bounded branch width are paatilyulvell behaved. Eppstein [34, 35] proved
that a minor closed clasé has locally bounded branch width if and only if it does not team all apex
graphs (recall the definition of apex graphs from Examplg. 3@maine and Hajiaghayi [22] proved that
if a class of graphs has locally bounded branch width, theretlactually is a linear bound on the local
branch width, that is, there is’/a> 1 such that for alG € ¢ and for allr > 1 it holds that,w(G,r) <A -r.
This motivates the definition of the following classes offirs, for everyt > 1:

2 ={G|low(H,r) <A-rforallH < G}.
For everyu > 0, we define a class of graphs that ageclose” t0.7) :

LHu={G|IXCV(G): [X|<pandG\Xec %}

29

Theorem 5.10 (Grohe [48]). For every class¢” with excluded minors, there exist nonnegative integers
A, 1 such that
CCD)

To obtain this result from Robertson and Seymour’s stredfoeorem, one only has to prove that graphs
of almost bounded genus are.i#j, ,, for suitableA, u. This is not very difficult.

5.2 Algorithms

Before we get back to model checking problems, let me briefgcdbe some other algorithmic applica-
tions of graph minor theory. Consider the following two pasderized problems:

p-DISJOINT-PATHS
Instance: A graphG and vertices, t1, ..., t € V(G).
Parameter: k
Problem: Decide if there are pairwise disjoint patRsfori € [k], froms tot; in G.

p-MINOR

Instance: GraphG,H.
Parameter: |H|.

Problem: Decide ifH < G.

For neither of the two problems, it is even obvious that thelpbg to the class XP, that is, can be
solved in polynomial time for fixed, |H|, respectively. For B5JOINT-PATHS, this was a long standing
open problem posed by Garey and Johnson [46]. Robertsoneymddsir proved that both problems are
fixed-parameter tractable:

Theorem 5.11 (Robertson and Seymour [71]).
p-DI1SJOINT-PATHS and pMINOR have cubic fpt algorithms.

The reader may wonder why we combine both problems in ongeheoThe reason is that they are
both special cases of the more geneoalted minor problem A rooted graphis a tuple(G,vs, ...,),
whereG is a graph andys, ...,v € V(G), and a rooted grapfH,w, ..., w) is arooted minorof a rooted
graph(G,v,...,v) if there is a minor magu from H into G such thatv; € V(u(w;)) for all i € [K].
The parameterized problepiROOTED-MINOR is defined ap-MINOR, but for rooted graphs. | leave it
to the reader to redugeDISJIOINT-PATHS to p-ROOTED-MINOR. Robertson and Seymour proved that
p-ROOTED-MINOR has a cubic fpt algorithm.

To get an idea of the proof it is easiest to look at the disjpetths problem. Suppose we are given
a graphG andsy,ty,..., Stk € V(G). Let us further assume, to simplify the presentation, Gat 2k-
connected. 1Kz < G, then we know that there are disjoint paths from §ieeto thet;s: As the graph
is 2k-connected, by Menger’s theorem we can find disjoint paths1 8,11, ..,S,tk to an image oKz.
Then in the image oKz, we can connect the pieces in the right way because all ctionsare there.
This is not entirely trivial, because we only have an imag&#ffand not a subgraph, but it can be done.
So now we can assume thidg A G, and we can apply the structure theory for graphs with exadud
Ksk. If the branch width ofG is bounded, we can solve the disjoint paths problem easilyxample, by
applying Courcelle’s theorem. If the branch width is lartfesn by the Excluded Grid Theorem, we can
find a large grid inG. By the arguments described above, we can now find a smalf settices such that
after removing these vertices, the whole grapfits nicely into the planar structure of the grid. Passing
to a smaller grid if necessary, we may assume that alktlaadt; are outside the grid. Now it can be
proved that if there are disjoint paths frasmto t; for all i € [k], then there are such paths that avoid the
middle vertex of the grid (say, the grid has odd order). kitely, it is plausible that if we have a very large
grid andk disjoint paths traversing the grid, then we can always tgerthem to avoid the middle vertex.
Proving this formally turns out to be the most difficult paftive whole proof [66, 67]. It builds on the full
structure theory described in the previous section. Howewee this is done, we know that we can delete

30

the middle vertex of the grid and obtain a smaller gr&isuch that there are disjoint paths franto t;
for alli € [K] in G if and only if there are such paths @&. We repeatedly delete “irrelevant” vertices this
way until we obtain a graph of bounded branch width, and thers@lve the problem on this graph. This
completes our outline of the proof of Theorem 5.11.

Combined with the Graph Minor Theorem, Theorem 5.11 hasdhewing stunning consequence.

Corollary 5.12. Every minor-closed clasg’ of graphs is decidable in cubic time.

Note that a priori there is no reason why every minor-clodass®” of graphs should be decidable at
all.

Remarkably, Corollary 5.12 just claims the existence obatgms, without actually giving us the
algorithms. For example, by Example 5.7 it implies the exise of a cubic time algorithm for deciding
whether a graph is knot free. But we still do not know such goi@hm! The reason is that we do not know
a finite family of excluded minors defining the class of knegfigraphs. Corollary 5.12 is constructive in
the sense that if we are given a finite family of excluded nenthiat defines the class, then we can
construct a cubic time algorithm decidifd However, for many minor-closed classes we do not know
such a finite family.

In recent years, there has been a substantial body of worlgonitams for graph problems restricted
to graph classes with excluded minors or even generalisatbsuch classes [1, 21, 23, 24, 48, 53]. The
algorithmic meta theorems presented in the following sectshould be seen in this context as an attempt
to get a more global view on the potentials of algorithmiqaraninor theory.

We close this section with a lemma that we will need in the sextion.

Lemma 5.13. For every minor-closed clasg’ of graphs there is an algorithm that, given a grapheG
(<), computes a clique sum decomposition of G avein time Qn°).

Note that, in particular, the lemma implies an algorithmaesion of Theorem 5.10: For every clégs
with excluded minors there is a polynomial time algorithrattlyiven a graph if¥’, computes a clique sum
decomposition oG over.?) ;.

Proof sketch of Lemma 5.1Recall that if we writeG = G @ G, this implies tha¥/ (G1 N G,) induces a
cligue in bothG; andGy, but not necessarily its. If it also induces a clique if5, and henc& = G, UGy,

we call the clique sumsimplicial. We call a clique sum decompositi¢f, y) a simplicial decompositioif

the clique sums at all nodes ®fare simplicial. We call a simplicial decompositioompletdf its atoms
can not be decomposed any further. Simplicial decompaositwe much easier to handle than clique sum
decompositions. Tarjan [77] showed that a separating el@fua graph can be found in quadratic time.
This implies that a complete simplicial decomposition ofag can be found in cubic time.

Observe that if a grapB has a clique sum decomposition ovgt then some supergrag@ > G with
the same vertex set has a simplicial decomposition e¥erAs <7 is closed under taking subgraphs, we
may actually assume that this simplicial decompositioroimglete.

To compute a clique sum decomposition of a gréplover <7, we proceed as follows: We add a
maximal set of edges t& so that the resulting grap® is still in the class?(«). We can do this in
time O(n°), testing membership in the minor-closed clag&e) in cubic time for every potential edge.
Then we compute a complete simplicial decomposition of ttaplgG’. This also gives us a cligue sum
decomposition o6. O

6 First-order logic on graph classes with excluded minors

Let ¢ be a class of graphs with excluded minors. Our goal is to demigfpt algorithm for the first-order
model checking problem g#. Recall that by Theorem 5.10, the graph®imre decomposable into graphs
that “almost” have locally bounded branch width, where adtrmoeans after removing a bounded number
of vertices. We know how to deal with graphs of locally bouthbeanch width, and it is not hard to extend
this to graphs of almost locally bounded branch width. Meezowe know how to deal with tree structured
graphs. By combining these things, so it seems, it shouléb@ddo hard to obtain the desired result. This
is true, but there are technical difficulties to overcome.

31

We say that a tuple of vertices of a grapks induces a cliquén G if G[{v}] is a complete graph. We
write G = G @yH to denote thaG is a cligue sum of graph&’ andH with V(G') NV (H) = {v}. For
tuplesvy, ..., vy of vertices inG’ and graphs#i, ..., Hm, we may writeG' &g Hi @y, . . . &y, Hm; the order
of the summation of thél;s does not matter. In the following, types are always firsieotypes, and we
write tp instead of tp°. Let me remark that of the two lemmas below that are conceiiadcomputing
types, Lemma 6.1 also holds for MSO-types instead of FOsymphereas the Lemma 6.2 only holds for
FO-types.

To see that the parameterized problems in Lemmas 6.1 andebveei-defined, suppose that we have
labelled graph§, G', Hy,...,Hm and tuplesy, . .., vm Of vertices ofG’ such thaG = G' ©g, H1 &y, . .. &y,
Hm. Then it follows from Lemma 2.3 that&pG,\To) only depends on the typesq(;hil,\Tl), . ,tpq(Hm,\Tm)
and not on the actual grapHss. Thatis, for all graphs#ly, ..., Hy, with V(G'nH/) = {vi} and tp,(H/,vi) =
tpq(Hi,\Ti) it holds that

tpy(G' ®v; H1 @4, - .- B, Hm) = tpg (G, Vo).

Lemma 6.1. The following problem is fixed parameter tractable:

Instance: A labelled graphG’ of branch widthk, tuplesv; € V(G')% for i € [0,m] that
induce cliques irG’, andg-typesOy,...,0m.
Parameter: g
Problem: Compute the type {§G, Vo) for all graphsG = G' ©y; H1 ©, . . . ©g, Hm, where
theH; are graphs with t,E(Hi,\Ti) =0 foralli e [m].

Proof sketch.The proof is similar to the second proof of Courcelle’s Thegor We take a branch decom-
position ofG'. Starting at the leaves, we compute the types of the bowrslafiall nodes. To accomodate
for the graphdH;, we label some of the leaves of the branch decompositionthvteliquess, fori € [m,
instead of edges d&'. The type that is passed from such a leaf to its parent in thepotation is®;. In
order to obtain the type §0G, Vo) and not just tg(G, ()) (the type of the empty tuple) at the root, at each

nodet of the decomposition we compute the type of a tuple congjstitthe vertices in the boundaﬁgﬁ(t)
together with all vertices of the subgra@{(t)] that appear in the tuplg (instead of just the vertices in

IB(1)). O

Lemma 6.2. For all A, i, the following problem is fixed-parameter tractable:

Instance: A labelled graphG’ € .%, ,, tuplesvi € V(G))X for i € [0,m] that induce
cliques inG', andg-typesOy,...,On.
Parameter: q
Problem: Compute the type {§G, Vo) for all graphsG = G’ ©y; H1 ©y . .. ©, Hm, where
theH; are graphs with t&iHi,\Ti) =0 foralli e [m|.

Proof sketch.We prove the statement by induction pnFor u = 0, that is, graphs itZ), it can be proved
similarly to Theorem 4.8 (using Lemma 6.1 locally).

So lety > 0. Suppose we are given an instance of the problem. We obisexvine grapl@’ contains
a vertexw such thaG'\ {w} € %) ;1. As %) ,_1 is minor-closed and hence decidable in cubic time by
Corollary 5.12, we can find such a vertex in ti@én*). We define a new labelled grag@t by deleting the
vertexw and labelling all vertices adjacentwoin G’ with a new labeP. We then translate every formula
 of quantifier rank at mostinto a formulay* such thaG = Y(vo) <= G* = ¢ (Vo). AsG" € .2 1,
we can apply the induction hypothesis to chec®if|= ¢*(Vvp), and this way we can compute the type of
Vg in G. O

Theorem 6.3 (Flum and Grohe[39]). For every clas¥’ of graphs with an excluded minor, the problem
p-MC(FO, %) is fixed-parameter tractable.

32

|G’@H1@...®H4®I |

?/ \%0 [Gotme ahel|

Figure 6.1. The left hand side shows a graph and the right hand side aectigon decomposition of this
graph where the atoi®' intersects four other atoms and the atidmintersects two other atoms

Proof sketch.Let G € ¥ and¢ € FO, say, of quantifier rang.

LetA,u > 0 such thats’ C (%) ,,). Using Lemma 5.13, we compute a clique sum decomposition
(T,y) of Gover.?, ,,.

Now the obvious idea is to compute theaypes of the “boundary tuples” for the pag&) in the de-
composition in a bottom-up fashion, similarly to the secpnabf of Courcelle’s Theorem. Unfortunately,
this simple idea does not work, because a clique sum decatopois not as well-behaved as a branch
decomposition, and the boundaries of the parts may haveundeal size. It may even happen that an atom
of the decomposition (corresponding to a leaf of the tre&rgects all other atoms. Figure 6.1 illustrates
this.

Observe that a graph it¥ , cannot contain a clique with more th&n= [(3/2)-A +] vertices.
Hence for all nodesof T with childrenty,tz, we must hav®/ (y(t1) Ny(t2)) < k, becaus®/ (y(t1) Ny(t2))
is a clique in they(t;), and this clique will appear in some atom of the decompagitiet us fix some order
of the vertices ofG. For every inner nodewith childrenty, t,, we letc; be the ordered tuple that contains
the elements o¥ (y(t1) N y(t2)).

Our algorithm proceeds recursively, that is, “top-down’stead of “bottom up” as the algorithm in the
proof of Courcelle’s Theorem, to compute the types of thdewmi. Let us start at the roatof T. Our
goal is to compute thg-type of the empty tuple i. Suppose that the cligue sumrdas G = G; @ Gp. We
now want to compute thg-type of the tuples; in bothG; andG,; from that we easily get thg-type of the
empty tuple inG using Lemma 2.3. So let us continue by computingdtgpe ofc; in G;. Suppose the
children oft, aret;; andtio. Letc; = G,. Now we have a problem: To determine tipype ofc, in Gy,
it does not suffice to compute thlgtypes ofc; in G1; andGs,, because; andc; may be disjoint tuples.

It seems that we have to compute tigype of the longer tuple;c; in both graphs. But clearly we cannot
afford the tuples to get longer at every recursion level. Neeall that{c; } is a clique inG;. Hence it is
either contained ifc; } =V (G11) NV (Gi2), in which case we have no problem anyway, or it is contained
in precisely one of the two grapl@i1, Gi12. Suppose; is contained inG;,. Then we first compute the
g-type® of the tuplec; in G11. Now we have to compute the type®fin the graphG; = G111 @ G2. That

is, we are in the situation where we have to compute the tygetaplev of vertices of a grapl’ in a
graphG’ &y H for some (and hence all) graphs)with tpq(H,\7) = O. Furthermore, we know thatVv"
induce cliques irG’. The general problem we have to solve recursively at all aad¢he decomposition
tree is the following:

Compute they-type of a tuplevg of vertices of a grapls’ in a graphG' @y, H1 &, . .. ®, Hm
for some (and hence all) graphts)with tp, (Hi, ¢i) = ©;. Here all the tuples; have length at
mostk, and they induce cliques i@'.

At the leaves we can use Lemma 6.2 to do this. At the inner negeproceed as described for the node
above. O

The proof of the theorem actually shows that for all clasgewith excluded minorsp-MC(FO, %)
has an fpt algorithm with exponent at most 5. Hence, the espiiis independent of the clags Thus we

33

have “almost” proved that there is an fpt algorithm for thedmlcchecking problem parameterized both by
formula size and the size of the excluded minor. With corrsible additional effort, we can get rid of the
“almost” in this statement. Let me explain where the diffiead are and, in very general terms, how they
are resolved.

Let us first make the statement precise. We define a new graghantexcluded minor order (emo)
by letting

emdG) =min{|H||H £ G}

for every graphG. Note that em@G) = min{n | K, Z G} and that a clas®” excludes a minor if and only

if it has bounded excluded minor order. Our goal is to proat the following problem is fixed-parameter
tractable:

p-MC(FO,emo

Instance: A graphG and a sentencg € FO.
Parameter: |¢| +emqG).

Problem: Decide ifG = ¢.

We have already proved that for evéathere is an fpt algorithndy with exponent 5 for the first-order
model checking problem on the class of all graphs of excludetbr order at mosk. The problem is
that the familyAy of algorithms isnonuniform that is, we have a different algorithm for evety To
prove thatp-MC(FO,emo is fixed-parameter tractable, we need a uniform famly or equivalently,

a single algorithmA that takesk as an additional input. The family of algorithms we constrincthe
proof is nonuniform because we use Corollary 5.12 to getsitatialgorithms for the minor-closed classes
) u (in the proof of Lemma 6.2) an/(.%) ,,) (in the proof of Lemma 5.13) for parametetsu that
depend on the excluded minor order of the input graph. If wdccoompute finite families of excluded
minors characterising the class&§ , and 7(.%) ,) from the parametera, u, then we would be fine,
but we currently do not know how to do this. Fortunately, éhex an alternative approach that avoids
Corollary 5.12 entirely. The application of Corollary 5.ihi2he proof of Lemma 5.13 yielded an algorithm
for computing a clique sum decomposition of a graph a¥€rz), ,). While we do not know how to
compute such a decomposition uniformlyAinand i, in [18] we found a way to compute, uniformly in
A, U, a decomposition that is a sufficiently good approximatibthe desired clique sum decomposition.
The algorithm recursively splits the input graph along $reaparators that are sufficiently “balanced”.
The application of Corollary 5.12 in the proof of Lemma 6.2weeeded to find a set of at mastertices

in a graph in%, , whose removal left a graph i&,. In [18], we found an fpt algorithm that, given a
graphG € .%) ,,, computes a s&W C V(G) of at mostu vertices such tha® \W € %), for someA’ that is
effectively bounded in terms df. This is good enough for our purposes. Putting everythiggtizer, we
obtain the following result;

Theorem 6.4 (Dawar, Grohe, and Kreutzer [18]). p-MC(FO,ema is fixed-parameter tractable.

We say that a clas®cally excludes a minoif it has locally bounded excluded minor order. Then
combining Theorems 6.4 and 4.8, we get:

Corollary 6.5 ([18]). For every classg locally excluding a minor, the problem -C(FO, %) is fixed-
parameter tractable.

7 Other logicsand other problems

In this section, we briefly discuss some extensions of thenmesults mentioned in this survey to more
powerful logics, and also to variants of the basic model kimecproblem.

7.1 Other logics

It is really not much that is known about algorithmic metadtteanms for logics other than first-order and
monadic second-order logic. Courcelle’s Theorem and itsmafor graphs of bounded rank width can be

34

extended to the extension of monadic second order logic lutbaounting quantifiers [10, 12] (also see
[57]), and clearly not to full binary second order logic.

As for the results for first-order logic, let us consider pi@ extensions of the model-checking re-
sults tomonadic transitive closure log@ndmonadic least fixed-point logi®oth transitive closure logic
and least fixed-point logic have been extensively studiefithite model theory [31, 55]. Their monadic
fragments are strictly contained in monadic second-omtgc] and they strictly contain first-order logic.
(When we say that a logicontainsanother logic, we mean semantic containment, thatjsgdntainsL »
if every formula of Ly is logically equivalent to a formula ofil. We say that L strictly containg it L1
contains lp, but L, does not contain L.) Monadic transitive closure logic and monadic least fipedit
logic seem to mark the boundary of the range of logics to wthiettractability results for first-order model
checking can be extended.

Monadic transitive closure logi@C? is the extension of first-order logic by formulas of the form
[TCyxy®](x,y), whereg¢ is a formula with free variables amorg,y}. The free variables of the formula
[TCxy®](x,y) arex andy. It is allowed to nest TC-operators arbitrarily and intaxle them with first-order
guantifiers and connectives. However, we do not allow angrdtiee variables thaxandy in the formula
¢ in [TCyy#](x,y). The semantics is defined as follows:Gfis a (labelled) graph andw € V (G), then
G = [TCxy#](v,w) if and only if there is atm > 1 and verticesy, . .., Vm € V(G) such that = v, w = v,
andG E ¢ (vi,vi;1) foralli € [m—1].

Example 7.1.The following TC'-sentence states that a graph is connected:
VXVY[TCX,VE (Xa y)] (X7 y) .
Itis known that there is no sentence of first-order logic defjirconnectivity (see, e.g., [31, 32, 55]). .

Example 7.2.The following TC-sentence states that a graph has no cyclic walk of odd legtthence
is bipartite

~DAy([TCxyF2(E(x,2) AE(2Y))] (xy) NE(X))
Again, it is known that there is no sentence of first-orderdatgfining bipartiteness. J

The logic TC trivially contains FO, and it is strictly contained in MSOsApposed to MSO, its data
complexity is still in polynomial time (actually, in nond=ministic logarithmic space).

Theorem 7.3. Let ¥ be a class of graphs that contains all planar graphs of degeenost3. Then
p-MC(TC!, %) is hard for the parameterized complexity cla®&/[«].

Proof sketch.We reduce the model checking problem for first-order logicadsitrary graphs, which is
known to be AW[]-complete (by Theorem 2.12), @MC(TC!,%). LetG be a graph ang a first-order
sentence.

We start with constructing a drawing & in the plane, which of course may involve edge crossings.
We can find a drawing with at most polynomially many (in the t@mof vertices of5) crossings such that
in each point of the plane at most 2 edges cross. We introdueadiw labeld?;, P>, Q;,Q2, R. We define
a new labelled grap; by labelling each vertex of the original graghwith P, and replacing each edge
crossing in the drawing d& by a little gadget, as shown in Figure 7.1. Observe that tiye edlation of
the graphG can be defined i1 by a TC-formula (but not by an FO-formula, because an edge may cross
many other edges)G; is planar, but may have degree greater than 3. We define a Gaph replacing
every vertexv of G; of degreed by a binary tree with exactly leaves. With each leaf we associate one
vertexw adjacent tor in G;. We connect the leaf of thetree associated witly with the leaf of thew-tree
associated witl. Then we identify with the root of its tree, label #;, and label all other vertices of the
treeP,. Then the edge relation @ is also definable G, by a TC-formula. We can use this formula to
translate the formula into a TC'-formula¢, such that

GE¢ < Gr|=¢o.

Gy is a planar graph of degree at most 3, and it clearly can be etmdromG in polynomial time. This
gives us the desired reduction. O

35

P S = labelQ,
d N @ = labelQ,
/ \ @ = labelR
' i
\ !
\ /
\\\ ///

Figure7.1. A gadget for edge crossings

Monadic least-fixed-point logitFP! (see, e.g., [50, 74]) is the extension of first-order logicfdny
mulas of the formLFPyx ¢](x), where¢ is a first-order formula such that only occurs positively in
¢ and ¢ has no free individual variables other than (It may have free set variables other thdr)
The free variables ofLFP, x ¢](x) arex and all free set variables @f exceptX. To define the seman-
tics, let¢ = ¢(x,X,Y1,...,Ym). Let G be a labelled graph andy,... Wy C V(G), ve V(G). Then
G = [LFPx ¢ (X, X, Wi, ..., Wn)](v) if and only if v is in the least fixed point of the monotone operator
U {u|GE¢(uU,W,...,Wn)} onV(G). We call a formula in LFPrestrictedif for every subformula
of the form[LFP,x $](x), the formulag has no free set variables other thén By LFP we denote the
fragment of LFP consisting of all restricted formulas.

The reason for requiring that a formupain the scope of a fixed-point operattuFPy x ¢](X) contains
no free individual variables other tharis that otherwise even the restricted fragment of the logiald/
contain TC. It can be shown that LPRas defined here) does not contain'Tadd that, conversely, TC
does not contain LFR not even LFR.

| was unable to come up with convincing examples of propexdfeplain graphs that are definable in
LFP! or LFPY, but not in first-order logic. However, this changes when amimore general structures.
For example, oriripke structuresthat is, labelled directed graphs with one distinguisHechent, LFP
contains the modal-calculus. Here is another example:

Example 7.4.We can describe monotone Boolean circuits as labelledtduearyclic graphs, and assign-
ments to the input gates by an additional label. It is easgéotsat there is an LEFormula stating that
an assignment satisfies a circuit. This is not definable itidirder logic. J

As we mentioned earlier, almost all results presented sndhivey extend to arbitrary structures. In this
context, the following tractability result is more intetieg than it may seem in a purely graph theoretical
context.

Theorem 7.5. Let ¢ be a class of graphs such that\e (FO, éjp) is fixed-parameter tractable. Then
p-MC(LFP!, %) is fixed-parameter tractable.

Proof sketch.To evaluate a formula of the forfbFP, x ¢](x), where¢ = ¢ (x, X) is first-order, in a graph
G, we proceed as follows: We introduce a new laBellnitially, we setP(G) = 0. Then we repeatedly
compute the set of all e V(G) such thaiG = ¢ (v,P(G)) using an fpt algorithm fop-MC(FO, %j,) and
setP(G) to be the set of all these vertices. After at most |G| steps, the computation reaches a fixed
point, which consists precisely of allsuch thaiG = [LFP, x¢](v). Using this algorithm as a subroutine,
we can easily model-check arbitrary sentences iniLFP O

Lindell [56] proved that for the classe of graphs of degree at mdstthe problenp-MC (LFP}, %)
even has a linear time fpt algorithm.

7.2 Generalised model checking problems

For a formulag (xq,...,%) and a graplG, by ¢(G) we denote the set of all tuplésy, ..., v) € V(G)K
such thatG = ¢(v1,...,w). For every logic L and clas#” of graphs, we may consider the following

36

variants of the model checking problggaMC(L,%’): The input always consists of a graghe ¥ and

a formula¢ € L, possibly with free variables. The parametef¢s$. The decision problensimply asks
if (G) is nonempty. For logics closed under existential quantifica this problem is equivalent to the
model checking problemp-MC(L,%). Therefore, we will not consider it here anymore. Toastruction
problemasks for a solutiow € ¢ (G) if there exists one. Thevaluation (or listing) problenasks for all
solutions, that is, for the whole s¢tG). Finally, thecounting (or enumeration) problemsks for the
number|¢ (G)| of solutions. All these problems have natural applications

The results on monadic second-order model checking on giafdtounded branch width and bounded
rank width (Theorems 3.3 and 3.17) can be extended to thesmonding construction and counting prob-
lems [3, 15, 38, 41]. For the evaluation problem, the siturai$ a bit more complicated because the size
of the answerp (G) may be much larger than the size of the inmltfor a graph of orden and a formula
with k free variables), hence we cannot expect an algorithm tHaddd-parameter tractable. However, it
has been proved that there is a linear time fpt algorithmHizrpgroblem if the running time is measured in
terms of the input size plus the output size [16, 38]. Regeitthas been shown that there even is such an
algorithm that does a linear (in terms of the input size) guatputation and then produces solutions with
delay bounded in terms of the parameter [4, 13].

Frick [41, 42] proved that the construction problem and dimgnproblem for many classes of graphs
of locally bounded branch width, including planar graphd graphs of bounded degree, has a linear fpt
algorithm. This is a nontrivial extension of the model chagkresults. Even for a simple first-order
definable counting problem like the parameterized indepetskt counting problem (“Count the number
of independent sets of sizein a graph.”), say, on a class of graphs of bounded degres nivti obvious
how to solve it by an fpt algorithm. For the evaluation probjegain there are linear time fpt algorithms
if the running time is measured in terms of the input size phesoutput size [41]. For classes of graphs
of bounded degree, Durand and Grandjean [30] proved that ikean fpt algorithm for the first-order
evaluation problem that does a linear pre-computation hed produces solutions with delay bounded in
terms of the parameter.

Finally, let us take a brief look at optimisation problemsiieh play a central role in complexity the-
ory, but have not been studied very systematically in theeodrof meta theorems. Consider a first-order
formula¢ (X) that is positive in a free set variabke Such a formula naturally describes a minimisation
problem: Given a grapks, find a setSC V(G) of minimum size such tha® = ¢(S). Many natural
minimisation problems on graphs can be described this wayexample is the minimum dominating set
problem, which can be described by the formdta{X) of Example 2.1. Similarly, formulag (X) that
are negative irX naturally describe maximisation problems. An exampleésmtaximum independent set
problem, which is described by the formual(X) = Vxvy(=X(x) vV =X (y) V =E(x,y)). We call such op-
timisation probleméirst-order definablelt was proved in [19] that the restriction of a first-ordefidable
optimisation problem to a class of graphs with an excludegbmhas a polynomial time approximation
scheme, that is, can be approximated in polynomial time ydactor (1 + €), whereg > 0.

8 Concluding remarks and open questions

Figure 8.1 gives an overview of the classes of graphs we hadéesl in this survey. Let me conclude by
mentioning a few directions for further research that | fidtjgularly promising:

8.1 Further tractable classes

Many of the classes of graphs considered in this surveyudaty all classes excluding a minor, have
bounded average degree. It may be tempting to conjecturdinstaorder model checking is tractable on
all classes of graphs of bounded average degree, but ityt@ase that this is not the case. As Stephan
Kreutzer observed, it is not even the case for classes ofdemimaximum average degree, where the
maximum average degred a graphG is the maximum of the average degrees of all subgrapl dio
see this, just observe that model-checking on a gaphn be reduced to model-checking on its incidence
graph (i.e., the graph obtained fragnby subdividing each edge once), and that every incidengehdras
maximum average degree at most 4.

NeSetfil and Ossona de Mendez [59] introduced a propdrtyaph classes that may be viewed as a

37

& Bounded Local Rank Width_—> @cany Excluding a MiD

Bounded Local

Branch Width
ounded Local Branch Width
with Excluded Minor

Exluded Minor

& Bounded Rank Width >
\
& Bounded Branch Width >

Figure 8.1. Classes of graphs with a tractable first-order model chggiinblems. Double-lined ellipses
contain families of classes. Classes below the dashed &ne & tractable monadic second-order model
checking problem

refinement of maximum average degree and that avoids subleprs. LetG be a graph. Theadiusof a
minor mappingu from a graptH to G is the minimum of the radii of the subgrap8§u(v)], forve V(H).
We writeH =<; G if there is a minor mapping of radius at masfrom H to G. Note thatH <y G if and
only if H is a subgraph of. Thegreatest reduced average density (grad) of rank r a§ @e number

0r(G) _max{ %‘H = G}.

Note thatJo(G) is half the maximum average degree€fNow a clas¥’ of graphs habounded expansion

if there is some functiorfi such thatl, (G) < f(r) for all G € ¥ andr > 0. NeSetfil and Ossona de Mendez
observed that every class of graphs excluding a minor hasdembexpansion. It can be shown that there
are classes of bounded expansion that do not exclude a nmabgven locally. Conversely, there are
classes of bounded local tree width and hence classesyl@aluding a minor that do not have bounded
expansion. This follows from Example 4.7 and the fact thassts of bounded expansion have bounded
average degree. | refer the reader to [58, 59, 60] for andnirtion to classes of bounded expansion and
an overview of their nice algorithmic properties.

Open Problem 8.1. Is p-MC(FO, %) fixed-parameter tractable for every clagsof graphs of bounded
expansion?

There is no need to restrict the study of structural propeftiat facilitate efficient model checking
to graph theoretic properties such as those predominafhisnstirvey. For example, it would also be
very interesting to study the complexity of model-checkingblems on finite algebraic structures such as
groups, rings, fields, lattices, et cetera.

Open Problem 8.2. Are pMC(FO,%) and pMC(MSQ, ¥) fixed-parameter tractable for the class&s
of finite groups, finite abelian groups, finite rings, finitdde?
8.2 Necessary conditions for tractability

The main results presented in this survey may be viewed asggsufficient conditions for classes of
graphs to have tractable first-order or monadic secondrarddel checking problem&Vhat are necessary

38

conditions for tractability, and which classes have harddeiachecking problemsRote that it is not easy
to come up with structural conditions for hardness, becasean “cheat” and, for example, pad graphs
that have a structure presumably making model checkingudiffivith a large number of isolated vertices.
This makes the model checking problem “easier” just becd#ugees us more time to solve it. Thus we
probably want to impose closure conditions on the classegaghs we consider, such as being closed
under taking subgraphs.

It follows from the Excluded Grid Theorem that for minor-séa classe®” of graphsp-MC(MSO, %)
is fixed-parameter tractable if and onlydf has bounded branch width. Actually, this can be slightly
strengthened to classes closed under taking topologicadnsi | do not know of any results beyond that.
To stimulate research in this direction, let me state a cbuje:

Conjecture8.3. Let% be a class of graphs that is closed under taking subgraphsp&e that the branch
width of ¢ is not poly-logarithmically bounded, that is, there is nastant ¢ such thabw(G) < log®|G|
for every Ge %.

Then pMC(MSO, %) is not fixed parameter tractable.

Of course, with current techniques we can only hope to prigedonjecture under some complexity
theoretic assumption.

For first-order logic, | have much less intuition. Clearlyetpresent results are very far from optimal.
Just as an illustration, observe that if a clgssf graphs has a tractable first-order model checking proplem
then so has the closure @f under complementation. (Recall that t@mplemenbf a graphG = (V,E)

is the grapr(g: (V, (\é) \E).) However, most of the classes we considered here are nsgctlionder
complementation.

8.3 Average Case Analysis

Instead of the worst case running time, it is also intergstinconsider the average case. Here even the
most basic questions are wide open. Ror 1, let #; be a probability space of graphs with vertex set
[n]. We say that a model checking algorithrfiié on average ove(“/ﬂn) > I its expected running time

on inputG € #; and¢ is bounded byf (|¢]) -n°®, for some computable functioh For every function
p: N —[0,1] (here[0, 1] denotes an interval of real numbers) 4&n, p) denote the probability space of all
graphs oven| with edge probabilityp(n) (see, e.g., [2]). For a constank [0, 1], we let¥ (n,c) =¥(n, p)
for the constant functiop(n) = c. In [47], | observed that fop(n) = min{1,c/n}, wherec € R>g is a

constant, there is a model checking algorithm for first-ofodgic that is fpt on average ovéﬁ(n, p))n>l.

Open Problem 8.4. Is there a model checking algorithm for first-order logic th&fpt on average over
(9(n,1/2)),.,?

n>1"

Let me suggest it as an exercise for the reader to design al mleeleking algorithm for existential
first-order logic that is fpt on average ovgf(n,1/2)) ;.

8.4 Structures of bounded rank width

Most of the results of this survey can easily be extended fetassess’ of graphs to the classés, of
arbitrary relational structures whose underlying grafgbaifman graphs) are . However, this is not
true for the results that involve rank width. It is not at dMous what an appropriate notion of rank width
for arbitrary structures could look like, and | think it is hadlenging open problem to find such a notion.

8.5 Model checking for monadic least fixed-point logic

Conjecture 8.5. Let% be a class of graphs such that\g€ (FO, ¢jp,) is fixed-parameter tractable. Then
p-MC(LFP', %) is fixed-parameter tractable.

It will be difficult to prove this conjecture, because it idated to the notoriously open problem of
whether the model checking problem for the mogatalculus is in polynomial time. But maybe the
conjecture is wrong; refuting it might be more feasible.

39

Acknowledgements

| would like to thank Bruno Courcelle, Arnaud Durand, Sah@um, Stéphan Thomassé for patiently
answering various questions | had while writing this survidyanks to Isolde Adler, Albert Atserias, Yijia
Chen, Anuj Dawar, Reinhard Diestel, Jorg Flum, Magdalerigb€r, Stephan Kreutzer, Nicole Schweikardt
for valuable comments on earlier drafts of the survey.

References

[1] I. Abraham, C. Gavoille, and D. Malkhi. Compact routingy fgraphs excluding a fixed minor. In
P. Fraigniaud, edito?roceedings of the 19th International Conference on hstied Computing
volume 3724 ol ecture Notes in Computer Scienpages 442—-456. Springer-Verlag, 2005.

[2] N. Alon and J. SpenceiThe Probabilistic MethodWiley, 2nd edition, 2000.

[3] S. Arnborg, J. Lagergren, and D. Seese. Easy problemsderdecomposable graphdournal of
Algorithms 12:308-340, 1991.

[4] G.Bagan. MSO queries on tree decomposable structueeanputable with linear delay. In Esik,
editor,Proceedings of the 20th International Workshop on Comp8téence Logicvolume 4207 of
Lecture Notes in Computer Scienpages 167-181. Springer-Verlag, 2006.

[5] H.L. Bodlaender. A linear-time algorithm for finding #elecompositions of small treewidtBIAM
Journal on Computing?5:1305-1317, 1996.

[6] H.L. Bodlaender and D.M. Thilikos. Constructive lineime algorithms for branchwidth. In
P. Degano, R. Gorrieri, and A. Marchetti-Spaccamela, esliRroceedings of the 24th International
Colloquium on Automata, Languages and Programmimdume 1256 of_ecture Notes in Computer
Sciencepages 627-637. Springer-Verlag, 1997.

[7] Y. Chen, M. Grohe, and M. Gruber. On parameterized axiprability. In Proceedings of the 2nd
International Workshop on Parameterized and Exact Contmrtavolume 4169 of ecture Notes in
Computer Scieng@ages 109-120. Springer-Verlag, 2006.

[8] B. Courcelle. An axiomatic definition of context-freeaggh grammars and applications to nlc gram-
mars. Theoretical Computer Science5:141-181, 1987.

[9] B. Courcelle. Graph rewriting: An algebraic and logigpapach. In J. van Leeuwen, editetandbook
of Theoretical Computer Scienomlume B, pages 194-242. Elsevier Science Publisher§).199

[10] B. Courcelle. The monadic second-order logic of grapH3ecognizable sets of finite graphefor-
mation and Computatiqr85(1):12—75, 1990.

[11] B. Courcelle. The monadic second-order logic of graghsGraphs as relational structuresheo-
retical Computer Sciencé01:3-33, 1992.

[12] B. Courcelle. The expression of graph properties aaglgtransformations in monadic second-order
logic. In G. Rozenberg, editoHlandbook of graph grammars and computing by graph transfor-
mations, Vol. 1 : Foundationshapter 5, pages 313-400. World Scientific (New-Jersegydbn),
1997.

[13] B. Courcelle. Linear delay enumeration and monadicmsdeorder logic, 2006. Available at
http://www.labri.fr/perso/courcell/ActSci.html.

[14] B. Courcelle, J.A. Makowsky, and U. Rotics. Linear tismvable optimization problems on graphs
of bounded clique widthTheory of Computing Systen®3(2):125-150, 2000.

[15] B. Courcelle, J.A. Makowsky, and U. Rotics. On the fiyearameter complexity of graph enumera-
tion problems definable in monadic second-order loBiscrete Applied Mathematic$08(1-2):23—
52, 2001.

40

[16] B. Courcelle and M. Mosbah. Monadic second-order eatédins on tree-decomposable graphise-
oretical Computer Scienc&09:49-82, 1993.

[17] B. Courcelle and S. Olariu. Upper bounds to the cligudtivof graphsDiscrete Applied Mathemat-
ics, 101:77-114, 2000.

[18] A. Dawar, M. Grohe, and S. Kreutzer. Locally excludinghanor. InProceedings of the 22nd IEEE
Symposium on Logic in Computer Scier@07. To appear.

[19] A. Dawar, M. Grohe, S. Kreutzer, and N. Schweikardt. Apgimation schemes for first-order de-
finable optimisation problems. IRroceedings of the 21st IEEE Symposium on Logic in Computer
Sciencepages 411-420, 2006.

[20] A. Dawar, M. Grohe, S. Kreutzer, and N. Schweikardt. Mbtheory makes formulas large. In
Proceedings of the 34th International Colloquium on Auttanhanguages and Programmin2007.
To appear.

[21] E.D. Demaine, F.V. Fomin, M.T. Hajiaghayi, and D.M. Tikds. Subexponential parameterized al-
gorithms on graphs of bounded-genus &hdaninor-free graphs. IfProceedings of the 15th Annual
ACM-SIAM Symposium on Discrete Algorithmpages 830-839, 2004.

[22] E.D. Demaine and M.T. Hajiaghayi. Equivalence of loraewidth and linear local treewidth and its
algorithmic applications. IProceedings of the Fifteenth Annual ACM-SIAM Symposiumiscr&ie
Algorithms pages 840-849, 2004.

[23] E.D. Demaine, M.T. Hajiaghayi, and K. Kawarabayashigagkithmic graph minor theory: Decom-
position, approximation, and coloring. Rroceedings of the 45th Annual IEEE Symposium on Foun-
dations of Computer Sciengeages 637—646, 2005.

[24] E.D. Demaine, M.T. Hajiaghayi, and K.-l. Kawarabayiashlgorithmic graph minor theory: Im-
proved grid minor bounds and wagner’s contraction. In S.kadikh, K.T. Claypool, R. Kannan,
P. Uppuluri, and M.M. Gore, editor®roceedings of the Third International Conference on Dis-
tributed Computing and Internet Technologwlume 4317 ofecture Notes in Computer Science
pages 3-15. Springer-Verlag, 2006.

[25] R. Diestel.Graph Theory Springer-Verlag, 3rd edition, 2005.

[26] R.G. Downey and M.R. Fellows. Fixed-parameter traititstand completeness I: Basic resul&AM
Journal on Computing?4:873—-921, 1995.

[27] R.G. Downey and M.R. Fellows. Fixed-parameter traititgtand completeness II: On completeness
for W[1]. Theoretical Computer Scienc®41:109-131, 1995.

[28] R.G. Downey and M.R. Fellowd?arameterized Complexityspringer-Verlag, 1999.

[29] R.G. Downey, M.R. Fellows, and U. Taylor. The paramiega complexity of relational database
gueries and an improved characterization of W[1]. In D.Sd@es, C. Calude, P. Gibbons, S. Reeves,
and I.H. Witten, editorsCombinatorics, Complexity, and Logiwolume 39 ofProceedings of
DMTCS pages 194-213. Springer-Verlag, 1996.

[30] A. Durand and E.Grandjean. First-order queries orcstines of bounded degree are computable with
constant delayACM Transactions on Computational Logito appear.

[31] H.-D. Ebbinghaus and J. Fluririnite Model Theory Springer-Verlag, 2nd edition, 1999.

[32] H.-D. Ebbinghaus, J. Flum, and W. Thomabklathematical Logic Springer-Verlag, 2nd edition,
1994.

[33] P. Hlinény and S.-I. Oum. Finding branch-decomposg and rank-decompositions. Available at
http://www.math.uwaterloo.ca/"sangil/.

41

[34] D. Eppstein. Subgraph isomorphism in planar graphsraladed problemsJournal of Graph Algo-
rithms and Applications3:1-27, 1999.

[35] D. Eppstein. Diameter and treewidth in minor-closedpyr families. Algorithmicg 27:275-291,
2000.

[36] P. Erdos. Graph theory and probabili§anadian Journal of Mathematic$1:34-38, 1959.

[37] R. Fagin. Generalized first—order spectra and polyabstime recognizable sets. In R. M. Karp,
editor,Complexity of Computation, SIAM-AMS Proceedings, Vigbages 43—73, 1974.

[38] J. Flum, M. Frick, and M. Grohe. Query evaluation viaetgecompositionsJournal of the ACM
49(6):716-752,2002.

[39] J. Flum and M. Grohe. Fixed-parameter tractabilityjribility, and model checkingSIAM Journal
on Computing31(1):113-145, 2001.

[40] J. Flum and M. GroheParameterized Complexity Theorgpringer-Verlag, 2006.

[41] M. Frick. Easy Instances for Model Checkindg?hD thesis, Albert-Ludwigs-Universitat Freiburg,
2001.

[42] M. Frick. Generalized model-checking over locallygrdecomposable classes. In H. Alt and A. Fer-
reira, editorsProceedings of the 19th Annual Symposium on Theoreticaddspf Computer Sci-
ence volume 2285 of_ecture Notes in Computer Scienpages 632—644. Springer-Verlag, 2002.

[43] M. Frick and M. Grohe. Deciding first-order propertieSlocally tree-decomposable structures.
Journal of the ACM48:1184-1206, 2001.

[44] M. Frick and M. Grohe. The complexity of first-order andnadic second-order logic revisited.
Annals of Pure and Applied Logi¢30:3—-31, 2004. LICS 2002 Special Issue.

[45] H. Gaifman. On local and non-local properties. In J.r&teditor,Proceedings of the Herbrand
Symposium, Logic Colloquium ‘8fhages 105—-135. North Holland, 1982.

[46] M.R. Garey and D.S. JohnsonComputers and Intractability: A Guide to the Theory of NP-
Completenesd-reeman, 1979.

[47] M. Grohe. Generalized model-checking problems fot-firgler logic. In H. Reichel and A. Ferreira,
editors, Proceedings of the 18th Annual Symposium on Theoreticaddspf Computer Science
volume 2010 ot ecture Notes in Computer Scienpages 12—-26. Springer-Verlag, 2001.

[48] M. Grohe. Local tree-width, excluded minors, and apgration algorithms. Combinatorica
23(4):613-632, 2003.

[49] M. Grohe and J. Marifio. Definability and descriptiverguexity on databases of bounded tree-width.
In C. Beeri and P. Buneman, edito”roceedings of the 7th International Conference on Databas
Theory volume 1540 of_ecture Notes in Computer Scienpages 70-82. Springer-Verlag, 1999.

[50] M. Grohe, N. Schweikardt, and S. Kreutzer. The exprespower of two-variable least fixed-point
logics. In J. Jedrzejowicz and A. Szepietowski, editBreceedings of the 30th International Sympo-
sium on Mathematical Foundations of Computer Sciengkime 3618 of ecture Notes in Computer
Sciencepages 422-434. Springer-Verlag, 2005.

[51] M. Grohe and S. Wohrle. An existential locality thewre Annals of Pure and Applied Logic
129:131-148, 2004.

[52] S. Iwata, L. Fleischer, and S. Fujishige. A combinabsirongly polynomial algorithm for minimiz-
ing submodular functionslournal of the ACM48(4):761-777,2001.

42

[53] K.-I. Kawarabayashi and B. Mohar. Approximating thstichromatic number and the chromatic
number in minor-closed and odd-minor-closed classes gftgra InProceedings of the 38th ACM
Symposium on Theory of Computipgages 401-416, 2006.

[54] K. Kuratowski. Sur le probleme des courbes gauchespnlbgie. Fundamenta Mathematicae
15:271-283, 1930.

[55] L. Libkin. Elements of Finite Model Theargpringer-Verlag, 2004.

[56] S. Lindell. Computing monadic fixed-points in lineéme on doubly-linked data structures, 2005.
Available at http://www.haverford.edu/cmsc/slindell/.

[57] J.A. Makowsky. Algorithmic uses of the Feferman-Vaugteorem. Annals of Pure and Applied
Logic, 126:159-213, 2004.

[58] J. NeSetfil and P. Ossona de Mendez. Linear time l@&-twidth partitions and algorithmic con-
sequences. IRroceedings of the 38th ACM Symposium on Theory of Compuygages 391-400,
2006.

[59] J. NeSetfil and P. Ossona de Mendez. Grad and clasebeounded expansion |: Decompositions.
European Journal of Combinatoric2007. To appear.

[60] J. NeSetfil and P. Ossona de Mendez. Grad and clasgledwunded expansion II: Algorithmic
aspectsEuropean Journal of Combinatoric2007. To appear.

[61] R. Niedermeierlnvitation to Fixed-Parameter Algorithm®xford University Press, 2006.

[62] S.-I. Oum. Rank-width is less than or equal to brancHtyi 2006. Available at
http://www.math.uwaterloo.ca/"sangil/.

[63] S.-I. Oum and P.D. Seymour. Approximating cliqgue-viidnd branch-widthJournal of Combinato-
rial Theory, Series B96:514-528, 2006.

[64] C.H. Papadimitriou and M. Yannakakis. Optimizatioppeoximation, and complexity classekur-
nal of Computer and System Sciene425-440, 1991.

[65] N. Robertson and P.D. Seymour. Graph minors I-XXIIl. på inJournal of Combinatorial
Theory, Series Bince 1982.

[66] N. Robertson and P.D. Seymour. Graph minors XXI. Grapitis unique linkages. To appear.

[67] N. Robertson and P.D. Seymour. Graph minors XXII. kx@nt vertices in linkage problems. To
appear.

[68] N. Robertson and P.D. Seymour. Graph minors Ill. Plansg-width. Journal of Combinatorial
Theory, Series B36:49-64, 1984.

[69] N. Robertson and P.D. Seymour. Graph minors V. Exclgdiplanar graphJournal of Combinato-
rial Theory, Series B41:92—-114, 1986.

[70] N. Robertson and P.D. Seymour. Graph minors X. Obstrastto tree-decompositionlournal of
Combinatorial Theory, Series,B82:153-190, 1991.

[71] N. Robertson and P.D. Seymour. Graph minors XIlI. Trgdaiint paths problemJournal of Combi-
natorial Theory, Series B53:65-110, 1995.

[72] N. Robertson and P.D. Seymour. Graph minors XVI. Extigda non-planar graphJournal of
Combinatorial Theory, Series,B7:1-27, 1999.

[73] N. Robertson and P.D. Seymour. Graph minors XX. WagnashjectureJournal of Combinatorial
Theory, Series P2:325-357, 2004.

43

[74] N. Schweikardt. On the expressive power of monadictl&sd point logic. Theoretical Computer
Science350:325-344, 2006.

[75] D. Seese. Linear time computable problems and firs¢oddscriptionsMathematical Structures in
Computer Scien¢®:505-526, 1996.

[76] H. Tamaki. A linear time heuristic for the branch-deqmusition of planar graphs. In G. Di Battista
and U. Zwick, editorsProceedings of the 11th Annual European Symposium on Alhgagivolume
2832 ofLecture Notes in Computer Scienpages 765—775. Springer-Verlag, 2003.

[77] R.E. Tarjan. Decomposition by clique separat@sscrete Mathematic$5:221-232, 1985.

[78] J.W. Thatcher and J.B. Wright. Generalised finite awttantheory with an application to a decision
problem of second-order logiddathematical Systems ThepB:/57—-81, 1968.

[79] M.Y. Vardi. The complexity of relational query languag) InProceedings of the 14th ACM Sympo-
sium on Theory of Computingages 137-146, 1982.

[80] M.Y. Vardi. On the complexity of bounded-variable gig=: InProceedings of the 14th ACM Sym-
posium on Principles of Database Systepages 266—276, 1995.

[81] K. Wagner. Uber eine Eigenschaft der ebenen Komplek#athematische Annaleri14:570-590,
1937.

44 ECCC ISSN 1433-809

http://eccc.hpi-web.de/

