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Abstract

The Counting Constraint Satisfaction Proble#{({SP (7)) over a finite relational structufi can be
expressed as follows: given a relational struc@m@ver the same vocabulary, determine the number of
homomorphisms frorg to . In this paper we characterize relational structdieer which #CSP(H)
can be solved in polynomial time and prove that for all othirrctures the problem is #P-complete.

1 Introduction

In the Counting Constraint Satisfaction ProbletaCSP(H), over a finite relational structurgg the ob-
jective is, given a finite relational structugg to compute the number of homomorphisms frgmo H.
Various particular cases of the #CSP arise and have beems@sdly studied in a wide range of areas from
logic, graph theory, and artificial intelligence [3, 18, 24, 38, 47, 51, 53, 54, 57, 58], to statistical physics
[2, 16, 45]. However, in different areas this problem oft@pears in different equivalent forms: (1) the
problem of finding the number of models of a conjunctive folan2) the problem of computing the size
(number of tuples) of the evaluatiap(D) of a conjunctive query (without projectiorf) on a databas®
and also (3) the problem of counting the number of assignenena set of variables subject to specified
constraints.

Since the seminal papers [55, 30], the complexity of thegi@eicounterpart of #CSP, the Constraint
Satisfaction Problem or CSP for short, has been an objecttensive study. The ultimate goal of that
research direction is to classify finite relational struewith respect to the complexity of the corresponding
CSP. We shall refer to this research problem asctassification problemA number of significant results
have been obtain, see e.g. [55, 30, 6, 8], but a full classiictas far from being completed.

Although the classification problem for the general #CSP e tackled for the first time very re-
cently, a massive work has been done in the study of the caihplef various particular counting CSPs.
These particular problems include classical combindtgniablems such as #GQUE, GRAPH RELIA-
BILITY, ANTICHAIN, PERMANENT etc. [47, 53, 57, 58] expressible in the form of #CSP; the tiagn
SATISFIABILITY and GENERALIZED SATISFIABILITY problems (in these problems the objective is to find
the number of satisfying assignments to a propositionahida) [18, 54] which correspond t#CSP(H)
for 2-element structure®(, counting the number of solution of equations over finite igeoups [50, 44]
and many others.

However, the real focus of research in this area has béErC#HLORING problem and its variants. In
the #H-COLORING problem the aim is to find the number of homomorphisms fromvergigraphG to
the fixed graphH. Thus, it is equivalent t¢-tCSP(H) whereH is a graph. Dyer and Greenhill [27] have
proved that, for every undirected grapgh its associated #-COLORING problem is either in FP (we shall
call such problemsgractable or #P-complete and they have also provided a complete ciesization of the
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tractable problems. This result has been extended to thetinguLiST #H-COLORING problem [24, 22],
which allows additional restrictions on possible images obde. Recently, Dyer, Goldberg, and Paterson
[28, 29] obtained a similar classification for directed dicygraphs. Furthermore, some other variants of
the #H-COLORING problem for undirected graphs have been intensively stiudiging the last few years
[20, 21]. Another direction in this area is the study of peshk with restricted input, that is subproblems
of the #H-COLORING problem in which the input grapy’ must be planar [38, 56], a partiattree [23],
sparse or of low degree [34, 35], etc. Finally, we should menthe approach to counting problems using
approximation and randomized algorithms, see e.g. [432p,

In [4, 14] we started a systematic study of the classificatimmblem for the general #CSP. The main
approach chosen was thlgebraic approachvhich has proved to be quite useful in the study of the degisio
CSP [40, 41, 6, 8]. This approach uses invariance propetipeedicates definable in relational structures.
Invariance properties are usually expressegiogmorphismef the predicates, that is (multi-ary) operations
on the universe of the relational structure compatible Withpredicates.

In [4], we proved that i##CSP(H) is tractable, theri{ has aMal'tsev polymorphism, that is a ternary
operationm(z, y, z) satisfying the identitiesn(x,y,y) = m(y,y,z) = x. Another observation was that
thecongruences.e. the definable equivalence relations7oplay a very important role. In particular, these
results have allowed us to come up with a nearly trivial proféhe result of [27]. In [5], another necessary
condition for the tractability o CSP(H) has been identified. It imposes certain restrictions onssibpte
congruences OFf, in terms of sizes of their equivalence classes.

In this paper, after giving general definitions (Section) 2d4d introducing the basics of the algebraic
approach (Sections 2.2 and 2.3), we go deeper into thesteuat congruences of a relational structure (Sec-
tion 3.1) and then identify several further necessary a@rdi for tractability (Section 3.2), again expressed
in terms of properties of congruences. Then, in Section 4preee that, for every relational structuteé
satisfying all the conditions obtained, the probléf’SP(H) can be solved in polynomial time. Thus, we
completely solve the classification problem for the geneoahting CSP.

We intensively use methods and results from a number of afeasdern algebra: lattice theory, tame
congruence theory, commutator theory and ring theory. Tkerttze paper available for a wider audience we
are avoiding the excessive use of algebraic terminologgpite of that, some parts of the paper, Section 4
and especially proofs, are demanding: they require fronreéader some familiarity with basic algebraic
objects and ideas. The keen reader is referred to textbddks3[L, 33, 37]. The reader should be aware
that to avoid yet another layer of objects we use algebraiit®logy for relational structures, while in the
algebraic literature the same concepts are used for “dugdtts, universal algebras.

2 Preliminaries

2.1 Relational structures and homomorphisms

Our notation concerning tuples and relational structsdaiily standard. Lefn| denote the sefl, ..., n}.
The set of alln-tuples of elements from a séf is denoted byH™. We denotes tuples of elements in
boldface, e.ga, and their components by{1],a[2],.... For a subsef = {i,...,ix} C [n] and ann-
tuple a, by pr;a we denote therojection ofa onto I, the k-tuple (a[i1], . .., alig]). For ann-ary relation
R C H™, its projection onto! is defined to ber;R = {pr;a | a € R}. If D; = pr;R fori € [n]
we say thatR is subdirect producof D¢,...,D,. If D; = ... = D, = H thenR is said to be am-

th subderect poweof H. Fora = (a[l],...,a[n]) andb = (b[1],...,b[m]), (a,b) denotes the tuple
(a[l],...,a[n],b[1],...,b[m], while (a, b) denotes the pair of tuples.



A vocabularyis a finite set of relational symbol3,, . .. , R,, each of which has a fixed arity. #lational
structureover the vocabulang®, ..., R, is atupleH = (H; R}, ..., R’!) such that4 is a non-empty set,
called theuniverseof H, and each? is a relation onf/ having the same arity as the symiel. LetG, H
be relational structures over the same vocabuldyy. . . , R,,. A homomorphisnrom G to H is a mapping
¢: G — H from the universe ofj (theinstancé to the universeéd of H (thetemplatg such that, for every
relation RY of G and every tupléas, ..., a,,) € RY, we have(p(ay), ..., o(am)) € R™.

A relation R is said to beprimitive positive definablép-) in H, if it can be expressed using the predi-
catesR!* of H together with the binary equality predicate Bn(denotedA ;), conjunction, and existential
quantification. We useef () to denote the set of all pp-definable relations.

2.2 Constraint Satisfaction Problem

The counting constraint satisfaction problem can be foated in several ways (see Section 1). We use the
model theoretic form of this problem.

Definition 1 Let $) be a class of relational structures. In tleunting constraint satisfaction problem as-
sociated with$) (#CSP($))), the objective is, given a structufé € § and a structureg, to compute the
number of homomorphisms fragnto 7. We will refer to this problem as aniform #CSP.

If $ consists of a single structufd, then we write#CSP(H) instead ofCSP({+}) and refer to such
a problem as anon-uniform homomorphism problerbecause the inputs are just source structures.

Example 1 (#H-COLORING, [27, 36, 46]) A graphH is a structure with a vocabulary consisting of one
binary symbolR. Then#CSP(H) is widely known as thet H-COLORING Problem, in which the objective
is to compute the number of homomorphisms from a given grajai{.

Example 2 #3-SAT, [18, 19, 57, 58])An instance of the #3-SAT problem is specified by giving a prop
sitional logic formula in CNF each clause of which containge¥als, and asking how many assignments
satisfy it. Therefore, #3-SAT is equivalent $6CSP(Ss3), whereSs is the 2-element relational structure
with the universe{0, 1} and the vocabulargy, ..., Rg, the predicatestS, ceey R§3 are the 8 predicates
expressible by 3-clauses.

Example 3 Let F' be a finite field and #INEAR EQUATIONS is the problem of finding the number of solu-
tions to a system of linear equations ovérlt is not hard to see that #lEAR EQUATIONS is equivalent to
#CSP (L), where& is the class of relational structures with the univefsend the relations corresponding
to hyperplanes of finite-dimensional vector spaces éver

Example 4 (Equations over semigroups, [50, 44]).et S be a finite semigroup, that is, a set with a binary
associative operation. An equation ovis an expression of the foram - 2o - ... = y1 Y2+ .. - Ym
where- is the semigroup operation, ang, y/; are either indeterminants or constants. THEDQN stands
for the problem of counting the number of solutions to a systé semigroup equations.

The problem#EQNY is equivalent to the problesgCSP (&) where is the class of structures with
universeS and relations expressible as the set of solutions of a seapgequation.

In the last two examples, as well as for many other uniformblemms, there is a minor ambiguity
concerning a representation of the input. We always asshatért uniform problems the relations of the
template are represented explicitly, by a list of tupleshimitelation. In Examples 3,4 such a representation
is not the most natural one. However, the class of relatiaimsiting a succinct representation is rather
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limited (see, e.g. [39]), and thus such representationsiasaitable for the study of the general problem.
Morever, changing representation does not affect the aaxitplof non-uniform problems.

Every counting CSP belongs to the class #P. However, thet exacplexity of #CSP(H) strongly
depends on the structufé. We say that a relational structut¢ is #-tractableif #CSP(H) is solvable in
polynomial time;H is #P-completef #CSP(H) is #P-complete. Note that all reductions used in this paper
are Turing reductions. The research problem we deal withigngaper is the following one.

Problem 1 (classification problem) Characterize #-tractable and #P-complete relational stuues.

Example 5 (1) Dyer and Greenhill [27] proved that H is an undirected graph theaH-COLORING can
be solved in polynomial time if and only if every connectednpmnent ofH is either a complete bipartite
graph, or a complete graph with all loops present, or a sivgiex. Otherwise the problem is #P-complete.

(2) A 2-element relational structufi is #-tractable if and only if every predicate Bf can be represented
by a system of linear equations over the 2-element field [2B8,QtherwiseH is #P-complete.

(3) #CSP(L) is solvable in polynomial time.

(4) The problem#EQNT is solvable in polynomial time if and only § is a direct product of a uniformly
inflated Abelian group, and inflated left-zero semigroug an inflated right-zero semigroup. Otherwise
#EQNY is #P-complete. For details see [44].

2.3 Polymorphisms, Algebras and Complexity

We have shown in [4] that polymorphisms of relational stnoes are a very powerful tool to study the com-
plexity of counting problems. Any operation on a $etcan be extended in a standard way to an operation
on tuples ovelH, as follows. For anyrf-ary) operationf, and any collection of tuples,, ... ,a,, € H",
definef(ay,...,a,) tobe(f(ai[l],...,an[l]),..., f(ai[n],...,an[n])). Thenf preservesann-ary re-
lation R (or R is invariant under f, or f is a polymorphism ofR) if for any ay,...,a,, € R the tuple
f(a1,...,a,) belongs toR. For a given set of operation§;, the set of all relations invariant under every
operation fromC' is denoted bynv(C). For a relational structurg/ we usePol() to denote the set of all
operations preserving every relation’df

Example 6 Let R be the solution space of a system of linear equations oveldaffieThen the operation
m(x,y,z) = x —y + z is a polymorphism ofRR. Indeed, letA - x = b be the system defining, and
x,y,z € R. Then

A-m(x,y,z)=A- (x—y+z)=A-x—A-y+A-z=bh.

In fact, the converse can also be shownRifs invariant underm then it is the solution space of a certain
system of linear equations.

The following propositions links together polymorphisnmslgp-definability of relations.

Proposition 1 ([32, 1, 42]) Let’H be a finite structure, and le® C H" be a non-empty relation. TheRis
preserved by all polymorphisms &f if and only if R is pp-definable imA.

The connection between polymorphisms and the complexigoahting CSPs is provided by the fol-
lowing result.

Proposition 2 ([4]) LetH; andH; be relational structures with the same universeRdf(H;) C Pol(H2)
then#CSP(H>) is polynomial time reducible t¢¢CSP(H;).
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Theorem 2 amounts to say that all the information about thepbexity of #CSP(H) can be extracted from
the family of polymorphisms of{. Sets of polymorphisms often provide a more convenient amtise
way of describing a class of constraint satisfaction pnuoisleFor example, in [4], we used polymorphisms
to identify some conditions necessary for the #-tractbiif a relational structure. A ternary operation
m(x,y, z) on a setH is said to beMal'tsevif m(z,y,y) = m(y,y,x) = xforall z,y € H.

Proposition 3 ([4]) If H is a relational structure which is invariant under no Makg operation thert{ is
#P-complete.

Notice that ifH{ has a Mal'tsev polymorphism then the decision CSP corradipgrto can be solved in
polynomial time [7, 13].

Example 7 A Mal'tsev operationn(z, y, z) is a polymorphism of the grapH; shown in Fig. 1, wheren
is defined as
m(i1j1, 922, 9373) = ij,
i =11 [j = 71] unlessiy = i5 [j1 = jo], in this case = i3 [j = js3].
The graphH, has no Mal'tsev polymorphisms. Indeed, if soifie:, y, z) is a Mal'tsev operation, then

() (3)()=(4) e

01 a b
00
d
11
10 H,
Hl
Figure 1:

In our algebraic definitions we follow [17, 49]. For algelrraotions and results concerning the decision
CSP the reader is referred to [9, 11].

A (universa) algebrais an ordered paif = (A, F') where A is a non-empty set anfl is a family of
finitary operations oM. The setA is called theuniverseof A, the operations front" are callecbasic An
algebra with a finite universe is referred to dite algebra

Any relational structuré{ with universeH can be converted into an algebhég(H) = (H; Pol(H)).
Conversely, every algebrd = (A; F') corresponds to a class of structus(A) with universeA and
relations frominv(F). Using this correspondence we can define #-tractable algbém algebra\ is said
to be #-tractable if every structuté € Str(A) is #-tractable; it is said to be #P-complete if sohies Str(A)
is #P-complete.

We shall express the complexity fCSP(H) in terms ofAlg(H). For example, if an algebra has a
Mal'tsev operation, it is called Mal'tsev algebra Proposition 3 implies that #CSP(H) is solvable in
polynomial time therAlg(H) is Mal'tsev.



2.4 Subalgebras and congruences

We shall use various constructions on algebras, but tweesktlsonstructions, subalgebras and congruences,
can be defined for relational structures, and are very usefliillustrative in this context.

A subalgebraof a structureH = (H; R}, .. ., RZ{) is a unary relation definable H, and acongruence
of H an equivalence relation definableth For a subseB C H, the substructure dff inducedby B
is defined to bé{‘B = (B; R{{B, . ,R;{‘B), whereRi‘B = R; N B™, R; is m;-ary. For an equivalence
relationa anda € H, the class ofx containinga is denoted by:/ , and the set of all classes of by
H/,. Thequotient structure/ , is defined to be{/,, = (H/,; R/,.---,Ri/,), WwhereR;/,, =
{(@1/py---sami/ o) | (a1,... am;) € Ri}.

Example 8 Let H be a digraph without sources and sinks, i.e. the in-degrdeanidegree of each vertex
is non-zero. We define two binary relations on the vertexisetf H: (a,b) € 6 if and only if a,b have
a common out-neighbour arid, b) € 7 if and only if a,b have a common in-neighbour; in other words,
0 = {(a,b) | (a,c), (b,c) for a certainc € H}, n = {(a,b) | (¢,a), (c,b) for a certainc € H}. In general,
0, n are reflexive and symmetric relation. HoweverHfhas a Mal'tsev polymorphismm, they are also
transitive. Indeed, suppose that 5) € 0, d € H is their common out-neighbour ards an out-neighbour
of a. If cis not an out-neighbour df, then’H containsH» (see Fig. 1) as an induced subgraph, which
contradicts the assumption tHdthas a Mal'tsev polymorphism. Therefore, the out-neighboads ofa, b
are equal whenevér, b) € 6, that implies transitivity. Thug, » are congruences 6{.

For the grapi; shown in Fig. 2, thé-classes aréa, b, c}, {d, e} and they-classes aréa, b, e}, {c, d}.

Figure 2:

Proposition 4 ([4]) Let’H be a relational structureB and « its subalgebra and congruence respectively.
(1) If H is #-tractable then so ar‘é(‘B andH/,,.

2 If H‘B or H/,, is #P-complete thef is #P-complete.

Let R € def(H) be ann-ary relation. It can be viewed as a subalgebratbf direct power ofH. A
congruence o is a2n-ary relation@ € def(H) such thapry;  ,1Q = pry, 41, 2,3Q = R, and, ifQ is
treated as a binary relation @t it is an equivalence relation.



The existence of a Mal'tsev polymorphism provides a necgssandition for the #-tractability of a
relational structure. However, it is not a sufficient coiwtlit as Example 9 shows. In the next section we
prove two more necessary conditions, and a particular dameeoof them is that proved [5].

Let o, 8 be congruences of &, wherea, 8 are incomparable, that is, neitherC 3, nor 3 C «.

Let Ay,..., A and By, ..., By be a- and 3-classes respectively (see Fig.3). Thei{«, 3) denotes the
k x ¢-matrix (mij), Wheremij = ‘Al N Bj’

B —classes

. |[+—— a —classes

Figure 3:

Proposition 5 ([5]) LetH be a relational structure, and let, 5 be congruences 6. If rank(M («, 3)) >
k, wherek is the number of classes in the smallest congruence contaliotha and 3, then#CSP(H) is
#P-complete.

Example 9 Let ’H be the grapids shown in Fig. 2ov = 0, and5 = np,. We haved; = {a,b,c}, Ay =
{e,d}, By = {a,b,e}, By = {c,d} and
2 1
men=(7 1)

By Proposition 5, the probleg#CSP(Hs3) is #P-complete.

2.5 \Varieties and Complexity

It will be convenient for us to jump back forth between motlederetic and algebraic views to the CSP.
The language of relational structures is more conveniergnadescribing algorithms. On the other hand,
standard algebraic constructions allow us to strengtheessary conditions for #-tractability, and eventually
formulate a criterion for #-tractability.

Definition 2 (1) LetA = (A; F) be an algebra. Thé-th direct powerof A is the algebraA® = (A*; F)
where we treat eactn-ary) operationf € F as acting ond* component-wise.

(2) LetA = (A; F) be an algebra, and leB be a subset ofi such that, for anyn-ary) f € F, and for
anyby,...,b, € B, we havef(by,...,b,) € B. Then the algebr® = (B;F‘B), WhereF‘B consists of
restrictions of operationg € F'to B, is called asubalgebraf A.

Note that a seiB is a subalgebra of a structurg{ if and only if B is the universe of a subalgebra of

Alg(H).
(3) LetA; = (Ay; F1) and Ay = (Ag; Fy) such thatFy = {f! | i € I}, F, = {f? | i € I}, and

L f? are of the same arityi € I. A mappingp : A; — A is called ahomomorphisnfrom A; to A, if
ofi(ar, ... an,) = fA(pla1),...,p(an,)) holds for alli € I and allay, ..., a,, € A;. If the mappingp
is onto thenA is said to be &nhomomorphic imagef A;.
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A common way of constructing homomorphic images is througiiigcuences and quotient algebras. A
congruenceof an algebrad = (A; F) is an equivalence relation ofl invariant under all operations from
F. Letd be a congruence of. The algebrad /g = (A/p; F/g), whereF/y = {f/g | f € F} and
[/ g is defined through the equalitf/g(a1/p, ..., an/g) = (f(a1,...,a,))/ g is called aguotient algebra
Observe that an equivalence relation is a congruence ofietste?{ if and only if it is a congruence of
Alg(H).

A property of algebras such that if an algebra enjoys thegtghen any its subalgebra, homomorphic
image, and direct power also enjoys it, is said tdhbesditary Universal algebra mostly deals with hered-
itary properties [37, 49]. Therefore, the next theoremvedlais to apply the methods of modern algebra to
the study of the complexity of the counting CSP.

Theorem 1 ([4, 14]) LetA = (A; F') be a finite algebra. Then

(i) if A is #-tractable then so is every subalgebra, homomorphiganand direct power of.

(i) if A has an #P-complete subalgebra, homomorphic image, ortdrewer, thenA is #P-complete
itself.

For an algebra\ the class of algebras that are homomorphic images of sualgef direct powers of
A is called thevariety generated by.

An operationf on the universe of an algebfa= (A; F') that preserves all relations invariant under
is called aterm operation ofA. Every term operation of can be obtained from operations Bfby means
of superposition.

An operationf on a setA is said to beidempotentf the equality f(x,...,z) = =z holds for allz
from A. Algebras whose basic operations are idempotent posesg usaful properties that will assist in
our investigation. Théull idempotent reducof an algebrad = (A; F) is the algebrdd(A) = (4; Fiq)
where F}4 consists of all idempotent term operationsfaf There is another way to characterizg,. If
A = Alg(H) for a certain relational structurd, thenld(A) = Alg(Hiq), WhereH,q is an expansion of
by unary relation€”,, h € H, andC}, is interpreted an eonstant relation{ ()}, containing only one tuple,
namely(h).

Theorem 2 ([4, 14]) A finite algebraA is #-tractable[#P-completgif and only if so isld(A).

If A is an idempotent algebra and the condition of Propositios tsue for every pair of congruences of
A thenA is said to becongruence singularlf every finite algebra in a variety is congruence singuhamt
the variety is called congruence singular. We call a refaictructure{ congruence singular ilg(H)
generates a congruence singular variety. By PropositiondsTdeorems 1, 2, every structut¢ that is
not #P-complete is congruence singular. The main resuti@paper is that this condition is sufficient for
#-tractability.

Theorem 3 A relational structureH [an algebraA], is #-tractable if and only if4;4 is congruence singular
[A generates a congruence singular variety

Observe that the condition of having a Mal’'tsev polymorphigerm operation) is not included into the
criterion. As we shall see later (Lemma 1) every congruereguiar structure has a Mal'tsev polymor-
phism.



3 Congruence lattices and the structure of relations

3.1 Congruence lattices and types of prime quotients

In this section we look closer at the family of congruencea oflational structuré{. We shall assume that
'H has a Mal'tsev polymorphismu(zx, y, z). All definitions and results given here were originally oduced
for algebras [15, 49]. As our algorithms are described imgeof relational structures, we reformulate them
in terms of structures, replacing congruences of algebitaaoingruences of structures, and term operations
of an algebra with polymorphisms of a structure. Howeves,ribtions we arrive to for a structuf¢ are
exactly the same as those defined for the algélgér).
The set of all congruences &f is denoted byCon(H). Leta, 5 € Con(H). The intersection oft andg
is again a congruence &f is denotedh A 8. As is well known, the smallest equivalence relation coritej
both« andg is the transitive closure af U 5. It can be shown that this equivalence relation is a congrien
of H, denoted byx v 3. The setCon(H) together with the operations (mee} andV (join) is called the
congruence latticef H. The setCon(H) is naturally ordered with respect to inclusion. The leastreint
of Con(’H) is the equality relation, denoted kY, and the greatest element is the full relation, denoted by
V-
If R is a relation pp-definable #, then Con(R) denotes the set of all congruences Bn This set
depends ori as well as orRk, but usuallyH is clear from the context. The s€bn(R) is also a lattice.
Since’H has a Mal'tsev polymorphism, the g8bn(7) cannot be just an arbitrary collection of equiva-
lence relation. In particular, every two memberss of Con(H) must bepermutablethat isao § = o a.
This means that, for any-classA and anyg-classB belonging the same V g-class,A N B is non-empty
(see Fig.4).

B—classes o —classes

\

T

OAB-classes  avp—classes

Figure 4:

Lemma 1 If a relational structure is congruence singuldian algebraA generates a congruence singular
variety], then it has a Mal'tsev polymorphisfa Mal'tsev term operation

Proof: By a well known result of Mal'tsev [15], an algebahas a Mal'tsev term operation if and only
if any two congruences of any algebra in the variety gendrayed are permutable. Therefore it suffices to
prove that if the variety generated Byg(7 ) for a structureH is congruence singular then it is congruence
permutable.

As is easily seen, congruencess are permutable if and only ik o 8 = foa = a V 5. Suppose
H is congruence singulaB € var(Alg(H), anda, 5 € Con(B). If « C g or 5 C « then they are obvi-
ously permutable. If the congruences are incomparable theéd{ M (o, 3)) = k wherek is the number
of a v -classes. This equality implies, in particular, that foy anb from the samex v §-class, saya
belongs tax-classA; and3-classBi, andb belongs ton-classAs andG-classB,, we haved, N By # &
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and A; N By # @ (the corresponding entries 8f («, 3) must be nonzero). Thefa,b) € a o 3, as any
c € A; N By witnesses, antk, b) € Bo «, as anyd € A; N By witnesses. Thugo = foa=aV (. O

A pair of congruences, (3) is said to be g@rime quotienif « < 3 and, for anyy such thaix < v < g,
eithery = aory = g.

We shall use some notions and results of tame congruenceytfg4. Tame congruence theory is
a tool to study a local structure of universal algebras afatiomal structures through certain properties
of prime quotients of the congruence lattice. In genera ttheory identifies five possible types of such
quotients defined in a rather sophisticated way. Fortupatelour case of relational structures with a
Mal'tsev polymorphism, only two of those types can occud #re definition of these possible types can be
significantly simplified.

If every polymorphism of a relational structutéis idempotent, then, for any congrueneef H, every
a-class A is a subalgebra. Indeed, for arfyzy,...,z,) € Pol(H) and anya,,...,a, € A, we have
(a1,a1),(az,a1),...,(an,a1) € o, f(a1,...,a1) = a; and therefore

(06 ()= ()

Hence,f(a1,...,a,) € A.

A prime quotientn < ( is said to be o&ffinetype, if, for anys-classB, there is a moduld/z with the
base sef3/,, over a ringRRp such that for anyf (z1,...,%n,y1,...,ym) € Pol(H) anday, ..., a, € H,
if the operationg(x1,...,z,) = f(z1,...,2n,0a1,...,a,) preservess, then it can be represented as an
operation of the modul@/:

(g‘B(xl, s Tn))/ g = €171 F L CaTy A

In all other casesy < (3 hasBooleantype.

Example 10 Let £ be a 2-element relational structure whose relational sysrdre interpreted as solution
spaces to systems of linear equations. THerhas only two congruenceg\,, the equality relation, and
Vo, the total binary relation. As Example 6 shows, the primetignb A, < V is of affine type. Thus,
affine type corresponds to some kind of “linearity” in a breadse.

Prime intervalsy; < ; andas < (3, are said to berojectiveif 81 Vas = Bo, 1 Aas = ag Ora VP = f,
a1 A B2 = aq. Thus projectivity is a binary relation on the set of primeeimwals ofCon(H). Two intervals
that belong to the transitive closure of this relation aiid abeperspectivao each other.

Lemma 2 ([37], Lemma 6.2) If a; < 51 andas < (32 are perspective intervals iion(H), then they have
the same type.

3.2 Congruence lattices of Mal'tsev Algebras

We will sometimes distinguish two cases: when the congreidattice of our relational structure omits affine
type, and when affine type occurs in this lattice.

10



3.2.1 Algebras omitting affine type.

If H omits affine type then, by Theorem 9.15 of [3Toen(H) is distributive that is, for anya, 5, €
Con(H), the equalitya A (B V v) = (a A B) V (a A ) holds. Finite distributive lattices are exhaustively
studied (see, e.g. [33]). In particular, there is a finite 8&t and a injective mapping: Con(H) — 2M

(the set of all subsets) such thata vV 5) = 7(a) U n(B) andw(a A ) = w(a) N 7(B). We use the
following representation of a sét/. Take a maximal chaid’ in Con(), that is, a chain of congruences
A=0)<6; <...<06;,=V. The setM is defined to be the set of the prime quotients of the chain.
Slightly abusing notion the quotient; 1, 6; will be denoted byi. A congruence € Con(H) corresponds

to the sets of quotients fro that are projective to quotients of the fom< 5 < 4. The bottom end of a
prime quotienty € {1, ..., ¢} will be denoted byx~, and the top one by ™.

Example 11 The lattice shown in Fig. 5(a) is distributive and its reprgstion as a lattice of subsets is also
shown.

{1,2,3,4}

{1,2,4}
{13} K2
% (@ (b)
Figure 5:

The following proposition comprises properties@in(7) that follow easily from the representation of
this lattice as a lattice of subsets.

Proposition 6 (1) Every prime interval irCon(H) is perspective to one and only one of the interval€'of
(2) For anya € M, thatis, any prime interval i, there is the greatest prime interva), < A, perspective
to «; that is, for anys < ~ perspective tax we haves < k, andy < A,.

(3) For anya € M, the congruence,, is meet-irreduciblethat is, ifk, = 8 A ythank, = for kg, = v
(see Fig.5(b).

3.2.2 Algebras admitting affine type.

Let us again consider the congruence lattica (7). A congruences is said to besolvableover « if there

area = a1 < ... < a, = (3 such that all the prime quotients < «;, have affine type. The’ denotes
a binary relation or€on () defined as followsa ~ 3 if and only if o vV 3 is solvable over A S. If a < 8

then the set of ally such thatn < v < (3 is said to be annterval in Con(#), denotedc, 5]. The next
proposition lists some properties &fthat follows from well known facts about modular latticesaltsev
operations and Lemma 7.4, Theorem 7.7 from [37].

11



Proposition 7 (1) X is an equivalence relation and, moreovercangruenceof Con(H); that is, for any
a1, 9, B, 02 € COI’I(H) such thain; N o, (1 N B2, We hanOél\/ﬂl) N (Oég\/ﬂg), ((Xl/\ﬂl) N (Oég/\ﬂg).
(2) Every classS of X has the greatesis and the leasty elements (with respect tg), and equals the
interval [0s, ns]. Every prime quotient insidg has affine type.

(3) The quotient latticeC = Con(H)/ 3 is distributive (see Fig.6).

Congs ) Confr )k

Figure 6: Congruence lattice and its quotient lattice modul Prime quotients of affine type are shown by
thick lines; the least elements in the classeé afre encircled

Proposition 7(3) implies thaf can be represented as a lattice of subsets of a finité/seSimilar to
Subsection 3.2.1}/ can be chosen to be the set of prime intervals of a maximahehian £. Note that the
endpoints olx € M are setsS;, Sy of congruences fronton(H) (S correspods to the bottom end @f.
By o~ we denote the greatest elementsyf and bya™ the least element of; such thath™ < ™. Let
8 < ~ be the greatest interval ifi perspective tax. Again, 5 and~ are setsl, T, of congruences from
Con(H) (1 corresponds t@). By x, we denote the greatest elementlof and\,, the least element i
such that, < A\, (see Fig.7).

Figure 7: Congruence lattice and congruencgs\,,. Solid lines represent prime intervals of Boolean type,
ovals represent-classes

Proposition 8 (1) The intervalla—, o] is perspective tdkq, Ao
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(2) The interval§a—, o™ and [k, Ao | are prime.
(3) The interval§a—, a™] and [k, Ao | have Boolean type.
(4) The congruence,, is meet-irreducible.

3.3 Structure of relations invariant under a Maltsev operaion
3.3.1 Basic properties

The following proposition contains some basic propertigglal’tsev algebras and relations invariant under
a Mal'tsev operation, that will be constantly used. Soménefresults we cite below are traditionally stated
in terms of algebras: a relation pp-definable in a structdrie treated as a subalgebra of a direct power of
Alg(H). In order to keep the presentation uniform we formulate temnerms of relations and relational
structures.

Proposition 9 LetH be a structure with a Mal'tsev polymorphism aRdan n-ary relation pp-definable in
‘H. Then for anyl C [n] the following properties hold

1. Risrectangularthat is ifa, b € pr; R, c,d € pr,_ ;R and(a, c),(a,d),(b,c) € R, then(b,d) € R.
2. The relatiod; = {(a,b) € (pr;R)? | there isc € pry,— ;12 such that(a, c), (b, c) € R} is a congru-
ence ofpr; R.

3. Ris a disjoint union of sets of the forf x C' whereB is af;-class andC'is af,,_;-class.

Binary relations invariant with respect to a Mal'tsev opiEnahave particularly simple form. Lé%,, B;
be subalgebras ¢ anda; € Con(B;), ay € Con(B;). Let alsop be a mapping frorrB’l/Oé1 to BQ/OQ.
Thethick mappingcorresponding tg is the binary relationz = {(a,b) € B1 x B | ¢(a/,, ) = b/, }-
Any congruence is the thick mapping corresponding to the identity mapping® ,.

Corollary 1 Every binary relation compatible with is a thick mapping.

We shall intensively use thick mappings throughout the papet R € def(H) be akth subdirect
power of H. Fori,j € [k] by ¢; ; we denote the thick mapping equaliio, ; R. If it is a thick mapping
corresponding te: H/,, — H/, for somea € Con(H), we say that); ; is athick mapping of leveh.
Let 8 € Con(H). By 5* we denote an equivalence relation on the[setlefined as followsyi, j) € g*
if and only if pr; ;R is a thick mapping fronH/,Yl to H/72 for some~y;,v, < 3. The following lemma
follows from the definitions.

Lemma3 If R € def(H) is a subdirect power off then, for anya € Con(H), any a*-class A, any
9,4’ € A, and any sequenag= g1,..., g, = ¢’ such that)y, 4., is a thick mapping oH/ﬂ, to H/W for
someg;,v; < a, i € [n — 1], we have

gi+1

Vg1,92 0+~ © Vg 1,90 © Vg g

Lemma 3 implies that, for any congruenaeand anya*-classA, we can select a representatiyg and a
family of mappingsy,: H/, — H/ ,, whereg € A, such that for any homomorphisth: G — H,, we
havey(g)/,, = ¢q(¥(g4))-

13



3.3.2 Boolean type and rectangularity properties

Let A be a finite algebra. The algeb#fais calledsubdirectly irreducibleif there is a congruencg, the
monolithof A, such thatA < y and, for any congruence # A, we havey < . We call a relational
structure’ subdirectly irreducible ifAlg(H) is subdirectly irreducible. The monolith of a subdirectly
irreducible structure is defined as the monolithAdd (7).

Let R € def(H), whereH is a subdirectly irreducible structure with a Mal'tsev polgrphism, be an
k-ary subdirect power df{. The equivalence relation* is defined in the same way as before. In [12], we
definedcoherent setsf the subdirect poweR satisfying these conditions, as classes of a certain ipartit
of the set[k]*. We do not need here a precise definition of coherent setaubedf the interval\ < . has
Boolean type then it follows from Lemma 2.7 of [12] that thénerent sets are equal to the classeg™of

Lemma 4 (Lemma 2.6, [12]) Let R be a subdirect power off and the structureH is subdirectly irre-
ducible. Let alsqu be its monolith andBy, ..., By p-classes such thaR N (By x ... x By) # J. Let
I,..., I, be the coherent sets and
B, =pr R0 ][] Bs.
icl;
ThenRN (By x ... x By) =By, x ... X By,.

For a congruence: € Con(H), leto* denote the congruence &f consisting of pairga, b) of tuples
such that(a[i], b[i]) € o for all i € [k] (it is an easy exercise to check thétis indeed a congruence).

Proposition 10 LetH be a structure with a Mal'tsev polymorphism, et be a maximal chain il€on(H),
let R be akth subdirect power o anda € M. Let alsoBy,..., B, be classes ok, and I, ..., I, the
classes ofy,, I; = {ij1,... iz, }. TheneithetRN (B x ... By) = &, or

R/ kO (Br/ g X ... X B/, )= Br/hl x...x B/l
whereR/, k = {(a[l]/ma, . ,a[k]/,_%) |a€ R}andBj, = pr; RN Hidj B;, and

ij = {(a7wij17ij2 (a)7 s 7wij17ijkj (a)) ’ ac Bj//-ga}'

Proof: The relationR/,. k can be treated as a subdirect poweff,. e Then the proposition follows
straightforwardly from Lemmas 2.6 and 2.7 of [12], and alsorf Proposmon 8(3),(4). O

If a structure’ with a Mal'tsev polymorphism omits affine type, then we caraab even stronger
rectangularity-type condition. Recall that in this casedbngruence lattice 6 is distributive. A Mal'tsev
algebra Alg(H) in our case) generating a variety, in which every algebrashdsstributive congruence
lattice is calledarithmetical Arithmetical algebras are exhaustively studied. We wsik uhe following
result [52] describing the structure of relations invariaith respect to such algebras.

Proposition 11 LetD be a subdirect product ofiq,...,A;. ThenD can be uniquely determined by the
thick mappingsy;; for i, j € [k]. More preciselya € D if and only if (a[i], a[j]) € ¢;; forall ¢, j € [k].

Corollary 2 If H is a structure with a Mal'tsev polymorphism omitting affigpe then#CSP(H) is poly-
nomial time equivalent tgtCSP(H’), whereH’ is a relational structure with the same universeZsall
relational symbols of which are binary and interpreted askimappings of.

In [12], we used the algebraic terminologi:is a subdirect product of subdirectly irreducible Mal'tsdgebras.
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4 Necessary condition for tractability

In this section we prove two more necessary conditions fivaétability. Both of them follow from Propo-
sition 5, but they allow us to design an algorithm for #CSP.

If the algebra corresponding to the struct@fedoes not omit the affine type, then we have a stronger
necessary condition for the tractability #iCSP (H).

Proposition 12 If H is congruence singular then for any congruenées. « < [ € Con(H) such that
a < [ has affine type, any-ary relation R € def(H) and any sequencedy,..., A, and By,..., B,
of a-classes such that;, B; belong to the samg-class ¢ € [n]), if B, = RN (41 X ... x A,) # O,
Ry = RN (Bl X ... X Bn) 7& g, then]Rl/(;n] = ‘Rg/én‘

We make use of some basics of commutator theory in congrusiockelar varieties (see the seminal
book [31]). LetA be a Mal'tsev algebra and, 5,~+ € Con(A). The congruence: centralizess modulo~,
denoted”(«, 3; ), if, for any (n-ary) term operatiorf, any(u, v) € aand any{aq,b1), ..., {ap—1,bp—1) €

B,

<f(u,a1,. .. ,an_l),f(u, bl,. .. ,bn_1)> cy
—  (f(vya1,...,an-1), f(v,b1,...,bp_1)) € 7.

The smallest congrueneesuch thatC'(«, ;) is called thecommutatorof «, 3, denoteda, 3].

Proposition 13 ([31]) Let A be a Mal'tsev algebra and, 3,y € Con(A). Then
D) [e, 8] = B, a;
(2) if « < B and this interval has affine type if and only{#f, 5] < «;

Q) ifa < Band|B, 8] < a, there is a congruence of 3 (which is considered as a subalgebraof) such
that the sef{((a,b), (¢,d)) | {a,b), (¢,d) € o} is aclass ob.

Proof: (of Proposition 12.) By switching to the quatient structdt¢ s we may assume thdtis the
equality relation. To prove Proposition 12 we consider thiversal algebra\ = (H;Pol(H)) and the
subalgebra of A™ with the universeR. Thus we consideR as a subalgebra @f™.

CLAaim 1. For the algebr®, |57, 5" < a.

Let f be a §-ary) term operation of\, and let(u,v) € 5" and(a;,b;),...,(ax_1,bx_1) € ™. If
<f(u, ap,... ,ak,l), f(u, by,... ,bk,1)> ea” then(f(u[z'],a1 [Z], . ,ak,l[i]), f(u[z ,bl[i], . ,bkfl[i]» S
« for eachi € [n]. SinceC (8, §; «), this implies(f(v[i], a1[i],...,ax—1[d]), f(V[i], b1[i], ..., br_1]i])) €

a foreachi € [n]. Thus(f(v,ai,...,ax_1), f(v,b1,...,br_1)) € Q™

We treat the congruengg” as a subalgebra @?; let us denote it byC. Let 44,..., A; be thea™-
classes of3 and|A;| = ¢;. By Proposition 13 there is a congruengef C such that the seb of pairs of
the form(a,b), a,b € B and(a,b) € o™ Lety’ = v Vv o?". The setD is a class ofy’.

CLAIM 2. Every class of 4/ is the union(A; x A1) U. ..U (4 x A, ) for a certain bijective mapping
¢ : [k] — [k]; and for one of the classesis the identity mapping.
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Sincea® C «/,if A; x A;NE # @ thenA; x A; C E. Suppose that there afa, b), (c,d) € E
such thata, ¢) € o, but(b,d) ¢ o™. Asa?" C +/, we may assuma = c. Let us considety’ as a 4-ary
relation onB. Let alsof be a Mal'tsev operation af.. Then we have

a a b b a a b b
abb| | a , b aal| | Db ,

f aad| | d €v and f aad]| | d €7
a d d a b a a b

which implies thatb, d) € o™, a contradiction.

Let also3’ denote the congrueneg® x 3. Itis not hard to see that v 3 = 5" x " andy' A 3 =
a x a”.

Clearly, every class af™ x o™ is the direct product of two classég , Ry of o™. Therefore, its size is
|R1| - | R2|. Thus, the first two rows of the matrix/ (', ') look as follows

( g% g% gi )

bilpay Lalp) - llowy )

If #CSP(R) C #CSP(H) is not #P-complete, then these two rows are proportionat,ish
2 lo I

loey Loy Loy
Foranyi € {1,...,k}, letm be such thap™ (i) = i. Since

ti gs@(i) Egl_l(i)

o) L2 Com i)

)

14

we havel? = Co@lo—1(:)- As this holds for every andy(i) = i for noi, we conclude that; = ¢; for any
pair i, j from the same orbit ap. Finally, for each paié, j € {1,...,k}, there is a row inV/ (', 3') of the
form ( 0ilyqy Lalyo) -+ Lelyu ) Such that)(i) = j. By what was proved abové; = ¢;. 0

We will also need another corollary from Proposition 5. Tdbe ak-dimensional array, that is a collec-
tion of numbersT'[iy, ..., i) indexed by tuplesiy, . .., i), wherel < i < my. The arrayl” has rank 1,
denotedrank(T") = 1, if for each? € [k], and anyiy, ..., 6p—1,5041, -« 0ks J1y -« s J0—1,J0+15s - - - » Jk With
iuy Ju € [my), we have

T[’L'l,. .. ,’L'g_l, 1,’L'g+1, PN ,’L'k] o o T[il, PN ,’L'g_l,mg,’ig+1, PN ,’L'k]

T[jl,' .- ajf—l, 1aj€+1a s a]k] T[jla s >j€—1amfaj€+1,' .. a]k]

It is not hard to see that this condition can equivalently xgressed as follows: for eache [k] there are
numberst{, ..., ¢, such that

Tlir, ... ig) =t~ th .

Now let R be a relation pp-definable in a struct@ewith a Mal'tsev polymorphism, and let;, . .. , v
be congruences oR such that for each € [£]

YV MAAYici AN A AT =Y VY (1)
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LetalsoC be aclass of = y1V...Vq, and letA? . .. ,Aim be the classes af from C. The condition (1)
means that for any, . . . , i, the setAZl1 N...N Afk is a nonempty class gf = 1 A ... Ay, and any two
classes of this form are different. We considér-dimensional arrap/ (C; 1, . .. ,vx), where

M(Ciyiy e yvi)lin, -] = |Ail1 ﬂ...ﬂAka

Proposition 14 Let~, ..., be congruences of a structuté that has a Mal'tsev polymorphism, let them
satisfy the condition (1), and let' be a class ofy; V ...V ;. Then,rank(M(C;aq,...,ax) = 1 or
#CSP(H) is #P-complete.

Proof: We consider the congruencesandg; = yiA.. . AY;i—1 AYit1/A. . . Av,. To simplify the notation
we assume = k. If #CSP(H) is not #P-complete thernk(M (C; vy, Bx)) = 1. Let A}, ..., A}, be the

classes ofy; from C. The classes of, have the formAZ-l1 Nn...N Afk‘_ll, the classes of;. A O are the classes
of y1 A ... A vg. Therefore every row ol (C'; v, 5k ) is equal to

(M(Cﬂfylv 77]6)[1-17" . 72‘/67171]7" . 7M(Cﬂ'717 7’Yk)[i17" . 7Z‘k717mk])

for someiy, ..., ix_1. Sincerank(M (C; v, Bx)) = 1, we get
M(C;’Ylv"'afyk)[ilr"72‘]6*171] — — M(C;717"'7fyk)[i17"'7ik*17mk]
M(Cﬂfylv e 7’Yk)[j17 e 7]‘]6*17 1] M(C7717 e 7’}//?)“17 e 7jk*17mk]
The corollary is proved. O

An important example of a collection of congruences satigfyhe condition (1) is the following. Let
a € M, and letly,. .., I be the classes of,. A congruencey; is defined as follows{a, b) € ~; if and
only if (afi], bli]) € o~ fori € I; and(a[i], b[i]) € o otherwise.

5 Algorithms: prerequisites

5.1 Decision CSPs over a Mal'tsev algebra.

If a relational structuré{ has a Mal'tsev polymorphism, then the decision CSP with ¢éneplate?{ can be
solved in polynomial time [7, 13]. Here we shall use the athon presented in [13]. This algorithm builts
a sort of a succinct (polynomial size) representation fergét of all solutions.

Let n be a positive integer, lei be a finite set, lea, b ben-ary tuples and leti, a, b) be any element
in [n] x H2. We say thaa, b) witnessegi, a, b) if pry;_ja = pr_y b, afi] = a, andb[i] = b. We also
say thata andb witness(i, a, b) meaning thata, b) witnessegi, a, b).

Let R be anyn-ary relation onH. The signatureof R, Sigy, C [n] x H?, is defined to be the set
containing all thos€i, a, b) € [n] x H? witnessed by tuples iR, that is

Sigr = {(i,a,b) € [n] x H? : 3a,b € R such thata, b) witnessegi, a, b)}.

Note that in our notatiori, a,b) € Sigp if and only if (a,b) belongs to the relatiofi; computed for the
relationpry; R (see Section 3.3.1). In particular, for aflya,b) € Sigp and anya € pr; R with afi] = a
the tupleb such thapr); ;b = prj;_;ja andbl[i] = 1 also belongs ter; R.

A subsetR’ of R is called arepresentatiorof R if Sigp, = Sigp. If furthermore,| R'| < 2|Sigy| thenR
is called acompactrepresentation oR. Observe that every relatioRl has compact representations.
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Let H be a relational structure ari®l C H™ for somen. By (R’);; we denote the relatiogeneratedby
R/, that is, the smallest relatioR definable in and such thal?’ C R. Since’H is usually clear from the
context we shall omit this subscript. The key lemma proveld 8j states that iR is a relation definable in
arelational structure with a Mal'tsev polymorphism, adis a representation at, then(R’) = R. Given
an instance; of the constraint satisfaction proble@SP(H), m = |G|, the set of all solution® (G, H) to
this problem can be thought of as anary definable relation ift{. The algorithm presented in [13] finds a
compact representation of this set.

We will need to know unary and binary projections of the felatp (G, H), that is, sets of the form
vy = {p(g) | ¢ € B(G.H)} for g € G andyyy, = {(p(g), p(h) | ¢ € B(G, H)} for g, € G. Itis
not hard to see (see also [13]) thafif is a compact representation ®{G, 1), thenyg, 1, , are equal to
(pr,R') and(pr, , R'). Therefore, we may assume that we have a precomputed tabketteach subset of
‘H, and for each subset & x H shows the unary or binary relation generated by this subgdtgvery time
we need to find), or ¢, 5, Using a compact representati®, we just find the corresponding projection of
R’ and look up the table.

If there is no complexity restriction imposed, as in the cafggrecomputation, the relation generated by

some sety C H" can be computed by employing a standard method(lLet{ay,...,a,,}. First, find all
m-ary polymorphisms of{. This can be done using tlredicator problem[42]. Next, include into{@) all
tuples that can be representedfés,, .. ., a,,) for anm-ary polymorphismf.

5.2 Reduction to subdirect powers.

In general, for an instanag of #CSP(H) the sets),, g € G, are subalgebras @{ that are not necessarily
equal toH. For us, however, it is much more convenient to deal with eeeavhenb(G, H) is a subdirect
power of H, that isy, = H for all g € G. We show how to transform the problem so thigtbe # for all

g € G. To do this we borrow some methods from the multi-sorted G&&, e.g. [10].

Let Dy,..., D, be the subalgebras &{ (including H itself). We shall assume that along with every
(n-ary) relational symbolR and anyD;,, ..., D; the vocabulary ofH contains a symboR’ such that
R™ = RN (Dy, x ... x D;,). Then we define a relational structug¢¥) as follows. The universe of
X(H)is D = Dy x ... x D,; theith component of an elemente D is denoted byz[i]. For any @-ary)
relation R pp-definable inH we set(ay,...,a,) € x(R) if and only if (@1 [i1],...,an[in]) € R, where
D;; = pr;R. In particular, each unary relation g{) contains all elements dD and, therefore, can be
thrown out. For any coordinate positiérof any non-unary relatioi?, the setpr, x(R) equalsD. Finally,
to definey (H) formally we for each relational symbdt we interpret it agzx(") = y(R).

For an instancg of #CSP(H), the following algorithm constructs an instangeof #CSP (x(H)).

Algorithm Subdi r ect
INPUT: an instancej of #CSP(H)
OuTPUT: an instance;’ of #CSP(x(H)) with the same universe &

Step 1 find a compact representation &G, H)

Step 2 for eachg € G find v,

Step 3 for each (n-ary) relational symboR do

Step 3.1 for eachtuple (g1, ...,9,) € RY do

Step 3.1.1 let R’ be the relational symbol such that
R™ = R" N (1hg, X ... X 1hg,)
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Step 3.1.2 include (g1, ...,gn) into RrRY
endfor
endfor
Step 4 output G’

The next easy lemma completes the reduction.

Lemma5 Letg is an instance ot CSP(H) andG’ an instance of£CSP(x(H)) consructed by algorithm
Subdi rect . Let alsoy, = pr,®(G, H) for g € G. Then®(G’, x(H)) is a subdirect power of (#) and

B (H))| = -1 2

geG ‘wg

Proof: Lety € ®(G’, x(H)) be a homomorphism frorg’ to x (). Let us define a mapping ()
from G to H as follows. (Note thag andG’ have a common universe.) FoiE G if ¢(g) = aandy, = D;
then sety~!(¢)(g) = @li]. By the construction of(*) and¢g’, if we change the value(g) for some
g € G with ¢, = D; to anyb such thab[i] = ali], then the resulting mapping' is still a homomorphism
from G’ to x(H) andx~!(¢’) = x~!(). Conversely, for any homomorphisie ®(G, ), any mapping
©: G — x(H) such thaty~!(¢) = + is @a homomorphism of’ to x(#). This straightforwardly implies
the result. O

5.3 Structure of Mal'tsev instances

Let G be a#CSP(H) instance andG| = m. We shall asuume that the univer§eof G equals to[m].
Clearly, the sefp (G, H) can be thought of as an-ary relation definable ift{, or as a subalgebra of theth
direct power ofA = Alg(H). By the results of the previous subsection we may assumdithatd (G, H)

is a subdirect power of{. Recall that for a congruengec Con(H) by 8" we denote the congruence Bf
such thata, b) € ™ if and only if (a[g], b[g]) € 6 for all g € G. For congruenceg < v € Con(H) and a
mappingr: G — H/ﬂ, by W/W we denote a mapping froi to H~ defined byyr/v(g) = W(g)/,y. If g 1

is a thick mapping of levet then we treatbm/ﬁz as a mapping that maps classegdb classes ofi. We
need some structural propertiesiof

Leta € M. LetalsoA,,..., A be thex} -classes andy, . .., gi representatives of these classes. Let

7 be an element QR/(OCJr)m; such an element can be thought of as a homomorphism@rtmﬁ/aJr, but

not all such homomorphisms are eIementthjf(aJr)m. By CY,...,C{ we denote the:,-classes from
w(gu)/)\a for u € [4].

Lemma 6 Every prime quotient in the intervak”", \"] in the congruence lattic€on(R) has Boolean
type, the intervalx', '] is a distributive lattice isomorphic to the lattic&! of subsets of &-element set,
and every congruence in this interval can be representegiad C [k], defined as follows{a, b) € n; if

and only if(a[i], b[i]) € k, Whenever ¢ J and(ali], b[i]) € A, wheni € J.

Proof: We consider the chain of congruence$ < n1 < 72y < ... < 1 = Aa- First, we show
that this chain is maximal. Note that as the quotient v < 71,....vv+1} IS Projective tor, < my41.
Therefore it suffices to show that the quotients of the feffn< n, are prime. To simplify the notation we
assume = 1. By replacingR with R/Kgl we also assume that, = A.
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Letx)' < 8 < mn;. Then, (a) for anya,b) € 6, ajg] = b[g] for all ¢ ¢ A;, and, (b) by Proposition 10,
alg1] = blg1] if and only ifa = b. Sincex' < 6 < 1, there arga, b) € 6 such thata # b. This means
thata[g1] # b[g1]. AS ke < Ao, fOr any(a,b) € A, there arela’, b’) € 0 with a’[g1] = a,b’[g1] = b. By
(b) this impliesd = ;. It is also easy to check thédtdoes not centralize itself modukg that implies that
the quotient]’ < n; has Boolean type.

We have proved that the chaiff’ < 71 < g2y < ... < mpy = A IS maximal, and, by Lemma 2,
each of its prime quotients has Boolean type. Now, in a madattce every prime quotient is perspective
to one of quotients of any maximal chain. Thus we concludedtery prime quotient from the interval has
Boolean type.

Finally, by Lemma 6.6 of [37], this implies that this intehis a distributive lattice. Since the congru-
encesyy, ..., n, areatomsof this lattice, andy; v ... vV n, = A\, every elemen# of this interval can be
represented in the form

0= \/ T = NJ
ued

for someJ C [k]. O

Lemma 7 For any choice of,, € [s,], u € [k], there is an element € R/, .m such that for each € [k],
and eachy € A,
o(g) = wgu,g/;@g(cz?i)-

Proof: If we chooseB, = 7(g)/, , thenm witnesses thak N (B x ... By,) # <. As the coherent
sets ofR are equal t44, .. ., Ax, by Proposition 10, we have that

R/ﬁ’;ﬁ(Bl/na X ... XBk//ia) = Ba,/J4l x ... x Ba, [ GJAx,

whereBy, = pry, RN ][] e, By, and for anyg, h € A, we havepr, ,Ba, = g5 N (By X By). The
result follows. O

Lemma 8 There isJ C [k] such that for anyr, an element frorﬂ%/(aJr)m, there arei,, u € [k] — J, with
iy € [s,] satisfying the following conditions. Every homomorphisr R/(Of)m with Q/(aJr)m = mcan
be represented as follows: there aigfor u € J withi, € [s,] such thato(g,) € C} for u € [k] and, for
anyg € A, u € [k], we have

o(g) = m(g) N ¢gu,g//¢g{(cgi)-

Conversely, for any choice m’}u, - ,CZ-’Z the mappinge defined in this way is an eIementh/(a—)m,
ando/,+ = .

Proof: Observe that in the congruence lattiCen(R) we haver,I™ A (™)™ = (o)™ andkI™ <
Kol™ V (@)™ <A™, By Lemma 6,0™ V (o)™ = n; for someJ C [k]. This means that there aig,
u € [k] — J, with i, € [s,], such that for any € R/(Of)m, with o/ + = 7, we haveo(g,) € C}! for
u € k] — J.

Takep € R/(a—)m with o/ .+ = 7. Clearly, g/ﬁa belongs toR/,ialm, and by what we showed above
o(gu) € C} foru € [k] — J. Then the first part of the lemma follows from Lemma 7.
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To prove the converse statement, let us denote;helass containingr by D. Sincex” and (a™t)™
permute, for any:-classC' C D and any(at)™-classC’, the intersectior®' N C” is nonempty. Therefore,
foranyy € R/Kgl such thatp(g,) = C}* foru € [k] — J, there isp € R/(Of)m such thatg/ﬂa = p and
0/ o+ = m thatiso(g) = ¢(g) N 7(g). Together with Lemma 6 this implies the result. |

Let J C [k] be the set defined in Lemma 8 fare M and thex},-classesd,, ..., A;. A congruence
Yu, u € J is defined as follows{a, b) € v, if and only if (a[i], b[i]) € o™ fori € A, UU,¢— s Av, and
(ali],b[i]) € " otherwise.

Lemma 9 The congruences,, u € J, satisfy the condition (1).

Proof: Without loss of generality we assurde= {1, ..., q}. First, observe thaf; A... Ay, = (™)™
andy; V...Vy, = ()™ Since(a™)™V (ko)™ = 17, (@)™ A(ka)™ = (o)™, and the lattic&on(R) is
modular, the interval§a )™, (a*)™] and|(k,)™, 1] are isomorpic, where an isomorphism can be defined
by ¢(z) = zV (ka)™. Therefore we may considél, . .., 3, instead ofyy, . .., v, wheres, = v,V (ka)™
and(a,b) € 8, if and only if (a[i], b[i]) € rq fori € Ay UU,cp— s Ao and(afi], b[i]) € Aq otherwise.
We also may assume that = A. To simplify the notation we prove the condition (1) fior 1.

By Lemma 8,(a,b) €
betay if and only ifpr 4, 4, ,,0..04,2 = PTa,uA. 004 P PrAU. 4,8 PP a0, 4, € Pra,u. 4, D, and
(afi],b[i]) € Ao fori € AyU... A,. Similarly, (a,b) € BoA...A By ifand only ifpry a,pry b € pry, D,
(ali],bli]) € Ao fori € Ay, andpry,. 4,8 = Pra,u..4,b € Pra,u..4,D-

Takea,b € D such that(a,b) € A} anda[i] = bli] fori € A,; U... U A, and definec to be the
tuple withc[i] = a[i] if i € A; andc[i] = b[i]if i € A U...U A;. By Lemma8,c € D and(a,c) € [,
(c,b) € Ba A ... ABy. Thus(c,b) € 1 V (B2 A ... A By). 0

6 Algorithms: computing the number of solutions

6.1 The algorithm

Suppose that{ is congruence singular. Létbe an instance offCSP(H). A mappingr: G — H/y for

6 € Con(H) will be called amapping of leveb. For a mappingr of level 6, by ®(G, H, ) we denote
the set of all homomorphisms € ®(G,H) with o/ = 7. We recursively compute numbers of the form
|®(G,H,n)| for the instance; and mappingsr of level at, o € M. We assume that the univerégof

G is [m]. If 7 is a mapping of level then|®(G, H, )| = |®(G,H)|, and if 7 is a mapping of leveD
then|®(G,H, )| = 1. Leta € M and letr be a mapping frongj to H/ +. We show how to reduce
computing the numbe® (G, H, )| to computing numbergb(G, H, o)| for certaing, mappings frong to
H/(Oc _ 1)+.

LetAy,..., A, be thex? -classes angl, . . . , g; their representatives. Lét!, . .. ,C¢ bethes,-classes
from ﬂ(gu)/)\a, the \,-class containing elements fromig,, ), for u € [k]. LetJ C [k] andiy, u € [k] — J,
with i,, € [s,] be the set corresponding #0", andx,-classes corresponding toas in Lemma 8. Without
loss of generality we assunme= [¢]. The next statement follows straightforwardly from Lemma 8
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Proposition 15 For any g-tuple s such thats[u] € [m,], the mappinges: G — H/ -, where for each

€ Ay, u € [q]
? ! 0s(g) = {wgug( )ﬂﬂ(g)a ifu<gq
s\9 Vg,,.q(B; ) Nr(g), ifu>gq.

is @ homomorphism frod to +/ .

It is not hard to see that sef®(G, H, os) are the classes of the congruenee )™ on the relation
®(G, H, ). Clearly,(a™)™ =~ N...N~, Where(a,b) € ~, if and only if (a[g], b[g]) € o~ if g € A,
org € Ag41 U...U A, and(ag], blg]) € o™ otherwise. By Lemma 9 the congruenegs. . . , v, satisfy
condition (1).

Let T'(m) denote ag-dimensionals; x ... x s, array such that its entry indexed Byis equal to
|®(G,H, 0s)|. By Proposition 147 (r) has rank 1, that is, there are numbgfs .., ¢ such that

"I’(Q,H,QS)‘ = t;[l] 1l

slg]”

These numberﬁji can be found as follows. Fix a tupte By s¢ we denote the tuple, all entries of which
are equal to the corresponding entries ofxcept for theth entry that is equal to. Then set

5(G ¥ 4 ¢ |2(G,H, 051 s
= [®(G, 79511.)’ an j—m orie{2,...,q}.

Now, as the numbers of the fortﬁm are known, we have

®(G, H,m) ZfbgH 0s) Zt;m'---'tg[q]

_ 1 2 1 2
_ t1< Z ts[Q]-...-tg[q]) +...+tsl< Z tS[Q}-...-th)
s[2],...,s[q] s[2],...,s[q]

that can be computed easily.
Finally, we make use of the following implication of Proptisn 12.

Corollary 3 Letp € ‘I’(g,H,ﬂ')/(a—)m andoi, 02 € ®(G,H, 0). Then|®(G, H, 01)| = |®(G, H, 02)|.

Then for any mapping < @(Q,H,w)/(of)m and any mapping’ € ®(G, H, 9)/((a —1)+)m We
have|®(G. 1. 0)| = [©(G. 1. 0)| - |8(G. 1, 0)/(( — 1)+)m|- The numbed®(G, H. 0)/(,, _ 1y+| can be
found using algorithnuni f or mfrom the next subsection.

6.2 Uniform counting CSPs

Leta € M, = be a mapping of levek—, andp be a mapping of levela — 1)*. We need a method to find

the number
|2(G, H, )|
|®(G,H,0)|
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We consider first the case whém — 1)* is the equality relation. In this case the required numbar ca
be found by algorithm WMIFORM using a compact representatidtf of ®(G,H, ). Note also that such
a representation can be found by the same algorithm fromdgplied to the instancg’ with the same
universe ag; and additional unary constraintsg) imposed on eaclp € G. We shall assume that for
each g-ary) relational symboR from the vocabulary of{, and any sefiy,...,it} € [n], the vocabulary
of H also contains &-ary relational symbopry; ;1R interpreted a@r{ih___,ik}RH. For an instancg
of #CSP(H) andg € G we denote byg, the relational structure with universe — {g} and such that
(g1,..-,9,) € RY for some relational symbak andg;, = ... = g;, = g and the rest of its entries
are different fromg we exclude this tuple fronkY, and include the tupI@r[n]_{ih,,,,i,ﬁ}(91, ..., gn) INtO
DXy {ir,...i,) B9 . Recall that we assum@ = [m).

Algorithm Uni f or m

INPUT: an compact representatidt’ of &(G, H, 7)), 7 € ‘I)(g,H)/Bm, BRA

OuTPUT: the cardinality of®(G, H, )

Step1 setN :=1,5:=R", andG := G

Step 2 for g = mto 1do

Step 2.1 let# be a congruence 6f such that{a,b) € 6 if and only if
(g,a,b) € Sigg; sinceA < 6 < 3,0 is uniform overA; let w be the
size of its classes

Step2.2 setN:=N - w

Step 2.3 setS := pry,_;;S andG := G,

endfor
Step 3 output N

The correctness of algorithm NUFORM follows from the rectangularity ofS), and the observation
that the congruence constructed on Step 2.1 can be defined as follofusb) € 6 if and only if there is
a € pry,_q(S) such that(a, a) € (S) and(a,b) € (5), that isw is the number of possible extensions of a
tuple frompry,_1)(S).

Observe that if we know the signature of the relatigl@/, 7, )/ ,m we still can use algorithrani f or m
for we can conside® (G, H, )/, m as a relation ort{/ . Therefore the problem we are facing now is to
find the signature of this relation. Unfortunately, it is mtgar at all how to obtain this signature using the
signature or a compact representationddt;, H, 7), nor we can use the algorithm from [13] to compute
the signature o®(G, /. ), since in generab(G, H/ ., ) # ®(G,H,n)/ m. Instead, to compute each
member of the required signature we find a compact repragemta a certain modified problem using the
algorithm from [13].

More specifically, we first find thé@-signatureof the relation® (G, H, 7). Letn be a positive integer,
let H be a finite set, lef be an equivalence relation di, leta, b be n-ary tuples and leti, a, b) be any
element inn] x H2. We say thata, b) 6-witnessesi, a, b) if (a[j], b[j]) € 0 for eachj < i, a[i] = a, and
a'[i] = b. Let R be anyn-ary relation onH. The#-signature ofR, §Sig, C [n] x H?, is defined to be the
set containing all thos@, a, b) € [n] x H? §-witnessed by tuples i, that is

0Sigp = {(i,a,b) € [n] x H? : 3a,b € R such thai(a, b) §-witnessegi, a,b)}.

We shall assume that for each subalgeBraf H the vocabulary ofH contains a unary relational
symbol R such thatRY = B. Letg be an instance oftCSP(H), letgy,...,gx € G, and letBy, ..., By
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Algorithm 6- Si gnat ur e
INPUT: an instancej of #CSP(H), and a congruence
a € Con(H)
OuTPUT: thed-signature ofb(G, H, )
Step 1 find a compact representation &G, H, )
Step 2 setS := & (thed-signature ofb(G, H, 7))
Step 3 foreach (i,a,b) € {1,...,m} x H? do
Step 3.1 if there isa € R’ such that[i] = a then do
Step 3.1.1 find a compact representatid®’ of ®(G’, H, )
where
G' =G U {{g1. (@[1))/g).- - {gi-1. (ali — 1))/g)})
Step3.1.2 if b € (pr;R") then S := SU{(i,a,b)}
endif
endfor
Step 5 return S

be subalgebras dft. By G U {{(g1, B1),...,{gr, Bx)} we denote the relational structure with the same
universe agj, and such that the interpretation of every relational symoZ {Rp,,...,Rp,} equals
RY while the interpretation of?p; equaIsR%j U {g;}. Thus, the elements,, ..., g; are forced to be
mapped taB, ..., B; respectively. It is easy to see that the algorithv8IGNATURE finds thef-signature

of ®(G,’H, ). The signature ofb(G, H,)/gm can then be found by replacing eatha,b) € S by

(i,a/p,b/g)-

Complexity. Observe that the problem of finding the numpe{G, H, 7)| reduces to finding; +. . . + s,
numbers of the form®(G, H, o)|, wherep: G — H/(a 1)+ and solving the same number of uniform

problems. Clearlyk < |G| = m, s; < |H| = a, and|M| < &?. If the uniform problem can be solved in

time p(m) then the overall time complexity of the algorithm(ismp(m))®".

7 #H-COLORING

Theorem 3 yields a complete classification of #P-completeptynomial time solvable #-COLORING
problems. However, it is difficult to express the criteridgated in the theorem in terms of (di)graphs. By
[27], an (undirected) grapH gives rise to a polynomial time solvabléd#CoLORING problem if and only

if every connected component &f is either trivial, or a complete bipartite graph, or a conlgraph with
loops at all vertices. In [14], we observed that an unditgiaph satisfies this condition if and only if it is
invariant under a Mal'tsev operation.

In this section we compare the classification result from % for directed acyclic graphs (DAGs
for short) with Theorem 3. We show that every congruenceusimgDAG satisfies thé.ovasz-goodness
condition introduced in [28, 29]. The two conditions mustdogiivalent, however, the converse implication
probably uses some nontrivial properties of DAGs and is rddfieult to prove.

A DAG H = (V,E) is calledlayered V' can be partitioned into subse¥s, ..., V, such that for any
(v,w) € E we havev € V;, w € Vi, for a ceratini < /. Letv € V;, w € V;, i < j. ThenH,,
denotes the subgraph &f induced by the vertices such that there is a path fromto «; similarly, H..,
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denotes the subgraph &f induced by the vertices such that there is a path and framo w; andH,,, =
H,. N H,,. The vertex set of the grapH,, H,+,,, whereH,,, = (V, E) andH,,, = (V', E'), is the set
(VNnVy) x (V'nV))u...u((VNnV;) x (V' NnVj)), apair((v,v'), (w,w')) is an edge if and only
if (v,w) € Eand(v,w') € E'. Itis proved in [28] thatH,, H,,, has only one connected component
that spans all layers fromto j. If such main connected components of graphs H,,, andH.,H . are
isomorphic then we writéd,, H,.,, = H.;H,.». Finally a layered graph is said to hevasz-goodf for
any0 <i < j</{+1landanys,z' €V;y,y € V;wehaveH,,Hy, = HyyH,,.

The key lemma for this result is a special case of the resultdwasz [48] that we cite in our notation.

Lemma 10 If |®(G, Hy)| = |®(G, Hs)| for all graphsG then graphsH,, H, are isomorphic.

We show that ifH is congruence singular thé® (G, H,, Hyr,y)| = |®(G, Hyyy Hyry)| for anyz, o’ €
Vi, ¥,y € Vj;, and any graphG. This implies thatH,,H,,, and H,, H,, are isomorphic, and so
H,,H,, = Hy,yH,,. We use an observation made in [28] tha{G, H, H2)| = |®(G, Hy)|- |®(G, Ha)|.
If G = (W, F)is not layered thetd® (G, HyyH,y )| = |®(G, Hyyy Hyryy)| = 0. Let Wy, W5 denote the set
of vertices on the highest and on the lowest layerS afespectively. As we knowp (G, H) is a relation pp-
definable inH. Now letn; , 72 be congruences di(G, H) such thatp, ') € n;,i = 1,2, iff p(v) = ¢'(v)
for all v € W;. Itis not hard to see that sets of the fofif,, are classes af;, sets of the formH,,,, are
classes ofje, and sets of the forn#,,,, are classes af; A 12. SinceH is congruence singular, we have
rank(M (n1,12)) = k wherek is the number of classes in Vv 72. Hence

]@(G, Hwy)’ ‘(I)(G7H:vy’)‘

=0,
|(I)(G>Hx’y)| |(I) G>Hx’y’)|

(
or &(G, Hyy), ®(G, Hyry ) Or (G, Hyy ), (G, Hyryy) are in different classes of V 7. In the latter case
either|®(G, Hyy)| = |®(G, Hyy )| = 001 |9(G, Hyy)| = |9(G, Hyryy )| = 0. The result follows.
Observe that in this argument congruence singularity igl irs@ very restricted way: Only projective
congruences of only those subalgebras of direct powefs thfat are representable in the fodiG, H).

8 Concluding remarks

The result obtained in the paper is rather general. It ireduas particular case the results of [18, 27, 22,
28, 29, 44]. However, those results are stated in terms dicpkar problems, and deriving them from
Theorem 3 requires extra research. We also should notentkatie cases, e.g., [27], the #P-completeness
results obtained for particular problems are stronger thase which follow from our result. For instance,
#P-complete #-COLORING problems in the case of undirected graphs remain #P-coempietn when
restricted to inputs of bounded degree.

A major question left unanswered is how to check if a giveatiehal structure is congruence singular.
This problem may turn out to be even undecidable.
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