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Abstract

The Counting Constraint Satisfaction Problem (#CSP(H)) over a finite relational structureH can be
expressed as follows: given a relational structureG over the same vocabulary, determine the number of
homomorphisms fromG toH. In this paper we characterize relational structuresH for which#CSP(H)
can be solved in polynomial time and prove that for all other structures the problem is #P-complete.

1 Introduction

In the Counting Constraint Satisfaction Problem,#CSP(H), over a finite relational structuresH the ob-
jective is, given a finite relational structureG, to compute the number of homomorphisms fromG to H.
Various particular cases of the #CSP arise and have been extensively studied in a wide range of areas from
logic, graph theory, and artificial intelligence [3, 18, 27,34, 38, 47, 51, 53, 54, 57, 58], to statistical physics
[2, 16, 45]. However, in different areas this problem often appears in different equivalent forms: (1) the
problem of finding the number of models of a conjunctive formula, (2) the problem of computing the size
(number of tuples) of the evaluationQ(D) of a conjunctive query (without projection)Q on a databaseD
and also (3) the problem of counting the number of assignments to a set of variables subject to specified
constraints.

Since the seminal papers [55, 30], the complexity of the decision counterpart of #CSP, the Constraint
Satisfaction Problem or CSP for short, has been an object of intensive study. The ultimate goal of that
research direction is to classify finite relational structures with respect to the complexity of the corresponding
CSP. We shall refer to this research problem as theclassification problem. A number of significant results
have been obtain, see e.g. [55, 30, 6, 8], but a full classification is far from being completed.

Although the classification problem for the general #CSP hasbeen tackled for the first time very re-
cently, a massive work has been done in the study of the complexity of various particular counting CSPs.
These particular problems include classical combinatorial problems such as #CLIQUE, GRAPH RELIA -
BILITY , ANTICHAIN , PERMANENT etc. [47, 53, 57, 58] expressible in the form of #CSP; the counting
SATISFIABILITY and GENERALIZED SATISFIABILITY problems (in these problems the objective is to find
the number of satisfying assignments to a propositional formula) [18, 54] which correspond to#CSP(H)
for 2-element structuresH, counting the number of solution of equations over finite semigroups [50, 44]
and many others.

However, the real focus of research in this area has been #H -COLORING problem and its variants. In
the #H -COLORING problem the aim is to find the number of homomorphisms from a given graphG to
the fixed graphH. Thus, it is equivalent to#CSP(H) whereH is a graph. Dyer and Greenhill [27] have
proved that, for every undirected graphH, its associated #H -COLORING problem is either in FP (we shall
call such problemstractable) or #P-complete and they have also provided a complete characterization of the
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tractable problems. This result has been extended to the counting LIST #H -COLORING problem [24, 22],
which allows additional restrictions on possible images ofa node. Recently, Dyer, Goldberg, and Paterson
[28, 29] obtained a similar classification for directed acyclic graphs. Furthermore, some other variants of
the #H -COLORING problem for undirected graphs have been intensively studied during the last few years
[20, 21]. Another direction in this area is the study of problems with restricted input, that is subproblems
of the #H -COLORING problem in which the input graphG must be planar [38, 56], a partialk-tree [23],
sparse or of low degree [34, 35], etc. Finally, we should mention the approach to counting problems using
approximation and randomized algorithms, see e.g. [43, 26,25].

In [4, 14] we started a systematic study of the classificationproblem for the general #CSP. The main
approach chosen was thealgebraic approachwhich has proved to be quite useful in the study of the decision
CSP [40, 41, 6, 8]. This approach uses invariance propertiesof predicates definable in relational structures.
Invariance properties are usually expressed aspolymorphismsof the predicates, that is (multi-ary) operations
on the universe of the relational structure compatible withthe predicates.

In [4], we proved that if#CSP(H) is tractable, thenH has aMal’tsevpolymorphism, that is a ternary
operationm(x, y, z) satisfying the identitiesm(x, y, y) = m(y, y, x) = x. Another observation was that
thecongruences, i.e. the definable equivalence relations, ofH play a very important role. In particular, these
results have allowed us to come up with a nearly trivial proveof the result of [27]. In [5], another necessary
condition for the tractability of#CSP(H) has been identified. It imposes certain restrictions onto possible
congruences ofH, in terms of sizes of their equivalence classes.

In this paper, after giving general definitions (Section 2.1) and introducing the basics of the algebraic
approach (Sections 2.2 and 2.3), we go deeper into the structure of congruences of a relational structure (Sec-
tion 3.1) and then identify several further necessary conditions for tractability (Section 3.2), again expressed
in terms of properties of congruences. Then, in Section 4, weprove that, for every relational structureH
satisfying all the conditions obtained, the problem#CSP(H) can be solved in polynomial time. Thus, we
completely solve the classification problem for the generalcounting CSP.

We intensively use methods and results from a number of areasof modern algebra: lattice theory, tame
congruence theory, commutator theory and ring theory. To make the paper available for a wider audience we
are avoiding the excessive use of algebraic terminology. Inspite of that, some parts of the paper, Section 4
and especially proofs, are demanding: they require from thereader some familiarity with basic algebraic
objects and ideas. The keen reader is referred to textbooks [15, 31, 33, 37]. The reader should be aware
that to avoid yet another layer of objects we use algebraic terminology for relational structures, while in the
algebraic literature the same concepts are used for “dual” objects, universal algebras.

2 Preliminaries

2.1 Relational structures and homomorphisms

Our notation concerning tuples and relational structures is fairly standard. Let[n] denote the set{1, . . . , n}.
The set of alln-tuples of elements from a setH is denoted byHn. We denotes tuples of elements in
boldface, e.g.a, and their components bya[1],a[2], . . .. For a subsetI = {i1, . . . , ik} ⊆ [n] and ann-
tuplea, by prIa we denote theprojection ofa onto I, thek-tuple (a[i1], . . . ,a[ik]). For ann-ary relation
R ⊆ Hn, its projection ontoI is defined to beprIR = {prIa | a ∈ R}. If Di = priR for i ∈ [n]
we say thatR is subdirect productof D1, . . . ,Dn. If D1 = . . . = Dn = H thenR is said to be ann-
th subderect powerof H. For a = (a[1], . . . ,a[n]) andb = (b[1], . . . ,b[m]), (a,b) denotes the tuple
(a[1], . . . ,a[n],b[1], . . . ,b[m], while 〈a,b〉 denotes the pair of tuples.
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A vocabularyis a finite set of relational symbolsR1, . . . , Rn each of which has a fixed arity. Arelational
structureover the vocabularyR1, . . . , Rn is a tupleH = (H;RH

1 , . . . , R
H
n ) such thatA is a non-empty set,

called theuniverseof H, and eachRH
i is a relation onH having the same arity as the symbolRi. LetG,H

be relational structures over the same vocabularyR1, . . . , Rn. A homomorphismfrom G to H is a mapping
ϕ : G → H from the universe ofG (the instance) to the universeH of H (the template) such that, for every
relationRG of G and every tuple(α1, . . . , am) ∈ RG , we have(ϕ(α1), . . . , ϕ(αm)) ∈ RH.

A relationR is said to beprimitive positive definable(pp-) in H, if it can be expressed using the predi-
catesRH

i of H together with the binary equality predicate onH (denoted∆H), conjunction, and existential
quantification. We usedef(H) to denote the set of all pp-definable relations.

2.2 Constraint Satisfaction Problem

The counting constraint satisfaction problem can be formulated in several ways (see Section 1). We use the
model theoretic form of this problem.

Definition 1 Let H be a class of relational structures. In thecounting constraint satisfaction problem as-
sociated withH (#CSP(H)), the objective is, given a structureH ∈ H and a structureG, to compute the
number of homomorphisms fromG to H. We will refer to this problem as auniform #CSP.

If H consists of a single structureH, then we write#CSP(H) instead ofCSP({H}) and refer to such
a problem as anon-uniform homomorphism problem, because the inputs are just source structures.

Example 1 (#H -COLORING, [27, 36, 46]) A graphH is a structure with a vocabulary consisting of one
binary symbolR. Then#CSP(H) is widely known as the#H -COLORING Problem, in which the objective
is to compute the number of homomorphisms from a given graph intoH.

Example 2 (#3-SAT, [18, 19, 57, 58])An instance of the #3-SAT problem is specified by giving a propo-
sitional logic formula in CNF each clause of which contains 3literals, and asking how many assignments
satisfy it. Therefore, #3-SAT is equivalent to#CSP(S3), whereS3 is the 2-element relational structure
with the universe{0, 1} and the vocabularyR1, . . . , R8, the predicatesRS3

1 , . . . , RS3

8 are the 8 predicates
expressible by 3-clauses.

Example 3 LetF be a finite field and #LINEAR EQUATIONS is the problem of finding the number of solu-
tions to a system of linear equations overF . It is not hard to see that #LINEAR EQUATIONS is equivalent to
#CSP(L), whereL is the class of relational structures with the universeF and the relations corresponding
to hyperplanes of finite-dimensional vector spaces overF .

Example 4 (Equations over semigroups, [50, 44])Let S be a finite semigroup, that is, a set with a binary
associative operation. An equation overS is an expression of the formx1 · x2 · . . . · xm = y1 · y2 · . . . · ym
where· is the semigroup operation, andxi, yj are either indeterminants or constants. Then#EQN∗

S stands
for the problem of counting the number of solutions to a system of semigroup equations.

The problem#EQN∗
S is equivalent to the problem#CSP(S) whereS is the class of structures with

universeS and relations expressible as the set of solutions of a semigroup equation.

In the last two examples, as well as for many other uniform problems, there is a minor ambiguity
concerning a representation of the input. We always assume that in uniform problems the relations of the
template are represented explicitly, by a list of tuples in the relation. In Examples 3,4 such a representation
is not the most natural one. However, the class of relations admitting a succinct representation is rather
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limited (see, e.g. [39]), and thus such representations areunsuitable for the study of the general problem.
Morever, changing representation does not affect the complexity of non-uniform problems.

Every counting CSP belongs to the class #P. However, the exact complexity of #CSP(H) strongly
depends on the structureH. We say that a relational structureH is #-tractableif #CSP(H) is solvable in
polynomial time;H is #P-completeif #CSP(H) is #P-complete. Note that all reductions used in this paper
are Turing reductions. The research problem we deal with in this paper is the following one.

Problem 1 (classification problem) Characterize #-tractable and #P-complete relational structures.

Example 5 (1) Dyer and Greenhill [27] proved that ifH is an undirected graph then#H -COLORING can
be solved in polynomial time if and only if every connected component ofH is either a complete bipartite
graph, or a complete graph with all loops present, or a singlevertex. Otherwise the problem is #P-complete.

(2) A 2-element relational structureH is #-tractable if and only if every predicate ofH can be represented
by a system of linear equations over the 2-element field [18, 19]. Otherwise,H is #P-complete.

(3) #CSP(L) is solvable in polynomial time.

(4) The problem#EQN∗
S is solvable in polynomial time if and only ifS is a direct product of a uniformly

inflated Abelian group, and inflated left-zero semigroup, and an inflated right-zero semigroup. Otherwise
#EQN∗

S is #P-complete. For details see [44].

2.3 Polymorphisms, Algebras and Complexity

We have shown in [4] that polymorphisms of relational structures are a very powerful tool to study the com-
plexity of counting problems. Any operation on a setH can be extended in a standard way to an operation
on tuples overH, as follows. For any (m-ary) operationf , and any collection of tuplesa1, . . . ,am ∈ Hn,
definef(a1, . . . ,am) to be(f(a1[1], . . . ,am[1]), . . . , f(a1[n], . . . ,am[n])). Thenf preservesann-ary re-
lation R (or R is invariant underf , or f is a polymorphism ofR) if for any a1, . . . ,am ∈ R the tuple
f(a1, . . . ,am) belongs toR. For a given set of operations,C, the set of all relations invariant under every
operation fromC is denoted byInv(C). For a relational structureH we usePol(H) to denote the set of all
operations preserving every relation ofH.

Example 6 LetR be the solution space of a system of linear equations over a field F . Then the operation
m(x, y, z) = x − y + z is a polymorphism ofR. Indeed, letA · x = b be the system definingR, and
x,y, z ∈ R. Then

A ·m(x,y, z) = A · (x− y + z) = A · x−A · y +A · z = b.

In fact, the converse can also be shown: ifR is invariant underm then it is the solution space of a certain
system of linear equations.

The following propositions links together polymorphisms and pp-definability of relations.

Proposition 1 ([32, 1, 42]) LetH be a finite structure, and letR ⊆ Hr be a non-empty relation. ThenR is
preserved by all polymorphisms ofH if and only ifR is pp-definable inA.

The connection between polymorphisms and the complexity ofcounting CSPs is provided by the fol-
lowing result.

Proposition 2 ([4]) LetH1 andH2 be relational structures with the same universe. IfPol(H1) ⊆ Pol(H2)
then#CSP(H2) is polynomial time reducible to#CSP(H1).
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Theorem 2 amounts to say that all the information about the complexity of#CSP(H) can be extracted from
the family of polymorphisms ofH. Sets of polymorphisms often provide a more convenient and concise
way of describing a class of constraint satisfaction problems. For example, in [4], we used polymorphisms
to identify some conditions necessary for the #-tractability of a relational structure. A ternary operation
m(x, y, z) on a setH is said to beMal’tsev if m(x, y, y) = m(y, y, x) = x for all x, y ∈ H.

Proposition 3 ([4]) If H is a relational structure which is invariant under no Mal’tsev operation thenH is
#P-complete.

Notice that ifH has a Mal’tsev polymorphism then the decision CSP corresponding toH can be solved in
polynomial time [7, 13].

Example 7 A Mal’tsev operationm(x, y, z) is a polymorphism of the graphH1 shown in Fig. 1, wherem
is defined as

m(i1j1, i2j2, i3j3) = ij,

i = i1 [j = j1] unlessi1 = i2 [j1 = j2], in this casei = i3 [j = j3].
The graphH2 has no Mal’tsev polymorphisms. Indeed, if somef(x, y, z) is a Mal’tsev operation, then

f
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c

)

,

(

a
d

)

,

(

b
d

))
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(

b
d

)

6∈ E(H2).

11
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10

00

H1

H2

b

dc

a

Figure 1:

In our algebraic definitions we follow [17, 49]. For algebraic notions and results concerning the decision
CSP the reader is referred to [9, 11].

A (universal) algebra is an ordered pairA = (A,F ) whereA is a non-empty set andF is a family of
finitary operations onA. The setA is called theuniverseof A, the operations fromF are calledbasic. An
algebra with a finite universe is referred to as afinite algebra.

Any relational structureH with universeHcan be converted into an algebraAlg(H) = (H;Pol(H)).
Conversely, every algebraA = (A;F ) corresponds to a class of structuresStr(A) with universeA and
relations fromInv(F ). Using this correspondence we can define #-tractable algberas. An algebraA is said
to be #-tractable if every structureH ∈ Str(A) is #-tractable; it is said to be #P-complete if someH ∈ Str(A)
is #P-complete.

We shall express the complexity of#CSP(H) in terms ofAlg(H). For example, if an algebra has a
Mal’tsev operation, it is called aMal’tsev algebra. Proposition 3 implies that if#CSP(H) is solvable in
polynomial time thenAlg(H) is Mal’tsev.
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2.4 Subalgebras and congruences

We shall use various constructions on algebras, but two of these constructions, subalgebras and congruences,
can be defined for relational structures, and are very usefuland illustrative in this context.

A subalgebraof a structureH = (H;RH
1 , . . . , R

H
k ) is a unary relation definable inH, and acongruence

of H an equivalence relation definable inH. For a subsetB ⊆ H, the substructure ofH inducedby B
is defined to beH

B
= (B;RH

1 B
, . . . , RH

k B
), whereRi

B
= Ri ∩ B

mi , Ri is mi-ary. For an equivalence

relationα anda ∈ H, the class ofα containingα is denoted bya/α and the set of all classes ofα by
H/α. The quotient structureH/α is defined to beH/α = (H/α;RH

1 /α, . . . , R
H
k /α), whereRi/α =

{(a1/α, . . . , ami
/α) | (a1, . . . , ami

) ∈ Ri}.

Example 8 Let H be a digraph without sources and sinks, i.e. the in-degree and out-degree of each vertex
is non-zero. We define two binary relations on the vertex setH of H: (a, b) ∈ θ if and only if a, b have
a common out-neighbour and(a, b) ∈ η if and only if a, b have a common in-neighbour; in other words,
θ = {(a, b) | (a, c), (b, c) for a certainc ∈ H}, η = {(a, b) | (c, a), (c, b) for a certainc ∈ H}. In general,
θ, η are reflexive and symmetric relation. However, ifH has a Mal’tsev polymorphismm, they are also
transitive. Indeed, suppose that(a, β) ∈ θ, d ∈ H is their common out-neighbour andc is an out-neighbour
of α. If c is not an out-neighbour ofb, thenH containsH2 (see Fig. 1) as an induced subgraph, which
contradicts the assumption thatH has a Mal’tsev polymorphism. Therefore, the out-neighbourhoods ofa, b
are equal whenever(a, b) ∈ θ, that implies transitivity. Thus,θ, η are congruences ofH.

For the graphH3 shown in Fig. 2, theθ-classes are{a, b, c}, {d, e} and theη-classes are{a, b, e}, {c, d}.

e
d

c

b

a

3H

Figure 2:

Proposition 4 ([4]) LetH be a relational structure,B andα its subalgebra and congruence respectively.

(1) If H is #-tractable then so areH
B

andH/α.

(2) If H
B

or H/α is #P-complete thenH is #P-complete.

Let R ∈ def(H) be ann-ary relation. It can be viewed as a subalgebra ofnth direct power ofH. A
congruence onR is a2n-ary relationQ ∈ def(H) such thatpr{1,...,n}Q = pr{n+1,...,2n}Q = R, and, ifQ is
treated as a binary relation onR, it is an equivalence relation.
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The existence of a Mal’tsev polymorphism provides a necessary condition for the #-tractability of a
relational structure. However, it is not a sufficient condition, as Example 9 shows. In the next section we
prove two more necessary conditions, and a particular case of one of them is that proved [5].

Let α, β be congruences of aH, whereα, β are incomparable, that is, neitherα ⊆ β, nor β ⊆ α.
Let A1, . . . , Ak andB1, . . . , B` beα- andβ-classes respectively (see Fig.3). ThenM(α, β) denotes the
k × `-matrix (mij), wheremij = |Ai ∩Bj |.

−classesβ

α −classes

Figure 3:

Proposition 5 ([5]) LetH be a relational structure, and letα, β be congruences ofH. If rank(M(α, β)) >
k, wherek is the number of classes in the smallest congruence containing bothα andβ, then#CSP(H) is
#P-complete.

Example 9 LetH be the graphH3 shown in Fig. 2,α = θH3
andβ = ηH3

. We haveA1 = {a, b, c}, A2 =
{e, d}, B1 = {a, b, e}, B2 = {c, d} and

M(α, β) =

(

2 1
1 1

)

.

By Proposition 5, the problem#CSP(H3) is #P-complete.

2.5 Varieties and Complexity

It will be convenient for us to jump back forth between model-theoretic and algebraic views to the CSP.
The language of relational structures is more convenient when describing algorithms. On the other hand,
standard algebraic constructions allow us to strengthen necessary conditions for #-tractability, and eventually
formulate a criterion for #-tractability.

Definition 2 (1) Let A = (A;F ) be an algebra. Thek-th direct powerof A is the algebraAk = (Ak;F )
where we treat each(n-ary) operationf ∈ F as acting onAk component-wise.

(2) Let A = (A;F ) be an algebra, and letB be a subset ofA such that, for any(n-ary) f ∈ F , and for
any b1, . . . , bn ∈ B, we havef(b1, . . . , bn) ∈ B. Then the algebraB = (B;F

B
), whereF

B
consists of

restrictions of operationsf ∈ F toB, is called asubalgebraof A.
Note that a setB is a subalgebra of a structureH if and only ifB is the universe of a subalgebra of

Alg(H).

(3) Let A1 = (A1;F1) and A2 = (A2;F2) such thatF1 = {f1
i | i ∈ I}, F2 = {f2

i | i ∈ I}, and
f1
i , f

2
i are of the same arity,i ∈ I. A mappingϕ : A1 → A2 is called ahomomorphismfrom A1 to A2 if

ϕf1
i (a1, . . . , ani

) = f2
i (ϕ(a1), . . . , ϕ(ani

)) holds for all i ∈ I and all a1, . . . , ani
∈ A1. If the mappingϕ

is onto thenA2 is said to be ahomomorphic imageof A1.
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A common way of constructing homomorphic images is through congruences and quotient algebras. A
congruenceof an algebraA = (A;F ) is an equivalence relation onA invariant under all operations from
F . Let θ be a congruence ofA. The algebraA/θ = (A/θ;F/θ), whereF/θ = {f/θ | f ∈ F} and
f/θ is defined through the equalityf/θ(a1/θ, . . . , an/θ) = (f(a1, . . . , an))/θ is called aquotient algebra.
Observe that an equivalence relation is a congruence of a structureH if and only if it is a congruence of
Alg(H).

A property of algebras such that if an algebra enjoys the property then any its subalgebra, homomorphic
image, and direct power also enjoys it, is said to behereditary. Universal algebra mostly deals with hered-
itary properties [37, 49]. Therefore, the next theorem allows us to apply the methods of modern algebra to
the study of the complexity of the counting CSP.

Theorem 1 ([4, 14]) LetA = (A;F ) be a finite algebra. Then
(i) if A is #-tractable then so is every subalgebra, homomorphic image, and direct power ofA.
(ii) if A has an #P-complete subalgebra, homomorphic image, or direct power, thenA is #P-complete

itself.

For an algebraA the class of algebras that are homomorphic images of subalgebras of direct powers of
A is called thevarietygenerated byA.

An operationf on the universe of an algebraA = (A;F ) that preserves all relations invariant underF
is called atermoperation ofA. Every term operation ofA can be obtained from operations ofF by means
of superposition.

An operationf on a setA is said to beidempotentif the equalityf(x, . . . , x) = x holds for allx
from A. Algebras whose basic operations are idempotent posess many useful properties that will assist in
our investigation. Thefull idempotent reductof an algebraA = (A;F ) is the algebraId(A) = (A;Fid)
whereFid consists of all idempotent term operations ofA. There is another way to characterizeFid. If
A = Alg(H) for a certain relational structureH, thenId(A) = Alg(Hid), whereHid is an expansion ofH
by unary relationsCh, h ∈ H, andCh is interpreted an aconstant relation{(h)}, containing only one tuple,
namely(h).

Theorem 2 ([4, 14]) A finite algebraA is #-tractable[#P-complete] if and only if so isId(A).

If A is an idempotent algebra and the condition of Proposition 5 is true for every pair of congruences of
A thenA is said to becongruence singular. If every finite algebra in a variety is congruence singular then
the variety is called congruence singular. We call a relational structureH congruence singular ifAlg(H)
generates a congruence singular variety. By Proposition 5 and Theorems 1, 2, every structureH that is
not #P-complete is congruence singular. The main result of the paper is that this condition is sufficient for
#-tractability.

Theorem 3 A relational structureH [an algebraA], is #-tractable if and only ifHid is congruence singular
[A generates a congruence singular variety].

Observe that the condition of having a Mal’tsev polymorphism (term operation) is not included into the
criterion. As we shall see later (Lemma 1) every congruence singular structure has a Mal’tsev polymor-
phism.
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3 Congruence lattices and the structure of relations

3.1 Congruence lattices and types of prime quotients

In this section we look closer at the family of congruences ofa relational structureH. We shall assume that
H has a Mal’tsev polymorphismm(x, y, z). All definitions and results given here were originally introduced
for algebras [15, 49]. As our algorithms are described in terms of relational structures, we reformulate them
in terms of structures, replacing congruences of algebra with congruences of structures, and term operations
of an algebra with polymorphisms of a structure. However, the notions we arrive to for a structureH are
exactly the same as those defined for the algebraAlg(H).

The set of all congruences ofH is denoted byCon(H). Letα, β ∈ Con(H). The intersection ofα andβ
is again a congruence ofH is denotedα∧β. As is well known, the smallest equivalence relation containing
bothα andβ is the transitive closure ofα∪β. It can be shown that this equivalence relation is a congruence
of H, denoted byα ∨ β. The setCon(H) together with the operations∧ (meet) and∨ (join) is called the
congruence latticeof H. The setCon(H) is naturally ordered with respect to inclusion. The least element
of Con(H) is the equality relation, denoted by∆, and the greatest element is the full relation, denoted by
5.

If R is a relation pp-definable inH, thenCon(R) denotes the set of all congruences onR. This set
depends onH as well as onR, but usuallyH is clear from the context. The setCon(R) is also a lattice.

SinceH has a Mal’tsev polymorphism, the setCon(H) cannot be just an arbitrary collection of equiva-
lence relation. In particular, every two membersα, β of Con(H) must bepermutable, that isα ◦ β = β ◦ α.
This means that, for anyα-classA and anyβ-classB belonging the sameα ∨ β-class,A ∩B is non-empty
(see Fig.4).

−classes −classes

−classes−classes

β α

βvαβ^α

Figure 4:

Lemma 1 If a relational structureH is congruence singular[an algebraA generates a congruence singular
variety], then it has a Mal’tsev polymorphism[a Mal’tsev term operation].

Proof: By a well known result of Mal’tsev [15], an algebraA has a Mal’tsev term operation if and only
if any two congruences of any algebra in the variety generated by A are permutable. Therefore it suffices to
prove that if the variety generated byAlg(H) for a structureH is congruence singular then it is congruence
permutable.

As is easily seen, congruencesα, β are permutable if and only ifα ◦ β = β ◦ α = α ∨ β. Suppose
H is congruence singular,B ∈ var(Alg(H), andα, β ∈ Con(B). If α ⊆ β or β ⊆ α then they are obvi-
ously permutable. If the congruences are incomparable thenrank(M(α, β)) = k wherek is the number
of α ∨ β-classes. This equality implies, in particular, that for any a, b from the sameα ∨ β-class, say,a
belongs toα-classA1 andβ-classB1, andb belongs toα-classA2 andβ-classB2, we haveA1 ∩ B2 6= ∅
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andA2 ∩ B1 6= ∅ (the corresponding entries ofM(α, β) must be nonzero). Then〈a, b〉 ∈ α ◦ β, as any
c ∈ A1 ∩B2 witnesses, and〈a, b〉 ∈ β ◦ α, as anyd ∈ A2 ∩B1 witnesses. Thusα ◦ β = β ◦ α = α ∨ β. 2

A pair of congruences〈α, β〉 is said to be aprime quotientif α ≤ β and, for anyγ such thatα ≤ γ ≤ β,
eitherγ = α or γ = β.

We shall use some notions and results of tame congruence theory [37]. Tame congruence theory is
a tool to study a local structure of universal algebras and relational structures through certain properties
of prime quotients of the congruence lattice. In general, this theory identifies five possible types of such
quotients defined in a rather sophisticated way. Fortunately, in our case of relational structures with a
Mal’tsev polymorphism, only two of those types can occur, and the definition of these possible types can be
significantly simplified.

If every polymorphism of a relational structureH is idempotent, then, for any congruenceα of H, every
α-classA is a subalgebra. Indeed, for anyf(x1, . . . , xn) ∈ Pol(H) and anya1, . . . , an ∈ A, we have
(a1, a1), (a2, a1), . . . , (an, a1) ∈ α, f(a1, . . . , a1) = a1 and therefore

f

((

a1

a1

)

,

(

a1

a2

)

, . . . ,

(

a1

an

))

=

(

f(a1, . . . , an)
a1

)

∈ α.

Hence,f(a1, . . . , an) ∈ A.
A prime quotientα ≺ β is said to be ofaffinetype, if, for anyβ-classB, there is a moduleMB with the

base setB/α over a ringRB such that for anyf(x1, . . . , xn, y1, . . . , ym) ∈ Pol(H) anda1, . . . , am ∈ H,
if the operationg(x1, . . . , xn) = f(x1, . . . , xn, a1, . . . , am) preservesB, then it can be represented as an
operation of the moduleMB :

(g
B
(x1, . . . , xn))/α = c1x1 + . . . cnxn + a.

In all other cases,α ≺ β hasBooleantype.

Example 10 LetL2 be a 2-element relational structure whose relational symbols are interpreted as solution
spaces to systems of linear equations. ThenL2 has only two congruences:∆2, the equality relation, and
∇2, the total binary relation. As Example 6 shows, the prime quotient ∆2 ≺ ∇2 is of affine type. Thus,
affine type corresponds to some kind of “linearity” in a broadsense.

Prime intervalsα1 ≺ β1 andα2 ≺ β2 are said to beprojectiveif β1∨α2 = β2, β1∧α2 = α1 orα1∨β2 = β1,
α1 ∧ β2 = α1. Thus projectivity is a binary relation on the set of prime intervals ofCon(H). Two intervals
that belong to the transitive closure of this relation are said to beperspectiveto each other.

Lemma 2 ([37], Lemma 6.2) If α1 ≺ β1 andα2 ≺ β2 are perspective intervals inCon(H), then they have
the same type.

3.2 Congruence lattices of Mal’tsev Algebras

We will sometimes distinguish two cases: when the congruence lattice of our relational structure omits affine
type, and when affine type occurs in this lattice.

10



3.2.1 Algebras omitting affine type.

If H omits affine type then, by Theorem 9.15 of [37],Con(H) is distributive, that is, for anyα, β, γ ∈
Con(H), the equalityα ∧ (β ∨ γ) = (α ∧ β) ∨ (α ∧ γ) holds. Finite distributive lattices are exhaustively
studied (see, e.g. [33]). In particular, there is a finite set, M , and a injective mappingπ : Con(H) → 2M

(the set of all subsets) such thatπ(α ∨ β) = π(α) ∪ π(β) andπ(α ∧ β) = π(α) ∩ π(β). We use the
following representation of a setM . Take a maximal chainC in Con(H), that is, a chain of congruences
∆ = θ0 ≺ θ1 ≺ . . . ≺ θ` = ∇. The setM is defined to be the set of the prime quotients of the chain.
Slightly abusing notion the quotientthi−1, θi will be denoted byi. A congruenceθ ∈ Con(H) corresponds
to the sets of quotients fromM that are projective to quotients of the formγ ≺ β ≤ θ. The bottom end of a
prime quotientα ∈ {1, . . . , `} will be denoted byα−, and the top one byα+.

Example 11 The lattice shown in Fig. 5(a) is distributive and its representation as a lattice of subsets is also
shown.
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Figure 5:

The following proposition comprises properties ofCon(H) that follow easily from the representation of
this lattice as a lattice of subsets.

Proposition 6 (1) Every prime interval inCon(H) is perspective to one and only one of the intervals ofC.

(2) For anyα ∈M , that is, any prime interval inC, there is the greatest prime intervalκα ≺ λα perspective
to α; that is, for anyβ ≺ γ perspective toα we haveβ ≤ κα andγ ≤ λα.

(3) For anyα ∈ M , the congruenceκα is meet-irreducible, that is, ifκα = β ∧ γ thanκα = β or κα = γ
(see Fig.5(b).

3.2.2 Algebras admitting affine type.

Let us again consider the congruence latticeCon(H). A congruenceβ is said to besolvableoverα if there
areα = α1 ≺ . . . ≺ αk = β such that all the prime quotientsαi ≺ αi+1 have affine type. Then

s
∼ denotes

a binary relation onCon(H) defined as follows:α
s
∼ β if and only ifα∨ β is solvable overα∧ β. If α ≤ β

then the set of allγ such thatα ≤ γ ≤ β is said to be aninterval in Con(H), denoted[α, β]. The next
proposition lists some properties of

s
∼ that follows from well known facts about modular lattices, Mal’tsev

operations and Lemma 7.4, Theorem 7.7 from [37].
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Proposition 7 (1)
s
∼ is an equivalence relation and, moreover, acongruenceof Con(H); that is, for any

α1, α2, β1, β2 ∈ Con(H) such thatα1
s
∼ α2, β1

s
∼ β2, we have(α1∨β1)

s
∼ (α2∨β2), (α1∧β1)

s
∼ (α2∧β2).

(2) Every classS of
s
∼ has the greatestηS and the leastθS elements (with respect to≤), and equals the

interval [θS, ηS ]. Every prime quotient insideS has affine type.

(3) The quotient latticeL = Con(H)/ s∼ is distributive (see Fig.6).

� �� �

� �� � � ��

� �� � � �	


 
� �

� �
 


� �� �

� �� �

Con(   )H

� �� �

� �� � � ��

� �� �

Con(   )/H ~s

Figure 6: Congruence lattice and its quotient lattice modulo
s
∼. Prime quotients of affine type are shown by

thick lines; the least elements in the classes of
s
∼ are encircled

Proposition 7(3) implies thatL can be represented as a lattice of subsets of a finite setM . Similar to
Subsection 3.2.1,M can be chosen to be the set of prime intervals of a maximal chainC in L. Note that the
endpoints ofα ∈ M are setsS1, S2 of congruences fromCon(H) (S1 correspods to the bottom end ofα).
By α− we denote the greatest element ofS1, and byα+ the least element ofS2 such thatα− ≤ α+. Let
β ≺ γ be the greatest interval inL perspective toα. Again,β andγ are setsT1, T2 of congruences from
Con(H) (T1 corresponds toβ). By κα we denote the greatest element ofT1, andλα the least element inT2

such thatκα ≤ λa (see Fig.7).

α

κ

λ

α

α

Figure 7: Congruence lattice and congruencesκα, λα. Solid lines represent prime intervals of Boolean type,
ovals represent

s
∼-classes

Proposition 8 (1) The interval[α−, α+] is perspective to[κα, λα].
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(2) The intervals[α−, α+] and [κα, λα] are prime.

(3) The intervals[α−, α+] and [κα, λα] have Boolean type.

(4) The congruenceκα is meet-irreducible.

3.3 Structure of relations invariant under a Maltsev operation

3.3.1 Basic properties

The following proposition contains some basic properties of Mal’tsev algebras and relations invariant under
a Mal’tsev operation, that will be constantly used. Some of the results we cite below are traditionally stated
in terms of algebras: a relation pp-definable in a structureH is treated as a subalgebra of a direct power of
Alg(H). In order to keep the presentation uniform we formulate themin terms of relations and relational
structures.

Proposition 9 LetH be a structure with a Mal’tsev polymorphism andR ann-ary relation pp-definable in
H. Then for anyI ⊆ [n] the following properties hold
1.R is rectangular, that is ifa,b ∈ prIR, c,d ∈ pr[n]−IR and(a, c), (a,d), (b, c) ∈ R, then(b,d) ∈ R.
2. The relationθI = {〈a,b〉 ∈ (prIR)2 | there isc ∈ pr[n]−IR such that(a, c), (b, c) ∈ R} is a congru-
ence ofprIR.
3.R is a disjoint union of sets of the formB × C whereB is aθI -class andC is aθ[n]−I-class.

Binary relations invariant with respect to a Mal’tsev operation have particularly simple form. LetB1, B2

be subalgebras ofH andα1 ∈ Con(B1), α2 ∈ Con(B2). Let alsoϕ be a mapping fromB1/α1
toB2/α2

.
The thick mappingcorresponding toϕ is the binary relationR = {(a, b) ∈ B1 × B2 | ϕ(a/α1

) = b/α2
}.

Any congruenceα is the thick mapping corresponding to the identity mapping onH/α.

Corollary 1 Every binary relation compatible withA is a thick mapping.

We shall intensively use thick mappings throughout the paper. Let R ∈ def(H) be akth subdirect
power ofH. For i, j ∈ [k] by ψi,j we denote the thick mapping equal topri,jR. If it is a thick mapping
corresponding toϕ : H/α → H/α for someα ∈ Con(H), we say thatψi,j is a thick mapping of levelα.
Let β ∈ Con(H). By β∗ we denote an equivalence relation on the set[k] defined as follows:〈i, j〉 ∈ β∗

if and only if pri,jR is a thick mapping fromH/γ1
to H/γ2

for someγ1, γ2 ≤ β. The following lemma
follows from the definitions.

Lemma 3 If R ∈ def(H) is a subdirect power ofH then, for anyα ∈ Con(H), anyα∗-classA, any
g, g′ ∈ A, and any sequenceg = g1, . . . , gn = g′ such thatψgi,gi+1

is a thick mapping ofH/βi
toH/γi

for

someβi, γi ≤ α, i ∈ [n− 1], we have

ψg1,g2 ◦ . . . ◦ ψgn−1,gn ⊆ ψg,g′ .

Lemma 3 implies that, for any congruenceα and anyα∗-classA, we can select a representativegA and a
family of mappingsϕg : H/α → H/α, whereg ∈ A, such that for any homomorphismψ : G → Hg, we
haveψ(g)/α = ϕg(ψ(gA)).
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3.3.2 Boolean type and rectangularity properties

Let A be a finite algebra. The algebraA is calledsubdirectly irreducibleif there is a congruenceµ, the
monolithof A, such that∆ ≺ µ and, for any congruenceγ 6= ∆, we haveµ ≤ γ. We call a relational
structureH subdirectly irreducible ifAlg(H) is subdirectly irreducible. The monolith of a subdirectly
irreducible structure is defined as the monolith ofAlg(H).

Let R ∈ def(H), whereH is a subdirectly irreducible structure with a Mal’tsev polymorphism, be an
k-ary subdirect power ofH. The equivalence relationµ∗ is defined in the same way as before. In [12], we
definedcoherent setsof the subdirect powerR satisfying these conditions, as classes of a certain partition
of the set[k]1. We do not need here a precise definition of coherent sets, because if the interval∆ ≺ µ has
Boolean type then it follows from Lemma 2.7 of [12] that the coherent sets are equal to the classes ofµ∗.

Lemma 4 (Lemma 2.6, [12]) Let R be a subdirect power ofH and the structureH is subdirectly irre-
ducible. Let alsoµ be its monolith andB1, . . . , Bk µ-classes such thatR ∩ (B1 × . . . × Bk) 6= ∅. Let
I1, . . . , I` be the coherent sets and

BIj = prIjR ∩
∏

i∈Ij

Bi.

ThenR ∩ (B1 × . . .×Bk) = BI1 × . . .×BI` .

For a congruenceα ∈ Con(H), let αk denote the congruence ofR consisting of pairs〈a,b〉 of tuples
such that〈a[i],b[i]〉 ∈ α for all i ∈ [k] (it is an easy exercise to check thatαk is indeed a congruence).

Proposition 10 LetH be a structure with a Mal’tsev polymorphism, letM be a maximal chain inCon(H),
let R be akth subdirect power ofH andα ∈ M . Let alsoB1, . . . , Bk be classes ofλα and I1, . . . , I` the
classes ofκ∗α, Ij = {ij1, . . . , ijkj

}. Then eitherR ∩ (B1 × . . . Bk) = ∅, or

R/κkα
∩ (B1/κα

× . . .×Bk/κα
) = BI1/κ

|I1|
α

× . . . ×BI`/κ
|I`|
α
,

whereR/κkα
= {(a[1]/κα

, . . . ,a[k]/κα
) | a ∈ R} andBIj = prIjR ∩

∏

i∈Ij
Bi, and

BIj = {(a, ψij1,ij2(a), . . . , ψij1,ijkj
(a)) | a ∈ Bj/κα

}.

Proof: The relationR/κkα
can be treated as a subdirect power ofH/κal

. Then the proposition follows
straightforwardly from Lemmas 2.6 and 2.7 of [12], and also from Proposition 8(3),(4). 2

If a structureH with a Mal’tsev polymorphism omits affine type, then we can obtain even stronger
rectangularity-type condition. Recall that in this case the congruence lattice ofH is distributive. A Mal’tsev
algebra (Alg(H) in our case) generating a variety, in which every algebra hasa distributive congruence
lattice is calledarithmetical. Arithmetical algebras are exhaustively studied. We will use the following
result [52] describing the structure of relations invariant with respect to such algebras.

Proposition 11 Let D be a subdirect product ofA1, . . . ,Ak. ThenD can be uniquely determined by the
thick mappingsψij for i, j ∈ [k]. More precisely,a ∈ D if and only if(a[i],a[j]) ∈ ψij for all i, j ∈ [k].

Corollary 2 If H is a structure with a Mal’tsev polymorphism omitting affine type then#CSP(H) is poly-
nomial time equivalent to#CSP(H′), whereH′ is a relational structure with the same universe asH, all
relational symbols of which are binary and interpreted as thick mappings ofH.

1In [12], we used the algebraic terminology:R is a subdirect product of subdirectly irreducible Mal’tsevalgebras.
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4 Necessary condition for tractability

In this section we prove two more necessary conditions for #-tractability. Both of them follow from Propo-
sition 5, but they allow us to design an algorithm for #CSP.

If the algebra corresponding to the structureH does not omit the affine type, then we have a stronger
necessary condition for the tractability of#CSP(H).

Proposition 12 If H is congruence singular then for any congruencesδ ≤ α ≺ β ∈ Con(H) such that
α ≺ β has affine type, anyn-ary relationR ∈ def(H) and any sequencesA1, . . . , An andB1, . . . , Bn
of α-classes such thatAi, Bi belong to the sameβ-class (i ∈ [n]), if R1 = R ∩ (A1 × . . . × An) 6= ∅,
R2 = R ∩ (B1 × . . . ×Bn) 6= ∅, then|R1/δn| = |R2/δn|.

We make use of some basics of commutator theory in congruencemodular varieties (see the seminal
book [31]). LetA be a Mal’tsev algebra andα, β, γ ∈ Con(A). The congruenceα centralizesβ moduloγ,
denotedC(α, β; γ), if, for any (n-ary) term operationf , any〈u, v〉 ∈ α and any〈a1, b1〉, . . . , 〈an−1, bn−1〉 ∈
β,

〈f(u, a1, . . . , an−1), f(u, b1, . . . , bn−1)〉 ∈ γ

⇐⇒ 〈f(v, a1, . . . , an−1), f(v, b1, . . . , bn−1)〉 ∈ γ.

The smallest congruenceγ such thatC(α, β; γ) is called thecommutatorof α, β, denoted[α, β].

Proposition 13 ([31]) LetA be a Mal’tsev algebra andα, β, γ ∈ Con(A). Then

(1) [α, β] = [β, α];

(2) if α ≺ β and this interval has affine type if and only if[β, β] ≤ α;

(3) if α ≤ β and [β, β] ≤ α, there is a congruenceθ of β (which is considered as a subalgebra ofA
2) such

that the set{〈(a, b), (c, d)〉 | 〈a, b〉, 〈c, d〉 ∈ α} is a class ofθ.

Proof: (of Proposition 12.) By switching to the quatient structureH/δ we may assume thatδ is the
equality relation. To prove Proposition 12 we consider the universal algebraA = (H;Pol(H)) and the
subalgebraB of A

n with the universeR. Thus we considerR as a subalgebra ofAn.

CLAIM 1. For the algebraB, [βn, βn] ≤ αn.

Let f be a (k-ary) term operation ofA, and let〈u,v〉 ∈ βn and〈a1,b1〉, . . . , 〈ak−1,bk−1〉 ∈ βn. If
〈f(u,a1, . . . ,ak−1), f(u,b1, . . . ,bk−1)〉 ∈ αn then〈f(u[i],a1[i], . . . ,ak−1[i]), f(u[i],b1[i], . . . ,bk−1[i])〉 ∈
α for eachi ∈ [n]. SinceC(β, β;α), this implies〈f(v[i],a1[i], . . . ,ak−1[i]), f(v[i],b1 [i], . . . ,bk−1[i])〉 ∈
α for eachi ∈ [n]. Thus〈f(v,a1, . . . ,ak−1), f(v,b1, . . . ,bk−1)〉 ∈ αn.

We treat the congruenceβn as a subalgebra ofB2; let us denote it byC. Let A1, . . . , Ak be theαn-
classes ofB and|Ai| = `i. By Proposition 13 there is a congruenceγ of C such that the setD of pairs of
the form(a,b), a,b ∈ B and〈a,b〉 ∈ αn. Let γ′ = γ ∨ α2n. The setD is a class ofγ′.

CLAIM 2. Every classE of γ′ is the union(A1×Aϕ(1))∪ . . .∪(Ak×Aϕ(k)) for a certain bijective mapping
ϕ : [k] → [k]; and for one of the classesϕ is the identity mapping.
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Sinceα2n ⊆ γ′, if Ai × Aj ∩ E 6= ∅ thenAi × Aj ⊆ E. Suppose that there are(a,b), (c,d) ∈ E
such that〈a, c〉 ∈ αn, but 〈b,d〉 6∈ αn. Asα2n ⊆ γ′, we may assumea = c. Let us considerγ′ as a 4-ary
relation onB. Let alsof be a Mal’tsev operation ofA. Then we have

f









a

a

a

a

a

b

a

d

b

b

d

d









=









b

a

d

a









∈ γ′ and f









a

b

a

b

a

a

a

a

b

a

d

a









=









b

b

d

b









∈ γ′,

which implies that〈b,d〉 ∈ αn, a contradiction.

Let alsoβ′ denote the congruenceαn × βn. It is not hard to see thatγ′ ∨ β′ = βn × βn andγ′ ∧ β′ =
αn × αn.

Clearly, every class ofαn × αn is the direct product of two classesR1, R2 of αn. Therefore, its size is
|R1| · |R2|. Thus, the first two rows of the matrixM(γ′, β′) look as follows

(

`21 `22 · · · `2k
`1`ϕ(1) `2`ϕ(2) · · · `k`ϕ(k)

)

.

If #CSP(R) ⊆ #CSP(H) is not #P-complete, then these two rows are proportional, that is

`1
`ϕ(1)

=
`2
`ϕ(2)

= . . . =
`k
`ϕ(k)

.

For anyi ∈ {1, . . . , k}, letm be such thatϕm(i) = i. Since

`i
`ϕ(i)

=
`ϕ(i)

`ϕ2(i)
= . . . =

`m−1
ϕ (i)

`ϕm(i)
,

we havè 2
i = `ϕ(i)`ϕ−1(i). As this holds for everyi andϕ(i) = i for no i, we conclude that̀i = `j for any

pair i, j from the same orbit ofϕ. Finally, for each pairi, j ∈ {1, . . . , k}, there is a row inM(γ′, β′) of the
form

(

`1`ψ(1) `2`ψ(2) · · · `k`ψ(k)

)

such thatψ(i) = j. By what was proved above,`i = `j. 2

We will also need another corollary from Proposition 5. LetT be ak-dimensional array, that is a collec-
tion of numbersT [i1, . . . , ik] indexed by tuples(i1, . . . , ik), where1 ≤ ik ≤ mk. The arrayT has rank 1,
denotedrank(T ) = 1, if for each` ∈ [k], and anyi1, . . . , i`−1, i`+1, . . . , ik, j1, . . . , j`−1, j`+1, . . . , jk with
iu, ju ∈ [mu], we have

T [i1, . . . , i`−1, 1, i`+1, . . . , ik]

T [j1, . . . , j`−1, 1, j`+1, . . . , jk]
= . . . =

T [i1, . . . , i`−1,m`, i`+1, . . . , ik]

T [j1, . . . , j`−1,m`, j`+1, . . . , jk]
.

It is not hard to see that this condition can equivalently be expressed as follows: for each̀∈ [k] there are
numberst`1, . . . , t

`
mk

such that

T [i1, . . . , ik] = t1i1 · . . . · t
`
ik
.

Now letR be a relation pp-definable in a structureH with a Mal’tsev polymorphism, and letγ1, . . . , γk
be congruences onR such that for eachi ∈ [k]

γi ∨ (γ1 ∧ . . . ∧ γi−1 ∧ αi+1 ∧ . . . ∧ γk) = γ1 ∨ . . . ∨ γk (1)
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Let alsoC be a class ofγ = γ1∨ . . .∨γk, and letAi1, . . . , A
i
mi

be the classes ofγi fromC. The condition (1)
means that for anyi1, . . . , ik the setA1

i1
∩ . . . ∩Akik is a nonempty class ofβ = γ1 ∧ . . . ∧ γk, and any two

classes of this form are different. We consider ak-dimensional arrayM(C; γ1, . . . , γk), where

M(C; γ1, . . . , γk)[i1, . . . , ik] = |A1
i1
∩ . . . ∩Akik |.

Proposition 14 Letγ1, . . . , γk be congruences of a structureH that has a Mal’tsev polymorphism, let them
satisfy the condition (1), and letC be a class ofγ1 ∨ . . . ∨ γk. Then,rank(M(C;α1, . . . , αk) = 1 or
#CSP(H) is #P-complete.

Proof: We consider the congruencesγi andβi = γ1∧. . .∧γi−1∧γi+1∧. . .∧γk. To simplify the notation
we assumei = k. If #CSP(H) is not #P-complete thenrank(M(C; γk, βk)) = 1. LetAi1, . . . , A

i
mi

be the
classes ofγi fromC. The classes ofβk have the formA1

i1
∩ . . .∩Ak−1

ik−1
, the classes ofγk∧βk are the classes

of γ1 ∧ . . . ∧ γk. Therefore every row ofM(C; γk, βk) is equal to

(M(C; γ1, . . . , γk)[i1, . . . , ik−1, 1], . . . ,M(C; γ1, . . . , γk)[i1, . . . , ik−1,mk])

for somei1, . . . , ik−1. Sincerank(M(C; γk, βk)) = 1, we get

M(C; γ1, . . . , γk)[i1, . . . , ik−1, 1]

M(C; γ1, . . . , γk)[j1, . . . , jk−1, 1]
= . . . =

M(C; γ1, . . . , γk)[i1, . . . , ik−1,mk]

M(C; γ1, . . . , γk)[j1, . . . , jk−1,mk]
.

The corollary is proved. 2

An important example of a collection of congruences satisfying the condition (1) is the following. Let
α ∈ M , and letI1, . . . , Ik be the classes ofκ∗α. A congruenceγj is defined as follows:〈a,b〉 ∈ γj if and
only if 〈a[i],b[i]〉 ∈ α− for i ∈ Ij and〈a[i],b[i]〉 ∈ α+ otherwise.

5 Algorithms: prerequisites

5.1 Decision CSPs over a Mal’tsev algebra.

If a relational structureH has a Mal’tsev polymorphism, then the decision CSP with the templateH can be
solved in polynomial time [7, 13]. Here we shall use the algorithm presented in [13]. This algorithm builts
a sort of a succinct (polynomial size) representation for the set of all solutions.

Let n be a positive integer, letH be a finite set, leta, b ben-ary tuples and let(i, a, b) be any element
in [n] ×H2. We say that(a,b) witnesses(i, a, b) if pr[i−1]a = pr[i−1]b, a[i] = a, andb[i] = b. We also
say thata andb witness(i, a, b) meaning that(a,b) witnesses(i, a, b).

Let R be anyn-ary relation onH. The signatureof R, SigR ⊆ [n] × H2, is defined to be the set
containing all those(i, a, b) ∈ [n] ×H2 witnessed by tuples inR, that is

SigR = {(i, a, b) ∈ [n] ×H2 : ∃a,b ∈ R such that(a,b) witnesses(i, a, b)}.

Note that in our notation(i, a, b) ∈ SigR if and only if 〈a, b〉 belongs to the relationθi computed for the
relationpr[i]R (see Section 3.3.1). In particular, for any(i, a, b) ∈ SigR and anya ∈ pr[i]R with a[i] = a
the tupleb such thatpr[i−1]b = pr[i−1]a andb[i] = 1 also belongs topr[i]R.

A subsetR′ of R is called arepresentationof R if SigR′ = SigR. If furthermore,|R′| ≤ 2|SigR| thenR
is called acompactrepresentation ofR. Observe that every relationR has compact representations.
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LetH be a relational structure andR′ ⊆ Hn for somen. By 〈R′〉H we denote the relationgeneratedby
R′, that is, the smallest relationR definable inH and such thatR′ ⊆ R. SinceH is usually clear from the
context we shall omit this subscript. The key lemma proved in[13] states that ifR is a relation definable in
a relational structure with a Mal’tsev polymorphism, andR′ is a representation ofR, then〈R′〉 = R. Given
an instanceG of the constraint satisfaction problemCSP(H), m = |G|, the set of all solutionsΦ(G,H) to
this problem can be thought of as anm-ary definable relation inH. The algorithm presented in [13] finds a
compact representation of this set.

We will need to know unary and binary projections of the relation Φ(G,H), that is, sets of the form
ψg = {ϕ(g) | ϕ ∈ Φ(G,H)} for g ∈ G andψg,h = {(ϕ(g), ϕ(h)) | ϕ ∈ Φ(G,H)} for g, h ∈ G. It is
not hard to see (see also [13]) that ifR′ is a compact representation ofΦ(G,H), thenψg, ψg,h are equal to
〈prgR

′〉 and〈prg,hR
′〉. Therefore, we may assume that we have a precomputed table that for each subset of

H, and for each subset ofH×H shows the unary or binary relation generated by this subset;and every time
we need to findψg or ψg,h using a compact representationR′, we just find the corresponding projection of
R′ and look up the table.

If there is no complexity restriction imposed, as in the caseof precomputation, the relation generated by
some setQ ⊆ Hn can be computed by employing a standard method. LetQ = {a1, . . . ,am}. First, find all
m-ary polymorphisms ofH. This can be done using theindicator problem[42]. Next, include into〈Q〉 all
tuples that can be represented asf(a1, . . . ,am) for anm-ary polymorphismf .

5.2 Reduction to subdirect powers.

In general, for an instanceG of #CSP(H) the setsψg, g ∈ G, are subalgebras ofH that are not necessarily
equal toH. For us, however, it is much more convenient to deal with the case whenΦ(G,H) is a subdirect
power ofH, that isψg = H for all g ∈ G. We show how to transform the problem so thatψg beH for all
g ∈ G. To do this we borrow some methods from the multi-sorted CSP,see, e.g. [10].

Let D1, . . . ,Dn be the subalgebras ofH (includingH itself). We shall assume that along with every
(n-ary) relational symbolR and anyDi1 , . . . ,Din the vocabulary ofH contains a symbolR′ such that
R′H = R ∩ (Di1 × . . . × Din). Then we define a relational structureχ(H) as follows. The universe of
χ(H) isD = D1 × . . . ×Dn; the ith component of an elementa ∈ D is denoted bya[i]. For any (n-ary)
relationR pp-definable inH we set(a1, . . . , an) ∈ χ(R) if and only if (a1[i1], . . . , an[in]) ∈ R, where
Dij = prjR. In particular, each unary relation ofχ(H) contains all elements ofD and, therefore, can be
thrown out. For any coordinate positioni of any non-unary relationR, the setpriχ(R) equalsD. Finally,
to defineχ(H) formally we for each relational symbolR we interpret it asRχ(H) = χ(R).

For an instanceG of #CSP(H), the following algorithm constructs an instanceG′ of #CSP(χ(H)).

Algorithm Subdirect
INPUT: an instanceG of #CSP(H)
OUTPUT: an instanceG′ of #CSP(χ(H)) with the same universe asG

Step 1 find a compact representation ofΦ(G,H)
Step 2 for each g ∈ G find ψg
Step 3 for each (n-ary) relational symbolR do
Step 3.1 for each tuple(g1, . . . , gn) ∈ RG do
Step 3.1.1 letR′ be the relational symbol such that

R′H = RH ∩ (ψg1 × . . . × ψgn)

18



Step 3.1.2 include (g1, . . . , gn) intoR′G
′

endfor
endfor

Step 4 output G′

The next easy lemma completes the reduction.

Lemma 5 LetG is an instance of#CSP(H) andG′ an instance of#CSP(χ(H)) consructed by algorithm
Subdirect. Let alsoψg = prgΦ(G,H) for g ∈ G. ThenΦ(G′, χ(H)) is a subdirect power ofχ(H) and

|Φ(G′, χ(H))| = |Φ(G,H)| ·
∏

g∈G

|D|

|ψg|
.

Proof: Let ϕ ∈ Φ(G′, χ(H)) be a homomorphism fromG′ to χ(H). Let us define a mappingχ−1(ϕ)
from G toH as follows. (Note thatG andG′ have a common universe.) Forg ∈ G if ϕ(g) = a andψg = Di

then setχ−1(ϕ)(g) = a[i]. By the construction ofχ(H) andG′, if we change the valueϕ(g) for some
g ∈ G with ψg = Di to anyb such thatb[i] = a[i], then the resulting mappingϕ′ is still a homomorphism
from G′ to χ(H) andχ−1(ϕ′) = χ−1(ϕ). Conversely, for any homomorphismψ ∈ Φ(G,H), any mapping
ϕ : G′ → χ(H) such thatχ−1(ϕ) = ψ is a homomorphism ofG′ to χ(H). This straightforwardly implies
the result. 2

5.3 Structure of Mal’tsev instances

Let G be a#CSP(H) instance and|G| = m. We shall asuume that the universeG of G equals to[m].
Clearly, the setΦ(G,H) can be thought of as anm-ary relation definable inH, or as a subalgebra of themth
direct power ofA = Alg(H). By the results of the previous subsection we may assume thatR = Φ(G,H)
is a subdirect power ofH. Recall that for a congruenceθ ∈ Con(H) by θm we denote the congruence ofR
such that〈a,b〉 ∈ θm if and only if 〈a[g],b[g]〉 ∈ θ for all g ∈ G. For congruencesβ ≤ γ ∈ Con(H) and a
mappingπ : G → H/β, by π/γ we denote a mapping fromG to Hγ defined byπ/γ(g) = π(g)/γ. If ψg,h
is a thick mapping of levelβ then we treatψg,h/β2 as a mapping that maps classes ofβ to classes ofβ. We
need some structural properties ofR.

Let α ∈ M . Let alsoA1, . . . , Ak be theκ∗α-classes andg1, . . . , gk representatives of these classes. Let
π be an element ofR/(α+)m; such an element can be thought of as a homomorphism fromG toH/α+, but

not all such homomorphisms are elements ofR/(α+)m. By Cu1 , . . . , C
u
su

we denote theκα-classes from

π(gu)/λα
for u ∈ [`].

Lemma 6 Every prime quotient in the interval[κmα , λ
m
α ] in the congruence latticeCon(R) has Boolean

type, the interval[κmα , λ
m
α ] is a distributive lattice isomorphic to the lattice2[k] of subsets of ak-element set,

and every congruence in this interval can be represented asηJ , J ⊆ [k], defined as follows:〈a,b〉 ∈ ηJ if
and only if〈a[i],b[i]〉 ∈ κα wheneveri 6∈ J and〈a[i],b[i]〉 ∈ λα wheni ∈ J .

Proof: We consider the chain of congruencesκmα < η1 < η{1,2} < . . . < η[k] = λα. First, we show
that this chain is maximal. Note that as the quotientη{1,...,v} < η{1,...,v,v+1} is projective toκα < ηv+1.
Therefore it suffices to show that the quotients of the formκmα < ηv are prime. To simplify the notation we
assumev = 1. By replacingR with R/κmα

we also assume thatκα = ∆.
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Let κmα < θ ≤ η1. Then, (a) for any〈a,b〉 ∈ θ, a[g] = b[g] for all g 6∈ A1, and, (b) by Proposition 10,
a[g1] = b[g1] if and only if a = b. Sinceκmα < θ ≤ η1, there are〈a,b〉 ∈ θ such thata 6= b. This means
thata[g1] 6= b[g1]. As κα ≺ λα, for any〈a, b〉 ∈ λα there are〈a′,b′〉 ∈ θ with a′[g1] = a,b′[g1] = b. By
(b) this impliesθ = η1. It is also easy to check thatθ does not centralize itself moduloκmα that implies that
the quotientκmα ≺ η1 has Boolean type.

We have proved that the chainκmα < η1 < η{1,2} < . . . < η[k] = λα is maximal, and, by Lemma 2,
each of its prime quotients has Boolean type. Now, in a modular lattice every prime quotient is perspective
to one of quotients of any maximal chain. Thus we conclude that every prime quotient from the interval has
Boolean type.

Finally, by Lemma 6.6 of [37], this implies that this interval is a distributive lattice. Since the congru-
encesη1, . . . , η` areatomsof this lattice, andη1 ∨ . . . ∨ η` = λmα , every elementθ of this interval can be
represented in the form

θ =
∨

u∈J

ηu = ηJ

for someJ ⊆ [k]. 2

Lemma 7 For any choice ofiu ∈ [su], u ∈ [k], there is an elementϕ ∈ R/κmα
such that for eachu ∈ [k],

and eachg ∈ Au
ϕ(g) = ψgu,g/κ2

α
(Cuiu).

Proof: If we chooseBg = π(g)/λα thenπ witnesses thatR ∩ (B1 × . . . Bm) 6= ∅. As the coherent
sets ofR are equal toA1, . . . , Ak, by Proposition 10, we have that

R/κkα
∩ (B1/κα

× . . . ×Bk/κα
) = BA1

/κ
|A1|
α

× . . . ×BAk
/κ

|Ak|
α

,

whereBAu = prAu
R ∩

∏

g∈Au
Bg, and for anyg, h ∈ Au we haveprg,hBAu = ψg,h ∩ (Bg × Bh). The

result follows. 2

Lemma 8 There isJ ⊆ [k] such that for anyπ, an element fromR/(α+)m, there areiu, u ∈ [k] − J , with

iu ∈ [su] satisfying the following conditions. Every homomorphism% ∈ R/(α−)m with %/(α+)m = π can

be represented as follows: there areiu for u ∈ J with iu ∈ [su] such that%(gu) ∈ Cuiu for u ∈ [k] and, for
anyg ∈ Au, u ∈ [k], we have

%(g) = π(g) ∩ ψgu,g/κ2
α
(Cuiu).

Conversely, for any choice ofC1
iu
, . . . , Ckik the mapping% defined in this way is an element ofR/(α−)m,

and%/α+ = π.

Proof: Observe that in the congruence latticeCon(R) we haveκalm ∧ (α+)m = (α−)m andκalm ≤
κal

m ∨ (α+)m ≤ λmα . By Lemma 6,κalm ∨ (α+)m = ηJ for someJ ⊆ [k]. This means that there areiu,
u ∈ [k] − J , with iu ∈ [su], such that for any% ∈ R/(α−)m, with %/α+ = π, we have%(gu) ∈ Cuiu for

u ∈ [k] − J .
Take% ∈ R/(α−)m with %/α+ = π. Clearly,%/κα belongs toR/κalm, and by what we showed above

%(gu) ∈ Cuiu for u ∈ [k] − J . Then the first part of the lemma follows from Lemma 7.
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To prove the converse statement, let us denote theηJ -class containingπ by D. Sinceκmα and(α+)m

permute, for anyκmα -classC ⊆ D and any(α+)m-classC ′, the intersectionC ∩C ′ is nonempty. Therefore,
for anyϕ ∈ R/κmα

such thatϕ(gu) = Cuiu for u ∈ [k] − J , there is% ∈ R/(α−)m such that%/κα = ϕ and

%/α+ = π; that is%(g) = ϕ(g) ∩ π(g). Together with Lemma 6 this implies the result. 2

Let J ⊆ [k] be the set defined in Lemma 8 forα ∈ M and theκ∗α-classesA1, . . . , Ak. A congruence
γu, u ∈ J is defined as follows:〈a,b〉 ∈ γu if and only if 〈a[i],b[i]〉 ∈ α− for i ∈ Au ∪

⋃

v∈[k]−J Av , and
〈a[i],b[i]〉 ∈ α+ otherwise.

Lemma 9 The congruencesγu, u ∈ J , satisfy the condition (1).

Proof: Without loss of generality we assumeJ = {1, . . . , q}. First, observe thatγ1∧ . . .∧γq = (α−)m

andγ1∨. . .∨γq = (α+)m. Since(α+)m∨(κα)m = ηJ , (α+)m∧(κα)m = (α−)m, and the latticeCon(R) is
modular, the intervals[(α−)m, (α+)m] and[(κα)m, ηJ ] are isomorpic, where an isomorphism can be defined
byϕ(x) = x∨(κα)

m. Therefore we may considerβ1, . . . , βq instead ofγ1, . . . , γq, whereβu = γu∨(κα)
m

and〈a,b〉 ∈ βu if and only if 〈a[i],b[i]〉 ∈ κα for i ∈ Au ∪
⋃

v∈[k]−J Av and〈a[i],b[i]〉 ∈ λα otherwise.
We also may assume thatκα = ∆. To simplify the notation we prove the condition (1) fori = 1.

By Lemma 8,〈a,b〉 ∈
beta1 if and only if prA1∪Aq+1∪...∪Ak

a = prA1∪Aq+1∪...∪Ak
b, prA2∪...Aq

a,prA2∪...Aq
b ∈ prA2∪...Aq

D, and
〈a[i],b[i]〉 ∈ λα for i ∈ A2∪ . . . Aq. Similarly, 〈a,b〉 ∈ β2∧ . . .∧βq if and only if prA1

a,prA1
b ∈ prA1

D,
〈a[i],b[i]〉 ∈ λα for i ∈ A1, andprA2∪...Ak

a = prA2∪...Ak
b ∈ prA2∪...Ak

D.
Takea,b ∈ D such that〈a,b〉 ∈ λmα anda[i] = b[i] for i ∈ Aq+1 ∪ . . . ∪ Ak, and definec to be the

tuple withc[i] = a[i] if i ∈ A1 andc[i] = b[i] if i ∈ A2 ∪ . . . ∪ Ak. By Lemma 8,c ∈ D and〈a, c〉 ∈ β1,
〈c,b〉 ∈ β2 ∧ . . . ∧ βq. Thus〈c,b〉 ∈ γ1 ∨ (β2 ∧ . . . ∧ βq). 2

6 Algorithms: computing the number of solutions

6.1 The algorithm

Suppose thatH is congruence singular. LetG be an instance of#CSP(H). A mappingπ : G → H/θ for
θ ∈ Con(H) will be called amapping of levelθ. For a mappingπ of level θ, by Φ(G,H, π) we denote
the set of all homomorphisms% ∈ Φ(G,H) with %/θ = π. We recursively compute numbers of the form
|Φ(G,H, π)| for the instanceG and mappingsπ of level α+, α ∈ M . We assume that the universeG of
G is [m]. If π is a mapping of level̀ then |Φ(G,H, π)| = |Φ(G,H)|, and if π is a mapping of level0
then |Φ(G,H, π)| = 1. Let α ∈ M and letπ be a mapping fromG to H/α+. We show how to reduce
computing the number|Φ(G,H, π)| to computing numbers|Φ(G,H, %)| for certain%, mappings fromG to
H/(α− 1)+.

LetA1, . . . , Ak be theκ∗α-classes andg1, . . . , gk their representatives. LetC1
u, . . . , C

u
su

be theκα-classes
from π(gu)/λα

, theλα-class containing elements fromπ(gu), for u ∈ [k]. LetJ ⊆ [k] andiu, u ∈ [k] − J ,

with iu ∈ [su] be the set corresponding toα+, andκα-classes corresponding toπ as in Lemma 8. Without
loss of generality we assumeJ = [q]. The next statement follows straightforwardly from Lemma 8.
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Proposition 15 For any q-tuple s such thats[u] ∈ [mu], the mapping%s : G → H/α−, where for each
g ∈ Au, u ∈ [q]

%s(g) =

{

ψgu,g(B
u
s[u]) ∩ π(g), if u ≤ q

ψgu,g(B
u
iu

) ∩ π(g), if u > q.

is a homomorphism fromG to H/α−.

It is not hard to see that setsΦ(G,H, %s) are the classes of the congruence(α−)m on the relation
Φ(G,H, π). Clearly,(α−)m = γ1 ∩ . . . ∩ γq, where〈a,b〉 ∈ γu if and only if 〈a[g],b[g]〉 ∈ α− if g ∈ Au
or g ∈ Aq+1 ∪ . . . ∪Ak, and〈a[g],b[g]〉 ∈ α+ otherwise. By Lemma 9 the congruencesγ1, . . . , γq satisfy
condition (1).

Let T (π) denote aq-dimensionals1 × . . . × sq array such that its entry indexed bys is equal to
|Φ(G,H, %s)|. By Proposition 14,T (π) has rank 1, that is, there are numberstu1 , . . . , t

u
su

such that

|Φ(G,H, %s)| = t1
s[1] · . . . · t

q
s[q].

These numberstij can be found as follows. Fix a tuples. By siv we denote the tuple, all entries of which
are equal to the corresponding entries ofs, except for theith entry that is equal tov. Then set

t1j = |Φ(G,H, %
s
1
j
)| and tij =

|Φ(G,H, %
s
i
j
)|

|Φ(G,H, %
s
1
j
)|

for i ∈ {2, . . . , q}.

Now, as the numbers of the formtij are known, we have

Φ(G,H, π) =
∑

s

Φ(G,H, %s) =
∑

s

t1
s[1] · . . . · t

q

s[q]

= t11





∑

s[2],...,s[q]

t2
s[2] · . . . · t

q
s[q]



 + . . .+ t1s1





∑

s[2],...,s[q]

t2
s[2] · . . . · t

q
s[q]





= . . . =

q
∏

j=1

mj
∑

i=1

tji ,

that can be computed easily.
Finally, we make use of the following implication of Proposition 12.

Corollary 3 Let% ∈ Φ(G,H, π)/(α−)m and%1, %2 ∈ Φ(G,H, %). Then|Φ(G,H, %1)| = |Φ(G,H, %2)|.

Then for any mapping% ∈ Φ(G,H, π)/(α−)m and any mapping%′ ∈ Φ(G,H, %)/((α − 1)+)m, we

have|Φ(G,H, %)| = |Φ(G,H, %′)| · |Φ(G,H, %)/((α − 1)+)m|. The number|Φ(G,H, %)/(α − 1)+| can be
found using algorithmUniform from the next subsection.

6.2 Uniform counting CSPs

Let α ∈ M , π be a mapping of levelα−, and% be a mapping of level(α − 1)+. We need a method to find
the number

|Φ(G,H, π)|

|Φ(G,H, %)|
.
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We consider first the case when(α − 1)+ is the equality relation. In this case the required number can
be found by algorithm UNIFORM using a compact representationR′′ of Φ(G,H, π). Note also that such
a representation can be found by the same algorithm from [13]applied to the instanceG′ with the same
universe asG and additional unary constraintsπ(g) imposed on eachg ∈ G. We shall assume that for
each (n-ary) relational symbolR from the vocabulary ofH, and any set{i1, . . . , ik} ∈ [n], the vocabulary
of H also contains ak-ary relational symbolpr{i1,...,ik}R interpreted aspr{i1,...,ik}R

H. For an instanceG
of #CSP(H) andg ∈ G we denote byGg the relational structure with universeG − {g} and such that
(g1, . . . , gn) ∈ RG for some relational symbolR and gi1 = . . . = gi` = g and the rest of its entries
are different fromg we exclude this tuple fromRGg , and include the tuplepr[n]−{i1,...,i`}(g1, . . . , gn) into
pr[n]−{i1,...,i`}

RGg . Recall that we assumeG = [m].

Algorithm Uniform

INPUT: an compact representationR′′ of Φ(G,H, π), π ∈ Φ(G,H)/βm, β
s
∼ ∆

OUTPUT: the cardinality ofΦ(G,H, π)

Step 1 setN := 1, S := R′′, andG := G
Step 2 for g = m to 1do
Step 2.1 let θ be a congruence ofH such that〈a, b〉 ∈ θ if and only if

(g, a, b) ∈ SigS; since∆ ≤ θ ≤ β,θ is uniform over∆; letw be the
size of its classes

Step 2.2 setN := N · w

Step 2.3 setS := pr[g−1]S andG := Gg
endfor

Step 3 output N

The correctness of algorithm UNIFORM follows from the rectangularity of〈S〉, and the observation
that the congruenceθ constructed on Step 2.1 can be defined as follows:〈a, b〉 ∈ θ if and only if there is
a ∈ pr[g−1]〈S〉 such that(a, a) ∈ 〈S〉 and(a, b) ∈ 〈S〉, that isw is the number of possible extensions of a
tuple frompr[g−1]〈S〉.

Observe that if we know the signature of the relationΦ(G,H, π)/αm we still can use algorithmUniform,
for we can considerΦ(G,H, π)/αm as a relation onH/α. Therefore the problem we are facing now is to
find the signature of this relation. Unfortunately, it is notclear at all how to obtain this signature using the
signature or a compact representation ofΦ(G,H, π), nor we can use the algorithm from [13] to compute
the signature ofΦ(G,H/α, π), since in generalΦ(G,H/α, π) 6= Φ(G,H, π)/αm. Instead, to compute each
member of the required signature we find a compact representation of a certain modified problem using the
algorithm from [13].

More specifically, we first find theθ-signatureof the relationΦ(G,H, π). Let n be a positive integer,
let H be a finite set, letθ be an equivalence relation onH, let a, b ben-ary tuples and let(i, a, b) be any
element in[n]×H2. We say that(a,b) θ-witnesses(i, a, b) if 〈a[j],b[j]〉 ∈ θ for eachj < i, a[i] = a, and
a′[i] = b. LetR be anyn-ary relation onH. Theθ-signature ofR, θSigR ⊆ [n] ×H2, is defined to be the
set containing all those(i, a, b) ∈ [n] ×H2 θ-witnessed by tuples inR, that is

θSigR = {(i, a, b) ∈ [n] ×H2 : ∃a,b ∈ R such that(a,b) θ-witnesses(i, a, b)}.

We shall assume that for each subalgebraB of H the vocabulary ofH contains a unary relational
symbolRB such thatRH

B = B. LetG be an instance of#CSP(H), let g1, . . . , gk ∈ G, and letB1, . . . , Bk
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Algorithm θ-Signature
INPUT: an instanceG of #CSP(H), and a congruence

α ∈ Con(H)
OUTPUT: theθ-signature ofΦ(G,H, π)
Step 1 find a compact representation ofΦ(G,H, π)
Step 2 setS := ∅ (theθ-signature ofΦ(G,H, π))
Step 3 for each (i, a, b) ∈ {1, . . . ,m} ×H2 do
Step 3.1 if there isa ∈ R′ such thata[i] = a then do
Step 3.1.1 find a compact representationR′′ of Φ(G′,H, π)

where
G′ = G ∪ {〈g1, (a[1])/θ〉, . . . , 〈gi−1, (a[i− 1])/θ〉})

Step 3.1.2 if b ∈ 〈priR
′′〉 then S := S ∪ {(i, a, b)}

endif
endfor

Step 5 return S

be subalgebras ofH. By G ∪ {〈g1, B1〉, . . . , 〈gk, Bk〉} we denote the relational structure with the same
universe asG, and such that the interpretation of every relational symbol R 6∈ {RB1

, . . . , RBk
} equals

RG while the interpretation ofRBj
equalsRG

Bj
∪ {gj}. Thus, the elementsg1, . . . , gk are forced to be

mapped toB1, . . . , Bk respectively. It is easy to see that the algorithmθ-SIGNATURE finds theθ-signature
of Φ(G,H, π). The signature ofΦ(G,H, π)/θm can then be found by replacing each(i, a, b) ∈ S by
(i, a/θ, b/θ).

Complexity. Observe that the problem of finding the number|Φ(G,H, π)| reduces to findings1 + . . .+sk
numbers of the form|Φ(G,H, %)|, where% : G → H/(α − 1)+, and solving the same number of uniform

problems. Clearly,k ≤ |G| = m, si ≤ |H| = a, and|M | ≤ a2. If the uniform problem can be solved in
timep(m) then the overall time complexity of the algorithm is(amp(m))a

2

.

7 #H -COLORING

Theorem 3 yields a complete classification of #P-complete and polynomial time solvable #H -COLORING

problems. However, it is difficult to express the criterion stated in the theorem in terms of (di)graphs. By
[27], an (undirected) graphH gives rise to a polynomial time solvable #H -COLORING problem if and only
if every connected component ofH is either trivial, or a complete bipartite graph, or a complete graph with
loops at all vertices. In [14], we observed that an undirected graph satisfies this condition if and only if it is
invariant under a Mal’tsev operation.

In this section we compare the classification result from [28, 29] for directed acyclic graphs (DAGs
for short) with Theorem 3. We show that every congruence singular DAG satisfies theLovász-goodness
condition introduced in [28, 29]. The two conditions must beequivalent, however, the converse implication
probably uses some nontrivial properties of DAGs and is moredifficult to prove.

A DAG H = (V,E) is called layeredV can be partitioned into subsetsV1, . . . , V` such that for any
(v,w) ∈ E we havev ∈ Vi, w ∈ Vi+1 for a ceratini ≤ `. Let v ∈ Vi, w ∈ Vj , i < j. ThenHv∗

denotes the subgraph ofH induced by the verticesu such that there is a path fromv to u; similarly, H∗w
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denotes the subgraph ofH induced by the verticesu such that there is a path and fromu tow; andHvw =
Hv∗ ∩H∗w. The vertex set of the graphHxyHx′y′ , whereHxy = (V,E) andHx′y′ = (V ′, E′), is the set
((V ∩ Vi) × (V ′ ∩ Vi)) ∪ . . . ∪ ((V ∩ Vj) × (V ′ ∩ Vj)), a pair((v, v′), (w,w′)) is an edge if and only
if (v,w) ∈ E and (v′, w′) ∈ E′. It is proved in [28] thatHxyHx′y′ has only one connected component
that spans all layers fromi to j. If such main connected components of graphsHxyHx′y′ andHztHz′t′ are
isomorphic then we writeHxyHx′y′ ≡ HztHz′t′ . Finally a layered graph is said to beLovász-goodif for
any0 ≤ i < j ≤ `+ 1 and anyx, x′ ∈ Vi, y, y′ ∈ Vj we haveHxyHx′y′ ≡ Hxy′Hx′y.

The key lemma for this result is a special case of the result byLovász [48] that we cite in our notation.

Lemma 10 If |Φ(G,H1)| = |Φ(G,H2)| for all graphsG then graphsH1,H2 are isomorphic.

We show that ifH is congruence singular then|Φ(G,HxyHx′y′)| = |Φ(G,Hxy′Hx′y)| for anyx, x′ ∈
Vi, y, y′ ∈ Vj, and any graphG. This implies thatHxyHx′y′ andHxy′Hx′y are isomorphic, and so
HxyHx′y′ ≡ Hxy′Hx′y. We use an observation made in [28] that|Φ(G,H1H2)| = |Φ(G,H1)| · |Φ(G,H2)|.
If G = (W,F ) is not layered then|Φ(G,HxyHx′y′)| = |Φ(G,Hxy′Hx′y)| = 0. LetW1,W2 denote the set
of vertices on the highest and on the lowest layers ofG, respectively. As we know,Φ(G,H) is a relation pp-
definable inH. Now letη1, η2 be congruences ofΦ(G,H) such that〈ϕ,ϕ′〉 ∈ ηi, i = 1, 2, iff ϕ(v) = ϕ′(v)
for all v ∈ Wi. It is not hard to see that sets of the formHu∗ are classes ofη1, sets of the formH∗w are
classes ofη2, and sets of the formHuw are classes ofη1 ∧ η2. SinceH is congruence singular, we have
rank(M(η1, η2)) = k wherek is the number of classes inη1 ∨ η2. Hence

∣

∣

∣

∣

|Φ(G,Hxy)| |Φ(G,Hxy′)|
|Φ(G,Hx′y)| |Φ(G,Hx′y′)|

∣

∣

∣

∣

= 0,

or Φ(G,Hxy),Φ(G,Hx′y′) or Φ(G,Hxy′),Φ(G,Hx′y) are in different classes ofη1 ∨ η2. In the latter case
either|Φ(G,Hx′y)| = |Φ(G,Hxy′)| = 0 or |Φ(G,Hxy)| = |Φ(G,Hx′y′)| = 0. The result follows.

Observe that in this argument congruence singularity is used in a very restricted way: Only projective
congruences of only those subalgebras of direct powers ofH that are representable in the formΦ(G,H).

8 Concluding remarks

The result obtained in the paper is rather general. It includes as particular case the results of [18, 27, 22,
28, 29, 44]. However, those results are stated in terms of particular problems, and deriving them from
Theorem 3 requires extra research. We also should note that in some cases, e.g., [27], the #P-completeness
results obtained for particular problems are stronger thanthose which follow from our result. For instance,
#P-complete #H -COLORING problems in the case of undirected graphs remain #P-complete even when
restricted to inputs of bounded degree.

A major question left unanswered is how to check if a given relational structure is congruence singular.
This problem may turn out to be even undecidable.
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[35] P. Hell and J. Nešetřil. Counting list homomorphismsfor graphs with bounded degrees.Discrete
Mathematics. to appear.

27
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