
Logic, Graphs, and Algorithms

Martin Grohe
Humboldt-Universität zu Berlin

September 10, 2007

Abstract

Algorithmic meta theoremsare algorithmic results that apply to whole families of combinatorial
problems, instead of just specific problems. These familiesare usually defined in terms of logic and
graph theory. An archetypal algorithmic meta theorem is Courcelle’s Theorem [9], which states that
all graph properties definable in monadic second-order logic can be decided in linear time on graphs of
bounded tree width.

This article is an introduction into the theory underlying such meta theorems and a survey of the most
important results in this area.

1 Introduction

In 1990, Courcelle [9] proved a fundamental theorem statingthat graph properties definable in monadic
second-order logic can be decided in linear time on graphs ofbounded tree width. This is the first in a
series ofalgorithmic meta theorems. More recent examples of such meta theorems state that all first-order
definable properties of planar graphs can be decided in linear time [43] and that all first-order definable
optimisation problems on classes of graphs with excluded minors can be approximated in polynomial time
to any given approximation ratio [19]. The term “meta theorem” refers to the fact that these results do not
describe algorithms for specific problems, but for whole families of problems, whose definition typically
has a logical and a structural (usually graph theoretical) component. For example, Courcelle’s Theorem is
aboutmonadic second-order logicongraphs of bounded tree width.

This article is an introductory survey on algorithmic meta theorems. Why should we care about such
theorems? First of all, they often provide a quick way to prove that a problem is solvable efficiently. For
example, to show that the 3-colourability problem can be solved in linear time on graphs of bounded tree
width, we observe that 3-colourability is a property of graphs definable in monadic second-order logic and
apply Courcelle’s theorem. Secondly, and more substantially, algorithmic meta theorems yield a better
understanding of the scope of general algorithmic techniques and, in some sense, the limits of tractability.
In particular, they clarify the interactions between logicand combinatorial structure, which is fundamental
for computational complexity.

The general form of algorithmic meta theorems is:

All problemsdefinable in a certainlogic on a certain class ofstructurescan be solvedeffi-
ciently.

Problemsmay be of different types, for example, they may be optimisation or counting problems, but in
this article we mainly consider decision problems. We briefly discuss other types of problems in Sec-
tion 7.2.Efficient solvabilitymay mean, for example, polynomial time solvability, linearor quadratic time
solvability, or fixed-parameter tractability. We will discuss this in detail in Section 2.3. Let us now focus
on the two main ingredients of the meta theorems, logic and structure.

Author’s address: Martin Grohe, Institut für Informatik, Humboldt-Universität, Unter den Linden 6, 10099 Berlin, Germany.
Email:grohe@informatik.hu-berlin.de

1

Electronic Colloquium on Computational Complexity, Report No. 91 (2007)

ISSN 1433-8092

The twologics that, so far, have been considered almost exclusively for meta theorems are first-order
logic and monadic second-order logic. Techniques from logic underlying the theorems are Feferman-
Vaught style composition lemmas, automata theoretic techniques, and locality results such as Hanf’s The-
orem and Gaifman’s Theorem.

Thestructuresin algorithmic meta theorems are usually defined by graph theoretic properties. Actually,
to ease the presentation, the only structures we will consider in this survey are graphs. Many of the meta
theorems are tightly linked withgraph minor theory. This deep theory, mainly developed by Robertson and
Seymour in a long series of papers, describes the structure of graphs with excluded minors. It culminates
in the graph minor theorem [73], which states that every class of graphs closed under taking minors can be
characterised by a finite set of excluded minors. The theory also has significant algorithmic consequences.
Robertson and Seymour [71] proved that every class of graphsthat is closed under taking minors can
be recognised in cubic time. More recently, results from graph minor theory have been combined with
algorithmic techniques that had originally been developedfor planar graphs to obtain polynomial time
approximation schemes and fixed parameter tractable algorithms for many standard optimisation problems
on families of graphs with excluded minors. The methods developed in this context are also underlying the
more advanced algorithmic meta theorems.

There are some obvious similarities between algorithmic meta theorems and results fromdescriptive
complexity theory, in particular such results from descriptive complexity theory that also involve restricted
classes of graphs. As an example, consider the theorem stating that fixed-point logic with counting captures
polynomial time on graphs of bounded tree width [49], that is, a property of graphs of bounded tree width
is definable in fixed-point logic with counting if and only if it is decidable in polynomial time. Compare
this to Courcelle’s Theorem. Despite the similarity, thereare two crucial differences: On the one hand,
Courcelle’s Theorem is weaker as it makes no completeness claim, that is, it does not state thatall properties
of graphs of bounded tree width that are decidable in linear time are definable in monadic second-order
logic. On the other hand, Courcelle’s Theorem is stronger inits algorithmic content. Whereas it is very
easy to show that all properties of graphs (not only graphs ofbounded tree width) definable in fixed-point
logic with counting are decidable in polynomial time, the proof of Courcelle’s theorem relies on substantial
algorithmic ideas like the translation of monadic second-order logic over trees into tree automata [78] and a
linear time algorithm for computing tree decompositions [5]. In general, algorithmic meta theorems involve
nontrivial algorithms, but do not state completeness, whereas in typical results from descriptive complexity,
the algorithmic content is limited, and the nontrivial partis completeness. But there is no clear dividing
line. Consider, for example, Papadimitriou and Yannakakis’s [64] well known result that all optimisation
problems in the logically defined class MAXSNP have a constant factor approximation algorithm. This
theorem does not state completeness, but technically it is much closer to Fagin’s Theorem [37], a central
result of descriptive complexity theory, than to the algorithmic meta theorems considered here. In any case,
both algorithmic meta theorems and descriptive complexitytheory are branches of finite model theory, and
there is no need to draw a line between them.

When I wrote this survey, it was my goal to cover the developments up to the most recent and strongest
results, which are concerned with monadic second-order logic on graphs of bounded rank width and with
first-order logic on graphs with excluded minors. The proofsof most theorems are at least sketched, so that
hopefully the reader will not only get an impression of the results, but also of the techniques involved in
their proofs.

2 The basics

R, Q, Z, andN denote the sets of real numbers, rational numbers, integers, and natural numbers (that is,
positive integers), respectively. For a setS⊆R, byS≥0 we denote the set of nonnegative numbers inS. For
integersm,n, by [m,n] we denote the interval{m,m+1, . . . ,n}, which is empty ifn < m. Furthermore, we
let [n] = [1,n]. The power set of a setS is denoted by 2S, and the set of allk-element subsets ofSby

(S
k

)
.

2.1 Graphs

A graph G is a pair(V(G),E(G)), whereV(G) is a finite set whose elements are calledverticesand
E(G) ⊆

(V(G)
2

)
is a set of unordered pairs of vertices, which are callededges. Hence graphs in this paper

2

are alwaysfinite, undirected, andsimple, where simple means that there are no loops or parallel edges.
If e= {u,v} is an edge, we say that the verticesu andv areadjacent, and that bothu andv are incident
with e. A graphH is a subgraphof a graphG (we write H ⊆ G) if V(H) ⊆ V(G) andE(H) ⊆ E(G).
If E(H) = E(G)∩

(V(H)
2

)
, thenH is an inducedsubgraph ofG. For a setW ⊆ V(G), we write G[W]

to denote the induced subgraph
(
W,E(G)∩

(W
2

))
andG\W to denoteG[V(G) \W]. For a setF ⊆ E,

we let GJFK be the subgraph
(⋃

F,F
)
. Here

⋃
F denote the union of all edges inF , that is, the set

of all vertices incident with at least one edge inF . We call GJFK the subgraph ofG generatedby F ;
note that it is not necessarily an induced subgraph ofG. Theunionof two graphsG andH is the graph
G∪H = (V(G)∪V(H),E(G)∪E(H)), and theintersection G∩H is defined similarly. Thecomplement
of a graphG = (V,E) is the graphG =

(
V,
(V

2

)
\E
)
. There is a uniqueempty graph(/0, /0). For n≥ 1, we

let Kn be the complete graph withn vertices. To be precise, let us sayKn =
(
[n],
([n]

2

))
. We letKn,m be the

complete bipartite graph with parts of sizem,n, respectively.
Occasionally, we consider (vertex) labelled graphs. Alabelled graphis a tuple

G =
(
V(G),E(G),P1(G), . . . , P̀ (G)

)
,

wherePi(G) ⊆ V(G) for all i ∈ [`]. The symbolsPi are calledlabels, and if v ∈ Pi(G) we say thatv is
labelledby Pi . Subgraphs, union, and intersection extend to labelled graphs in a straightforward manner.
Theunderlying graphof a labelled graphG is (V(G),E(G)). Whenever we apply graph theoretic notions
such as connectivity to labelled graphs, we refer to the underlying graph.

Theorder |G| of a graphG is the number of vertices ofG. We usually use the lettern to denote the
order of a graph. Thesizeof G is the number||G|| = |G|+ |E(G)|. Up to a constant factor, this is the size
of the adjacency list representation ofG under a uniform cost model.

G denotes the class of all graphs. For every classC of graphs, we letClb be the class of all labelled
graphs whose underlying graph is inC . A graph invariantis a mapping defined on the classG of all graphs
that is invariant under isomorphisms. All graph invariantsconsidered in this paper are integer valued. For
a graph invariantf : G → Z and a classC of graphs, we say thatC has bounded fif there is ak∈ Z such
that f (G) ≤ k for all G∈ C .

Let G = (V,E) be a graph. ThedegreedegG(v) of a vertexv∈V is the number of edges incident with
v. We omit the superscriptG if G is clear from the context. The(maximum) degreeof G is the number

∆(G) = max{deg(v) | v∈V}.

Theminimum degreeδ (G) is defined analogously, and theaverage degree d(G) is 2|E(G)|/|V(G)|. Ob-
serve that||G|| = O(d(G) · |G|). Hence if a classC of graphs has bounded average degree, then the size of
the graphs inC is linearly bounded in the order. In the following, “degree”of a graph, without qualifica-
tions, always means “maximum degree”.

A path in G = (V,E) of length n≥ 0 from a vertexv0 to a vertexvn is a sequencev0, . . . ,vn of distinct
vertices such that{vi−1,vi} ∈ E for all i ∈ [n]. Note that the length of a path is the number of edges on
the path. Two paths aredisjoint if they have no vertex in common.G is connectedif it is nonempty and
for all v,w∈V there is a path fromv to w. A connected componentof G is a maximal (with respect to⊆)
connected subgraph.G is k-connected, for somek ≥ 1, if |V| > k and for everyW ⊆ V with |W| < k the
graphG\W is connected.

A cycle in a graphG = (V,E) of length n≥ 3 is a sequencev1 . . .vn of distinct vertices such that
{vn,v1} ∈ E and{vi−1,vi} ∈ E for all i ∈ [2,n]. A graphG is acyclic, or aforest, if it has no cycle.G is a
tree if it is acyclic and connected. It will be a useful conventionto call the vertices of treesnodes. A node
of degree at most 1 is called aleaf. The set of all leaves of a treeT is denoted byL(T). Nodes that are not
leaves are calledinner nodes. A rooted treeis a tripleT = (V(T),E(T), r(T)), where(V(T),E(T)) is a
tree andr(T) ∈ V(T) is a distinguished node called theroot. A nodet of a rooted treeT is theparentof
a nodeu, andu is achild of t, if t is the predecessor ofu on the unique path from the rootr(T) to u. Two
nodes that are children of the same parent are calledsiblings. A binary treeis a rooted treeT in which
every node has either no children at all or exactly two children.

3

2.2 Logic

I assume that the reader has some background in logic and, in particular, is familiar with first-order pred-
icate logic. To simplify matters, we only consider logics over (labelled) graphs, even though most results
mentioned in this survey extend to more general structures.Let us briefly review the syntax and semantics
of first-order logicFO andmonadic second-order logicMSO. We assume that we have an infinite supply
of individual variables, usually denoted by the lowercase lettersx,y,z, and an infinite supply ofset vari-
ables, usually denoted by uppercase lettersX,Y,Z. First-order formulasin the language of graphs are built
up from atomic formulasE(x,y) andx = y by using the usual Boolean connectives¬ (negation),∧ (con-
junction),∨ (disjunction),→ (implication), and↔ (bi-implication) and existential quantification∃x and
universal quantification∀x over individual variables. Individual variables range over vertices of a graph.
The atomic formulaE(x,y) expresses adjacency, and the formulax = y expresses equality. From this, the
semantics of first-order logic is defined in the obvious way. First-order formulas over labelled graphs may
contain additional atomic formulasPi(x), meaning thatx is labelled byPi . If a labelPi does not appear in a
labelled graphG, then we always interpretPi(G) as the empty set. Inmonadic second-order formulas, we
have additional atomic formulasX(x) for set variablesX and individual variablesx, and we admit existen-
tial and universal quantification over set variables. Set variables are interpreted by sets of vertices, and the
atomic formulaX(x) means that the vertexx is contained in the setX.

The free individual and set variables of a formula are defined in the usual way. Asentenceis a for-
mula without free variables. We writeϕ(x1, . . . ,xk,X1, . . . ,X`) to indicate thatϕ is a formula with free
variables amongx1, . . . ,xk, X1, . . . ,X`. We use this notation to conveniently denote substitutionsand as-
signments to the variables. IfG = (V,E) is a graph,v1, . . . ,vk ∈ V, andW1, . . . ,Ẁ ⊆ V, then we write
G |= ϕ(v1, . . . ,vk,W1, . . . ,Ẁ) to denote thatϕ(x1, . . . ,xk,X1, . . . ,X`) holds inG if the variablesxi are inter-
preted by the verticesvi and the variablesXi are interpreted by the vertex setsWi .

Occasionally, we consider monadic second-order formulas that contain no second-order quantifiers,
but have free set variables. We view such formulas as first-order formulas, because free set variables are
essentially the same as labels (unary relation symbols). Anexample of such a formula is the formula
dom(X) in Example 2.1 below. We say that a formulaϕ(X) is positive in Xif X only occurs in the scope
of an even number of negation symbols. It isnegative in Xif X only occurs in the scope of an odd number
of relation symbols.

We freely use abbreviations such as
∧k

i=1 ϕi instead of(ϕ1∧ . . .∧ϕk) andx 6= y instead of¬x = y.

Example 2.1.A dominating setin a graphG = (V,E) is a setS⊆V such that for everyv∈V, eitherv is in
Sor v is adjacent to a vertex inS.

The following first-order sentencedomk says that a graph has a dominating set of sizek:

domk = ∃x1 . . .∃xk
(∧

1≤i< j≤k

xi 6= x j ∧∀y
k∨

i=1

(
y = xi ∨E(y,xi)

))
.

The following formuladom(X) says thatX is a dominating set:

dom(X) = ∀y
(

X(y)∨∃z
(
X(z)∧E(z,y)

))
.

More precisely, for every graphG and every subsetS⊆V(G) it holds thatG |= dom(S) if and only if S is a
dominating set ofG. y

Example 2.2.The following monadic second-order sentencesconnandacycsay that a graph is connected
and acyclic, respectively:

conn= ∃xx= x∧∀X
((

∃xX(x)∧∀x∀y
(
(X(x)∧E(x,y)) → X(y)

))
→∀xX(x)

)
,

acyc= ¬∃X
(
∃xX(x)∧∀x

(
X(x) →∃y1∃y2

(
y1 6= y2∧E(x,y1)∧E(x,y2)∧X(y1)∧X(y2)

)))
.

The sentenceacyc is based on the simple fact that a graph has a cycle if and only if it has a nonempty
induced subgraph in which every vertex has degree at least 2.Then the sentencetree= conn∧acycsays
that a graph is a tree. y

4

G H

v̄ ū w̄

Figure 2.1. An illustration of Lemma 2.3

Thequantifier rankof a first-order or monadic second-order formulaϕ is the nesting depth of quan-
tifiers in ϕ . For example, the quantifier rank of the formulaacyc in Example 2.2 is 4. LetG be a graph
and v̄ = (v1, . . . ,vk) ∈ V(G)k, for some nonnegative integerk. For everyq ≥ 0, thefirst-order q-type of
v̄ in G is the set tpFO

q (G, v̄) of all first-order formulasϕ(x1, . . . ,xk) of quantifier rank at mostq such that
G |= ϕ(v1, . . . ,vk). Themonadic second-order q-type of̄v in G, tpMSO

q (G, v̄) is defined analogously. As
such, types are infinite sets, but we can syntacticallynormaliseformulas in such a way that there are only
finitely many normalised formulas of fixed quantifier rank andwith a fixed set of free variables, and that
every formula can effectively be transformed into an equivalent normalised formula of the same quantifier
rank. We represent a type by the set of normalised formulas itcontains. There is a fine line separating de-
cidable and undecidable properties of types and formulas. For example, it is decidable whether a formula is
contained in a type: We just normalise the formula and test ifit is equal to one of the normalised formulas
in the type. It is undecidable whether a set of normalised formulas actually is (more precisely: represents)
a type. To see this, remember that types are satisfiable by definition and that the satisfiability of first-order
formulas is undecidable.

For a tuple ¯v = (v1, . . . ,vk), we sloppily write{v̄} to denote the set{v1, . . . ,vk}. It will always be clear
from the context whether{v̄} refers to the set{v1, . . . ,vk} or the 1-element set{(v1, . . . ,vk)}. For tuples
v̄= (v1, . . . ,vk) andw̄= (w1, . . . ,w`), we writev̄w̄ to denote their concatenation(v1, . . . ,vk,w1, . . . ,w`). We
shall heavily use the following “Feferman-Vaught style” composition lemma.

Lemma 2.3. Let tp be one oftpFO, tpMSO. Let G,H be labelled graphs and̄u ∈ V(G)k, v̄ ∈ V(G)`, w̄ ∈
V(H)m such that V(G)∩V(H) = {ū} (cf. Figure 2.1). Then for all q≥ 0, tpq(G∪H, ūv̄w̄) is determined
by tpq(G, ūv̄) and tpq(H, ūw̄). Furthermore, there is an algorithm that computestpq(G∪H, ūv̄w̄) from
tpq(G, ūv̄) andtpq(H, ūw̄).

Let me sketch a proof of this lemma for first-order types. The version for monadic second-order types
can be proved similarly, but is more complicated (see, for example, [57]).

Proof sketch.Let G,H be labelled graphs and ¯u∈V(G)k such thatV(G)∩V(H) = {ū}. By induction on
ϕ , we prove the following claim:

Claim: Let ϕ(x̄, ȳ, z̄) be a first-order formula of quantifier rankq, where ¯x is a k-tuple and ¯y, z̄ are
tuples of arbitrary length. Then there is a Boolean combination Φ(x̄, ȳ, z̄) of expressionsG |= ψ(x̄, ȳ) and
H |= χ(x̄, z̄) for formulasψ ,χ of quantifier rank at mostq, such that for all tuples ¯v of vertices ofG andw̄
of vertices ofH of the appropriate lengths it holds that

G∪H |= ϕ(ū, v̄,w̄) ⇐⇒ Φ(ū, v̄,w̄).

HereΦ(ū, v̄,w̄) denotes the statement obtained fromΦ(x̄, ȳ, z̄) by substituting ¯u for x̄, v̄ for ȳ, andw̄ for z̄.
Furthermore, the construction ofΦ from ϕ is effective.

The claim holds for atomic formulas, because there are no edges fromV(G)\V(H) to V(H)\V(G) in
G∪H. It obviously extends to Boolean combinations of formulas.So suppose thatϕ(x̄, ȳ, z̄)= ∃x0ψ(x̄,x0, ȳ, z̄).
Let v̄,w̄ be tuples inG, H of the appropriate lengths. By the induction hypothesis, there areΨ1(x̄, ȳy0, z̄)
andΨ2(x̄, ȳ, z̄z0) such that

G∪H |= ϕ(ū, v̄,w̄)

⇐⇒∃v0 ∈V(G) Ψ1(ū, v̄v0,w̄) or ∃w0 ∈V(H) Ψ2(ū, v̄,w̄w0).

5

We may assume thatΨ1 is of the form

m∨

i=1

(
G |= χi(x̄, ȳy0)∧H |= ξi(x̄, z̄)

)
.

Hence∃v0 ∈V(G) Ψ1(ū, v̄v0,w̄) is equivalent to

m∨

i=1

(
∃v0 ∈V(G) G |= χi(ū, v̄v0)∧H |= ξi(ū,w̄)

)
.

We letΦ1 =
∨m

i=1

(
G |= ∃y0χi(x̄, ȳy0)∧H |= ξi(x̄, z̄)

)
. Similarly, we define aΦ2 from Ψ2, and then we let

Φ = Φ1∨Φ2.
Clearly, the claim implies the statements of the lemma.

2.3 Algorithms and complexity

I assume that the reader is familiar with the basics of the design and analysis of algorithms. We will make
extensive use of the Oh-notation. For example, we will denote the class of all polynomially bounded func-
tions of one variablen by nO(1). I also assume that the reader is familiar with standard complexity classes
such as PTIME, NP, and PSPACE and with concepts such as reducibility between problems and hardness
and completeness for complexity classes. If not specified otherwise, reductions are always polynomial time
many-one reductions. The following example illustrates our notation for introducing algorithmic problems.

Example 2.4.Thedominating set problemis defined as follows:

DOMINATING -SET

Instance: A graphG and a natural numberk.
Problem: Decide ifG has a dominating set of sizek.

It is well-known that DOMINATING -SET is NP-complete. y

We are mainly interested in algorithms for and the complexity of model checking problems. For every
logic L and every classC of graphs, we let:

MC(L,C)
Instance: A sentenceϕ of L and a graphG∈ C .
Problem: Decide ifG |= ϕ .

If C is the class of all graphs, we just write MC(L).

Example 2.5.Example 2.1 shows that DOMINATING -SET is reducible to MC(FO). Hence MC(FO) is
NP-hard. As MC(FO) is trivially reducible to MC(MSO), the latter is also NP-hard. y

Fact 2.6 (Vardi [79]). MC(FO) andMC(MSO) arePSPACE-complete.

This fact is often phrased as: “Thecombined complexityof FO resp. MSO is PSPACE-complete.” Com-
bined complexity refers to both the sentence and the graph being part of the input of the model checking
problem. Two principal ways of dealing with the hardness of model checking problems are restrictions of
the logics and restrictions of the classes of input graphs. In this survey, we shall only consider restrictions
of the classes of input graphs. As for restrictions of the logics, let me just mention that the model check-
ing problem remains NP-hard even for the fragment of first-order logic whose formulas are thepositive
primitive formulas, that is, existentially quantified conjunctions of atomic formulas. On the other hand, the
model checking problem is in polynomial time for thebounded variable fragmentsof first-order logic [80].

Unfortunately, restricting the class of input graphs does not seem to improve the complexity, because
the hardness result in Fact 2.6 can be strengthened: LetG be any graph with at least two vertices. Then

6

it is PSPACE-hard to decide whether a given FO-sentenceϕ holds in the fixed graphG. Of course this
implies the corresponding hardness result for MSO. Hence not only the combined complexity, but also the
expression complexityof FO and MSO is PSPACE-complete. Expression complexity refers to the problem
of deciding whether a given sentence holds in a fixed graph. The reason for the hardness result is that in
graphs with at least two vertices we can take atoms of the formx= y to represent Boolean variables and use
this to reduce the PSPACE-complete satisfiability problem for quantified Boolean formulasto the model
checking problem. Let us explicitly state the following consequence of this hardness result, where we call
a class of graphsnontrivial if it contains at least one graph with at least two vertices.

Fact 2.7. For every nontrivial classC of graphs, the problemsMC(FO,C) andMC(MSO,C) arePSPACE-
hard.

So what can we possibly gain by restricting the class of inputgraphs of our model checking problems?
As there are no polynomial time algorithms (unless PTIME= PSPACE) even for very simple classesC of
input graphs, we have to relax our notion of “tractability”.A drastic way of doing this is to considerdata
complexityinstead of combined complexity, that is, consider the complexity of evaluating a fixed sentence
of the logic in a given graph. The following fact implies thatthe data complexity of FO is in PTIME:

Fact 2.8. There is an algorithm that solvesMC(FO) in time O(k2 ·nk), where n denotes the order of the
input graph G and k the length of the input sentenceϕ .

Even though FO and MSO have the same combined complexity and the same expression complexity,
the following example shows that the two logics differ in their data complexity:

Example 2.9.It is easy to see that there is an MSO-formula3-col saying that a graph is 3-colourable. As
the 3-colourability problem is NP-complete, this shows that the data complexity of MSO is NP-hard. y

There are, however, nontrivial classesC of graphs such that the data complexity of MSO restricted to
C is in PTIME. As we shall see later, an example of such a class isthe class of all trees. Thus things are
starting to get interesting.

Still, while we have seen that polynomial combined complexity is too restrictive, polynomial data com-
plexity may be too liberal as a notion of tractability. Recall from the introduction that this survey is about
algorithmic meta theorems, that is, uniform tractability results for classes of algorithmic problems defined
in terms of logic. Fact 2.8 implies such a meta theorem:Every graph property definable in first-order logic
can be decided in polynomial time.A serious draw back of this result is that it does not bound thedegrees
of the polynomial running times of algorithms deciding first-order properties. An important justification
for PTIME being a reasonable mathematical model of the classof “tractable” (that is, efficiently solvable)
problems is that most problems solvable in polynomial time are actually solvable by algorithms whose
running time is bounded by polynomials of low degree, usually not more than three. However, this is not
the case for parameterized families of polynomial time definable problems such as the family of first-order
definable graph properties, for which the degree of the polynomials is unbounded. Or more plainly, even
for a property that is defined by a fairly short first-order sentence, say, of lengthk = 10, an algorithm de-
ciding this property in timeO(n10) hardly qualifies as efficient. A much more useful meta theoremwould
state that first-order definable graph properties can be decided “uniformly” in polynomial time, that is, in
time bounded by polynomials of a fixed degree. Unfortunately, such a theorem does not seem to hold, at
least not for first-order definable properties of the class ofall graphs.

The appropriate framework for studying such questions is that of parameterized complexity theory
[28, 40, 61]. Aparameterized problemis a pair(P,κ), whereP is a decision problem in the usual sense and
κ is a polynomial time computable mapping that associates a natural number, called theparameter, with
each instance ofP.1

Here we are mainly interested in model checking problems parameterized by the length of the input
formula. For a logic L and a classC of graphs, we let:

1At some places in this paper (the first time in Remark 3.19) we are dealing with “parameterized problems” where the parameter-
ization is not polynomial time computable. Whenever this appears here, the parameterization is computable by an fpt algorithm (see
below), and this is good enough for our purposes. The same issue is also discussed in Section 11.4 of [40].

7

p-MC(L,C)
Instance: A sentenceϕ of L and a graphG∈ C .

Parameter: |ϕ |.
Problem: Decide ifG |= ϕ .

A parameterized problem(P,κ) is fixed-parameter tractableif there is an algorithm deciding whether
an instancex is in P in time

f (κ(x)) · |x|c, (2.1)

for some computable functionf and some constantc. We call an algorithm that achieves such a running
time anfpt algorithm. Slightly imprecisely, we callf theparameter dependenceof the algorithm andc the
exponent. An fpt algorithm with exponent 1 is called alinear fpt algorithm. Similarly, fpt algorithms with
exponents 2 and 3 are calledquadraticandcubic. FPT denotes the class of all parameterized problems that
are fixed-parameter tractable.

Hence a parameterized model checking problem is fixed-parameter tractable if and only if it is “uni-
formly” in polynomial time, in the sense discussed above. (By requiring the functionf bounding the
running time to be computable, we impose a slightly strongeruniformity condition than above. This is
inessential, but technically convenient.)

Parameterized complexity theory is mainly concerned with the distinction between running times like
O(2k ·n) (fpt) andO(nk) (not fpt). Running times of the latter type yield the parameterized complexity class
XP. Intuitively, a problem is in XP if it can be solved by an algorithm whose running time is polynomial
for fixed parameter values. Formally, XP is the class of all parameterized problems that can be decided in
time

O(|x| f (κ(x))),

for some computable functionf . Hence essentially, the parameterized model checking problem for a logic
is in XP if and only if the data complexity of the logic is polynomial time. The class XP strictly contains
FPT; this is an easy consequence of the time hierarchy theorem.

There is an appropriate notion offpt reductionand a wide range of parameterized complexity classes
between FPT and XP.

Example 2.10.A clique in a graph is the vertex set of a complete subgraph. Theparameterized clique
problemis defined as follows:

p-CLIQUE

Instance: A graphG and a natural numberk.
Parameter: k.

Problem: Decide ifG has a clique of sizek.

It is easy to see thatp-CLIQUE ∈ XP. It can be proved thatp-CLIQUE is complete for the parameterized
complexity class W[1] under fpt reductions [27]. y

Example 2.11.Theparameterized dominating set problemis defined as follows:

p-DOMINATING -SET

Instance: A graphG and a natural numberk.
Parameter: k.

Problem: Decide ifG has a dominating set of sizek.

It is easy to see thatp-DOMINATING -SET ∈ XP. It can be proved thatp-DOMINATING -SET is complete
for the parameterized complexity class W[2] under fpt reductions [26]. y

The parameterized complexity classes W[1] and W[2] form thefirst two levels of the so-calledW-
hierarchyof classes between FPT and XP. Yet another parameterized complexity class, located between
the W-hierarchy and XP, is called AW[∗]. Thus we have

FPT⊆ W[1] ⊆ W[2] ⊆ W[3] ⊆ ·· · ⊆ AW[∗] ⊆ XP.

8

It is conjectured that all containments between the classesare strict.

Fact 2.12 (Downey, Fellows, and Taylor [29]). p-MC(FO) is AW[∗]-complete under fpt reductions.

Observe that by Example 2.9,p-MC(MSO) is not even in XP unless PTIME= NP.
This concludes our brief introduction to parameterized complexity theory. For proofs of all results

mentioned in this section, I refer the reader to [40].

3 Monadic second-order logic on tree-like classes of graphs

The model checking problem for monadic second-order logic turns out to be tractable on trees and graph
classes that are sufficiently similar to trees. A well-knownmeasure for the similarity of a graph with a tree
is tree width. In this article, however, we will work withbranch widthinstead. The tree width and branch
width of a graph are the same up to a factor of 3/2, so the results are essentially the same. Some of the
results, including Courcelle’s theorem, may sound unfamiliar this way, but the reader can substitute “tree”
for “branch” almost everywhere, and the results will remaintrue (up to constant factors, which we usually
disregard anyway). Using branch width instead of tree widthmay make this article a bit more interesting
for those who do not want to read the definition of tree width for the 100th time. However, the main reason
for working with branch width is that it combines nicely withthe other graph invariant that we shall study
in this section,rank width. Indeed, both branch width and rank width of a graph are instances of the same
abstract notion of branch width of a set function.

3.1 Trees

Let T denote the class of all trees. Recall that thenTlb denotes the class of labelled trees.

Theorem 3.1 (Folklore). p-MC(MSO,Tlb) is solvable by a linear fpt algorithm.

We sketch two proofs of this theorem. Even though one may viewthem as “essentially the same”, the
first is more natural from an algorithmic point of view, whilethe second will be easier to generalise later.

First proof sketch.Using a standard encoding of arbitrary trees in binary treesvia the “first-child/next-
sibling” representation, we can reduce the model checking problem for monadic second-order logic on
arbitrary labelled trees to the model checking problem for monadic second-order logic on labelled binary
trees. By a well-known theorem due to Thatcher and Wright [78], we can effectively associate a (determin-
istic) bottom-up tree automatonAϕ with every MSO-sentenceϕ over binary trees such that a binary treeT
satisfiesϕ if and only if the automatonAϕ acceptsT. By simulating the run ofAϕ onT, it can be checked
in linear time whetherAϕ accepts a treeT.

Second proof sketch.Again, we first reduce the model checking problem to binary trees. LetT be a la-
belled binary tree, and letϕ be a monadic second-order sentence, say, of quantifier rankq. For every
t ∈V(T), letTt be the subtree ofT rooted int. Starting from the leaves, our algorithm computes tpMSO

q (Tt ,t)
for everyt ∈ T, using Lemma 2.3. Then it decides ifϕ ∈ tpMSO

q (T, r) for the rootr of T.

The fpt algorithms described in the two proofs of Theorem 3.1are linear in the size of the input trees.
Clearly, this is optimal in terms ofn (up to a constant factor). But what about the parameter depen-
dence, that is, the functionf in an fpt running timef (k) · n? Recall that a functionf : Nn → N is ele-
mentaryif it can be formed from the successor function, addition, subtraction, and multiplication using
composition, projections, bounded addition of the form∑`≤mg(n1, . . . ,nk, `), and bounded multiplication
of the form∏`≤mg(n1, . . . ,nk, `). Let exp(h) denote theh-fold exponentiation defined by exp(0)(n) = n and

exp(h)(n) = 2exp(h−1)(n) for all n,h∈ N. It is easy to see that exp(h) is elementary for allh≥ 0 and that if a
function f : N → N is elementary then there is anh≥ 0 such thatf (n) ≤ exp(h)(n) for all n∈ N. It is well
known that there is no elementary functionf such that the number of states of the smallest automatonAϕ
equivalent to an MSO-formulaϕ of lengthk is at mostf (k). It follows that the parameter dependence of our
automata based fpt algorithm forp-MC(MSO,T) is non-elementary. Similarly, the number of monadic
second-orderq-types is nonelementary in terms ofq, and hence the type based fpt algorithm also has a

9

nonelementary parameter dependence. But this does not ruleout the existence of other fpt algorithms with
a better parameter dependence. The following theorem showsthat, under reasonable complexity theoretic
assumptions, no such algorithms exist, not even for first-order model checking:

Theorem 3.2 (Frick and Grohe [44]).

(1) UnlessPTIME = NP, there is no fpt algorithm for p-MC(MSO,T) with an elementary parameter
dependence.

(2) UnlessFPT= W[1], there is no fpt algorithm for p-MC(FO,T) with an elementary parameter
dependence.

As almost all classesC of graphs we shall consider in the following contain the class T of trees, we
have corresponding lower bounds for the model checking problems on these classesC . The only exception
are classes of graphs of bounded degree, but even for such classes, we have a triply exponential lower
bound [44] (cf. Remark 4.12).

3.2 Branch decompositions

We first introduce branch decompositions in an abstract setting and then specialise them to graphs in two
different ways.

3.2.1 Abstract branch decompositions

Let A be a nonempty finite set andκ : 2A → R. In this context, the functionκ is often called aconnectivity
function. A branch decompositionof (A,κ) is a pair(T,β) consisting of a binary treeT and a bijection
β : L(T) → A. (Recall thatL(T) denotes the set of leaves of a treeT.) We inductively define a mapping
β̃ : V(T) → 2A by letting

β̃ (t) =

{
{β (t)} if t is a leaf,

β̃ (t1)∪ β̃ (t2) if t is an inner node with childrent1,t2.

Thewidthof the branch decomposition(T,κ) is defined to be the number

width(T,κ) = max
{

κ(β̃(t))
∣∣ t ∈V(T)

}
,

and thebranch widthof (A,κ), denoted by bw(A,κ), is defined to be the minimum of the widths of all
branch decompositions of(A,κ). We extend the definition of branch width to empty ground setsA by
letting bw(/0,κ) = κ(/0) for all κ : { /0} → R. Note that(/0,κ) does not have a branch decomposition,
because the empty graph, not being connected, is not a tree.

Usually, the connectivity functionsκ considered for branch decompositions are integer-valued,sym-
metric, and submodular. A functionκ : 2A → R is symmetricif κ(B) = κ(A\B) for all B ⊆ A, and it is
submodularif

κ(B)+ κ(C)≥ κ(B∪C)+ κ(B∩C) (3.1)

for all B,C⊆ A.

Example 3.3.Let A⊆ Rn be finite. For everyB⊆ A, let r(B) be the dimension of the linear subspace of
Rn generated byB, or equivalently, the rank of the matrix with column vectorsB (defined to be 0 ifB= /0).
Defineκlin : 2A → Z by

κlin(B) = r(B)+ r(A\B)− r(A).

κlin measures the dimension of the intersection of the subspace generated byB and the subspace generated
by A\B. It is easy to see thatκlin is symmetric and submodular.

For example, let

A =








1
0
0
0


 ,




0
1
0
0


 ,




0
0
1
0


 ,




0
0
0
1


 ,




1
1
0
0


 ,




1
1
1
1








⊆ R4.

10

�

�

�

�




1
0
0
0







0
1
0
0







1
1
0
0







1
1
1
1




�




0
0
1
0







0
0
0
1




�

�

�




1
0
0
0







0
0
1
0







1
1
0
0




�




1
1
1
1



	




0
1
0
0







0
0
0
1




Figure 3.1. Two branch decompositions of(A,κlin) from Example 3.3

Figure 3.1 shows two branch decompositions of(A,κlin). I leave it as an exercise for the reader to verify
that the first decomposition has width 1 and the second has width 2. Observe that bw(A,κlin) = 1, because
every branch decomposition(T,β) of (A,κlin) has a leaft ∈ L(T) with β (t) = (1,1,1,1)T , and we have
κlin({(1,1,1,1)T}) = 1. y

Example 3.4.Again, letA⊆ Rn. Now, for B⊆ A let d(B) be the dimension of the affine subspace ofRn

spanned byB (defined to be−1 if B = /0), and let

κaff(B) = d(B)+d(A\B)−d(A).

It is not hard to prove thatκaff is also symmetric and submodular.
Figure 3.2 shows an example of a setA = {a,b,c,d,e, f ,g,h} ⊆ R2 and a branch decomposition of

(A,κaff) of width 1. y

Example 3.5.The previous two examples have a common generalisation, which is known as the branch
width of matroids.2 Let M be a matroid with base setA and rank functionrM. Then the functionκ : 2A →Z

defined by
κM(B) = rM(B)+ rM(A\B)− rM(A)

is known as theconnectivity functionof the matroid.3 Obviously,κM is symmetric, and as the rank function
rM is submodular,κM is also submodular. y

Before we return to graphs, let us state a very general algorithmic result, which shows that approxi-
mately optimal branch decompositions can be computed by an fpt algorithm. The proof of this theorem is
beyond the scope of this survey. It is based on a deep algorithm for minimizing submodular functions due
to Iwata, Fleischer, and Fujishige [52].

When talking about algorithms for branch decompositions, we have to think about how the input of
these algorithms is specified. LetA be a class of pairs(A,κ), whereκ : 2A →Z is symmetric and submod-
ular and takes only nonnegative values. We callA a tractable class of connectivity functions, if we have a

2Readers who do not know anything about matroids should not worry. This example is the only place in this survey where they
appear.

3Often, the connectivity function is defined byκM(B) = rM(B)+ rM(A\B)− rM(A)+1, but this difference is inessential here.

11

�
�
�
�

�

�

�

�

a b
c

d
e

f
g

h

�

�

�

�

�

�

	

a b

c

d

e

f

g

h

Figure 3.2. A set ofA of eight points in the plane and a branch decomposition of(A,κaff) of width 1

representation of the pairs(A,κ) ∈ A such that, given the representation of(A,κ), the ground setA can be
computed in polynomial time, and for everyB⊆ A, the valueκ(B) can be computed in polynomial time.

For example, ifA is the class of pairs(A,κlin), whereA is a finite set of vectors over some finite field or
the field of rationals andκlin is the linear connectivity function, then we can represent apair(A,κlin) simply
by a matrix whose columns are the vectors inA. For the graph based examples that we shall describe next,
the underlying graph is always used as a representation.

Theorem 3.6 (Oum and Seymour [63]). LetA be a tractable class of connectivity functions. Then there
is an fpt algorithm that, given(A,κ) ∈ A and a parameter k∈ N, computes a branch decomposition of
(A,κ) of width at most3k if bw(A,κ) ≤ k. If bw(A,κ) > k, the algorithm may still compute a branch
decomposition of(A,κ) of width at most3k, or it may simply halt without an output.4

3.2.2 Branch decompositions of graphs

Let G = (V,E) be a graph. For a setF ⊆ E, we define theboundaryof F to be the set∂F of all vertices of
G incident both with an edge inF and with an edge inE \F. We define a functionκG : 2E → Z by letting
κG(F) = |∂F | for everyF ⊆ E. It is not hard to verify thatκG is symmetric and submodular. Abranch
decompositionof G is a branch decomposition of(E,κG), and thebranch widthbw(G) of G is the branch
width of (E,κG).

Example 3.7.Figure 3.3 shows an example of a graph and branch decomposition of this graph of width 5.
y

Example 3.8 ([70]).For everyn≥ 3, the complete graphKn onn-vertices has branch widthd2n/3e.
We omit the proof of the lower bound. For the upper bound, we partition the vertex set ofKn into three

partsV1,V2,V3 of sizedn/3e or bn/3c, and we partition the edge set into three setsE12,E23,E13 such that
edges inEi j are only incident with vertices inVi ∪Vj . Then we take arbitrary branch decompositions of the
three subgraphsGi j = (Vi ∪Vj ,Ei j) and join them together as indicated in Figure 3.4. y

Note that the construction of the previous example actuallyshows that everyn-vertex graph has branch
width at mostd2n/3e.

Example 3.9 ([70]).A graph has branch width 0 if and only if it has maximum degree at most 1. A graph
has branch width 1 if and only if it has at least one vertex of degree greater than 1, and every connected
component has at most one vertex of degree greater than 1. Trees and cycles have branch width at most 2.

4An fpt algorithm of this type is known as anfpt approximation algorithm[7].

12

��

��

��

���

	

�

d
b c

f

e

h

j
i

k l

m n
o

p

q
r

s
t

v

u

wx

a

g

�0

4

g�
4

4�

h 3�

3�

i j

m

�3

r�3

s x

�4

�4

a�4

4�

b�3

c k

�
3

d e

�5

f�
4

3�

l o

�4

5�

3�

n u

3

t w

!3

2"

p v

q

Figure 3.3. A graph with a branch decomposition of width 5. The numbers atthe nodes indicate the size
of the boundary of the edges in the subtree below that node.

#

G12

$

G13 G23

Figure 3.4. A branch decomposition of a clique (see Example 3.8)

13

��

��

G2×2

���

���

���

G3×3

����

����

����

����

G4×4

Figure 3.5. The(n×n)-grids forn = 2,3,4

Let me suggest it as an exercise for the reader to prove these simple facts. y

Example 3.10 ([70]).For all n≥ 2, then×n-grid

Gn×n =
(
[n]× [n],

{
{(i1, j1),(i2, j2)}

∣∣ |i1− i2|+ | j1− j2| = 1
})

(cf. Figure 3.5) has branch widthn. y

Branch width is closely related to the more familiartree width. In fact, it is not very hard to prove the
following inequalities for all graphsG [70]:

bw(G) ≤ tw(G)+1≤ max
{
(3/2) ·bw(G),2}, (3.2)

where tw(G) denotes the tree width ofG.
As the connectivity functionsκG are symmetric and submodular, approximately optimal branch de-

compositions can be computed by the general purpose algorithm of Theorem 3.6. However, for the special
case of branch decompositions of graphs, better algorithmsare known:

Theorem 3.11 (Bodlaender and Thilikos [6]). There is an algorithm that, given a graph G and a k∈ N,
decides ifbw(G) ≤ k and computes a branch decomposition of G of width at most k ifthis is the case in
time

f (k) ·n,

where n= |V(G)|, for some computable function f .

3.2.3 Rank decompositions of graphs

Whereas branch width is based on decompositions of the edge set of a graph, for rank width we decompose
its vertex set. For a graphG = (V,E) and subsetsU,W ⊆ V of its vertex set, we letMG(U,W) be the
|U |× |W|-matrix with entriesmuw for u∈U,w∈W, where

muw =

{
1 if {u,w} ∈ E,

0 otherwise.

HenceMG(V,V) is just the adjacency matrix ofG. We viewMG(U,W) as a matrix over the field GF(2)
and let rk(MG(U,W)) be its row rank over GF(2). Now we define a connectivity functionρG : 2V → N by

ρG(U) = rk
(
MG(U,V \U)

)

for all U ⊆ V. Since the row rank and column rank of a matrix coincide, the functionρG is symmetric,
and it is not hard to prove that it is submodular. Arank decompositionof G is a branch decomposition of
(V,ρG), and therank widthrw(G) of G is the rank width of(V,ρG).

Example 3.12.Figure 3.6 shows an example of a graph and a rank decomposition of this graph of width 1.
y

It is easy to prove that rank width can be bounded in terms of branch width. The following theorem,
which gives a tight bound, is not so obvious:

14

�
1

�
2

�
3

�

4

�
5

�6

a




1 1 1
0 0 0
1 1 1


 b

(
1 1 1 1
1 1 1 1

)
c

1 3

2

d




1 0 1
1 0 1
1 0 1




4 e
(

1 0 1 1
1 0 1 1

)

5 6

Figure 3.6. A graph with a rank decomposition of width 1. For later reference, we have named the nodes
of the tree

Theorem 3.13 (Oum [62]). For every graph G it holds thatrw(G) ≤ max{1,bw(G)}.

The following example shows that the rank width of a graph canbe substantially smaller than the branch
width, and that it can also be the same.

Example 3.14.It is easy to see that every rank decomposition of a complete graph has width 1. Combined
with Example 3.8, this shows that the branch width and rank width of a graph can differ by a factorΩ(n),
wheren denotes the number of vertices.

Let I(Kn) be the graph obtained from the completen-vertex graphKn by subdividing all edges once,
that is, by replacing every edge by a path of length 2.I(Kn) is theincidence graphof Kn. Then ifn≥ 3 and
n≡ 0,1 mod 3 we have rw(I(Kn)) = bw(I(Kn)) = d(2/3) ·ne [62]. y

Example 3.15.It can be shown that the rank width of an(n×n)-grid is at leastdn/2−2e (follows from
[62]). Hence grids have both large branch width and large rank width. y

As for the branch width of graphs, there is an algorithm for computing rank width that is more efficient
than the general purpose algorithm of Theorem 3.6.

Theorem 3.16 (Hlineny and Oum [33]). There is an algorithm that, given a graph G and a k∈N, decides
if rw(G) ≤ k and computes a rank decomposition of G of width at most k if this is the case in time

f (k) ·n3,

where n= |V(G)|, for some computable function f .

Rank width is related to the graph invariantclique width[17], which is defined in terms of a graph
algebra: The clique width cw(G) of a graphG is the least number of constant symbols required in a term
in this algebra describing the graphG. Oum and Seymour [63] proved that for every graphG it holds that

rw(G) ≤ cw(G) ≤ 2rw(G)+1−1.

In particular, this implies that a class of graphs has bounded rank width if and only if it has bounded clique
width.

3.3 Courcelle’s Theorems

For everyk ≥ 1, letBk be the class of all graphs of branch width at mostk andRk the class of all graphs
of rank width at mostk. The following theorem is usually formulated in terms of tree width, but by (3.2)
the following “branch width version” is equivalent.

Courcelle’s Theorem ([9]). For every k, the problem p-MC(MSO,Bk) is solvable by a linear fpt algo-
rithm.

15

As for Theorem 3.1, we sketch two proofs. The first is a reduction to Theorem 3.1, whereas the second
is a generalisation of the second proof of Theorem 3.1.

First proof sketch.Let us fix k ≥ 1. We reduce the model checking problem on the classBk to that on
labelled trees and then apply Theorem 3.1. We associate witheach graphG ∈ Bk a labelled treeT+ and
with each MSO-sentenceϕ over graphs a sentenceϕ+ over labelled trees such thatG |= ϕ ⇐⇒ T+ |= ϕ+.
We will do this in such a way thatT+ is computable fromG in linear time and thatϕ+ is computable from
ϕ . Then our model checking algorithm proceeds as follows: GivenG∈Bk andϕ ∈ MSO, it computesT+

andϕ+ and then tests ifT+ satisfiesϕ+ using the algorithm of Theorem 3.1.
The mappingG 7→ T+ will not be canonical, i.e., isomorphic graphsG will not necessarily yield iso-

morphic treesT+. The treeT+ will depend on the specific representation of the input graphG and on the
algorithm we use to compute a branch decomposition of this input graph. Note that this does not affect the
correctness of our algorithm.

We constructT+ from G as follows: Without loss of generality we assume thatG has no isolated
vertices. We first compute a branch decomposition(T,β) of G of width at mostk, which can be done in
linear time by Theorem 3.11. Then we define a labelling ofT that allows us to reconstructG from the
labelled treeT+ within MSO. Formally, we define the labelling in such a way thatG is MSO-interpretable
in T+. Then we can constructϕ+ from ϕ using the method of syntactic interpretations (see [32, 12]).

We assume thatT is an ordered binary tree, that is, each inner node has a left and a right child. Recall
that, for a nodet of T, β̃ (t) is the set of all edgese of G such thate = β (u) for some leafu of T that
appears in the subtree rooted att. Let Bt = ∂ β̃ (t) be the boundary of̃β (t), that is, the set of all vertices
incident with an edge iñβ (t) and with an edge inE(G) \ β̃(t). Since the width of(T,β) is at mostk we
have|Bt | ≤ k for all nodest. The labelling of the treeT+ encodes for every inner nodet with left child t1
and right childt2 how Bt intersects the setsBt1 andBt2. We assume some linear order of the vertices ofG.
Then there will be labelsP1i j , for i, j ∈ [k], indicating that theith vertex inBt1 is equal to thejth vertex in
Bt , and similarly labelsP2i j for t2. Note thatBt ⊆ Bt1 ∪Bt2, so these labels “determine”Bt . We do not label
the leaves.

For each leaft, the setBt consists of the two endpoints of the edgeβ (t) (unless one or both endpoints
have degree 1). It is easy to write down four MSO-sentenceseqi j (x,y), for i, j ∈ {0,1}, such that for all
leavesu,t of T we haveT+ |= eqi j (u,v) if and only if theith vertex inBu is equal to thejth vertex inBt .
Recalling our assumption thatG has no isolated vertices, it is now easy to reconstructG from T+ within
MSO.

Second proof sketch.Let G be a graph of branch widthk, and letϕ be an MSO-sentence, say, of quantifier
rank q. We compute a branch decomposition(T,β) of G of width k. We fix some linear order on the
vertices ofG. For everyt ∈V(T) we let b̄t be the ordered tuple of the elements of∂ β̃ (t). Recall that for a
subsetB⊆ E(G), by GJBK we denote the subgraph(

⋃
B,B) generated byB.

Starting from the leaves we inductively compute tpq(GJβ̃ (t)K, b̄t) for all t ∈V(T), applying Lemma 2.3
at every node. For this to work, it is important that for all nodest with childrent1 andt2 it holds that

V
(
GJβ̃ (t1)K∩GJβ̃ (t2)K

)
⊆ ∂ β̃ (t1)∪∂ β̃(t2)

and∂ β̃ (t) ⊆ ∂ β̃ (t1)∪∂ β̃(t2).

Finally, we check ifϕ ∈ tpq(GJβ̃ (r)K, b̄r) for the rootr. (Note thatb̄r is actually the empty tuple, but this
does not matter.)

The following theorem was first proved by Courcelle [8, 11] ina version phrased in terms of certain
graph grammars. Later, a version for clique width was provedby Courcelle, Makowsky, and Rotics [14],
and finally the relation between clique width and rank width was established by Oum and Seymour [63].

Theorem 3.17 ([8, 11, 14, 63]). For every k, p-MC(MSO,Rk) is solvable by a cubic fpt algorithm.

Proof sketch.The proof follows the same strategy as the first proof of Courcelle’s Theorem: We fixk. For
every graphG∈Rk we construct a labelled treeT∗ such thatG can be reconstructed fromT∗ within MSO.
Then using the method of syntactic interpretations, for every MSO-sentenceϕ over graphs we obtain an
MSO-sentenceϕ∗ over labelled trees such thatG |= ϕ ⇐⇒ T∗ |= ϕ∗.

16

T∗ is obtained by suitably labelling the treeT of a rank decomposition(T,β) of G of width k. The
difficulty here is to encodeG in a labelling ofT that uses only finitely many labels. Lett be an inner node
of T with childrent1 andt2. For i = 1,2, letUi = β̃ (ti). Furthermore, letU =U1∪U2 andW =V \U . Then
β̃ (t) = U , and the matrices at the nodest1,t2,t can be written as

M(U1,V \U1) =
(
M(U1,U2) M(U1,W)

)
,

M(U2,V \U2) =
(
M(U2,U1) M(U2,W)

)
,

M(U,V \U) =

(
M(U1,W)
M(U2,W)

)
.

Note thatM(U2,U1) is the transpose ofM(U1,U2). (We omit the subscriptG for the matricesMG(·, ·).)
For every nodet ∈V(T) we compute a setBt of at mostk vertices ofG such that the rows corresponding

to the vertices inBt form a basis of the row space of the matrixM(U,V \U), whereU = β̃ (t). We define a
labelling of the (inner) nodes ofT as follows: Lett be an inner node with childrent1 andt2 andU1 = β̃ (t1),
U2 = β̃ (t2), U = U1∪U2 = β̃ (t). Then att the labelling encodes

• the matrixM(Bt1,Bt2),

• for i = 1,2 and eachv∈ Bti a representation of the row ofM(U,V \U) corresponding tov as a linear
combination of vectors of the basis corresponding toBt over the field GF(2).

Note that this amounts to at most 3k2 bits of information: The matrix requires at mostk2 bits, and a linear
combination ofk vectors over GF(2) requiresk bits.

We now describe how the graphG can be reconstructed from the labelled treeT∗. The vertices of
G correspond to the leaves ofT∗. To find out whether there is an edge between a vertexv1, say, with
v1 = β (u1) and a vertexv2, say withv2 = β (u2), we proceed as follows: Lett be the first common ancestor
of u1 and u2, and lett1 and t2 be the children oft such thatui is a descendant ofti , for i = 1,2. Let
Ui = β̃ (ti) andU = U1∪U2 = β̃ (t). Thenvi ∈Ui . Note thatBui = {vi}, because the matrices at the leaves
only have one row. Hence, using the labelling, we can recursively find a representation of the row of the
matrixM(Ui ,V \Ui) corresponding tovi as a linear combination of the rows corresponding toBti . Then we
can use the matrixM(Bt1,Bt2), which is also part of the labelling, to compute the entrymv1v2 of the matrix
M(U1,U2), and this entry tells us whether there is an edge betweenv1 andv2. The following example
illustrates this construction.

Example 3.18.Consider the graphG and branch decomposition displayed in Figure 3.6. We define the
“bases” as follows:

t 1 2 3 4 5 6 a b c d e
Bt {1} {2} {3} {4} {5} {6} /0 {1} {1} {4} {5}

Then for example, at nodeb the following information is stored: The matrix

M({1},{2}) = (1),

and a representation of the rowsr1 = (1 1 1) andr2 = (0 0 0) of the matrixM({1,2,3},{4,5,6}) in terms
of the rowr1:

r1 = 1 · r1, r2 = 0 · r1.

To determine whether there is an edge, say, between betweenv1 = 3 andv2 = 5 we take the least common
ancestor of the two leaves,a with its two childrenb andd. The representation of rowr3 = (1 1 1) of
M({1,2,3},{4,5,6}) with respect toBb = {1} is r3 = 1 · r1, and the representation of rowr5 = (1 0 1) of
M({4,5,6},{1,2,3}) with respect toBd = {4} is r5 = 1· r4. Hencem35 = 1·1·m14 = 1, that is, there is an
edge between 3 and 5. y

It follows from Theorem 3.2 that the parameter dependence ofthe fpt algorithms in the previous two
theorems has to be nonelementary.

We close this section with two remarks about strengtheningsof the two theorems:

17

Remark 3.19.Our proofs yield stronger theorems than stated: Not only is the MSO model checking prob-
lem fixed-parameter tractable on every class of graphs whosebranch width is bounded, but actually the
following doubly parameterized model checking problem is fixed-parameter tractable:

Instance: A sentenceϕ ∈ MSO and a graphG.
Parameter: |ϕ |+bw(G).

Problem: Decide ifG |= ϕ .

The same is true for rank width. y

Remark 3.20.It is easy to see that both theorems can be extended to labelled graphs.
Courcelle’s Theorem even holds for a stronger monadic second order logic, denoted by MSO2, that

admits quantification not only over sets of vertices of a graph, but also over sets of edges. This stronger
result can easily be derived from the (labelled) version of Courcelle’s Theorem. Define theincidence graph
I(G) of a graphG to be the graph(VI ,EI), whereVI =V(G)∪E(G) andEI =

{
{v,e}

∣∣ v∈ e
}

. It is not hard
to see that for every graphG of branch width at least 2 it holds that bw(G) = bw(I(G)). Furthermore, every
MSO2-formula overG can be translated to an MSO-formula over the labelled incidence graph(I(G),P),
whereP = E(G) (The labelling is not really needed, but convenient.) Henceit follows from Courcelle’s
Theorem thatp-MC(MSO2,Bk) has a linear fpt algorithm for everyk≥ 1.

This does not work for rank width, because the rank width of the incidence graph can be much larger
than that of the original graph. Surprisingly, the rank width of the incidence graph of a graph is closely
related to the branch width of the original graph. Oum [62] proved that

bw(G)−1≤ rw(I(G)) ≤ bw(G)

for every graphG with at least one vertex of degree 2. y

4 First-order logic on locally tree-like classes of graphs

There is not much hope for extending the tractability of monadic second-order model checking to further
natural classes of graphs such as planar graphs or graphs of bounded degree. Indeed, the MSO-definable
3-colourability problem is NP-complete even when restricted to planar graphs of degree 4. For first-order
logic, however, the model checking problem is tractable on much larger classes of graphs. Seese [75]
showed that first-order model checking admits a linear fpt algorithm on all classes of bounded degree.
Later Frick and Grohe [43] proved the same for planar graphs,essentially by the general approach that we
shall describe in this section. The crucial property of first-order logic that we exploit is itslocality.

4.1 The Locality of First-Order Logic

Let G = (V,E) be a graph. ThedistancedistG(v,w) between two verticesv,w ∈ V is the length of the
shortest path fromv to w. For everyv∈V andr ∈ N, ther-neighbourhoodof v in G is the set

NG
r (v) = {w∈V | distG(v,w) ≤ r}

of all vertices of distance at mostr from v. For a setW ⊆V, we letNG
r (W) =

⋃
w∈W NG

r (w). We omit the
superscriptG if G is clear from the context. Theradiusof a connected graphG is the leastr for which there
is a vertexv∈V(G) such thatV(G) ⊆ Nr(v). The radius of a disconnected graph is∞.

Observe that distance is definable in first-order logic, thatis, for everyr ≥ 0 there is a first-order formula
dist≤r(x,y) such that for all graphsG andv,w∈V(G),

G |= dist≤r(v,w) ⇐⇒ dist(v,w) ≤ r.

In the following, we will writedist(x,y)≤ r instead ofdist≤r(x,y) anddist(x,y) > r instead of¬dist≤r(x,y).
A first-order formulaϕ(x1, . . . ,xk) is r-local if for every graphG and allv1, . . . ,vk ∈V(G) it holds that

G |= ϕ(v1, . . . ,vk) ⇐⇒ G
[
Nr({v1, . . . ,vk})

]
|= ϕ(v1, . . . ,vk).

18

This means that it only depends on ther-neighbourhood of a vertex tuple whether anr-local formula holds
at this tuple. A formula islocal if it is r-local for somer.

A basic local sentenceis a first-order sentence of the form

∃x1 . . .∃xk

(
∧

1≤i< j≤k

dist(xi ,x j) > 2r ∧
k∧

i=1

ϕ(xi)

)
,

whereϕ(x) is r-local. In particular, for every local formulaϕ(x) the sentence∃x ϕ(x) is a basic local
sentence.

Gaifman’s Locality Theorem ([45]). Every first-order sentence is equivalent to a Boolean combination
of basic local sentences.

Furthermore, there is an algorithm that computes a Boolean combination of basic local sentences
equivalent to a given first-order sentence.

We shall illustrate the following proof sketch in Example 4.1 below. To appreciate the cleverness of the
proof, the reader may try to find a Boolean combination of basic local sentences equivalent to the simple
sentenceϕ = ∃x∃y

(
¬E(x,y)∧P(x)∧Q(y)

)
considered in the example before reading the proof.

Proof sketch.The proof is by structural induction on first-order formulas. To enable this induction, we
need to prove a stronger statement that also includes formulas with free variables. We say that a first-order
formula is inGaifman normal form (GNF)if it is a Boolean combination of basic local sentences and local
formulas.

Claim: Every first-order formula is equivalent to a formula in GNF.

The claim is trivial for atomic formulas, because all atomicformulas are 0-local. It obviously extends
to Boolean combinations of formulas. Universal quantification can be reduced to existential quantfication
and negation. The only remaining case is that of existentially quantified formulas

ϕ(x̄) = ∃y ψ(x̄,y),

whereψ(x̄,y) is in GNF. We may assume thatψ(x̄,y) is of the form

m∨

i=1

(
χi ∧ξi(x̄,y)

)
,

where eachχi is a Boolean combination of basic local sentences and eachξi(x̄,y) is local. Here we use the
simple observation that a Boolean combination of local formulas is local. Thenϕ(x̄) is equivalent to the
formula

m∨

i=1

(
χi ∧∃y ξi(x̄,y)

)
.

It remains to prove that each formula
ϕ ′(x̄) = ∃y ξ (x̄,y),

whereξ (x̄,y) is local, is equivalent to a formula in GNF. Letr ≥ 0 such thatξ (x̄,y) is r-local. We observe
thatϕ ′(x̄) is equivalent to the formula

∃y
(
dist(x̄,y) ≤ 2r +1∧ξ (x̄,y)

)
∨∃y

(
dist(x̄,y) > 2r +1∧ξ (x̄,y)

)
, (4.1)

wheredist(x̄,y) ≤ 2r + 1 abbreviates
∨

i dist(xi ,y) ≤ 2r + 1. The first formula in the disjunction (4.1)
is (3r + 1)-local. Hence we only need to consider the second,∃y

(
dist(x̄,y) > 2r + 1∧ ξ (x̄,y)

)
. Using

Lemma 2.3 and ther-locality of ξ (x̄,y), it is not hard to see that this formula is equivalent to a Boolean
combination of formulas of the form

ζ (x̄)∧∃y
(
dist(x̄,y) > 2r +1∧η(y)

)
,

19

whereζ (x̄) andη(y) arer-local. Letr ′ = 2r +1. It remains to prove that

ϕ ′′(x̄) = ∃y
(
dist(x̄,y) > r ′∧η(y)

)

is equivalent to a formula in GNF. This is the core of the wholeproof. Suppose that ¯x = (x1, . . . ,xk).
Let G be a graph and ¯v = (v1, . . . ,vk) ∈ V(G)k. When doesG |= ϕ ′′(v̄) hold? Clearly, it holds if there
are w1, . . . ,wk+1 of pairwise distance greater than 2r ′ such thatG |= η(wj) for all j, because eachr ′-
neighbourhoodNr ′(vi) contains at most onewj and hence there is at least onewj of distance greater than
r ′ from all thevi . For` ≥ 1, let

θ` = ∃y1 . . .∃y`

(∧

1≤i< j≤`

dist(yi ,y j) > 2r ′∧η(yi)
)
.

Note thatθ` is a basic local sentence. We have just seen thatθk+1 implies ϕ ′′(x̄). But of courseϕ ′′(x̄)
may also hold ifθk+1 does not. Let us return to our graphG and the tuple ¯v ∈ V(G)k. Let ` ≥ 1 be
maximum such thatG |= θ` and suppose that` ≤ k. In the following case distinction, we shall determine
whenG |= ϕ ′′(v̄).

Case 1: There are now1, . . . ,w` ∈ Nr ′({v̄}) of pairwise distance greater than 2r ′ such thatG |= η(wj)
for all j.

As G |= θ`, this implies that there is at least onew 6∈ Nr ′({v̄}) such thatG |= η(w). HenceG |= ϕ ′′(v̄).

Case 2: There is aw∈ N3r ′(v̄) such thatw 6∈ Nr ′(v̄) andG |= η(w).
Then, trivially,G |= ϕ ′′(v̄).

Case 3:Neither Case 1 nor Case 2, that is, there arew1, . . . ,w` ∈ Nr ′({v̄}) of pairwise distance greater
than 2r ′ such thatG |= η(wj) for all j, and there is now∈ N3r ′(v̄)\Nr ′(v̄) such thatG |= η(w).

ThenG 6|= ϕ ′′(v̄). To see this, suppose for contradiction that there is aw∈V(G) such thatw 6∈ Nr ′({v̄})
andG |= η(w). Thenw 6∈ N3r ′({v̄}) and therefore dist(wj ,w) > 2r ′ for all j ∈ [`]. ThusG |= θ`+1, which
contradicts the maximality of̀.

HenceG |= ϕ ′′(v̄) if any only if we are in Case 1 or 2. Note that the conditions describing these cases
can be defined by local formulas, say,γ`,1(x̄) andγ`,2(x̄). Thus if G |= θ` ∧¬θ`+1, thenG |= ϕ ′′(v̄) if and
only if G |= γ`,1(v̄)∨ γ`,2(v̄).

Overall,ϕ ′′(x̄) is equivalent to the formula

θk+1∨
k∨

`=1

(
θ` ∧¬θ`+1∧

(
γ`,1(x̄)∨ γ`,2(x̄)

))
,

which is in GNF. It is not hard to show that our construction yields an algorithm that computes a formula
in GNF equivalent to a given first-order formula.

Example 4.1.Let us follow the proof of Gaifman’s theorem and construct a Boolean combination of basic
local sentences equivalent to the sentence

ϕ = ∃x∃y
(
¬E(x,y)∧P(x)∧Q(y)

)
,

which is a sentence over labelled graphs with labelsP andQ.
The quantifier free formulaϕ0(x,y) =

(
¬E(x,y)∧P(x)∧Q(y)

)
is 0-local. Hence we start the construc-

tion with the formula
ϕ1(x) = ∃y

(
¬E(x,y)∧P(x)∧Q(y)

)
.

ϕ1(x) is equivalent to the formula

ϕ ′
1 = P(x)∧∃y

(
¬E(x,y)∧Q(y)

)
.

Splitting ∃y
(
¬E(x,y)∧Q(y)

)
with respect to the distance betweenx andy as in (4.1) (withr = 0) and

simplifying the resulting formula, we obtain

P(x)∧
(

Q(x)∨∃y
(
dist(x,y) > 1∧Q(y)

))
.

20

It remains to consider the formulaϕ ′′
1 (x) = ∃y

(
dist(x,y) > 1∧Q(y)

)
. Following the proof of Gaifman’s

theorem (withϕ ′′ = ϕ ′′
1 , η(y) = Q(y), r = 0, andk = 1), we obtain the following equivalent formula in

GNF:

ϕ ′′′
1 (x) = θ2∨

(
θ1∧¬θ2∧

(
¬∃y(dist(x,y) ≤ 1∧Q(y))

∨∃y(dist(x,y) ≤ 3∧dist(x,y) > 1∧Q(y))
))

whereθ1 = ∃y1Q(y1) andθ2 = ∃y1∃y2
(
dist(y1,y2) > 2∧Q(y1)∧Q(y2)

)
. Henceϕ1(x) is equivalent to

the formulaP(x)∧
(
Q(x)∨ϕ ′′′

1 (x)
)
. The step fromϕ1(x) to ϕ = ∃xϕ1(x) is simple, because there are no

free variables left. By transforming the formulaP(x)∧
(
Q(x)∨ϕ ′′′

1 (x)
)

into disjunctive normal form and
pushing the existential quantfier inside, we obtain the formula:

∃x
(
P(x)∧Q(x)

)

∨
(
∃x P(x)∧θ2

)

∨
(
∃x
(
P(x)∧¬∃y(dist(x,y) ≤ 1∧Q(y))

)
∧θ1∧¬θ2

)

∨
(
∃x
(
P(x)∧∃y(dist(x,y) ≤ 3∧dist(x,y) > 1∧Q(y))

)
∧θ1∧¬θ2

)
.

Observe that this is indeed a Boolean combination of basic local sentences equivalent toϕ . A slightly
simpler Boolean combination of basic local sentences equivalent toϕ is constructed in Example 3 of [51]
by a different technique. y

It has recently been proved in [20] that the translation of a first-order sentence into a Boolean combi-
nation of basic local sentences may involve a nonelementaryblow-up in the size of the sentence.

4.2 Localisations of graph invariants

Recall thatG denotes the class of all graphs. For every graph invariantf : G → N we can define its
localisation` f : G ×N → N by

` f (G, r) = max
{

f
(
G[Nr(v)]

) ∣∣∣ v∈V(G)
}

.

Hence to computèf (G, r), we apply f to everyr-neighbourhood inG and then take the maximum. We
say that a classC of graphs haslocally bounded fif there is a computable5 functiong : N → N such that
` f (G, r) ≤ g(r) for all G∈ C and allr ∈ N.

Example 4.2.One of the simplest graph invariants is the order of a graph. Observe that a class of graphs
has locally bounded order if and only if it has bounded degree.

Moreover, if a classC has bounded degree then it has locally boundedf for every computable graph
invariant f . y

In this section, we are mainly interested in the localisation of branch width. Maybe surprisingly, there
are several natural classes of graphs of locally bounded branch width. We start with two trivial examples
and then move on to more interesting ones:

Example 4.3.Every class of graphs of bounded branch width has locally bounded branch width. y

Example 4.4.Every class of graphs of bounded degree has locally bounded branch width. This follows
immediately from Example 4.2. y

Example 4.5 ([68, 76]).The class of planar graphs has locally bounded branch width.More precisely, a
planar graph of radiusr has branch width at most 2r +1.

Let me sketch the proof. LetG be a planar graph of radiusr, and letv0 be a vertex such thatV(G) ⊆
Nr(v0). We show how to recursively partition the edge set ofG in such a way that at each stage, the

21

�

�

�

v0

v

w

C

P

Q

A

B

�

A B

(a) The graph is cut alongPQ

�

�

�

�v0

v

w

x

P

Q

R

B1

B2

�

A

�

B1 B2

(b) PartB is cut again alongR

�

�

�

�v0

w

x

Q

R

e

�

A

�

B1

�

e

B2\ {e}
(c) Edgee= {w,x} is split off partB2

Figure 4.1. Schematic branch decomposition of a planar graph

22

boundary of each part has cardinality at most 2r +1. This will give us a branch decomposition of width at
most 2r +1.

Without loss of generality we may assume thatG is 2-connected; if it is not, we first decompose it into
its 2-connected blocks. Figure 4.1 illustrates the following steps. We fix a planar embedding ofG, and let
C be the exterior cycle. We pick two verticesv,w onC and shortest pathsP,Q from v0 to v,w, respectively.
Then we cut alongP andQ. This gives us a partition ofE(G) into two parts whose boundary is contained
in V(P∪Q). We can add the edges inE(P∪Q) arbitrarily to either of the two parts. Now we consider each
of the parts separately. The boundary cycle consists ofP, Q, and a piece of the cycleC. If this piece ofC
is just one edge, we can split it off and then further decompose the rest. Otherwise, we pick a vertexx on
the piece ofC and a shortest pathR from v0 to x. We obtain two new parts with boundariesV(P∪R) and
V(Q∪R). We partition these new parts recursively until they only consist of their boundaries, and then we
partition the rest arbitrarily. Of course this proof sketchomits many details and special cases. For example,
the vertexv0 could be on the exterior cycle to begin with. I leave it to the reader to work out these details.

The branch decomposition in Figure 3.3 was obtained by this method. Note that the graph has radius
2, with centrev0 being the vertex incident with the edgesm and j. The initial pathsP andQ have edge
setsE(P) = {s,m} andE(Q) = { j}. The right part consists of the edgesa,b,c,k,d,e, f , l ,o,n,u,t,w, p,v,q.
The edges ofP∪Q were added to the left part. In the next step, the right part was split along the path
R with E(R) = {k,e}. The right part of this split consists of the edgesf , l ,o,n,u,t,w, p,v,q. The edgef
immediately can be split off, and the new boundary cycle isw,q, l ,k,m,s. The new splitting path consists
of the edgeo, et cetera. y

Example 4.6 ([35]).Thegenusof a graph is the minimum genus of an orientable or nonorientable surface
the graph can be embedded into. For everyk, the class of all graphs of genus at mostk has locally bounded
branch width. Moreover, for everyk the class of all graphs ofcrossing numberat mostk has locally
bounded branch width. y

In the next example, we shall construct an artificial class ofgraphs of locally bounded branch width.
It serves as an illustration that the global structure of graphs of locally bounded branch width can be quite
complicated. In particular, this example shows that there are classes of graphs of locally bounded branch
width and of unbounded average degree. Recall that if a classC of graphs has unbounded average degree
then the size of the graphs inC is superlinear in their order. The graph classes in all previous examples
have bounded average degree and thus size linear in the order. For planar graphs and graphs of bounded
genus, this follows from Euler’s formula.

Example 4.7 ([43]).Recall that thegirth of a graph is the length of its shortest cycle, and thechromatic
numberis the least number of colours needed to colour the graph in such a way that no two adjacent vertices
receive the same colour. We shall use the well-known fact, due to Erdös [36], that for allg,k≥ 1 there exist
graphs of girth greater thang and chromatic number greater thank. The proof of this fact (see [2]) shows
that we can effectively construct such a graphGg,k for giveng andk.

Then for everyk≥ 1, every graphGk,k must have a subgraphHk of minimum degree at leastk; otherwise
we could properly colourGwith k colours by a straightforward greedy algorithm (see [25], Corollary 5.2.3).
Let Hk ⊆ Gk,k be such a subgraph. As a subgraph ofGk,k the graphHk still has girth greater thank.

Let C = {Hk | k≥ 1}. ThenC has unbounded minimum degree and hence unbounded average degree.
Nevertheless,C has locally bounded branch width. To see this, simply observe that ther-neighbourhood
of every vertex in a graph of girth greater than 2r +1 is a tree. As the branch width of a tree is at most 2,
for every graphH ∈ C and everyr ≥ 1 we have

`bw(H, r) ≤ max
({

bw(Hk)
∣∣ k≤ 2r +1

}
∪{2}

)
. y

4.3 Model checking algorithms

Theorem 4.8. Let f be a graph invariant such that the following parameterization of the model checking
problem for first-order logic is fixed-parameter tractable:

5It would be more precise to call this notion “effectively locally boundedf ”, but this would make the terminology even more
awkward.

23

p-MC(FO, f)
Instance: A sentenceϕ ∈ FO and a labelled graphG.

Parameter: |ϕ |+ f (G).
Problem: Decide ifG |= ϕ .

Then for every classC of graphs of locally bounded f , the problem p-MC(FO,C) is fixed-parameter
tractable.

The proof of the theorem relies on Gaifman’s Locality Theorem and the following lemma:

Lemma 4.9 ([43]). Let f andC be as in Theorem 4.8. Then the following problem is fixed-parameter
tractable:

Instance: A labelled graphG = (V,E,P) ∈ Clb andk, r ∈ N.
Parameter: k+ r.

Problem: Decide if there are verticesv1, . . . ,vk ∈ P such that dist(vi ,v j) > 2r for 1≤ i <
j ≤ k.

For simplicity, we only prove the lemma for graph invariantsf that areinduced-subgraph-monotone,
that is, for all graphsG and induced subgraphsH ⊆ G we havef (H) ≤ f (G). Note that both branch width
and rank width are induced-subgraph-monotone.

Proof sketch of Lemma 4.9.GivenG = (V,E,P) andk, r ∈ N, we first compute a maximal (with respect to
inclusion) setS⊆ P of vertices of pairwise distance greater than 2r. If |S| ≥ k, then we are done.

Otherwise, we know thatP ⊆ N2r(S). Let H be the induced subgraph ofG with vertex setN3r(S).
As |S| < k, the radius of each connected component ofH is at most(3r + 1) · k. Hence, becausef is
induced-subgraph-monotone,

f (H) ≤ ` f (G,(3r +1) ·k) ≤ g((3r +1) ·k),

whereg is a function witnessing thatC has locally boundedf .
SinceP⊆ N2r(S) andV(H) = N3r(S), for all verticesv,w∈ P it holds that distG(v,w) > 2r if and only

if distH(v,w) > 2r. Hence it remains to check whetherH containsk vertices labelledP of pairwise distance
greater than 2r. This is equivalent to saying thatH satisfies the first-order sentence

∃x1 . . .∃xk

(
∧

1≤i< j≤k

dist(xi ,x j) > 2r ∧
k∧

i=1

P(xi)

)
.

We can use an fpt algorithm forp-MC(FO, f) to check this.

Proof sketch of Theorem 4.8.Let G = (V,E) ∈ C andϕ ∈ FO. We first transformϕ into an equivalent
Boolean combination of basic local sentences. Then we checkseparately for each basic local sentence in
this Boolean combination whether it is satisfied byG and use the results to determine whetherϕ holds.

So let us consider a basic local sentence

ψ = ∃x1 . . .∃xk

(
∧

1≤i< j≤k

dist(xi ,x j) > 2r ∧
k∧

i=1

χ(xi)

)
,

whereχ(x) is r-local. For each vertexv of G we check whetherG[Nr(v)] satisfiesχ(v) using an fpt
algorithm forp-MC(FO, f). We can do this within the desired time bounds becausef (G[Nr(v)])≤ ` f (G, r).
If G[Nr(v)] satisfiesχ(v), we labelv by P. To determine whetherG satisfiesψ , we have to check whether
the labelled graph(V,E,P) hask vertices inP of pairwise distance greater than 2r. By Lemma 4.9, this can
be done by an fpt algorithm.

Corollary 4.10 ([43]). For every classC of graphs of locally bounded branch width, p-MC(FO,C) is
fixed-parameter tractable.

24

�

�

�

�

�

�

�

�

e
�

	

�

�

�

�

Figure 5.1. Contraction of edgee

Corollary 4.11. For every classC of graphs of locally bounded rank width, p-MC(FO,C) is fixed-param-
eter tractable.

Let me close this section with a few remarks on the running time of the model checking algorithms.

Remark 4.12.We first look at the exponent of the fpt algorithms. An analysis of the algorithms described
above shows that for every classC of locally boundedf we obtain an fpt algorithm forp-MC(FO,C) with
exponentc+1, wherec is the exponent of an fpt algorithm forp-MC(FO, f). Hence for classes of locally
bounded branch width, this yields a quadratic fpt algorithm, and for classes of locally bounded rank width,
it yields an fpt algorithm with exponent four.

For classesC of locally bounded branch width, the exponent can be broughtarbitrarily close to 1; more
precisely, for everyε > 0 there is an fpt algorithm forp-MC(FO,C) with a running time off (k) · |G|1+ε

[43]. Note that we cannot hope to find an fpt algorithm that is linear in the order for general classes
of locally bounded branch width, because by Example 4.7 there are classesC of locally bounded branch
width and unbounded average degree, which implies that the size of the graphs inC is not linearly bounded
in the order (and thus an algorithm that is linear in the ordercannot even read the whole input graph). It
is an open question whether for every classC of graphs of locally bounded branch width there is an fpt
algorithmp-MC(FO,C) that is linear in the size||G|| of the input graph.

For specific classesC , such as the class of planar graphs and classes of bounded genus or bounded
degree, it is known that there are fpt algorithms that are linear in the order [43, 75].

Finally, let us look at the parameter dependence of the fpt algorithms. In general, it is again nonele-
mentary by Theorem 3.2, because our classes contain the class of all trees. However, classes of graphs of
bounded degree do not contain all trees, and it turns out thatfor such classes there are fpt algorithms with
an elementary parameter dependence. For the classDk of graphs of degree at mostk ≥ 3, there is a linear
fpt algorithm forp-MC(FO,Dk) with a triply exponential parameter dependence, and there is a matching
lower bound, which even holds on labelled binary trees [44]. y

5 Digression: Graph minor theory

A graphH is a minor of a graphG if H can be obtained fromG by deleting vertices, deleting edges,
and contracting edges.Contractingan edge means removing the edge, identifying its two end vertices,
and possibly removing the resulting parallel edges. Figure5.1 illustrates this. We writeH � G if H is
isomorphic to a minor ofG. A minor mappingfrom H to G is a mappingµ that associates with each
v∈V(H) a connected subgraphµ(v) ⊆ G and with eache∈ E(H) an edgeµ(e) ∈ E(G) such that:

• for all v 6= w, the graphsµ(v) andµ(w) are vertex disjoint;

• for all e = {v,w} ∈ E(H), the edgeµ(e) is incident to a vertexv′ ∈ V(µ(v)) and a vertexw′ ∈
V(µ(w)).

It is easy to see thatH � G if and only if there is a minor mapping fromH to G. Observe that the graphs
µ(v) of a minor mappingµ can be chosen to be trees. Ifµ is a minor mapping fromH to G, we call the
graph

µ(H) =
(⋃

v∈V(H)

V(µ(v)),
⋃

v∈V(H)

E(µ(v))∪
{

µ(e)
∣∣ e∈ E(H)

})

25

���

�

���

��

	

��

�

���

��

�

�

Figure 5.2. An image ofK5 in a nonplanar graph

an imageof H in G.6 Figure 5.2 shows an example.
For every graphH, we let

X (H) = {G | H 6� G}.

We say that a classC of graphsexcludes Hif C ⊆ X (H). For a classH of graphs, we let

X (H) =
⋂

H∈H

X (H) = {G | H 6� G for all H ∈ H }.

A classC of graphs isminor-closedif for every graphG∈C and everyH �G it holds thatH ∈C . Observe
that a classC of graphs is minor-closed if and only if it can bedefined by excluding minors, that is, there
is a classH such thatC = X (H) (just takeH = G \C). Robertson and Seymour proved that every
minor-closed class of graphs can actually be defined by excluding finitely many minors:

Graph Minor Theorem (Robertson and Seymour [73]). For every minor-closed classC of graphs there
is a finite classF of graphs such that

C = X (F).

Many natural classes of graphs are minor-closed:

Example 5.1.Every cycle can be contracted to a triangleK3. Hence the class of forests (acyclic graphs) is
preciselyX (K3). y

Example 5.2.For everyk≥ 1, the classBk of all graphs of branch widthk is minor-closed. Let me suggest
it as an exercise for the reader to prove this. Furthermore, it holds thatB2 = X (K4) [70]. y

Example 5.3. Series-parallel graphsandouterplanar graphsexcludeK4. It can be shown thatX (K4)
is precisely the class of all graphs that are subgraphs of series-parallel graphs (see [25], Exercise 7.32).
X ({K4,K2,3}) is the class of outerplanar graphs (see [25], Exercise 4.20). y

Example 5.4.By Kuratowski’s well-known theorem [54] (or, more precisely, by a variant due to Wag-
ner [81]), the class of planar graphs isX ({K5,K3,3}). y

Example 5.5.For everyk≥ 0, the class of all graphs of genusk is minor-closed. y

Note that all previous examples of minor-closed classes also have locally bounded branch width. But
this is a coincidence, as the following example shows.

Example 5.6.A graphG is anapex graphif there is a vertexv ∈ V(G) such thatG\ {v} is planar. The
class of all apex graphs is minor-closed.

6In the literature, the term “model” is used instead of “image”. We prefer “image” here to avoid confusion with “models” inthe
logical sense.

26

The class of apex graphs does not have locally bounded branchwidth. To see this, consider the “pyra-
mid graphs”Pn obtained from the(n×n)-grid Gn×n by adding a new vertex and connecting it to all vertices
of the grid. Obviously, the pyramid graphs are apex graphs, and for everyn≥ 1 we have

`bw(Pn,1) ≥ bw(Gn×n) ≥ n,

where the second inequality holds by Example 3.10. y

Example 5.7.A graph isknot freeif it can be embedded intoR3 in such a way that no cycle of the graph is
knotted in a nontrivial way. It is easy to see that the class ofall knot free graphs is minor-closed.

Similarly, the class of all graphs that can be embedded intoR3 in such a way that no pair of cycles is
linked is minor-closed. y

Let me also mention a “non-example”: The class of all graphs of crossing numberk ≥ 1 is not minor-
closed.

5.1 Structure theory

The proof of the graph minor theorem relies on a deep structure theory for classes of graphs with excluded
minors. While it is far beyond the scope of this survey to describe this theory in adequate detail, or even
give a precise statement of the main structural result, I would like to give the reader a glimpse of the theory,
because the model checking algorithms for graphs with excluded minors heavily rely on it. Let me start
with a disclaimer: The following intuitive remarks may makea nice story, but they do not always reflect
the actual proofs and thus should be taken with some care.

Suppose we have a classC with excluded minors. ThenC ⊆ X (Kk) for somek, because every graph
is a minor of some complete graph. We fixC andk for the rest of this section. We want to describe the
structure of the graphs inC by “decomposing” them into “simple” building blocks. We shall define later
what exactly we mean by “decomposing” a graph. For now, let usjust remark that if a graph has bounded
branch width, then we can decompose it into pieces of boundedsize. Thus we are mainly interested in
classesC of unbounded branch width. The following theorem, which is one of the fundamental results of
the whole theory, gives us a handle on the structure of graphsof unbounded branch width:

Excluded Grid Theorem (Robertson and Seymour [69]). There is a computable function f such that
for every k≥ 1 and every graph G, ifbw(G) ≥ f (k) then Gk×k � G.

A proof of this theorem can be found in [25].
The Excluded Grid Theorem tells us that if our classC has unbounded branch width, then the graphs

in C contain large grids as minors. Now we can try to use these large grids as “coordinate systems” and
describe the structure of the graphs relative to the grids. So suppose we have a graphG∈ C with a large
grid minor, and letH ⊆ G be the image of a large grid. Let us further assume thatG is highly connected;
if it is not we first decompose it into highly connected parts and then consider each of them separately. We
come back to this decomposition process later. We think of the grid as embedded into the plane and the
rest ofG being glued ontoH. It can be proved now thatG\H must be glued ontoH in a fairly “orderly”
way: If there are many pairwise far apart “crossings” in the interior ofG then we can find aKk-minor inG,
which is impossible becauseG∈ C ⊆ X (Kk). Here a crossing consists of two pairwise disjoint paths with
endpointsv1,v3 andv2,v4 respectively, such thatv1,v2,v3,v4 occur in this clockwise order on some cycle
of the grid. Figure 5.3 shows a grid with two crossings. This leaves us with the following structure: There
is a bounded number of vertices, calledapices, that are connected to the grid in an arbitrary fashion. After
removing the apices, there still may be many crossings, but they must be grouped together into a bounded
number of small regions, calledvortices. Apart from the apices and the vortices, the rest ofG must fit
nicely into the planar structure of the grid, that is, the components ofG\H are planar pieces, each of
which can be embedded into a “square” of the grid. However, sofar we have only talked about the interior
of the grid. There may be connections between different parts of the exterior cycle of the grid, but they
cannot be too wild either, because otherwise we could find a large clique minor again. We can subdivide
the exterior cycle into a bounded number of segments and stick some of these together. This gives us a
graph that can be embedded into a surface of bounded genus (recall that every surface can be obtained by

27

�

�

�

�

�

�

�

�

Figure 5.3. A grid with two crossings

c

b

a

f

e

d

i

h

g

=
c

b

a

f

e

d

⊕
f

e

d

i

h

g

Figure 5.4. A clique sum

gluing together edges of a convex polygon in the plane). Thusafter removing a bounded number of apices
and vortices,G can be embedded into a surface of bounded genus. We say thatG hasalmost bounded
genus. We assumed thatG is highly connected; if it is not then we can decompose it intopieces with this
property. This is Robertson and Seymour’s main structure theorem [72]:For every classC of graphs with
an excluded minor, the graphs inC can be decomposed into graphs that have almost bounded genus.

Let us now make it precise what we mean by “decomposing” a graph. Intuitively, we want to recursively
split the graph along small separators until there no longerare small separators and the graph is highly
connected. But if we do this, we lose too much structure in thedecomposition process, because two
vertices that are far apart on one side of the partition may beclose together on the other side and hence in
the original graph. Thus “locality”, and similarly “connectivity”, may be destroyed in the decomposition
process, and this is something we would like to avoid. We takea very drastic approach: Whenever we
separate a graph, on both sides we add edges between all vertices in the separator.

We call a graphG a clique sumof graphsG1 andG2 (and writeG = G1⊕G2) if G1∩G2 is a complete
graph,V(G) = V(G1)∪V(G2), E(G) ⊆ E(G1)∪E(G2), andE(G1) \E(G) ⊆ E(G2), E(G2) \E(G) ⊆
E(G1). ThusG is a subgraph ofG1 ∪G2 obtained by possibly deleting some of the edges inG1 ∩G2.
Figure 5.4 illustrates this. Note that we are slightly abusing notation here because there may be several
non-isomorphic graphsG such thatG = G1⊕G2.

A clique sum decompositionof a graphG is a pair(T,γ) consisting of a binary treeT and a mapping
γ that associates a graphγ(t) with every nodet ∈V(T) such thatγ(r) = G for the rootr of T andγ(t) =
γ(t1)⊕γ(t2) for all nodest with childrent1,t2. Figure 5.5 shows an example of a clique sum decomposition
of a graph. The decomposition in Figure 5.5 iscompletein the sense that the graphs at the leaves cannot be
decomposed any further. In general, the clique sum decompositions we are interested in are not necessarily
complete.

We call the graphsγ(t) in a clique sum decomposition(T,γ) the parts of the decomposition and the
partsγ(t) for the leavest theatomic parts, or justatoms. (T,γ) is a clique sum decompositionovera class
A of graphs if all atoms of(T,γ) belong toA . We call a graphdecomposable overA if it has a clique
sum decomposition overA and denote the class of all graphs that are decomposable overA by D(A).

28

��

���

��

��

��

��

�

��

��

��

�

��

�

�

��

�

�

��

�

Figure 5.5. A clique sum decomposition

Example 5.8.Letk≥1, and letOk be the class of all graphs of order at mostk. If a graphG is decomposable
overOk, then bw(G) ≤ max{k,2}. Let me suggest it as an exercise for the reader to verify thissimple fact.

Conversely, it is not too hard to prove that if a graph has branch width at mostk, then it is decomposable
overOd(3/2)·ke.

Let me remark that a graph has tree widthk if and only if it is decomposable overOk+1. This follows
from the fact that a graph has tree width at mostk if and only if it is a subgraph of a chordal graph of clique
numberk+1 (see Corollary 12.3.12 of [25]). The result for branch width then follows by (3.2). y

I leave it as an exercise to prove the following simple lemma:

Lemma 5.9. If a classA of graphs is minor-closed, then the classD(A) is also minor-closed.

Robertson and Seymour’s structure theorem for classes of graphs with excluded minors can now be
stated slightly more precisely as follows:For every classC of graphs with an excluded minor there is a
classA of graphs that have almost bounded genus such thatC ⊆ D(A). Of course this still leaves it
open what exactly is meant by “almost bounded genus”. We refer the curious reader to the last chapter of
Diestel’s book [25] for a more comprehensive introduction to the theory, or to Robertson and Seymour’s
original article [72].

We close this section by stating a simplified version of a Robertson and Seymour’s structure theorem
that will be sufficient for our purposes. Recall that`bw denotes the localization of branch width. Minor-
closed classes of locally bounded branch width are particularly well behaved. Eppstein [34, 35] proved
that a minor closed classC has locally bounded branch width if and only if it does not contain all apex
graphs (recall the definition of apex graphs from Example 5.6). Demaine and Hajiaghayi [22] proved that
if a class of graphs has locally bounded branch width, then there actually is a linear bound on the local
branch width, that is, there is aλ ≥ 1 such that for allG∈ C and for allr ≥ 1 it holds that̀ bw(G, r)≤ λ · r.
This motivates the definition of the following classes of graphs, for everyλ ≥ 1:

Lλ =
{

G
∣∣ `bw(H, r) ≤ λ · r for all H � G

}
.

For everyµ ≥ 0, we define a class of graphs that are “µ-close” toLλ :

Lλ ,µ =
{

G
∣∣ ∃X ⊆V(G) : |X| ≤ µ andG\X ∈ Lλ

}
.

29

Theorem 5.10 (Grohe [48]). For every classC with excluded minors, there exist nonnegative integers
λ ,µ such that

C ⊆ D(Lλ ,µ).

To obtain this result from Robertson and Seymour’s structure theorem, one only has to prove that graphs
of almost bounded genus are inLλ ,µ for suitableλ ,µ . This is not very difficult.

5.2 Algorithms

Before we get back to model checking problems, let me briefly describe some other algorithmic applica-
tions of graph minor theory. Consider the following two parameterized problems:

p-DISJOINT-PATHS

Instance: A graphG and verticess1,t1, . . . ,sk,tk ∈V(G).
Parameter: k.

Problem: Decide if there are pairwise disjoint pathsPi, for i ∈ [k], from si to ti in G.

p-M INOR

Instance: GraphG,H.
Parameter: |H|.

Problem: Decide ifH � G.

For neither of the two problems, it is even obvious that they belong to the class XP, that is, can be
solved in polynomial time for fixedk, |H|, respectively. For DISJOINT-PATHS, this was a long standing
open problem posed by Garey and Johnson [46]. Robertson and Seymour proved that both problems are
fixed-parameter tractable:

Theorem 5.11 (Robertson and Seymour [71]).
p-DISJOINT-PATHS and p-M INOR have cubic fpt algorithms.

The reader may wonder why we combine both problems in one theorem. The reason is that they are
both special cases of the more generalrooted minor problem. A rooted graphis a tuple(G,v1, . . . ,vk),
whereG is a graph andv1, . . . ,vk ∈V(G), and a rooted graph(H,w1, . . . ,wk) is arooted minorof a rooted
graph(G,v1, . . . ,vk) if there is a minor mapµ from H into G such thatvi ∈ V(µ(wi)) for all i ∈ [k].
The parameterized problemp-ROOTED-M INOR is defined asp-M INOR, but for rooted graphs. I leave it
to the reader to reducep-DISJOINT-PATHS to p-ROOTED-M INOR. Robertson and Seymour proved that
p-ROOTED-M INOR has a cubic fpt algorithm.

To get an idea of the proof it is easiest to look at the disjointpaths problem. Suppose we are given
a graphG ands1,t1, . . . ,sk,tk ∈ V(G). Let us further assume, to simplify the presentation, thatG is 2k-
connected. IfK3k � G, then we know that there are disjoint paths from thesis to thetis: As the graph
is 2k-connected, by Menger’s theorem we can find disjoint paths from s1,t1, . . . ,sk,tk to an image ofK3k.
Then in the image ofK3k, we can connect the pieces in the right way because all connections are there.
This is not entirely trivial, because we only have an image ofK3k and not a subgraph, but it can be done.
So now we can assume thatK3k 6� G, and we can apply the structure theory for graphs with excluded
K3k. If the branch width ofG is bounded, we can solve the disjoint paths problem easily, for example, by
applying Courcelle’s theorem. If the branch width is large,then by the Excluded Grid Theorem, we can
find a large grid inG. By the arguments described above, we can now find a small set of vertices such that
after removing these vertices, the whole graphG fits nicely into the planar structure of the grid. Passing
to a smaller grid if necessary, we may assume that all thesi andti are outside the grid. Now it can be
proved that if there are disjoint paths fromsi to ti for all i ∈ [k], then there are such paths that avoid the
middle vertex of the grid (say, the grid has odd order). Intuitively, it is plausible that if we have a very large
grid andk disjoint paths traversing the grid, then we can always re-route them to avoid the middle vertex.
Proving this formally turns out to be the most difficult part of the whole proof [66, 67]. It builds on the full
structure theory described in the previous section. However, once this is done, we know that we can delete

30

the middle vertex of the grid and obtain a smaller graphG′ such that there are disjoint paths fromsi to ti
for all i ∈ [k] in G if and only if there are such paths inG′. We repeatedly delete “irrelevant” vertices this
way until we obtain a graph of bounded branch width, and then we solve the problem on this graph. This
completes our outline of the proof of Theorem 5.11.

Combined with the Graph Minor Theorem, Theorem 5.11 has the following stunning consequence.

Corollary 5.12. Every minor-closed classC of graphs is decidable in cubic time.

Note that a priori there is no reason why every minor-closed classC of graphs should be decidable at
all.

Remarkably, Corollary 5.12 just claims the existence of algorithms, without actually giving us the
algorithms. For example, by Example 5.7 it implies the existence of a cubic time algorithm for deciding
whether a graph is knot free. But we still do not know such an algorithm! The reason is that we do not know
a finite family of excluded minors defining the class of knot free graphs. Corollary 5.12 is constructive in
the sense that if we are given a finite family of excluded minors that defines the classC , then we can
construct a cubic time algorithm decidingC . However, for many minor-closed classes we do not know
such a finite family.

In recent years, there has been a substantial body of work on algorithms for graph problems restricted
to graph classes with excluded minors or even generalisations of such classes [1, 21, 23, 24, 48, 53]. The
algorithmic meta theorems presented in the following section should be seen in this context as an attempt
to get a more global view on the potentials of algorithmic graph minor theory.

We close this section with a lemma that we will need in the nextsection.

Lemma 5.13. For every minor-closed classA of graphs there is an algorithm that, given a graph G∈
D(A), computes a clique sum decomposition of G overA in time O(n5).

Note that, in particular, the lemma implies an algorithmic version of Theorem 5.10: For every classC

with excluded minors there is a polynomial time algorithm that, given a graph inC , computes a clique sum
decomposition ofG overLλ ,µ .

Proof sketch of Lemma 5.13.Recall that if we writeG = G1⊕G2, this implies thatV(G1∩G2) induces a
clique in bothG1 andG2, but not necessarily inG. If it also induces a clique inG, and henceG= G1∪G2,
we call the clique sumsimplicial. We call a clique sum decomposition(T,γ) asimplicial decompositionif
the clique sums at all nodes ofT are simplicial. We call a simplicial decompositioncompleteif its atoms
can not be decomposed any further. Simplicial decompositions are much easier to handle than clique sum
decompositions. Tarjan [77] showed that a separating clique of a graph can be found in quadratic time.
This implies that a complete simplicial decomposition of a graph can be found in cubic time.

Observe that if a graphG has a clique sum decomposition overA , then some supergraphG′ ⊇ G with
the same vertex set has a simplicial decomposition overA . As A is closed under taking subgraphs, we
may actually assume that this simplicial decomposition is complete.

To compute a clique sum decomposition of a graphG over A , we proceed as follows: We add a
maximal set of edges toG so that the resulting graphG′ is still in the classD(A). We can do this in
time O(n5), testing membership in the minor-closed classD(A) in cubic time for every potential edge.
Then we compute a complete simplicial decomposition of the graphG′. This also gives us a clique sum
decomposition ofG.

6 First-order logic on graph classes with excluded minors

Let C be a class of graphs with excluded minors. Our goal is to design an fpt algorithm for the first-order
model checking problem onC . Recall that by Theorem 5.10, the graphs inC are decomposable into graphs
that “almost” have locally bounded branch width, where almost means after removing a bounded number
of vertices. We know how to deal with graphs of locally bounded branch width, and it is not hard to extend
this to graphs of almost locally bounded branch width. Moreover, we know how to deal with tree structured
graphs. By combining these things, so it seems, it should notbe too hard to obtain the desired result. This
is true, but there are technical difficulties to overcome.

31

We say that a tuple ¯v of vertices of a graphG induces a cliquein G if G[{v̄}] is a complete graph. We
write G = G′ ⊕v̄ H to denote thatG is a clique sum of graphsG′ andH with V(G′)∩V(H) = {v̄}. For
tuplesv̄1, . . . , v̄m of vertices inG′ and graphsH1, . . . ,Hm, we may writeG′⊕v̄1 H1⊕v̄2 . . .⊕v̄m Hm; the order
of the summation of theHis does not matter. In the following, types are always first-order types, and we
write tp instead of tpFO. Let me remark that of the two lemmas below that are concernedwith computing
types, Lemma 6.1 also holds for MSO-types instead of FO-types, whereas the Lemma 6.2 only holds for
FO-types.

To see that the parameterized problems in Lemmas 6.1 and 6.2 are well-defined, suppose that we have
labelled graphsG, G′, H1, . . . ,Hm and tuples ¯v0, . . . , v̄m of vertices ofG′ such thatG= G′⊕v̄1 H1⊕v̄2 . . .⊕v̄m

Hm. Then it follows from Lemma 2.3 that tpq(G, v̄0) only depends on the types tpq(H1, v̄1), . . . , tpq(Hm, v̄m)
and not on the actual graphsHi . That is, for all graphsH ′

1, . . . ,H
′
m with V(G′∩H ′

i) = {v̄i} and tpq(H
′
i , v̄i) =

tpq(Hi , v̄i) it holds that
tpq(G

′⊕v̄1 H ′
1⊕v̄2 . . .⊕v̄m H ′

m) = tpq(G, v̄0).

Lemma 6.1. The following problem is fixed parameter tractable:

Instance: A labelled graphG′ of branch widthk, tuples ¯vi ∈ V(G′)ki for i ∈ [0,m] that
induce cliques inG′, andq-typesΘ1, . . . ,Θm.

Parameter: q.
Problem: Compute the type tpq(G, v̄0) for all graphsG= G′⊕v̄1 H1⊕v̄2 . . .⊕v̄m Hm, where

theHi are graphs with tpq(Hi , v̄i) = Θi for all i ∈ [m].

Proof sketch.The proof is similar to the second proof of Courcelle’s Theorem: We take a branch decom-
position ofG′. Starting at the leaves, we compute the types of the boundaries of all nodes. To accomodate
for the graphsHi , we label some of the leaves of the branch decomposition withthe cliques ¯vi , for i ∈ [m],
instead of edges ofG′. The type that is passed from such a leaf to its parent in the computation isΘi. In
order to obtain the type tpq(G, v̄0) and not just tpq(G,()) (the type of the empty tuple) at the root, at each

nodet of the decomposition we compute the type of a tuple consisting of the vertices in the boundary∂ β̃ (t)
together with all vertices of the subgraphG′Jβ̃ (t)K that appear in the tuple ¯v0 (instead of just the vertices in
∂ β̃ (t)).

Lemma 6.2. For all λ ,µ , the following problem is fixed-parameter tractable:

Instance: A labelled graphG′ ∈ Lλ ,µ , tuples ¯vi ∈ V(G′)ki for i ∈ [0,m] that induce
cliques inG′, andq-typesΘ1, . . . ,Θm.

Parameter: q.
Problem: Compute the type tpq(G, v̄0) for all graphsG= G′⊕v̄1 H1⊕v̄2 . . .⊕v̄m Hm, where

theHi are graphs with tpq(Hi , v̄i) = Θi for all i ∈ [m].

Proof sketch.We prove the statement by induction onµ . Forµ = 0, that is, graphs inLλ , it can be proved
similarly to Theorem 4.8 (using Lemma 6.1 locally).

So letµ > 0. Suppose we are given an instance of the problem. We observethat the graphG′ contains
a vertexw such thatG′ \ {w} ∈ Lλ ,µ−1. As Lλ ,µ−1 is minor-closed and hence decidable in cubic time by
Corollary 5.12, we can find such a vertex in timeO(n4). We define a new labelled graphG∗ by deleting the
vertexw and labelling all vertices adjacent tow in G′ with a new labelP. We then translate every formula
ψ of quantifier rank at mostq into a formulaψ∗ such thatG |= ψ(v̄0) ⇐⇒ G∗ |= ψ∗(v̄0). AsG∗ ∈Lλ ,µ−1,
we can apply the induction hypothesis to check ifG∗ |= ψ∗(v̄0), and this way we can compute the type of
v̄0 in G.

Theorem 6.3 (Flum and Grohe [39]). For every classC of graphs with an excluded minor, the problem
p-MC(FO,C) is fixed-parameter tractable.

32

G′

H4 H3

H2

I

H1

G′⊕H1⊕ . . .⊕H4⊕ I

G′⊕H1⊕ . . .⊕H3⊕ I

G′⊕H1⊕H2⊕ I

G′⊕H1⊕H2

G′⊕H1

G′ H1

H2

I

H3

H4

Figure 6.1. The left hand side shows a graph and the right hand side a clique sum decomposition of this
graph where the atomG′ intersects four other atoms and the atomH2 intersects two other atoms

Proof sketch.Let G∈ C andϕ ∈ FO, say, of quantifier rankq.
Let λ ,µ ≥ 0 such thatC ⊆ D(Lλ ,µ). Using Lemma 5.13, we compute a clique sum decomposition

(T,γ) of G overLλ ,µ .
Now the obvious idea is to compute theq-types of the “boundary tuples” for the partsγ(t) in the de-

composition in a bottom-up fashion, similarly to the secondproof of Courcelle’s Theorem. Unfortunately,
this simple idea does not work, because a clique sum decomposition is not as well-behaved as a branch
decomposition, and the boundaries of the parts may have unbounded size. It may even happen that an atom
of the decomposition (corresponding to a leaf of the tree) intersects all other atoms. Figure 6.1 illustrates
this.

Observe that a graph inLλ ,µ cannot contain a clique with more thank = d(3/2) ·λ + µe vertices.
Hence for all nodest of T with childrent1,t2, we must haveV(γ(t1)∩ γ(t2)) ≤ k, becauseV(γ(t1)∩ γ(t2))
is a clique in theγ(ti), and this clique will appear in some atom of the decomposition. Let us fix some order
of the vertices ofG. For every inner nodet with childrent1, t2, we letc̄t be the ordered tuple that contains
the elements ofV(γ(t1)∩ γ(t2)).

Our algorithm proceeds recursively, that is, “top-down”, instead of “bottom up” as the algorithm in the
proof of Courcelle’s Theorem, to compute the types of the tuples c̄t . Let us start at the rootr of T. Our
goal is to compute theq-type of the empty tuple inG. Suppose that the clique sum atr is G= G1⊕G2. We
now want to compute theq-type of the tuple ¯cr in bothG1 andG2; from that we easily get theq-type of the
empty tuple inG using Lemma 2.3. So let us continue by computing theq-type of c̄r in G1. Suppose the
children oft1 aret11 andt12. Let c̄1 = c̄t1. Now we have a problem: To determine theq-type of c̄r in G1,
it does not suffice to compute theq-types ofc̄1 in G11 andG12, because ¯cr andc̄1 may be disjoint tuples.
It seems that we have to compute theq-type of the longer tuple ¯c1c̄r in both graphs. But clearly we cannot
afford the tuples to get longer at every recursion level. Nowrecall that{c̄r} is a clique inG1. Hence it is
either contained in{c̄1} = V(G11)∩V(G12), in which case we have no problem anyway, or it is contained
in precisely one of the two graphsG11, G12. Suppose ¯cr is contained inG12. Then we first compute the
q-typeΘ of the tuple ¯c1 in G11. Now we have to compute the type of ¯cr in the graphG1 = G11⊕G12. That
is, we are in the situation where we have to compute the type ofa tuplev̄ of vertices of a graphG′ in a
graphG′⊕v̄′ H for some (and hence all) graph(s)H with tpq(H, v̄′) = Θ. Furthermore, we know that ¯v, v̄′

induce cliques inG′. The general problem we have to solve recursively at all nodes of the decomposition
tree is the following:

Compute theq-type of a tuple ¯v0 of vertices of a graphG′ in a graphG′⊕v̄1 H1⊕v̄2 . . .⊕v̄m Hm

for some (and hence all) graph(s)Hi with tpq(Hi , c̄i) = Θi . Here all the tuples ¯vi have length at
mostk, and they induce cliques inG′.

At the leaves we can use Lemma 6.2 to do this. At the inner nodes, we proceed as described for the nodet1
above.

The proof of the theorem actually shows that for all classesC with excluded minors,p-MC(FO,C)
has an fpt algorithm with exponent at most 5. Hence, the exponent is independent of the classC . Thus we

33

have “almost” proved that there is an fpt algorithm for the model checking problem parameterized both by
formula size and the size of the excluded minor. With considerable additional effort, we can get rid of the
“almost” in this statement. Let me explain where the difficulties are and, in very general terms, how they
are resolved.

Let us first make the statement precise. We define a new graph invariantexcluded minor order (emo)
by letting

emo(G) = min{|H| | H 6� G}

for every graphG. Note that emo(G) = min{n | Kn 6� G} and that a classC excludes a minor if and only
if it has bounded excluded minor order. Our goal is to prove that the following problem is fixed-parameter
tractable:

p-MC(FO,emo)
Instance: A graphG and a sentenceϕ ∈ FO.

Parameter: |ϕ |+emo(G).
Problem: Decide ifG |= ϕ .

We have already proved that for everyk there is an fpt algorithmAk with exponent 5 for the first-order
model checking problem on the class of all graphs of excludedminor order at mostk. The problem is
that the familyAk of algorithms isnonuniform, that is, we have a different algorithm for everyk. To
prove thatp-MC(FO,emo) is fixed-parameter tractable, we need a uniform familyAk, or equivalently,
a single algorithmA that takesk as an additional input. The family of algorithms we construct in the
proof is nonuniform because we use Corollary 5.12 to get decision algorithms for the minor-closed classes
Lλ ,µ (in the proof of Lemma 6.2) andD(Lλ ,µ) (in the proof of Lemma 5.13) for parametersλ ,µ that
depend on the excluded minor order of the input graph. If we could compute finite families of excluded
minors characterising the classesLλ ,µ andD(Lλ ,µ) from the parametersλ ,µ , then we would be fine,
but we currently do not know how to do this. Fortunately, there is an alternative approach that avoids
Corollary 5.12 entirely. The application of Corollary 5.12in the proof of Lemma 5.13 yielded an algorithm
for computing a clique sum decomposition of a graph overD(Lλ ,µ). While we do not know how to
compute such a decomposition uniformly inλ andµ , in [18] we found a way to compute, uniformly in
λ ,µ , a decomposition that is a sufficiently good approximation of the desired clique sum decomposition.
The algorithm recursively splits the input graph along small separators that are sufficiently “balanced”.
The application of Corollary 5.12 in the proof of Lemma 6.2 was needed to find a set of at mostµ vertices
in a graph inLλ ,µ whose removal left a graph inLλ . In [18], we found an fpt algorithm that, given a
graphG∈Lλ ,µ , computes a setW ⊆V(G) of at mostµ vertices such thatG\W ∈ Lλ ′ for someλ ′ that is
effectively bounded in terms ofλ . This is good enough for our purposes. Putting everything together, we
obtain the following result:

Theorem 6.4 (Dawar, Grohe, and Kreutzer [18]). p-MC(FO,emo) is fixed-parameter tractable.

We say that a classlocally excludes a minorif it has locally bounded excluded minor order. Then
combining Theorems 6.4 and 4.8, we get:

Corollary 6.5 ([18]). For every classC locally excluding a minor, the problem p-MC(FO,C) is fixed-
parameter tractable.

7 Other logics and other problems

In this section, we briefly discuss some extensions of the main results mentioned in this survey to more
powerful logics, and also to variants of the basic model checking problem.

7.1 Other logics

It is really not much that is known about algorithmic meta theorems for logics other than first-order and
monadic second-order logic. Courcelle’s Theorem and its variant for graphs of bounded rank width can be

34

extended to the extension of monadic second order logic by modulo counting quantifiers [10, 12] (also see
[57]), and clearly not to full binary second order logic.

As for the results for first-order logic, let us consider potential extensions of the model-checking re-
sults tomonadic transitive closure logicandmonadic least fixed-point logic. Both transitive closure logic
and least fixed-point logic have been extensively studied infinite model theory [31, 55]. Their monadic
fragments are strictly contained in monadic second-order logic, and they strictly contain first-order logic.
(When we say that a logiccontainsanother logic, we mean semantic containment, that is, L1 containsL2

if every formula of L2 is logically equivalent to a formula of L1. We say that L1 strictly containsL2 it L1

contains L2, but L2 does not contain L1.) Monadic transitive closure logic and monadic least fixed-point
logic seem to mark the boundary of the range of logics to whichthe tractability results for first-order model
checking can be extended.

Monadic transitive closure logicTC1 is the extension of first-order logic by formulas of the form
[TCx,yϕ](x,y), whereϕ is a formula with free variables among{x,y}. The free variables of the formula
[TCx,yϕ](x,y) arex andy. It is allowed to nest TC-operators arbitrarily and interleave them with first-order
quantifiers and connectives. However, we do not allow any other free variables thanx andy in the formula
ϕ in [TCx,yϕ](x,y). The semantics is defined as follows: IfG is a (labelled) graph andv,w∈V(G), then
G |= [TCx,yϕ](v,w) if and only if there is anm≥ 1 and verticesv1, . . . ,vm ∈V(G) such thatv= v1,w = vm,
andG |= ϕ(vi ,vi+1) for all i ∈ [m−1].

Example 7.1.The following TC1-sentence states that a graph is connected:

∀x∀y[TCx,yE(x,y)](x,y).

It is known that there is no sentence of first-order logic defining connectivity (see, e.g., [31, 32, 55]). y

Example 7.2.The following TC1-sentence states that a graph has no cyclic walk of odd lengthand hence
is bipartite

¬∃x∃y
([

TCx,y∃z
(
E(x,z)∧E(z,y)

)]
(x,y)∧E(y,x)

)
.

Again, it is known that there is no sentence of first-order logic defining bipartiteness. y

The logic TC1 trivially contains FO, and it is strictly contained in MSO. As opposed to MSO, its data
complexity is still in polynomial time (actually, in nondeterministic logarithmic space).

Theorem 7.3. Let C be a class of graphs that contains all planar graphs of degreeat most3. Then
p-MC(TC1,C) is hard for the parameterized complexity classAW[∗].

Proof sketch.We reduce the model checking problem for first-order logic onarbitrary graphs, which is
known to be AW[∗]-complete (by Theorem 2.12), top-MC(TC1,C). Let G be a graph andϕ a first-order
sentence.

We start with constructing a drawing ofG in the plane, which of course may involve edge crossings.
We can find a drawing with at most polynomially many (in the number of vertices ofG) crossings such that
in each point of the plane at most 2 edges cross. We introduce five new labelsP1,P2,Q1,Q2,R. We define
a new labelled graphG1 by labelling each vertex of the original graphG with P1 and replacing each edge
crossing in the drawing ofG by a little gadget, as shown in Figure 7.1. Observe that the edge relation of
the graphG can be defined inG1 by a TC1-formula (but not by an FO-formula, because an edge may cross
many other edges).G1 is planar, but may have degree greater than 3. We define a graphG2 by replacing
every vertexv of G1 of degreed by a binary tree with exactlyd leaves. With each leaf we associate one
vertexw adjacent tov in G1. We connect the leaf of thev-tree associated withw with the leaf of thew-tree
associated withv. Then we identifyv with the root of its tree, label itP1, and label all other vertices of the
treeP2. Then the edge relation ofG is also definable inG2 by a TC1-formula. We can use this formula to
translate the formulaϕ into a TC1-formulaϕ2 such that

G |= ϕ ⇐⇒ G2 |= ϕ2.

G2 is a planar graph of degree at most 3, and it clearly can be computed fromG in polynomial time. This
gives us the desired reduction.

35

= labelQ1
= labelQ2

= labelR

Figure 7.1. A gadget for edge crossings

Monadic least-fixed-point logicLFP1 (see, e.g., [50, 74]) is the extension of first-order logic byfor-
mulas of the form[LFPx,Xϕ](x), whereϕ is a first-order formula such thatX only occurs positively in
ϕ and ϕ has no free individual variables other thanx. (It may have free set variables other thanX.)
The free variables of[LFPx,Xϕ](x) arex and all free set variables ofϕ exceptX. To define the seman-
tics, let ϕ = ϕ(x,X,Y1, . . . ,Ym). Let G be a labelled graph andW1, . . . ,Wm ⊆ V(G), v ∈ V(G). Then
G |= [LFPx,Xϕ(x,X,W1, . . . ,Wm)](v) if and only if v is in the least fixed point of the monotone operator
U 7→ {u | G |= ϕ(u,U,W1, . . . ,Wm)} onV(G). We call a formula in LFP1 restrictedif for every subformula
of the form[LFPx,Xϕ](x), the formulaϕ has no free set variables other thanX. By LFP1

r we denote the
fragment of LFP1 consisting of all restricted formulas.

The reason for requiring that a formulaϕ in the scope of a fixed-point operator[LFPx,Xϕ](x) contains
no free individual variables other thanx is that otherwise even the restricted fragment of the logic would
contain TC1. It can be shown that LFP1 (as defined here) does not contain TC1 and that, conversely, TC1

does not contain LFP1, not even LFP1r .
I was unable to come up with convincing examples of properties of plain graphs that are definable in

LFP1
r or LFP1, but not in first-order logic. However, this changes when we admit more general structures.

For example, onKripke structures, that is, labelled directed graphs with one distinguished element, LFP1

contains the modalµ-calculus. Here is another example:

Example 7.4.We can describe monotone Boolean circuits as labelled directed acyclic graphs, and assign-
ments to the input gates by an additional label. It is easy to see that there is an LFP1

r -formula stating that
an assignment satisfies a circuit. This is not definable in first-order logic. y

As we mentioned earlier, almost all results presented in this survey extend to arbitrary structures. In this
context, the following tractability result is more interesting than it may seem in a purely graph theoretical
context.

Theorem 7.5. Let C be a class of graphs such that p-MC(FO,Clb) is fixed-parameter tractable. Then
p-MC(LFP1

r ,Clb) is fixed-parameter tractable.

Proof sketch.To evaluate a formula of the form[LFPx,Xϕ](x), whereϕ = ϕ(x,X) is first-order, in a graph
G, we proceed as follows: We introduce a new labelP. Initially, we setP(G) = /0. Then we repeatedly
compute the set of allv∈V(G) such thatG |= ϕ(v,P(G)) using an fpt algorithm forp-MC(FO,Clb) and
setP(G) to be the set of all these vertices. After at mostn = |G| steps, the computation reaches a fixed
point, which consists precisely of allv such thatG |= [LFPx,Xϕ](v). Using this algorithm as a subroutine,
we can easily model-check arbitrary sentences in LFP1

r .

Lindell [56] proved that for the classesDk of graphs of degree at mostk, the problemp-MC(LFP1
r ,Dk)

even has a linear time fpt algorithm.

7.2 Generalised model checking problems

For a formulaϕ(x1, . . . ,xk) and a graphG, by ϕ(G) we denote the set of all tuples(v1, . . . ,vk) ∈ V(G)k

such thatG |= ϕ(v1, . . . ,vk). For every logic L and classC of graphs, we may consider the following

36

variants of the model checking problemp-MC(L,C): The input always consists of a graphG ∈ C and
a formulaϕ ∈ L, possibly with free variables. The parameter is|ϕ |. Thedecision problemsimply asks
if ϕ(G) is nonempty. For logics closed under existential quantification, this problem is equivalent to the
model checking problemp-MC(L,C). Therefore, we will not consider it here anymore. Theconstruction
problemasks for a solution ¯v∈ ϕ(G) if there exists one. Theevaluation (or listing) problemasks for all
solutions, that is, for the whole setϕ(G). Finally, thecounting (or enumeration) problemasks for the
number|ϕ(G)| of solutions. All these problems have natural applications.

The results on monadic second-order model checking on graphs of bounded branch width and bounded
rank width (Theorems 3.3 and 3.17) can be extended to the corresponding construction and counting prob-
lems [3, 15, 38, 41]. For the evaluation problem, the situation is a bit more complicated because the size
of the answerϕ(G) may be much larger than the size of the input (nk for a graph of ordern and a formula
with k free variables), hence we cannot expect an algorithm that isfixed-parameter tractable. However, it
has been proved that there is a linear time fpt algorithm for this problem if the running time is measured in
terms of the input size plus the output size [16, 38]. Recently, it has been shown that there even is such an
algorithm that does a linear (in terms of the input size) pre-computation and then produces solutions with
delay bounded in terms of the parameter [4, 13].

Frick [41, 42] proved that the construction problem and counting problem for many classes of graphs
of locally bounded branch width, including planar graphs and graphs of bounded degree, has a linear fpt
algorithm. This is a nontrivial extension of the model checking results. Even for a simple first-order
definable counting problem like the parameterized independent set counting problem (“Count the number
of independent sets of sizek in a graph.”), say, on a class of graphs of bounded degree, it is not obvious
how to solve it by an fpt algorithm. For the evaluation problem, again there are linear time fpt algorithms
if the running time is measured in terms of the input size plusthe output size [41]. For classes of graphs
of bounded degree, Durand and Grandjean [30] proved that there is an fpt algorithm for the first-order
evaluation problem that does a linear pre-computation and then produces solutions with delay bounded in
terms of the parameter.

Finally, let us take a brief look at optimisation problems, which play a central role in complexity the-
ory, but have not been studied very systematically in the context of meta theorems. Consider a first-order
formulaϕ(X) that is positive in a free set variableX. Such a formula naturally describes a minimisation
problem: Given a graphG, find a setS⊆ V(G) of minimum size such thatG |= ϕ(S). Many natural
minimisation problems on graphs can be described this way. An example is the minimum dominating set
problem, which can be described by the formuladom(X) of Example 2.1. Similarly, formulasϕ(X) that
are negative inX naturally describe maximisation problems. An example is the maximum independent set
problem, which is described by the formulaind(X) = ∀x∀y(¬X(x)∨¬X(y)∨¬E(x,y)). We call such op-
timisation problemsfirst-order definable. It was proved in [19] that the restriction of a first-order definable
optimisation problem to a class of graphs with an excluded minor has a polynomial time approximation
scheme, that is, can be approximated in polynomial time to any factor(1+ ε), whereε > 0.

8 Concluding remarks and open questions

Figure 8.1 gives an overview of the classes of graphs we have studied in this survey. Let me conclude by
mentioning a few directions for further research that I find particularly promising:

8.1 Further tractable classes

Many of the classes of graphs considered in this survey, including all classes excluding a minor, have
bounded average degree. It may be tempting to conjecture that first-order model checking is tractable on
all classes of graphs of bounded average degree, but it is easy to see that this is not the case. As Stephan
Kreutzer observed, it is not even the case for classes of bounded maximum average degree, where the
maximum average degreeof a graphG is the maximum of the average degrees of all subgraphs ofG. To
see this, just observe that model-checking on a graphG can be reduced to model-checking on its incidence
graph (i.e., the graph obtained fromG by subdividing each edge once), and that every incidence graph has
maximum average degree at most 4.

Nešetřil and Ossona de Mendez [59] introduced a property of graph classes that may be viewed as a

37

Trees

Bounded Branch Width

Bounded Rank Width

Planar

Bounded Genus

Bounded Local Branch Width
with Excluded Minor

Bounded Degree

Bounded Local
Branch Width

Exluded Minor

Locally Excluding a MinorBounded Local Rank Width

MSO

FO

Figure 8.1. Classes of graphs with a tractable first-order model checking problems. Double-lined ellipses
contain families of classes. Classes below the dashed line have a tractable monadic second-order model
checking problem

refinement of maximum average degree and that avoids such problems. LetG be a graph. Theradiusof a
minor mappingµ from a graphH to G is the minimum of the radii of the subgraphsG[µ(v)], for v∈V(H).
We writeH �r G if there is a minor mapping of radius at mostr from H to G. Note thatH �0 G if and
only if H is a subgraph ofG. Thegreatest reduced average density (grad) of rank r of Gis the number

∇r(G) = max

{
|E(H)|

|V(H)|

∣∣∣∣H �r G

}
.

Note that∇0(G) is half the maximum average degree ofG. Now a classC of graphs hasbounded expansion
if there is some functionf such that∇r(G)≤ f (r) for all G∈C andr ≥ 0. Nešetřil and Ossona de Mendez
observed that every class of graphs excluding a minor has bounded expansion. It can be shown that there
are classes of bounded expansion that do not exclude a minor,not even locally. Conversely, there are
classes of bounded local tree width and hence classes locally excluding a minor that do not have bounded
expansion. This follows from Example 4.7 and the fact that classes of bounded expansion have bounded
average degree. I refer the reader to [58, 59, 60] for an introduction to classes of bounded expansion and
an overview of their nice algorithmic properties.

Open Problem 8.1. Is p-MC(FO,C) fixed-parameter tractable for every classC of graphs of bounded
expansion?

There is no need to restrict the study of structural properties that facilitate efficient model checking
to graph theoretic properties such as those predominant in this survey. For example, it would also be
very interesting to study the complexity of model-checkingproblems on finite algebraic structures such as
groups, rings, fields, lattices, et cetera.

Open Problem 8.2. Are p-MC(FO,C) and p-MC(MSO,C) fixed-parameter tractable for the classesC

of finite groups, finite abelian groups, finite rings, finite fields?

8.2 Necessary conditions for tractability

The main results presented in this survey may be viewed as giving sufficient conditions for classes of
graphs to have tractable first-order or monadic second-order model checking problems.What are necessary

38

conditions for tractability, and which classes have hard model checking problems?Note that it is not easy
to come up with structural conditions for hardness, becausewe can “cheat” and, for example, pad graphs
that have a structure presumably making model checking difficult with a large number of isolated vertices.
This makes the model checking problem “easier” just becauseit gives us more time to solve it. Thus we
probably want to impose closure conditions on the classes ofgraphs we consider, such as being closed
under taking subgraphs.

It follows from the Excluded Grid Theorem that for minor-closed classesC of graphs,p-MC(MSO,C)
is fixed-parameter tractable if and only ifC has bounded branch width. Actually, this can be slightly
strengthened to classes closed under taking topological minors. I do not know of any results beyond that.
To stimulate research in this direction, let me state a conjecture:

Conjecture 8.3. LetC be a class of graphs that is closed under taking subgraphs. Suppose that the branch
width ofC is not poly-logarithmically bounded, that is, there is no constant c such thatbw(G) ≤ logc |G|
for every G∈ C .

Then p-MC(MSO,C) is not fixed parameter tractable.

Of course, with current techniques we can only hope to prove this conjecture under some complexity
theoretic assumption.

For first-order logic, I have much less intuition. Clearly, the present results are very far from optimal.
Just as an illustration, observe that if a classC of graphs has a tractable first-order model checking problem,
then so has the closure ofC under complementation. (Recall that thecomplementof a graphG = (V,E)

is the graphḠ =
(
V,
(V

2

)
\E
)

.) However, most of the classes we considered here are not closed under

complementation.

8.3 Average Case Analysis

Instead of the worst case running time, it is also interesting to consider the average case. Here even the
most basic questions are wide open. Forn ≥ 1, let Wn be a probability space of graphs with vertex set
[n]. We say that a model checking algorithm isfpt on average over

(
Wn
)

n≥1 if its expected running time

on inputG∈ Wn andϕ is bounded byf (|ϕ |) ·nO(1), for some computable functionf . For every function
p : N→ [0,1] (here[0,1] denotes an interval of real numbers), letG (n, p) denote the probability space of all
graphs over[n] with edge probabilityp(n) (see, e.g., [2]). For a constantc∈ [0,1], we letG (n,c) = G (n, p)
for the constant functionp(n) = c. In [47], I observed that forp(n) = min{1,c/n}, wherec ∈ R≥0 is a
constant, there is a model checking algorithm for first-order logic that is fpt on average over

(
G (n, p)

)
n≥1.

Open Problem 8.4. Is there a model checking algorithm for first-order logic that is fpt on average over(
G (n,1/2)

)
n≥1?

Let me suggest it as an exercise for the reader to design a model checking algorithm for existential
first-order logic that is fpt on average over

(
G (n,1/2)

)
n≥1.

8.4 Structures of bounded rank width

Most of the results of this survey can easily be extended fromclassesC of graphs to the classesCstr of
arbitrary relational structures whose underlying graphs (Gaifman graphs) are inC . However, this is not
true for the results that involve rank width. It is not at all obvious what an appropriate notion of rank width
for arbitrary structures could look like, and I think it is a challenging open problem to find such a notion.

8.5 Model checking for monadic least fixed-point logic

Conjecture 8.5. Let C be a class of graphs such that p-MC(FO,Clb) is fixed-parameter tractable. Then
p-MC(LFP1,Clb) is fixed-parameter tractable.

It will be difficult to prove this conjecture, because it is related to the notoriously open problem of
whether the model checking problem for the modalµ-calculus is in polynomial time. But maybe the
conjecture is wrong; refuting it might be more feasible.

39

Acknowledgements

I would like to thank Bruno Courcelle, Arnaud Durand, Sang-Il Oum, Stéphan Thomassé for patiently
answering various questions I had while writing this survey. Thanks to Isolde Adler, Albert Atserias, Yijia
Chen, Anuj Dawar, Reinhard Diestel, Jörg Flum, Magdalena Grüber, Stephan Kreutzer, Nicole Schweikardt
for valuable comments on earlier drafts of the survey.

References

[1] I. Abraham, C. Gavoille, and D. Malkhi. Compact routing for graphs excluding a fixed minor. In
P. Fraigniaud, editor,Proceedings of the 19th International Conference on Distributed Computing,
volume 3724 ofLecture Notes in Computer Science, pages 442–456. Springer-Verlag, 2005.

[2] N. Alon and J. Spencer.The Probabilistic Method. Wiley, 2nd edition, 2000.

[3] S. Arnborg, J. Lagergren, and D. Seese. Easy problems fortree-decomposable graphs.Journal of
Algorithms, 12:308–340, 1991.

[4] G. Bagan. MSO queries on tree decomposable structures are computable with linear delay. In Z.Ésik,
editor,Proceedings of the 20th International Workshop on ComputerScience Logic, volume 4207 of
Lecture Notes in Computer Science, pages 167–181. Springer-Verlag, 2006.

[5] H.L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.SIAM
Journal on Computing, 25:1305–1317, 1996.

[6] H.L. Bodlaender and D.M. Thilikos. Constructive lineartime algorithms for branchwidth. In
P. Degano, R. Gorrieri, and A. Marchetti-Spaccamela, editors,Proceedings of the 24th International
Colloquium on Automata, Languages and Programming, volume 1256 ofLecture Notes in Computer
Science, pages 627–637. Springer-Verlag, 1997.

[7] Y. Chen, M. Grohe, and M. Grüber. On parameterized approximability. In Proceedings of the 2nd
International Workshop on Parameterized and Exact Computation, volume 4169 ofLecture Notes in
Computer Science, pages 109–120. Springer-Verlag, 2006.

[8] B. Courcelle. An axiomatic definition of context-free graph grammars and applications to nlc gram-
mars.Theoretical Computer Science, 55:141–181, 1987.

[9] B. Courcelle. Graph rewriting: An algebraic and logic approach. In J. van Leeuwen, editor,Handbook
of Theoretical Computer Science, volume B, pages 194–242. Elsevier Science Publishers, 1990.

[10] B. Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.Infor-
mation and Computation, 85(1):12–75, 1990.

[11] B. Courcelle. The monadic second-order logic of graphsVII: Graphs as relational structures.Theo-
retical Computer Science, 101:3–33, 1992.

[12] B. Courcelle. The expression of graph properties and graph transformations in monadic second-order
logic. In G. Rozenberg, editor,Handbook of graph grammars and computing by graph transfor-
mations, Vol. 1 : Foundations, chapter 5, pages 313–400. World Scientific (New-Jersey, London),
1997.

[13] B. Courcelle. Linear delay enumeration and monadic second-order logic, 2006. Available at
http://www.labri.fr/perso/courcell/ActSci.html.

[14] B. Courcelle, J.A. Makowsky, and U. Rotics. Linear timesolvable optimization problems on graphs
of bounded clique width.Theory of Computing Systems, 33(2):125–150, 2000.

[15] B. Courcelle, J.A. Makowsky, and U. Rotics. On the fixed-parameter complexity of graph enumera-
tion problems definable in monadic second-order logic.Discrete Applied Mathematics, 108(1–2):23–
52, 2001.

40

[16] B. Courcelle and M. Mosbah. Monadic second-order evaluations on tree-decomposable graphs.The-
oretical Computer Science, 109:49–82, 1993.

[17] B. Courcelle and S. Olariu. Upper bounds to the clique-width of graphs.Discrete Applied Mathemat-
ics, 101:77–114, 2000.

[18] A. Dawar, M. Grohe, and S. Kreutzer. Locally excluding aminor. InProceedings of the 22nd IEEE
Symposium on Logic in Computer Science, 2007. To appear.

[19] A. Dawar, M. Grohe, S. Kreutzer, and N. Schweikardt. Approximation schemes for first-order de-
finable optimisation problems. InProceedings of the 21st IEEE Symposium on Logic in Computer
Science, pages 411–420, 2006.

[20] A. Dawar, M. Grohe, S. Kreutzer, and N. Schweikardt. Model theory makes formulas large. In
Proceedings of the 34th International Colloquium on Automata, Languages and Programming, 2007.
To appear.

[21] E.D. Demaine, F.V. Fomin, M.T. Hajiaghayi, and D.M. Thilikos. Subexponential parameterized al-
gorithms on graphs of bounded-genus andH-minor-free graphs. InProceedings of the 15th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 830–839, 2004.

[22] E.D. Demaine and M.T. Hajiaghayi. Equivalence of localtreewidth and linear local treewidth and its
algorithmic applications. InProceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 840–849, 2004.

[23] E.D. Demaine, M.T. Hajiaghayi, and K. Kawarabayashi. Algorithmic graph minor theory: Decom-
position, approximation, and coloring. InProceedings of the 45th Annual IEEE Symposium on Foun-
dations of Computer Science, pages 637–646, 2005.

[24] E.D. Demaine, M.T. Hajiaghayi, and K.-I. Kawarabayashi. Algorithmic graph minor theory: Im-
proved grid minor bounds and wagner’s contraction. In S.K. Madria, K.T. Claypool, R. Kannan,
P. Uppuluri, and M.M. Gore, editors,Proceedings of the Third International Conference on Dis-
tributed Computing and Internet Technology, volume 4317 ofLecture Notes in Computer Science,
pages 3–15. Springer-Verlag, 2006.

[25] R. Diestel.Graph Theory. Springer-Verlag, 3rd edition, 2005.

[26] R.G. Downey and M.R. Fellows. Fixed-parameter tractability and completeness I: Basic results.SIAM
Journal on Computing, 24:873–921, 1995.

[27] R.G. Downey and M.R. Fellows. Fixed-parameter tractability and completeness II: On completeness
for W[1]. Theoretical Computer Science, 141:109–131, 1995.

[28] R.G. Downey and M.R. Fellows.Parameterized Complexity. Springer-Verlag, 1999.

[29] R.G. Downey, M.R. Fellows, and U. Taylor. The parameterized complexity of relational database
queries and an improved characterization of W[1]. In D.S. Bridges, C. Calude, P. Gibbons, S. Reeves,
and I.H. Witten, editors,Combinatorics, Complexity, and Logic, volume 39 ofProceedings of
DMTCS, pages 194–213. Springer-Verlag, 1996.

[30] A. Durand and E.Grandjean. First-order queries on structures of bounded degree are computable with
constant delay.ACM Transactions on Computational Logic. To appear.

[31] H.-D. Ebbinghaus and J. Flum.Finite Model Theory. Springer-Verlag, 2nd edition, 1999.

[32] H.-D. Ebbinghaus, J. Flum, and W. Thomas.Mathematical Logic. Springer-Verlag, 2nd edition,
1994.

[33] P. Hliněný and S.-I. Oum. Finding branch-decompositions and rank-decompositions. Available at
http://www.math.uwaterloo.ca/˜sangil/.

41

[34] D. Eppstein. Subgraph isomorphism in planar graphs andrelated problems.Journal of Graph Algo-
rithms and Applications, 3:1–27, 1999.

[35] D. Eppstein. Diameter and treewidth in minor-closed graph families. Algorithmica, 27:275–291,
2000.

[36] P. Erdös. Graph theory and probability.Canadian Journal of Mathematics, 11:34–38, 1959.

[37] R. Fagin. Generalized first–order spectra and polynomial–time recognizable sets. In R. M. Karp,
editor,Complexity of Computation, SIAM-AMS Proceedings, Vol. 7, pages 43–73, 1974.

[38] J. Flum, M. Frick, and M. Grohe. Query evaluation via tree-decompositions.Journal of the ACM,
49(6):716–752, 2002.

[39] J. Flum and M. Grohe. Fixed-parameter tractability, definability, and model checking.SIAM Journal
on Computing, 31(1):113–145, 2001.

[40] J. Flum and M. Grohe.Parameterized Complexity Theory. Springer-Verlag, 2006.

[41] M. Frick. Easy Instances for Model Checking. PhD thesis, Albert-Ludwigs-Universität Freiburg,
2001.

[42] M. Frick. Generalized model-checking over locally tree-decomposable classes. In H. Alt and A. Fer-
reira, editors,Proceedings of the 19th Annual Symposium on Theoretical Aspects of Computer Sci-
ence, volume 2285 ofLecture Notes in Computer Science, pages 632–644. Springer-Verlag, 2002.

[43] M. Frick and M. Grohe. Deciding first-order properties of locally tree-decomposable structures.
Journal of the ACM, 48:1184–1206, 2001.

[44] M. Frick and M. Grohe. The complexity of first-order and monadic second-order logic revisited.
Annals of Pure and Applied Logic, 130:3–31, 2004. LICS 2002 Special Issue.

[45] H. Gaifman. On local and non-local properties. In J. Stern, editor,Proceedings of the Herbrand
Symposium, Logic Colloquium ‘81, pages 105–135. North Holland, 1982.

[46] M.R. Garey and D.S. Johnson.Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman, 1979.

[47] M. Grohe. Generalized model-checking problems for first-order logic. In H. Reichel and A. Ferreira,
editors,Proceedings of the 18th Annual Symposium on Theoretical Aspects of Computer Science,
volume 2010 ofLecture Notes in Computer Science, pages 12–26. Springer-Verlag, 2001.

[48] M. Grohe. Local tree-width, excluded minors, and approximation algorithms. Combinatorica,
23(4):613–632, 2003.

[49] M. Grohe and J. Mariño. Definability and descriptive complexity on databases of bounded tree-width.
In C. Beeri and P. Buneman, editors,Proceedings of the 7th International Conference on Database
Theory, volume 1540 ofLecture Notes in Computer Science, pages 70–82. Springer-Verlag, 1999.

[50] M. Grohe, N. Schweikardt, and S. Kreutzer. The expressive power of two-variable least fixed-point
logics. In J. Jedrzejowicz and A. Szepietowski, editors,Proceedings of the 30th International Sympo-
sium on Mathematical Foundations of Computer Science, volume 3618 ofLecture Notes in Computer
Science, pages 422–434. Springer-Verlag, 2005.

[51] M. Grohe and S. Wöhrle. An existential locality theorem. Annals of Pure and Applied Logic,
129:131–148, 2004.

[52] S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial strongly polynomial algorithm for minimiz-
ing submodular functions.Journal of the ACM, 48(4):761–777, 2001.

42

[53] K.-I. Kawarabayashi and B. Mohar. Approximating the list-chromatic number and the chromatic
number in minor-closed and odd-minor-closed classes of graphs. InProceedings of the 38th ACM
Symposium on Theory of Computing, pages 401–416, 2006.

[54] K. Kuratowski. Sur le problème des courbes gauches en topologie. Fundamenta Mathematicae,
15:271–283, 1930.

[55] L. Libkin. Elements of Finite Model Theory. Springer-Verlag, 2004.

[56] S. Lindell. Computing monadic fixed-points in linear-time on doubly-linked data structures, 2005.
Available at http://www.haverford.edu/cmsc/slindell/.

[57] J.A. Makowsky. Algorithmic uses of the Feferman-Vaught theorem. Annals of Pure and Applied
Logic, 126:159–213, 2004.

[58] J. Nešetřil and P. Ossona de Mendez. Linear time low tree-width partitions and algorithmic con-
sequences. InProceedings of the 38th ACM Symposium on Theory of Computing, pages 391–400,
2006.

[59] J. Nešetřil and P. Ossona de Mendez. Grad and classes with bounded expansion I: Decompositions.
European Journal of Combinatorics, 2007. To appear.

[60] J. Nešetřil and P. Ossona de Mendez. Grad and classes with bounded expansion II: Algorithmic
aspects.European Journal of Combinatorics, 2007. To appear.

[61] R. Niedermeier.Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006.

[62] S.-I. Oum. Rank-width is less than or equal to branch-width, 2006. Available at
http://www.math.uwaterloo.ca/˜sangil/.

[63] S.-I. Oum and P.D. Seymour. Approximating clique-width and branch-width.Journal of Combinato-
rial Theory, Series B, 96:514–528, 2006.

[64] C.H. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity classes.Jour-
nal of Computer and System Sciences, 43:425–440, 1991.

[65] N. Robertson and P.D. Seymour. Graph minors I–XXIII. Appearing inJournal of Combinatorial
Theory, Series Bsince 1982.

[66] N. Robertson and P.D. Seymour. Graph minors XXI. Graphswith unique linkages. To appear.

[67] N. Robertson and P.D. Seymour. Graph minors XXII. Irrelevant vertices in linkage problems. To
appear.

[68] N. Robertson and P.D. Seymour. Graph minors III. Planartree-width. Journal of Combinatorial
Theory, Series B, 36:49–64, 1984.

[69] N. Robertson and P.D. Seymour. Graph minors V. Excluding a planar graph.Journal of Combinato-
rial Theory, Series B, 41:92–114, 1986.

[70] N. Robertson and P.D. Seymour. Graph minors X. Obstructions to tree-decomposition.Journal of
Combinatorial Theory, Series B, 52:153–190, 1991.

[71] N. Robertson and P.D. Seymour. Graph minors XIII. The disjoint paths problem.Journal of Combi-
natorial Theory, Series B, 63:65–110, 1995.

[72] N. Robertson and P.D. Seymour. Graph minors XVI. Excluding a non-planar graph.Journal of
Combinatorial Theory, Series B, 77:1–27, 1999.

[73] N. Robertson and P.D. Seymour. Graph minors XX. Wagner’s conjecture.Journal of Combinatorial
Theory, Series B, 92:325–357, 2004.

43

[74] N. Schweikardt. On the expressive power of monadic least fixed point logic. Theoretical Computer
Science, 350:325–344, 2006.

[75] D. Seese. Linear time computable problems and first-order descriptions.Mathematical Structures in
Computer Science, 6:505–526, 1996.

[76] H. Tamaki. A linear time heuristic for the branch-decomposition of planar graphs. In G. Di Battista
and U. Zwick, editors,Proceedings of the 11th Annual European Symposium on Algorithms, volume
2832 ofLecture Notes in Computer Science, pages 765–775. Springer-Verlag, 2003.

[77] R.E. Tarjan. Decomposition by clique separators.Discrete Mathematics, 55:221–232, 1985.

[78] J.W. Thatcher and J.B. Wright. Generalised finite automata theory with an application to a decision
problem of second-order logic.Mathematical Systems Theory, 2:57–81, 1968.

[79] M.Y. Vardi. The complexity of relational query languages. InProceedings of the 14th ACM Sympo-
sium on Theory of Computing, pages 137–146, 1982.

[80] M.Y. Vardi. On the complexity of bounded-variable queries. InProceedings of the 14th ACM Sym-
posium on Principles of Database Systems, pages 266–276, 1995.

[81] K. Wagner. Über eine Eigenschaft der ebenen Komplexe.Mathematische Annalen, 114:570–590,
1937.

44

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

