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Abstract

The Counting Constraint Satisfaction Proble#({SP (7)) over a finite relational structufieé can be
expressed as follows: given a relational strucwm@ver the same vocabulary, determine the number of
homomorphisms frorg to H. In this paper we characterize relational structaiesr which #CSP(H)
can be solved in polynomial time and prove that for all othierctures the problem is #P-complete.

1 Introduction

In the Counting Constraint Satisfaction Proble#(;SP (), over a finite relational structurgg the objec-
tive is, given a finite relational structu¢g to compute the number of homomorphisms frgrto . Various
particular cases of the #CSP arise and have been extensiuelied in a wide range of areas from logic
and graph theory [4, 19, 29, 38, 42, 51, 57, 61, 62], to aificitelligence [56, 58], to statistical physics
[3, 17, 49]. In different areas this problem often appeardifferent equivalent forms: (1) the problem of
finding the number of models of a conjunctive formula, (2) pineblem of computing the size (number of
tuples) of the evaluatiof)(D) of a conjunctive query (without projectioid) on a databas® and also (3)
the problem of counting the number of assignments to a saridbles subject to specified constraints.

Since the seminal papers [59, 33], the complexity of thesii@eicounterpart of #CSP, the Constraint
Satisfaction Problem or CSP for short, has been an objeattefsive study. The ultimate goal of that
research direction is to classify finite relational struetwith respect to the complexity of the corresponding
CSP. We shall refer to this research problem ascthssification problemA number of significant results
have been obtain, see e.g. [59, 33, 5, 7, 1], but a full classidin is far from being completed.

Although the classification problem for the general #CSP e tackled for the first time very re-
cently, a massive work has been done in the study of the caihplef various particular counting CSPs.
These particular problems include classical combindtgniablems such as #GQUE, GRAPH RELIA-
BILITY, ANTICHAIN, PERMANENT etc. [51, 57, 61, 62] expressible in the form of #CSP; the tagn
SATISFIABILITY and GENERALIZED SATISFIABILITY problems (in these problems the objective is to find
the number of satisfying assignments to a propositionahida) [19, 58] which correspond t#CSP(H)
for 2-element structure®d(, counting the number of solution of equations over finite igeoups [55, 48]
and many others.

However, the main focus of research in this area has bé&rCHLORING problem and its variants.
In the #H-COLORING problem the aim is to find the number of homomorphisms fromvargigraphGG
to the fixed graphH. Thus, it is equivalent t¢tCSP(H) where is a graph. Dyer and Greenhill [29]
proved that, for every undirected graph its associated #-COLORING problem is either in FP (we shall
call such problemgractable or is #P-complete. They also provided a complete chaiaaten of the
tractable problems. This result has been extended to thatinguLiST #H-COLORING problem [25, 21],
which allows additional restrictions on possible images obde. Recently, Dyer, Goldberg, and Paterson
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[32, 28] obtained a similar classification for directed dicygraphs. Furthermore, some other variants of
the #H-COLORING problem for undirected graphs have been intensively stiudiging the last few years
[23, 24]. Another direction in this area is the study of peshk with restricted input, that is subproblems
of the #{-COLORING problem in which the input grapy must be planar [42, 60], a partiattree [22],
sparse or of low degree [38, 39], etc. Finally, we should menthe approach to counting problems using
approximation and randomized algorithms, see e.g. [472@,730].

The counting CSP admits various generalizations. In onderitWeghted #CSRvery tuple from
relations are assigned weights that are used to computéisaifymappings from one relational structure
to another, and the problem is to find the sum of the weightdleghappings [31]. A particular case of
the Weighted #CSP, in which only one binary relation is aldwis often referred to gsartition functions
[53, 34]. Partition functons are widely used in statistjghilsics [3, 17, 49]. Recently, further generalizations
of the counting CSPs attracted considerable attentionrinection with the study dfolographic reductions
see e.g. [18].

In [13] we started a systematic study of the classificatiooblam for the general #CSP. The main
approach chosen was thlgebraic approachvhich has proved to be quite useful in the study of the degisio
CSP[44, 45,5, 7, 1]. This approach uses invariance pregeasfipredicates definable in relational structures.
Invariance properties are usually expressepiodgmorphismsf the predicates, that is (multi-ary) operations
on the universe of the relational structure compatible Withpredicates.

In [13], we proved that if*CSP(H) is tractable, thefi{ has aMal'tsevpolymorphism, that is a ternary
operationm(x, y, z) satisfying the identitiesn(z,y,y) = m(y,y,z) = z. Another observation was that
thecongruencesi.e. the definable equivalence relationsoplay a very important role. In particular, these
results allowed us to come up with a simple proof of the resf[29]*. In [14], another necessary condition
for the tractability ofA#CSP(H) was identified. It imposes certain restrictions onto pdesibngruences of
‘H, in terms of cardinalities of their equivalence classes.

In this paper, after giving general definitions (Sectiors @xd 2.2) and introducing the basics of the
algebraic approach (Sections 2.3, 2.4 and 2.5), we go deéefoethe structure of congruence lattices of
relational structures with a Mal'tsev polymorphism (Sent 3.1 and 3.3), its connections with types of
prime quotients (Section 3.2), and the structure of ratatiwith a Mal'tsev polymorphism (Section 3.4). In
Section 4 we identify two more necessary conditions fort#aitity, again expressed in terms of properties
of congruences. Then, in Section 5, several observati@mmade in preparation to introducing an algorithm
solving the problen+CSP(H) for every relational structuré( satisfying all the conditions obtained. The
algorithm is then described in details in Section 6. Thuscamapletely solve the classification problem for
the general counting CSP. Finally, in Section 7 we compareesult with a recent result of [28] classifying
the complexity of the# H-COLORING problem for directed acyclic graphs.

We intensively use methods and results from a number of afeglgebra: lattice theory, tame congru-
ence theory, commutator theory and ring theory. To make gipeipavailable for a wider audience we avoid
excessive use of algebraic terminology. In spite of thanmesparts of the paper, Section 4 and especially
proofs, may require from the reader some familiarity witkibalgebraic objects and ideas. The keen reader
is referred to textbooks [16, 35, 37, 41]. The reader shoelaviiare that to avoid yet another layer of objects
we use algebraic terminology for relational structuresilavim the algebraic literature the same concepts
are used for “dual” objects, universal algebras.

INote that the hardness results [29] remain true even fohgrapdegree at most 3, and so are stronger than those in [13].



2 Preliminaries

2.1 Relational structures and homomorphisms

Our notation concerning relations and relational strugsus fairly standard. Lét] denote the seftl, ..., n}.
The set of alln-tuples of elements from a séf is denoted byid™. We denote tuples of elements in bold-
face, for instancea, and their components (1], a[2],.... For a subsef = {i;,... it} C [n] and an
n-tuplea, by prya we denote th@rojection ofa onto I, thek-tuple (afi], . . ., alix]). For ann-ary relation

R C H", its projection ontd is defined to ber;R = {pr;a | a € R}. If D, = pr;R fori € [n] we
say thatR is a subdirect producof Dy,...,D,. If Dy = ... = D, = H thenR is said to be am-th
(or n-ary) subdirect poweof H. Fora = (a[l],...,a[n]) andb = (b[1],...,b[m]), (a,b) denotes the
tuple (a[l],...,a[n],b[1],...,b[m]), while (a, b) denotes the pair of tuples. Sometimes we need more
complicated indexing. Lef,J C [n] be disjoint,I = {i1,...,i%t}, J = {j1,...,J¢}, and assume that
i1 <...<ipandj; < ... < jp. Letalsoa = (afi1],...,a[ix]) andb = (b[j1],...,b[j/]). Then(a,b)
denotes the tuple whose entries are indexed by elements of thd sef such that[i] = a[i;]if i =i, € T
andc[i] = b[j] if i = j; € J.

A vocabularyis a finite set of relational symbolg,, . . . , R,, each of which has a fixed arity. #lational
structureover vocabularyRy, ..., R, is a tupleH = (H; R]:,..., R}) such thatA is a non-empty set,
called theuniverseof H, and eachR! is a relation on/ having the same arity as the symiel. LetG, H
be relational structures over the same vocabuldyy. . . , R,,. A homomorphisnrom G to H is a mapping
¢: G — H from the universe ofj (theinstancé to the universed of H (thetemplatg such that, for every
relation RY (say,m-ary) of G and every tupléas, . .. ,a,,) € RY, we have(p(ay), ..., ¢(ay)) € R™.

A relation R is said to beprimitive positive definablép-) in H, if it can be expressed using the predi-
catesR!* of H together with the binary equality predicate Bn(denotedA ), conjunction, and existential
quantification. We uséef(H) to denote the set of all pp-definable relations.

Example 2.1 Let H be a 3-element structure with the univefgeb, ¢} and one binary disequality relation
R. StructureH can be thought of as a 3-element complete graph. Then ppifarm

Q(z,y,2) = Ft,u,v,w(R(t,x) AN R(t,y) AN R(t,z) A R(u,v) A R(v,w)
AR(w,u) A R(u,z) A R(v,y) A R(w, z))

defines relation

a a b a b b aa c a c c bbcb cc
Q= a b a b a b a ¢c a ¢c a cbcbcdbc]|,
b a a b bac aac c acbbeccbd

consisting of all triples containing exactly 2 differenéelents from{a, b, ¢} (triples are written vertically).

Another useful way to represent relatighis to view it as the set of restriction of homomorphisms from
the graph shown in Fig. 1 t& restricted ontd z, y, z}. Observe that this connection between pp-definitions
and restrictions of homomorphisms is rather general.

2.2 Constraint Satisfaction Problem

The counting constraint satisfaction problem can be foatedl in several ways (see Section 1). We use the
model theoretic form of this problem.
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Figure 1.

Definition 2.2 Let $ be a class of relational structures. In tlewunting constraint satisfaction problem
associated witl§) (#CSP($)), the objective is, given a structufé € $ and a structures, to compute the
number of homomorphisms fragnto . We will refer to this problem as toaniform #CSP.

If $ consists of a single structufd, then we write#CSP(H) instead ofCSP({#+}) and refer to such
problem as anon-uniform homomorphism problerbecause the inputs are just source structures.

Example 2.3 ¢ H-COLORING, [29, 40, 50]) A graphH is a structure with a vocabulary consisting of one
binary symbolR. Then#CSP(H) is widely known as thgt H-COLORING Problem, in which the objective
is to compute the number of homomorphisms from a given graji.

Example 2.4 #3-SAT, [19, 20, 61, 62])An instance of the #3-SAT problem is specified by giving a prop

sitional logic formula in CNF each clause of which containée¥als, and asking how many assignments
satisfy it. Therefore, #3-SAT is equivalent $6CSP(Ss), whereSs is the 2-element relational structure

with the universe{0, 1} and the vocabularngy, ..., Rs. PredicatestS, . ,R;?S are the 8 predicates ex-

pressible by 3-clauses.

Example 2.5 (Systems of linear equations) et F' be a finite field and #INEAR EQUATIONS(F) is the
problem of finding the number of solutions to a system of liregguations oveF'. It is not hard to see that
#LINEAR EQUATIONS(F') is equivalent ta#CSP(£), wheref is the class of relational structures with the
universeF’ and the relations corresponding to hyperplanes of finiteedisional vector spaces ovér

In fact, #LUNEAR EQUATIONS(F') cannot be straightforwardly reduced #6CSP(£) in polynomial
time. The reason is that the representation of relationsnieat equations is much more concise than that
by a list of tuples, see discussion after Example 2.6. Howemethis case some reduction exists. It is
carried out by first reducing a system of linear equations sgstem of equations each of which contains
at most 3 variables; clearly, some new variables should treduced at this step. Then such a system
is straightforwardly reduced t¢-CSP(L3), whereLs is the the relational structure fro® containing all
ternary relations expressible by linear equations.

Example 2.6 (Equations over semigroups, [55, 48]l.et .S be a finite semigroup, that is, a set with a bi-
nary associative operation. An equation o¥ds an expression of the formy - zo-... &, = y1-Y2+- - .- Ym
where- is the semigroup operation, angl y; are either indeterminates or constants. THEIQNG stands
for the problem of counting the number of solutions to a spsbé semigroup equations.

The problem#EQNY is equivalent to the problesCSP (&) where is the class of structures with
universeS and relations expressible as the set of solutions of a seapgequation.

In the last two examples, as well as for many other uniformblemms, there is a minor ambiguity
concerning a representation of the input. We always asstateint uniform problems the relations of
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the template are represented explicitly, by a list of tumleshe relation. In Examples 2.5, 2.6 such a
representation is not the most natural one. However, tiss direlations admitting a succinct representation
is rather limited (see, e.g. [43]), and thus such repreientaare unsuitable for the study of the general
problem. Moreover, changing representation does nottafieccomplexity of non-uniform problems.

Every counting CSP belongs to the class #P. However, thet exagplexity of #CSP(H) strongly
depends on the structufé. We say that a relational structut¢ is #-tractableif #CSP(H) is solvable in
polynomial time;H is #P-completef #CSP(H) is #P-complete. Note that all reductions used in this paper
are Turing reductions. The research problem we deal withigngaper is the following one.

Problem 1 (classification problem) Characterize #-tractable and #P-complete relational stuues.

Example 2.7 (1) Dyer and Greenhill [29] proved thatH is an undirected graph thehAH -COLORING can
be solved in polynomial time if and only if every connectednpmnent ofH is either a complete bipartite
graph, or a complete graph with all loops present, or a swgtex. Otherwise the problem is #P-complete.

(2) A 2-element relational structufi is #-tractable if and only if every predicate Bf can be represented
by a system of linear equations over the 2-element field [@R,QtherwiseH is #P-complete.

(3) #CSP(L3) is solvable in polynomial time.

(4) The problem#EQN7 is solvable in polynomial time if and only 8 is a direct product of a uniformly in-
flated Abelian group, inflated left-zero semigroup, and #lated right-zero semigroup. OtherwigdsQNY
is #P-complete. For details see [48].

2.3 Polymorphisms, Algebras and Complexity

Any operation on a sell can be extended in a standard way to an operation on tupleghvas follows.
For any (n-ary) operationf, and any collection of tuplesa,...,a,, € H", definef(ai,...,a,,) to be
(f(ai[1],...,an[l]),..., f(ai[n],...,an[n])), thatis, f acts onH™ component-wise. Thefi preserves
ann-ary relationR (or R is invariantunder f, or f is apolymorphism oRR) if for any a4, ...,a,, € Rthe
tuple f(ai,...,a;) belongs toR. For a given set of operation§;, the set of all relations invariant under
every operation front” is denoted bynv(C'). For a relational structurg we usePol(’H) to denote the set
of all operations preserving every relation7gf

Example 2.8 Let R be the solution space of a system of linear equations oveldaHieThen the operation
m(z,y,z) = x —y + z is a polymorphism ofR. Indeed, letd - x = b be the system defining, and
x,¥,z € R. Then

A-mx,y,z)=A-(x—y+z)=A-x—A-y+A-z=h.

In fact, the converse can also be shownRifs invariant undern then it is the solution space of a certain
system of linear equations.

The following proposition links together polymorphismsdap-definability of relations.
Proposition 2.9 ([36, 2, 46])Let’H be a finite structure, and led8 C H™ be a non-empty relation. TheaR
is preserved by all polymorphisms&fif and only if R is pp-definable irf.

The connection between polymorphisms and the complexigoahting CSPs is provided by the fol-
lowing result.

Proposition 2.10 ([13]) Let H; and H, be relational structures with the same universe.Pdl(H;) C
Pol(Hs2) then#CSP(Hz) is polynomial time reducible t¢-CSP(H; ).
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Theorem 2.10 amounts to say that all the information abauttmplexity of#CSP(H) can be extracted
from the family of polymorphisms of{. Sets of polymorphisms often provide a more convenient and
concise way of describing a class of constraint satisfagiimblems. For example, in [13], we used poly-
morphisms to identify some conditions necessary for theétability of a relational structure. A ternary
operationm(z,y, z) on a setH is said to beMal'tsevif m(x,y,y) = m(y,y,z) =z forall z,y € H.

Proposition 2.11 ([13]) If H is a relational structure which is invariant under no Maks operation then
H is #P-complete.

Notice that ifH has a Mal'tsev polymorphism then the decision CSP corradipgrto 7 can be solved in
polynomial time [6, 12].

Example 2.12 Mal'tsev operationn(z, y, z) is a polymorphism of grapli/; shown in Fig. 2, wheren is
given by
m(i1j1, 922, 9373) = ij,
i =11 [j = 71] unlessiy = is [j1 = jo], in this case = i3 [j = js3].
GraphH> has no Mal'tsev polymorphisms. Indeed, if soifier, y, z) is a Mal'tsev operation, then

(2 (3)(4)=(4) e

01 a b

00

10

Figure 2:

In our algebraic definitions we follow [16, 54]. For algelaraitions and results concerning the decision
CSP the reader is referred to [9, 15].

A (universa) algebrais an ordered paif = (A, F') where A is a non-empty set anfl is a family of
finitary operations om. The setA is called theuniverseof A, operations from#” are calledbasic An
algebra with a finite universe is referred to d#nite algebra while the set of basic operations needs not to
be finite.

Any relational structuré{ with universeH can be converted into an algebkég(H) = (H; Pol(H)).
Conversely, every algebra = (A; F') corresponds to a class of structufs(A) with universeA and
relations frominv(F"). Using this correspondence we can define #-tractable algebAn algebra is
said to be#t-tractableif every structure € Str(A) is #-tractable; it is said to b#P-completdf some
H € Str(A) is #P-complete.

We shall express the complexity ¢fCSP(H) in terms ofAlg(H). For example, if an algebra has a
Mal'tsev operation, it is called Mal'tsev algebra Proposition 2.11 implies that #CSP(H) is tractable
thenAlg(H) is Mal'tsev.



2.4 Subalgebras and congruences

We shall use various constructions on algebras, but tweesktlsonstructions, subalgebras and congruences,
can be defined for relational structures, and are very usefiiillustrative in this context.

A subalgebraof a structureH = (H; R}, ... ,sz) is a unary relation pp-definable i, and acon-
gruenceof H is an equivalence relation pp-definableZf For a subseB C H, the substructure df
inducedby B is defined to bé—[‘B = (B; R?B, o RmB), whereRi‘B = R; N B™, R; is m;-ary. For an
equivalence relatione anda € H, the class ofx containinga is denoted by:® and the set of all classes
of o by H/,. Thequotient structure}{/ , is defined to be/,, = (H/.;R}!/,.---:R}t/,), Where
Ri/a = {(a‘f,. .. ,a?fni) ‘ (al, R ,ami) S Rz}

Example 2.13 Let H = (V, E) be a digraph without sources and sinks, i.e. the in-degrdeoatidegree
of each vertex is non-zero. We define two binary relatigasand(;;, on the vertex setl of H: (a,b) €
&y if and only if a, b have a common out-neighbour agd b) € (4 if and only if a,b have a common
in-neighbour; in other words§y, = {(a,b) | (a,c),(b,c) € E for a certainc € H}, () = {(a,b) |
(c,a),(c,b) € E for a certainc € H}. Relations{y and (3, are pp-definable irH, as the following
pp-formulas show

En(z,y) =32(E(x,2) ANE(y,2)),  (n(z,y) = 3F2(E(z,2) A E(2,)).

In general £y, (14 are reflexive and symmetric relations. Howevefkithas a Mal'tsev polymorphism,
they are also transitive. Indeed, suppose thab) € &3, d € H is their common out-neighbour, ards
an out-neighbour od. If ¢ is not an out-neighbour df, thenH containsH, (see Fig. 2) as a subgraph and
(b, c) is not an edge, which contradicts the assumption tdtas a Mal'tsev polymorphism. Therefore,
the out-neighbourhoods af b are equal whenever, b) € &, that implies transitivity. Thus§y, ( are
congruences of{.

For the graptf/s shown in Fig. 3, thé;,-classes ar¢a, b, ¢}, {d, e}, and the{y,-classes aréa, b, e}, {c, d}.

Figure 3:

Proposition 2.14 ([13]) Let H be a relational structure3 and « its subalgebra and congruence respec-
tively.
(1) If H is #-tractable then so ar‘e{‘B andH/ -

2) If H‘B or H/,, is #P-complete thef is #P-complete.

In a similar way we define congruences of relations. Ret def() be ann-ary relation. It can be
viewed as a subalgebra ofh direct power ofH{. A congruence orR is a2n-ary relation@ € def() such
thatpryy 1@ = Prynq1,..203@ = R, and, ifQ is treated as a binary relation @ it is an equivalence
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relation. An important example of a congruence Bris the following. Leta € Con(H) and denote by
o™ the relation onR given by (a,b) € o™ if and only if (a[i], b[i]) € « for all i € [n]. As the following
pp-definition showsg™ is a congruence ak

n
an(w17"'7xn;y17"'7yn):R(w17"'7 )/\Ry17"'7yn A whyz

Example 2.15 Let us reconsider relatio on the 3-element s, b, ¢}, whose pp-definition is given in
Example 2.1. We show that the binary relatidron () that relates triples with the same set of entries is
a congruence of). This can be done in two ways: we may verify that the followpmformula defines
exactly that (6-ary oda, b, c}) relation

T(z,y,z, 2,9y, 2") = 3t,u,v,w,u', v, w (R(t,z) AN R(t,y) A R(t,2) A R(u,v)
AR(v,w) A R(w,u) A R(u,x) A R(v,y) A R(w,2) A R(t,z") A R(t,y') A R(t, )
AR VYA RO W) A R(w ,u') AR, 2') AN RO, y') A R(W, 2,

or we may observe that tHe is formed by restrictions of homomorphisms from the grapbwshin Fig. 4
toH onto{x,y, z,2', v, 2’ }.

Figure 4:

The existence of a Mal'tsev polymorphism provides a necgssandition for the #-tractability of a
relational structure. However, it is not a sufficient cormlif as Example 2.17 below shows. In the Section 4
we prove two more necessary conditions. A particular casmefof them is that proved in [14].

Let o, 8 be congruences of H, wherea, ¢ are incomparable, that is, neitherC 3, nor3 C «. Let
Ai,...,Ar and By, ..., By be thea- and 5-classes respectively (see Fig. 5). Theii«, 3) denotes the
k x (- matrlx (mij), Wherem” |A; N Bjl.

Proposition 2.16 ([8]) Let H be a relational structure, and let, 3 be incomparable congruencessf If
rank(M («, 3)) > k, wherek is the number of classes of the smallest congruence congabdtha and 3,
then#CSP(H) is #P-complete.

Classes of the smallest congruenceontaining botho and 5 can be easily represented in terms of
matrix M («, 5): This matrix (as well as any other square matrix) after létaynchronized permutations
of rows and columns can be partitioned into a collection afasq cells sitting on the diagonal, so that all
entries outside the cells equal zero. The finest partitiahisfkind gives the classes of



3 —classes

. |+—— o —classes

Figure 5:

Example 2.17 Let’H be the grapl; shown in Fig. 3p = £, andf = (g,. We haved; = {a,b,c}, A2 =
{e,d}, By ={a,b,e}, By = {¢,d} and

M(a,m:(f })

By Proposition 2.16, the probles CSP(H3) is #P-complete.

2.5 \Varieties and Complexity

It will be convenient for us to jump back and forth between elatieoretic and algebraic views to the
CSP. The language of relational structures is more conmemiben describing algorithms. On the other
hand, standard algebraic constructions allow us to sthenghecessary conditions for #-tractability, and
eventually formulate a criterion for #-tractability.

Definition 2.18 (1) LetA = (A; F)) be an algebra. Thé-th direct powerof A is the algebrad* = (A*; F)
where we treat eacfsay,n-ary) operationf € F as acting onA* component-wise.

(2) LetA = (A; F) be an algebra, and leB be a subset oft such that, for anysay,n-ary) f € F, and
foranyby,...,b, € B, we havef(by,...,b,) € B. Then the algebr® = (B; F‘B), WhereF‘B consists of
restrictions of operationg € F' onto B, is called asubalgebraf A.

Note that a seiB is a subalgebra of a structurg{ if and only if B is the universe of a subalgebra of
Alg(H).
(3) LetA1 = (Al;Fl) andAg = (AQ;FQ) such thatF1 = {le ‘ 1 € I}, Fy = {f22 ‘ 1€ I}, andfil,ff
are of the same arity;, i € I. A mappingy : A1 — A, is called ahomomorphismirom A; to Ay if
oft(ar,... an) = f2(p(ar),...,p(an,)) holds for alli € I and allay, ..., a,, € A;. If the mappingp
is onto thenA is said to be &nhomomorphic imagef A;.

A common way of constructing homomorphic images is througigcuences and quotient algebras. A
congruenceof an algebrad = (A; F) is an equivalence relation ofl invariant under all operations from
F. Letd be a congruence aof. The algebrad/y = (A/p; F/p), whereF/y = {f/p | f € F}andf/y
is given by f/g(af,....a%) = (f(a1,...,ay))? is called aguotient algebra Observe that an equivalence

relation is a congruence of a structdgf and only if it is a congruence oklg(H).

Theorem 2.19 ([13]) Let A = (A; F) be a finite algebra. Then
(1) if A is #-tractable then so is every subalgebra, homomorphigenand direct power of.
(2) if A has a #P-complete subalgebra, homomorphic image, or direater, thenA is #P-complete.
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For an algebra\ the class of algebras that are homomorphic images of sulralg®f direct powers
of A is called thevariety generated by, and is denoted byar(A). An operationf on the universe of an
algebraA = (A; F') that preserves all relations invariant undeiis called aterm operation ofA. Every
term operation ofA can be obtained from operations Bfoy means of superposition.

An operationf on a setd is said to badempotentf the equality f(x, ..., z) = x holds for allz € A.
Algebras whose basic operations are idempotent possegsuseiial properties. Thiill idempotent reduct
of an algebraA = (A; F) is the algebrdd(A) = (A; Fiq) where Fiq consists of all idempotent term
operations ofA. There is another way to characterizg. If A = Alg(H) for a certain relational structure
H, thenld(A) = Alg(Hiq), whereH;q is an expansion of{ by unary relationsK;, h € H, and K},
is interpreted as theonstant relation{(%)}, containing only one tuple, namelfy:). We will need the
following simple observation about relational structunéth idempotent polymorphisms.

Lemma 2.20 LetH be a relational structure whose polymorphisms are idemypte € def(H) ann-ary
relation, o a congruence of?, and B an a-class. Them3 is a relation pp-definable ift{.

Indeed, leta € B. Since every polymorphism 61 is idempotent, the constant relatioA§;), i € [n],
are pp-definable ift{. Then

B(xi,...,zn) = 1, yn(R(x1, . oyzn) AaX1, ooy oY1y oo Yn)
/\Ka[l}(yl) VANPAN Ka[n}(yn))

The following theorem shows the connection between conitglaxd full idempotent reducts.

Theorem 2.21 ([13]) (1) A finite algebraA is #-tractable[#P-completgif and only if so isld(A).
(2) A relational structureH is #-tractable[#P-completgif and only if so isH;q.

If A is an idempotent algebra and the condition of Propositia6 & true for every pair of congruences of
A thenA is said to becongruence singularlf every finite algebra in a variety is congruence singuhamt
the variety is called congruence singular. We call a refaicstructure{ congruence singular iig(H)
generates a congruence singular variety. By Propositib®é &d Theorems 2.19, 2.21, every structtre
that is not #P-complete is congruence singular. The maintrekthe paper is that this condition is sufficient
for #-tractability.

Theorem 2.22 A relational structureH [an algebraAl], is #-tractable if and only ifH;q is congruence
singular[ld(A) generates a congruence singular variety

Observe that the condition of having a Mal’'tsev polymorphigerm operation) is not included into the
criterion. As we shall see later (Lemma 3.3) every congraesiagular structure has a Mal'tsev polymor-
phism.

We complete this section with a more combinatorial charazton of congruence singular relational
structures. Lef{ be a relational structureR a relation pp-definable ift{, and«, 3, § congruences of?
such thatd < «,(3. By M(R;a,3;9) we denote the matrid/(«, 5) computed forR in the quotient
structure /5. More precisely, letdy, ..., Ay and By, ..., B, be thea- and 5-classes respectively. Then
M (R; «, 3;6) is thek x (-matrix (m;;) wherem;; equals the number @fclasses ild; N B;.

Lemma 2.23 A relational structurel{ is congruence singular if and only if for any relatidgdpp-definable
in H and any congruences «, § of R such thatd < «, 3, the rank of the matriX/ (R; «, 3; §) equals the
number of classes in the smallest congruence containingdand j.
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Proof: Let A = Alg(H). We show that for any finite algebiafrom the variety generated by and
congruences, 3 of B there are a relatiof® pp-definable irt{ and congruences o/, 5’ of Rwith 6§ < o, 3
such thatM («, 8) = M(R; ', 3';6); and, conversely, for anR, §, o/, ', there areéB anda, 3 satisfying
the above equality.

TakeB, «, andS. By the HSP-Theorem (see, e.g., [18])s a homomorphic image of a subalgebra of
(say,k-th) direct power ofA. Let C denote the subalgebra of the direct power, an@lbe a homomorphic
image ofC, let » be the homomorphism, and tetbe the corresponding congruencefthat is{a, b) € v
if and only if o(a) = ¢(b). The universeC' of C can be viewed as a subset B — recall thatH is the
universe ofA — invariant under all polymorphisms @{. ThusC is ak-ary relation pp-definable i#{. We
chooseR = C. Then the term operations @f are the polymorphisms @f acting onR component-wise.
Furthermore;y is an equivalence relation ati invariant under all operations @f, and therefore under all
polymorphisms ofH{. Hencey is a congruence oR, and we set = ~. Finally, definea/, 3’ as follows:
o = {(a,b) € R? | (p(a),p(b)) € a}, andf’ = {(a,b) € R* | (p(a),¢(b)) € B}. Everya'- or
('-classD corresponds to the-, respectively3-classo(D) = {¢(a) | a € D}, and this correspondence
is one-to-one. Thé-classes insidé are also in a one-to-one correspondence with the elemetgloy.
This implies the equality of the matrices.

Now take a-ary relationR pp-definable ift{ and congruences o/, 3’ of R. Firstwe seC = (R; { f© |
f € Pol(H)}, where fC acts onk-tuples fromR component-wise. Sinc& is invariant under all polymor-
phisms ofH these operations are well-defined. Algeliraan be defined as the quotient algetirg;, and
congruencesy, 3 as follows:a = {(a%, b®) | (a,b) € o/} andj3 = {(a’?,b%) | (a,b) € #'}. As before,
we have one-to one correspondences betwegni- and«’-, 3'- classes, as well as, betwegglasses and
elements ofB, that implies the result. O

3 Congruence lattices and the structure of relations

3.1 Lattices and congruence lattices

In this section we look closer at the family of congruences oflational structur@{. All definitions and
results given here were originally introduced for algebrés our algorithms are described in terms of
relational structures, we reformulate them in terms ofcstmes, replacing congruences of algebras with
congruences of structures, and term operations of an ageitin polymorphisms of a structure. However,
the notions we arrive to for a structuté are exactly the same as those defined for the algklar@q).

The set of all congruences of structdreis denoted byCon (). Let«, 3 € Con(H). The intersection
of o and g is again a congruence &f and is denoted A 3. As is well known, the smallest equivalence
relation containing botlax and S is the transitive closure af U 3. It can be shown that this equivalence
relation is a congruence &f, denoted byx v 5. The setCon(H) together with the operations (mee} and
V (join) is called thecongruence latticef H. The setCon () is naturally ordered with respect to inclusion.
The least element ofon(H) is the equality relation, denoted kY, and the greatest element is the total
relation, denoted by;y.

If R is a relation pp-definable if, then Con(R) denotes the set of all congruences Bn This set
depends ori as well as orR, but usuallyH is clear from the context. The s€bn(R) is also a lattice.

Lattices can also be introduced in an abstract way, as a@ag alith operations\ andV satisfying
certain conditions, see [37]. The structure of a latticevedl one to define a partial ordgron L: a < b if
and only ifa A b = a, or, equivalentlya < bif and only if a vV b = b. Note thata A b anda Vv b are the
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greatest lower and the least upper bound,@f respectively, in terms of this order.

We will deal with lattices of several particular types. Atie¢ L is said to be (ajnodularif, for any
a,b,c € L such that < a, the equalitya A (bV ¢) = bV (a A ¢) holds; (b)meet semi-distributivé, for
anya,b,c € L such thata A b = a A ¢, the equalitya A b = a A (b V ¢) holds; (c)distributiveif for any
a,b,c € L, the equalitya A (bV ¢) = (a Ab) V (a A c) holds. Modular and distributive lattices are very well
studied, see, e.g., [37, Ch. I, IV].

A lattice L is modular if and only if it contains npentagon Fig. 6(a), as a sublattice. Note that this
does not mean that does not contain this configuration in terms of order: It malsb be the case that
aNc=bAc=dandaVc=>bVc=e¢,seee.q., [37, Theorem 2, Ch. ll]. Similarly,is distributive if and
only if it contains no pentagons or diamond, see Fig. 6(bj sgblattice. It is also not hard to check that a
diamond is not a meet semi-distributive lattice. Thus weibthe following

(@) (b)

Figure 6: Pentagon (a) and diamond (b)

Observation 3.1 Every modular semi-distributive lattice is distributive.

One particularly useful property of modular lattices is thibowing. A pair a,b of elements from a
lattice L is called aprime quotientdenoted: < b, if a < b and there is ne € L such thata < ¢ < b and
¢ # a,b. Supposer < b. A sequencer = ¢y < ¢; < ... < ¢, = bis called amaximal chainfrom « to b.
Observe that such a chain is maximal in the sense that themoasther elements between the Number
k is called thdengthof the chain.

Proposition 3.2 (The Jordan-Hdlder Chain Condition, [37], Th. 1, Ch. ll.2) For any two elementsg <
b of a modular lattice, all maximal chains fromto b have the same length.

For elements:, b of a lattice L such thata < b, theinterval [a, b] is the set of alke with a < ¢ < b.
Intervals[a,b] and|c, d] are said to beerspectivef bV c=d, bAc=a0raVvVd=">baANd=c(see
Fig. 8(a)). Thus perspectivity is a binary relation on thedfentervals of L. Two intervals that belong to
the transitive closure of this relation are said toobgjectiveto each other.

3.2 Congruence lattices and types of prime quotients

If H has a Mal'tsev polymorphism, the sébn(H) cannot be just an arbitrary collection of equivalence
relations. In particular, any two members( of Con(H) must bepermutablethat isa o 3 = § o . This
means that, for ang-classA and anys-classB belonging the same Vv -class,A N B is non-empty (see
Fig. 7). As is easily seen, congruencess are permutable ifand onlyii o 8 = foa = a V f.

Lemma 3.3 If a relational structureH is congruence singulgfan algebraA generates a congruence sin-
gular variety], then it has a Mal'tsev polymorphisfa Mal'tsev term operation
Therefore for any relatior pp-definable i its congruence lattic€on(R) is modular.

12



B—classes o —classes

\

T

aAB—classes avR—classes

Figure 7:

Proof: By the well known result of Mal'tsev [16], Theorem 12.1, agetiraA has a Mal'tsev term
operation if and only if any two congruences of any algebrthavariety generated bd are permutable.
Therefore it suffices to prove that if the variety generatgdlg(7) for a structureé/{ is congruence singular
then it is congruence permutable.

SupposeH is congruence singulaB € var(Alg(H)), anda, 5 € Con(B). If « C gor 3 C « then
they are obviously permutable. If the congruences are ipeoable themank(M («, 3)) = k wherek is
the number ofx v 3-classes. It is convenient to represent/ 5-classes as cells of matrix/ («, 3). The
equalityrank(M («, 3)) = k implies, in particular, that all entries in a cell are nomezeTherefore, for any
a, b from the samex Vv §-class, sayq belongs ton-classA; and 8-classB;, andb belongs ton-classA,
and-classB;, we haveA; N By # & and A, N By # &, as the corresponding entries of(«a, 3) must
be non-zero. Thefu,b) € a0 3, as anyc € A; N By witnesses, anda, b) € S o «, as anyd € A, N By
witnesses. Thugo 3= Foa=aV .

The second part of the lemma follows from the observation @a(R) is the congruence lattice of
certain algebra in the variety generatedAlg(7{) and the fact that the congruence lattice of a congruence
permutable algebra is modular. O

A pair of congruences, 3) is said to be grime quotientf they form a prime quotient in the congru-
ence lattice.

We shall use some notions and results of tame congruencey fddd. Tame congruence theory is a tool
to study a local structure of universal algebras and relatistructures through certain properties of prime
quotients of the congruence lattice. In general, this thédentifies five possible types of such quotients
defined in a fairly sophisticated way. Fortunately, in ousecaf relational structures with a Mal'tsev poly-
morphism, only two of those types can occur, and the defmiticthese possible types can be significantly
simplified.

A prime quotientn < G is said to be of thaffinetype, if, for anys-classB, there is a modulé/p with
the base se/ , over aringRp such that forany (z1, ..., Zn, ¥1,- - -, ym) € Pol(H) anday, ..., an € H,
if the operationg(z1,...,z,) = f(x1,...,2pn,a1,...,ay) preservess, then it can be represented as an
operation of the modul@/:

(Q‘B(xl""’x"))/a =c1r1+ ... +cepxy, +a.

In all other casesy < (8 has theBooleantype.

Example 3.4 Let £, be a 2-element relational structure whose relational sysrdre interpreted as solution
spaces of systems of linear equations. THgrhas only two congruenceg\,, the equality relation, and
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Vo, the total binary relation. As Example 2.8 shows, the primetignt A, < V, is of the affine type.
Thus, the affine type corresponds to some kind of “lineatiityd broad sense.

Prime quotientsy; < 1 andas < (32 are said to be perspective [projective] if the intenvals, 3;] and
[ag, (32] are perspective [projective] i@on(H).

Lemma 3.5 ([41], Lemma 6.2)If a; < 31 andas < [ are projective quotients ifton(H), then they have
the same type.

3.3 Congruence lattices of relational structures with a Maltsev polymorphism

We will often distinguish two cases: when the congruendiabf our relational structure omits the affine
type, and when the affine type occurs in this lattice. Notg siace by Lemma 3.3 we need to consider only
structures with a Mal'tsev polymorphism, all congruendtidas we consider are modular

3.3.1 Distributive lattices and structures omitting the afine type

If H omits the affine type then, by Theorem 9.15 of [4ddn () is meet semi-distributive, and by Observa-
tion 3.1 it is distributive. We will need several propertafdistributive lattices. An element of a lattice L

is said to bgoin-irreducible if for any b, ¢ € L such thatz = b V ¢ eitherb = a or ¢ = a (see Fig, 8(b)). By
[a) we denote th@rincipal ideal generatedby «, i.e. the set of all elementsc L with b < a (see Fig 8(d)).

join—irreducible
meel—in@i
[a)
(b) (©)
(@

Figure 8: Perspective intervals (a), join-irreducible émd meet-irreducible (c) elements, and principal
ideal (d)

a

d
c
(a)

Proposition 3.6 ([37], Theorem 9, Corollary 11, Ch. Il.1) For any finite distributive latticel. there is a
finite set,M, and a injective mapping : L — 2M (the set of all subsets) such th@t{a Vv b) = J(a)UJ (b)
and 7 (a A b) = J(a) N T (b).

Set)M can be chosen to b&(L), the set of all join irreducible elements bf and.7 (a) to beJ(L)N|a).

Example 3.7 The lattice shown in Fig. 9(a) is distributive. Its represdion as a lattice of subsets is also
shown.
Proposition 3.8 ([37], Corollary 14, Ch. 1l.1) Every maximal chain of a finite distributive lattide has
length|J(L)]|.

Let L be a distributive lattice witk\ andsy, the least and greatest elements, respectively, and It

set representation as described in Proposition 3.6.

14



{1,2,3,4}

{1,2,4}

{1.3}

(b)

% (@)

Figure 9:

Corollary 3.9 For any prime quotient < bin L, |7 (b) — J (a)| = 1.

Proof: Take a maximal chain ifu) that starts at\ and ends at. Then continue it by: < b and by a
maximal chain fronmb to 7. The resulting chain is a maximal chain inand therefore has length’(L)].
SinceJ(A) = @ andJ(s7) = J(L), the difference of set representations of consecutive exisrof the
chain is 1-element. O

Lemma 3.10 An interval|a, b] is projective to intervale, d] if and only if 7 (b) — J(a) = J(d) — T (c).

Proof: Assumewe have =bAc,d=bVe. Then7(d) = J(c)UT(b) =T (a)U(T(b) —T(a))U
J()=T()U(Jb)—T(a)),andT(b) — J(a) and T (c) are disjoint.

Conversely, lefa, b], [c, d] be intervals such thaf (b) — J (a) = J(d) — T (¢). Let T (b) — T (a) = K.
Setd = aVcandd =bVe. Clearly, 7(d) = J(d)UK,sobAd =a,bV =d andd Ad = ¢,
¢ vd=d. Intervals|a,b] and[c, d] are projective. 0

Lemma 3.11 Let L be a distributive lattice and lef’ be a maximal chaimy < a; < ... < ag, where
ag, ay, are the least and greatest elementd.ofespectively. Then for any prime quotien« b in L there is
auniquew € [k] such thatz < b is projective taa, 1 < a,. Moreover,7 (b) — J (a) = J(aw) — T (Gw—-1)-

Proof: Leta < b be a prime quotient and € [k] such that7(b) — J(a) = J(ay) — T (aw—-1). By
Lemma 3.10 interval&s, b] and[a,,—1, a,] are projective. Since/ (a,,) — J(aw—1) # T (aw) — T (ay—1)
whenevew # «’, the result follows by Lemma 3.10. O

It will be convenient for us to use another representatioalements of a distributive lattice. Take a
maximal chainC' in L, say,ay < a1 < ... < ag, Whereag, a; are the least and greatest elementd. pf
respectively, and led/ = {1, ..., k} be the set of its prime quotients, whesec M denotes the quotient
ay—1 < a,. An elementa € L corresponds to the sé¥l(a) of quotients fromM that are projective to
quotients of the forne < d < a. As the following lemma shows this alternative represéomat equivalent
toJ.

Lemma 3.12 There is a one-to-one correspondenedetween the sef(L) of join irreducible elements of
lattice L and set)M such that, for any: € L, an elemenb € J(L) satisfies the inequality < « if and only
if there is a prime quotient < d < a projective top(b). Thus,M(a) = {¢(b) | b € J(a)}.
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Proof: For a join-irreducible elemerit € J(L) let b’ denote the only element ih such that' < b.
Clearly, 7(b) — J (V') = {b}, therefore by Lemma 3.10 all such quotients are not prejed¢t each other.
We setp(b) = w wherew is the unique prime quotient it/ such that’ < b is projective toa,_1 < a,.

If b € J(a) then clearlyp(b) € M(a). It remains to show the converse, that is for any prime quobtie
¢ <d < athereish € J(L) with b < a such that < d is projective ta)’ < b.

Let 7(a) = {b1,...,be}. Then for any element < a we have7(c) C {b1,...,bs}. For any prime
quotiente < d < a if J(d) — J(c) = {b;i}, thenF(d) — J(c) = T(b;) — J(b;), and, therefore, by
Lemma 3.10, the quotients< d andb < b; are projective. O

For a relational structurg and its congruence lattic&on () we use the following notation. L&t be a
maximal chainAy = 6y < 61 < ... <6, = vy. The setM is defined to be the set of the prime quotients
of this chain. Slightly abusing the notation the quotiént, < 6, will be denoted byw. A congruence
0 € Con('H) corresponds to the st (6) of quotients from)M that are projective to quotients of the form
v < B < 6. The bottom end of a prime quotiente M will be denoted byv_, and the top one by .

The following proposition comprises properties@fn () that follow easily from the representation of
this lattice as a lattice of subsets.

Proposition 3.13 (1) Every prime quotient ifon(7) is projective to one and only one of the intervals of
C.

(2) Foranyw € M, M(w4) ={1,...,w}.

(3) MappingM is a representation ofon(7) by subsets ai/.

(4) For anyw € M, that is, any prime quotient i@, there is the greatest prime quotief)f < A, projective
to w; that is, for anya. < 3 projective tow we haven < k, andg < A,,.

(5) For anyw € M, the congruence,, is meet-irreduciblethat is, ifx, = a A g thank, = a or k, = 3
(see Fig. 8(c)).

Proof: Items (1)—(3) follow straightforwardly from Lemmas 3.11dar8.12. In part (2) Lemma 3.11 is
applied to the intervalA i, w |.

(4) Letk,, be the join of alla € Con(H) such thatv ¢ M(«). By parts (2) and (3) of the proposition
w & M(ky). Then set\, = K, V wy. Sincew ¢ M(w_), we havew_ < k, and M(\,) = M(k,) U
M(w-) U{w} = M(ky) U {w}.

Let« < (3 be a prime quotient projective to, that isM(8) — M(a) = {w}. Thenw & M(a), so
a < Ky ASM(B) — M(a) = M(\,) — M(ky,), we haves < \,, and by Lemma 3.1& < ( and
ko < A, are projective.

(5) Supposes, = a A B. Thenw ¢ M(a) orw ¢ M(3). By the choice ofs,, eithera < &, or
B < Ky O

3.3.2 Relational structures admitting the affine type

Let us again consider the congruence lattica (7). A congruences is said to besolvableover « if there
area = 0; < ... < 6, = B such that all the prime quotiends < 6, have the affine type. Theh denotes
the binary relation oi€on() defined as followsa < 3 if and only if a \V 3 is solvable over A 3.

Proposition 3.14 (1) < is an equivalence relation and, moreoveca@ngruencef Con(); that is, for any
a1, az, B, Ba € Con(H) suchthaty < as, B1 % B2, we havelar V) X (aaVBa), (a1 AB1) < (aa/A\Ba).
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Cong ) Congr )

Figure 10: Congruence lattice and its quotient lattice nimdu Prime quotients of the affine type are
shown by thick lines; the greatest elements in the classésavé encircled

(2) Every classS of X has the greatestg and the leasi3s elements (with respect tg), and equals the
interval g, ag]. Every prime quotient insidé has the affine type.

(3) The quotient latticeCs; = Con(H)/ 3, is distributive (see Fig. 10).

Proof: (1) is Lemma 7.4 of [41].

(2) The first part follows from the well known fact that evetgags of any congruence of a finite lattice is
an interval, and therefore every class has the least and¢agegt elements. Let < 3 be a prime quotient
in S. We haven < 3, thatisa = ae A 8 anda VvV 3 = 3 are connected with a chain of prime quotients of the
affine type. HoweverCon(H) is modular, hencer < 3 is the only such chain.

(3) Theorem 7.7(2) from [41] claims th&Y, is meet semi-distributive. Sing&on(H) is modular, so is
L+, and by Observation 3.4, is distributive. O

The<-class containing congrueneewill be denoted byy™.

Proposition 3.14(3) implies thdl;, can be represented as a lattice of subsets of a finitd/se&dimilar
to Subsection 3.3.1}/ can be chosen to be the set of prime quotients of a maximah ¢h&m £4,. Note
that the endpoints @b € M are setsS, S, of congruences frorfion () (S; corresponds to the bottom end
of w). By w_ we denote the greatest elementSf and byw, the least element ¥, such thatv_ < w,.
Let 3 < ~ be the greatest quotient ify,; projective tow. Again, 8 and~ are setsly, T> of congruences
from Con(H) (77 corresponds t@). By «,, we denote the greatest elementlof and )\, the least element
in T, such thats,, < A, (see Fig. 11).

Proposition 3.15 (1) Intervalsjw_,w] and [k, A, | are prime quotients.
(2) Prime quotientv_ < w is projective tok,, < A,.

(3) Prime quotientsv_ < w, andk, < A, have the Boolean type.

(4) Congruencex,, is meet-irreducible.

Proof: (1) Letw_ < a < wy. Since(w-_)~ < (wy)™, congruencex belongs to one of the two
R-classes. It cannot be the case that (w_)™~ anda # w_, becauses_ is the greatest element jw_)"~.

If @ € (wy)™~ thena = wy, asw_ < o andwy is the least element ifw,. )™ with this property.

For ., and), the argument is the same.

(2) Since(w-)~ < (kw)~ andk, is the greatest element i)™, it follows thatw_ < k,. Then
(Fw AN wy)™ = (Ky)™ A (wg)™ = (w-)", hence, as _ is the greatest element {w_)~,we obtainw_ <
ko Awi < w_, thatis,k, Awy = w_. Next, (k, Vwi)™ = (kw)~V(wy)™ = (Aw)™. Sincek, < Ky, Vwy,
it follows thatk,, Vwy > A,. Thusintervalgw_,w. ] and|k,, k., Vwy] are projective. By the Isomorphism
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Figure 11: Congruence lattice and congruencgs),,. Solid lines represent prime intervals of the Boolean
type, ovals represenrt-classes

Theorem for modular lattices, see Theorem 2, Chapter IV o, fBey are isomorphic. Hence,@as < w
is a prime quotient|x,,, k., V w.] is also a prime quotient, which implies, Vw, = \,.

(3) If w_ < wy ork, < A, had the affine type, thé-classegw_)™ and(w; )™, or (k,)™~ and(\,)"~,
respectively, would be equal. A contradiction with the aggtions made.

(4) Suppose:, = a A 3, thena™ A 5~ = (k,)™~. By Proposition 3.13x,,)~ is meet-irreducible,
thereforea™ = k7, or 5~ = k7. If, say,a™ = (k)™ thena = k. O

3.4 Structure of relations invariant under a Mal'tsev operation
3.4.1 Basic properties

The following proposition contains some basic propertieelations invariant under a Mal'tsev operation,
which will be constantly used.

Proposition 3.16 Let H be a structure with a Mal'tsev polymorphism and let R be ann-ary relation
pp-definable irf{. Then for anyl C [n] the following properties hold

(1) R isrectangularthat is ifa, b € pr; R, ¢, d € prj,;_;Rand(a, c), (a,d), (b,c) € R, then(b,d) € R.
(2) The relationd; = {{a, b) € (pr;R)? | there isd € pry,— 12 such that(a, d), (b, d) € R} is a congru-
ence ofpr; R.

(3) There is a one-to-one correspondenceetweert;- and ), _-classes such thak is a disjoint union
of sets of the forn x C, whereB andC are af;- andd,_;-class, respectively, related by

Proof: (1) It suffices to observe that

n((8)(2)())=(a)

(2) Itis straightforward thafl; is reflexive and symmetric. ifa, b), (b, c) € 0, say,(a,d), (b,d) € R
and(b,e), (c,e) € R, then by rectangularitya,e) € R implying (a,c) € 6;. Finally, if, say,] =
{1,...,k}and[n] — I = {k+1,...,n} thend; is defined by the pp-formula

ef(xla"'axk‘ayla"'vyk‘) = Elxk‘-i—la"'axn(R(xla"'axk‘axk-f—l)"'axn)
/\R(yla ey Yk Th415 - - - 7xn))
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(3) Let B be ad-class and” ad,_;-class such thafa, b) € R for somea € B, b € C. Then for any
c € Cthereisd € pr;R with (d,b), (d,c) € R. By rectangularity we gefa, c) € R. Repeating the same
argument for tuples fron®? we concludeB x C' C R. Finally, if for somea € B there isb € pr,,)_;R—C
with (a,b) € R then, aga,c) € R for anyc € C, we have(b, c) € 0, _, contradicting the assumption
b € pr[n],IR -C. O

Binary relations invariant with respect to a Mal'tsev opena have particularly simple form. L&®;, Bs
be subalgebras 6f and leta; € Con(B;), az € Con(By) be such thaLBl/a1| = |B2/a2|. Let alsop be
a one-to-one mapping frorﬁ’l/a1 to Bg/a2. Thethick mappingcorresponding to is the binary relation
R = {(a,b) € By x By | p(a®') = b*2}. Any congruencex is the thick mapping corresponding to the
identity mapping or¥{/ . Proposition 3.16(3) implies the following

Corollary 3.17 LetH be a relational structure with a Mal'tsev polymorphism. Tresery binary relation
R pp-definable irf{ is a thick mapping.

Indeed, letR be a subdirect product dB; and By, and leta; = 011y, e = Oy9y. Then by Proposi-
tion 3.16(3) there is a one-to-one correspondepdeetweena;- and as-classes such thak is a disjoint
union of sets of the fornB x ¢(B), B is ana;-class. ThusR is the thick mapping corresponding ¢o

We shall use thick mappings throughout the paper. Somewlaed to thick mappings is the following
relation on the set of coordinate positions of a relationt Rebe ak-ary subdirect power oH. By o*
we denote a relation on the g¢f defined as follows:, j arenot in «* if there area,b € R such that
(ali], bli]) € a, but(alj], b[j]) € a, or (alj], b[j]) € a, butali], b[i]) o

3.4.2 The Boolean type and rectangularity properties

Let A be afinite algebra. Algebré is calledsubdirectly irreducibléf there is a congruence, themonolith
of A, such thatA 4, < p and for any congruence # A 4 we haveu < ~. Similarly, we call a relational
structure subdirectly irreducible i€on () has a monolith, that is a congruencesatisfying the conditions
above.

Let R € def(H), where’H is a subdirectly irreducible structure with a Mal'tsev polgrphism, be an
k-ary subdirect power df{. The equivalence relatiom* is defined in the same way as before. Note that if
(i,7) € p* thenpr, ;R is the graph of a bijective mapping, that is,pr; ;R = {(a,%(a)) | a € H}. If the
prime quotientAy < p has the Boolean type, Lemma 2.7 from [11] characterjzeslasses in terms of
so-calledcoherent setslt shows that in this case*-classes are the coherent sets. Then Lemma 2.6 of [11]
can be restated as follows.

Lemma 3.18 (Lemma 2.6, [11])Let R be ann-ary subdirect power of{ and the structuré+ is subdirectly

irreducible. Let alsq. be its monolith, let prime quotiedt ; < 1 have the Boolean type, and I&t . . . , I,

be theu*-classes (or, equivalently, the coherent sets). Let 8s0. . , B,, be u-classes such that N (B; x
.. X By) # 9, and

Ry, =prp RN H B;.
i€l

ThenRN (By X ... x By) =Ry, x ... x Ry,.

Recall that for a congruence € Con(H), we denote byy" the congruence oR consisting of pairs
(a,b) of tuples such thata[i], b[i]) € « forall i € [n].
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Corollary 3.19 Let™ be a structure with a Mal'tsev polymorphism, fet be a maximal chain ifton(H),
let R be ann-ary subdirect power of{ andw € M. Let alsoBy,..., B, be some classes of, and
I,..., I, the classes of,. LetalsoR’ = R/Fiﬁ’ whereR/RZ = {((a[1])f~,...,(a[n])") | a € R}, and
B] = Bi//-@w fori € [n]. Then eithetRN (By x ... x By,) = &, or

R'N(Byx...xB;) =R}, x...x Ry,
whereR; = pr; R’ N[, B

Proof: Relation R’ can be treated as a subdirect powerquﬂ . Sincek,, is meet-irreducible by

Proposition 3.15(4), the congruence lattice of struct)dr/% has a monolrth,\w, and therefore is subdi-
rectly irreducible. Now the result follows straightforvwidy from Proposition 3.15(3) and Lemma 3.182

Remark 3.20 (1) Letl; = {ij1,..., i, }- EveryR’ can be represented as the $ét, 1, (a), s Vi, (a)) |
a € B} where(pr;, ; R)N (BZ’ X B )is the graph of mapping;i ., .

(2) Another way to state Corollary 3 19 is the following. Legt. .., 7, be representatives of the' -
classes. Then for any choice of-classesz; € B; , m € [{], there iSa € R such thata[i,,] € a; for

all m € [4].

4 Necessary condition for tractability

In this section we prove two more necessary conditions fivaétability. Both of them follow from Propo-
sition 2.16, but they allow us to design an algorithm for #CSP

If the algebra corresponding to a structdiedoes not omit the affine type, then we have a stronger
necessary condition for the tractability #iCSP (H).

Proposition 4.1 If H is congruence singular then for any congruenées o < € Con(H) such that
a X B, anyn-ary relation R € def(H), and any sequenced, ..., A, and By, ..., B, of a-classes
such thatA;, B; belong to the samg-class for eachi € [n], if Ry = RN (A; x ... x A,) # @ and
Ro=RnN (Bl X ... X Bn) 75 I, then|R1/5n| = |R2/5n|

Suppose that Proposition 4.1 is proved in the ease g, that is, the following lemma is true (we prove
it later).

Lemma 4.2 If H is congruence singular then for any congruenées a < 3 € Con(H) such thatw <
has the affine type, any-ary relation R € def(H), and any sequenced,..., A, and By,..., B, of
a-classes such that;, B; belong to the samg-class for alli € [n], if Ry = RN (41 X ... x Ap) # &
andRy = RN (Bl X ... X Bn) 75 g, then|R1/5n| = |R2/5n|

Then the general case follows.

Proof: [of Proposition 4.1] We proceed by induction on the lengtla ofiaximal chairny = a1 < ... <
ap = (3. Lemma 4.2 provides the base case of induction. Supposththptoposition is proved far < a <
v wherey < . That is for any sequences,, ..., A/, andB], ..., B], of a-classes such that;, B; belong
to the samey-class for each € [n], if R} = RN(A] x...xA]) # @andR, = RN(B} x...x B}) # &,
then| R/ sn| = |Ry/ nl.
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Let A7, B! be thevy-classes containingl;, B;, respectively, and?{ = RN (A x ... x A?), R =
RN (BY x...x B'). Sincey < 3 and this prime quotient has the affine type, we can apply Leshééo
the triple of congruences < v < 3 to obtain|R{/sn| = |R5/sn|. Then we apply Lemma 4.2 to the triple
of congruences: < v < 3, and obtain the equalityRy/ | = |R3/n|; denote this number by. By
the induction hypothesis, eveny'-class insideR{ (and insideR’) contains the same number&f-classes.
Therefore| Ry /sn| = N - |Ry/sn| and|Ry/sn| = N - |Ra/ sn|. Equality|R1/gn| = |R2/gn| follows. O

To prove Lemma 4.2 we make use of some basics of commutatanytirecongruence modular varieties
(see [35]). As usual we introduce all required notions fdatienal structures rather than for algebras. Let
'H be a relational structure with a Mal'tsev polymorphism R € def (H) ak-ary relation, andy, 3,y con-
gruences ofR. Congruencer centralizess moduloy, denoted” («, 3; ), if, for any (n-ary) polymorphism
fofH,any(u,v) € aand any(a;, by),...,(a,_1,b,_1) € 3,

<f(uaa17° .. aanfl)af(ua bla e abn71)> € Y
— <f(V,al,...,anfl),f(v,bl,...,bnfl» €.

The smallest congruenegesuch thatC'(«, 3; ) is called thecommutatorof «, 3, denoteda, ).

Example 4.3 Let H be a 3-element structure with the univel§e= {0, 1,2} and 4-ary relationR that
contains the tuples listed below (written vertically)

S O O O
_= =0 O
_ O = O
O = = O
o O
O = O =
O O =
e

(these are the tuplgs, b, ¢, d) satisfying the equality: + b = ¢ + d (mod 2)), and also tuples obtained
from them by replacing some of the 1's with 2. Consider unatgition H. Set = 7y, and setx to be
the congruence with classe = {0} and A' = {1,2}. Observe that is a congruence, since it is given
by the following pp-formula

a(z,y) = FzR(z,y, 2, 2).

It is not hard to show that the polymorphisms kif are the operationg(x1,...,z,) satisfying the
following condition: there is an operatiof(ys, . . .,y,) on {0,1} such that (ay(yi1,...,yn) = e1y1 +
...+ enyn + e (mod 2), and (b) ifz; € A¥ fori € [n] thenf(xy,. .., z,) € AIWL-n),

We show thafs, 5] < a. Let f(x1,...,x,) be a polymorphism off andg(y1,...,yn) = e1y1+...+
enyn + e the corresponding linear operation 6t 1}. Let alsou,v,aq,...,a,-1, b1,...,b,—1 € H be
such that(u,v) € g and(a;,b;) € B (asp is the total relation, these are just any element&/df Letu €
A" v e AY anda; € A%, b; € AV fori e [n—1]. If (f(u,a1,...,an_1), f(u,b1,...,by_1)) € a then

gl al, ... al, ) = g(u, by, ... b ;). Using the linearity ofy we haveesa) +. . .+epal, _+e = eab)+
+ ey, ; + e (mod 2). Therefore g(v',dl,...,a,_;) = g, ¥,....b, 1), and
so(f(v,a1,...,an—1), f(v,b1,...,bp_1)) € a. The converse implication is similar.

The next propesition follows from Proposition 4.3 and Thkeoi.9 of [35], Theorem 7.2 of [41]

Proposition 4.4 Let H be a relational structure with a Mal'tsev polymorphism, € def(H) a (k-ary)
relation, anda, 5 congruences oR. Then
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(1) [a, 5] = [B, od;
(2) if & < B, then this prime quotient has the affine type if and on|gf3] < «;

(3)ifa < pgand[s, 8] < «, there is a congruence of 5 (where/ is considered as a@k-ary relation from
def(H)) such that the sefi(a,b) | (a,b) € a} is a class of).

Now we are in a position to prove Lemma 4.2.

Proof: [of Lemma 4.2] By switching to the quotient structutg/ ; we may assume thatis the equality
relation. To prove Lemma 4.2 we consider several congrienéd, including o™ and 5. As we are
concerned about-classes within somg-classes, we can restriét to a singleg™-class. By Lemma 2.20
every3™ class ofR is a relation pp-definable i, so letR’ be an arbitrary such class.

CLam 1. [p", "] < ™.

Let f be a g-ary) polymorphism ofH, and Iet< u,v) € " and(a;,by),...,(ax_1,br_1) € 8" where
u,v,a;,b; € R for i € [k — 1. If (f(uay,...,a5_1),f(u, bl,...,bk,1)> € ao" then
(f(uli],a [z],...,ak_l[i]),f(u[i],bl[i],...,bk_l[z])> € afor eachi € [n]. SinceC(3, §; ), this implies
(f(vli],a1[d],...,ax—1[d]), f(v]i],b1[i],...,bx_1[i])) € « for each indexi € [n]. Thus
<f(V ai,.. ,ak_l),f(v,bl, ce ,bk_1)> SN}

Everya-class ofR’ has the formR'N(A; x...x A,,) for certaina-classesdy, . .., A,. LetCy,. .., Cy
be thea-classes of?’, and|C;| = ¢;. We have to prove that = ¢; for anys, j € [k].

We treat the congrueng®’ restricted onta?’ as a2n-ary relation pp-definable ifi; let us denote it by
Q. By the choice of’ we have) = R'%. Proposition 4.4(3) implies that there is a congruencé @ such
that the seD of pairs of the form(a, b), a,b € R’ and(a, b) € o, is ay-class. Lety’ = v v a?".

CLAIM 2. (1) Every classZ of 7/ is the union(Cy x Cy, 1)) U... U (Cy x Cy ) for a certain bijective

mappingeg : [k] — [k].
(2) The setD is a class ofy’; and for this classp is the identity mapping.

Note that for any tuples, b, c,d € Rsuch that, c € C; andb,d € C; we have((a, b), (c,d)) € o?

We start with (2). ClearlyD has the required form of a union for the identity mapping. SinceD is
a class ofy and a union ofv?"-classes, it is a class ofv 042" =4

(1) It suffices to prove three claims: (a) for agy, C;, if (C; x C;) N E # & thenC; x C; C E;
(b) if (a,b),(c,d) € F and(a,c) € a", then(b,d) e a", and (c) for anyC; there isC; such that
(Ci xCy)NE # 2.

Property (a) follows from the inclusion®” < +'.

To prove (b) suppose that there &€b), (c,d) € E such thata,c) € o™, but(b,d) ¢ a". Asa®" <
+', we may assume = c. Sincey’ is a congruence of), and therefore is reflexivéa, a, a, a), (b, b,d, d),
(a,b,a,b) € v/, consideringy’ as a 4-ary relation o®’. Then we have

a a b b a a b b

ol 2 b b _| a e+ and m b a a _ b €
a a d d a a d d ’
a d d a b a a b

which implies thatb,d) € D, and thereforéb, d) € «™, a contradiction.
To prove (c) suppose that, for sorgand for anyC}, (C; x C;)NE = &. Takea € C; and(b, c) € F.
Then(b, ¢, b,c), (b,b,b,b), (a,a,b,b) € v (the last tuple belongs tg becausga, a), (b, b) € D). We
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have

€7

oo o
coooT
T T P
0T A

C
whered = m(c,b,a). Thus(a,d) € E, a contradiction

Suppose that; # ¢; for somei, j € [k]; clearly if suchi, j exist we can choose= 1. Without loss
of generality we also assunde < ¢;. We present a pair of congruencesitfthat violate the condition of
Proposition 2.16. One of them4éthe other one ig’ defined to be the congruenaé& x 5. In other words,
{(a,b),(c,d)) € p'ifand only if (a,c) € «". Itis not hard to see that v 3’ = " x ™ andy' A 3’ =
a™ x o™, Indeeda® <~ A B 1f {(a,b),(c,d)) € ' A 3 then(a,c) € o, since((a,b), (c,d)) € 3,
and by Claim 2 this impliegb,d) € a™. Thusy' A 3 < o™ x o”. Let(a,b),(c,d) € R'. As 3*" is
the total binary relation o’ these pairs are in the samé*-class. By Claim 2 there is € R’ such that
{(a,b),(c,e)) € . Since((c,e), (c,d)) € 3’ we have((a,b), (c,d)) € v/ o5 T~ Vv .

Every class oh™ x o is the Cartesian product of two clasggs C; of o”. Therefore, its cardinality
equalst;¢;. Thus, the row of the matri/(+/, 5’) corresponding to &'-classE looks as follows

(Olopy Lolop@) -+ Ulopw) )
The row corresponding to the claBsis
(88 - ).
As @ = R?, there is ay/-classE such thatC; x C; C E (recall that¢; < ¢;). Since’H is congruence
singular, the rows of/ (v, 5’) corresponding to classé3 and E are proportional, that is
T,
los)  lopd  loutn

Letj; =1, jo = vr(1) = j, andj, = ¢p(ji—1) fort > 2. Let alsom > 1 be the minimal number such
thatj,, = 1. We prove/;, > ¢;,_, that leads to a contradiction, as it would imply that< ¢; = ¢;. By

the assumption madg, = ¢; < ¢; = ¢;,, which gives us the base case. From the equalities abovewee ha
02 = l;,_, 4, Therefore ift;, , < {; then¢; < ¢;,,,, which proves the induction step. 0

jt—l t4+1" t+17

Example 4.3 (continued) Reconsider the relational structukefrom Example 4.3. By Proposition 4.1 the
problem#CSP(H) is #P-complete. Indeed, consider congrueneesd3 = 7y of H. We showed that
(8, 0] < «a, therefore by Proposition 4.4, prime quotient< 3 has the affine type. Setting= Ay we see
thata-classesA® and A' contain different number of elements.

The constrution used in the proof of Proposition 4.1 in thiseclooks as follows. Congrueng@es the
binary relation//2. Congruence’ of 3 such thatD = {(0,0), (1,1), (1,2), (2,1),(2,2)} is its class can be
chosen to be the congruence with clasBeand £ = {(0, 1), (0,2), (1,0),(2,0)}; and it is easy to see that
we can usek defined in Example 4.3 for that. Finally, the classeg’of o x 3 are{(0,0), (0,1),(0,2)}
and{(1,0), (1,1),(1,2),(2,0),(2,1),(2,2)}. Therefore

T (1 4
M(Ra’}/aﬂaAH)_<2 2)5
and its rank equals 2.
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We will also need another corollary from Proposition 2.1&t L be ak-dimensional array, that is a
collection of number§[i1, ..., i) indexed by tuplesiy, ..., ix), wherel < i, < my. ArrayT has rank 1,
denotedrank(T") = 1, if for each? € [k], and anyiy, ..., 6p—1,5041, -« 0ks J1y -« J0—1,J0+15s - - - » Jk With
iuy Ju € [Mmy), we have

T[Iil)”’aif—l)laif-f—la"'aik] _ _ T[ila"'aif—lamfa/if-f—la"'aik] (l)
T[jl)' .- ajf—l) 1aj€+1a cee ’Jk] T[jla cee 7j€—15mfaj€+1” .- ’]k]

Observe that it = 2, and thusI’ is a matrix,T" has rank 1 in the sense introduced above if and orly if
has the row- (column-) rank 1.

Lemma 4.5 Array T has rank 1 if and only if for each € [k] there are numbers, . .. ,tfnk such that
Tliv,... i) =t} ...ty
Proof: If numberst!, ... ,tfnk with the required properties exist then equalities (1) avéetly true. To

prove the converse we observe that (1) implies that foriany . , i, and? € [k]

T[,...,1,i1,...,1]

Tliv, ... ix] = Tli1, - o1, 1,501 - . k] -

T 1]
Therefore i
, , , TM,..., Lin1,... 1]
T\, ... =Tli1,1,...,1] - .
[’Ll) 7“{:] [215 ) 9 ] H T[l,,l]
=2
Choosingt! = TTi, 1,...,1] fori € [m;] andt! = % for2 < j < k andi € [m,] we obtain the
result. O

Now let R be a relation pp-definable in a structdrewith a Mal'tsev polymorphism, and let, . .. , v
be congruences aR such that for each € [£]

ViV A AV AVt A A =YV % 2)
Let alsoC be a class of = v V...V v, and letA?, . .. ,Aﬁni be the classes of; from C. Condition (2)
means that for any, . .., j. the sel‘A}1 N...N Afk is a nonempty class ¢f = v A ... Av. Indeed, le¥

be the smallest number such that for certain . ., j, the setA}1 N...N Aﬁe = &. Then for anya,b € C
we have

(ab) €y V(MA AV AVert A AT S eV (A A
Moreover, as congruences &f are permutable{a,b) € v, 0 (y1 A ... A y—1). Suppose € Aﬁ and
b belongs to a classsljl-1 Nn...N Aﬁ:l of 1 A ... Av_1. Then there existe such thatc € A§ and

(S Ajl-1 N...N Afe‘_ll, a contradiction. It is also clear that any two classes o thim are different. We
consider &-dimensional array/ (C;v1,...,vk), Where

M(Ciy, . w)lin, - oik) = [AL N NAL .

Proposition 4.6 Let v4,...,v, be congruences of a structufe that has a Mal'tsev polymorphism, let
them satisfy condition (2), and I€t be a class ofy; v ... V 4. Then, ifH is congruence singular then
rank(M (C;v1, ... ,7)) = 1.
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Proof: We consider congruencesands; = v1 A... Avi—1 Avit1 A ... Avg. To simplify the notation
we assume = k. If 1 is congruence singular, theank(M (C; v, By; A)) = 1. Let A, ..., Al be
the classes of; from C. The classes gf; have the formAZ-l1 Nn...N Afk‘_ll, the classes of;, A 3, are the
classes ofy; A ... A v,. Therefore every row oM (C; Bk, vi; Ar) is equal to

(M(Csvis- o)l - yik—1, 1, MGy, )i - i1, m])

for someiy, ..., ix_1. Sincerank(M (C; vk, Br)) = 1, we get

M(Caryla cee a’yk)[/il) .. 7ik‘—1) 1] _ _ M(Ca’yl) .. 77]6)[2.15 cee aik—lamk‘]

M(Cafylv cee 77]6)[].17 o 7]./6717 1] M(C7717 .. 7’7k)[j17 cee 7jk717mk]’
foranyji,...,jk—1, Js € [ms]. The proposition is proved. |

An important example of a collection of congruences satigfgondition (2) is the following (we prove
itin Section 5.3). Letv € M, and let/y, ..., I; be the classes af;,. Congruencey; is given by:(a,b) € ~;
if and only if (a[i], b[i]) € w_ for i € I; and(al[i], b[i]) € w otherwise.

5 Algorithms: prerequisites

5.1 Decision CSPs over structures with a Mal'tsev polymorpism.

If a relational structuré{ has a Mal'tsev polymorphism, then the decision CSP with émeplate’{ can
be solved in polynomial time [6, 12]. Here we shall use theodllgm presented in [12], and we call it
MAL'TSEV. This algorithm builds a sort of a succinct (polynomial $irepresentation for the set of all
solutions.

Let n be a positive integer, Il be a finite set, lea, b ben-tuples and leti, a,b) be any element in
[n] x H?. We say that paifa, b) witnessesi, a, b) if pr_qa = pry_y b, afi] = a, andbli] = b. We also
say thata andb witness(i, a, b) meaning thata, b) witnessegi, a, b).

Let R be anyn-ary relation onH. Thesignatureof R, Sigp C [n] x H?, is defined to be the set
containing all triplegi, a, b) € [n] x H? witnessed by tuples iR, that is

Sigp = {(i,a,b) € [n] x H? | there area,b € R such thata, b) witnessegi, a,b)}.

Note that in our notatiorti, a,b) € Sigp if and only if (a,b) belongs to the relatio; computed for the
relation pry; R (see Section 3.4.1). In particular, @ has a Mal'tsev polymorphism, relatigpry; R is
rectangular, and hence for ay a,b) € Sigg and anya € prj; R with ali] = a, the tupleb such that
prj;_1 b = pr;_jja andbli] = b also belongs tery; 1.

A subsetR’ of R is called arepresentatiorof R if Sigr, = Sigp. If furthermore,| R'| < 2|Sigp| thenR
is called acompactrepresentation oR. Observe that every relatiol has compact representations.

Let H be a relational structure a@ C H™ for somen. By (R');; we denote the relatiogenerated
by R/, that is, the smallest relatioR pp-definable irf{ and such thaR’ C R. Alternatively, (R');, can be
constructed fronR’ by adding every tuple that can be obtained g4a,,...,a,) wheref is an (.-ary)
polymorphism ofH andag,...,a, € R'. SinceH is usually clear from the context we shall omit this
subscript. The key lemma proved in [12] states thak if a relation pp-definable in a relational structure
with a Mal'tsev polymorphism, an@®’ is a representation aR, then(R’) = R. Given an instanc¢ of
the constraint satisfaction proble@SP(H), m = |G|, the set of all solution® (G, H) to this problem can
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be thought of as am-ary relation pp-definable iff{. The algorithm presented in [12] finds a compact
representation of this set.

We will need to know the unary and binary projections of tHatien ®(G, H), that is, sets of the form
P, = {p(g9) | ¢ € ®(G,H)} for g € G, and P, , = {(v(9),p(h)) | v € ©(G, H)} for g.h € G. Let
R’ be a compact representation®fG, H). If a € &, then(g,a,a) € Sigegx), S0Py = pryn R, Itis
also not hard to see (see also [12]) tigt, is equal to(pr, , R'). Therefore, we may assume that we have
a precomputed table that for each subsetiok H gives the binary relation it generates. Then every time
we need to findp, ;, using a compact representati&, we just find the corresponding projection®@fand
look up the table.

If there are no complexity restrictions imposed, as in theeaaf precomputation, the relation generated
by some set) C H™ can be computed by employing the standard methodsQLet{ay, ..., a,,}. First,
find all m-ary polymorphisms of{. This can be done using tlrdicator problem[46]. Next, include into
(@) all tuples that can be representedfds,, .. ., a,,) for anm-ary polymorphismyf.

5.2 Reduction to subdirect powers.

In general, for an instanag of #CSP(H) the setsb,, g € G, are subalgebras 6{ that are not necessarily
equal toH. For us, however, it is much more convenient to deal with eeeavhenb (G, H) is a subdirect
power of H, that is®, = H for all g € G. We show how to transform the problem so thgtis 7 for all

g € G. To do this we borrow some methods from the multi-sorted G&®&, e.g. [10].

Let Dy, ..., D, be the subalgebras @t (including H itself). We define a relational structugg™) as
follows. The universe of (H) is D = D; x ... x Dy; theith component of an elemefite D is denoted by
ali]. For any @-ary) relationz pp-definable irf{ and such thapr; R = D;;, we set(@i, ..., a,) € x(R) if
and only if (@ [i1],...,an[in]) € R. In particular, each unary relation g{) corresponding to a relation
of H contains all elements dd and, therefore, can be thrown out. For any coordinate positf any non-
unary relationR, the setpr; x(R) equalsD. Finally, to definex () formally, for each relational symbat,
we interpret it afX(") = y(R).

Lemma 5.1 If H is congruence singular thep(#) is also congruence singular.

Proof: Let R be ann-ary relation overD. It naturally defines a¥in-ary relationfla(R) over H that we
call flatteningof R:

fla(R) = {fla(a) € H™ |thereisa € R such that
(fla(a)[e(j — 1) +1],..., fla(a)[¢j]) = alj] for eachj € [n]}.

As is easily seerf]a is a one-to-one mapping between the set-afiples and the set dh-tuples, and also
betweem-ary and/n-ary relations.

Cram 1. |fla(R)| = |R|.
CLAM 2. If Ris pp-definable in¢(H) thenfla(R) is pp-definable irf{.

The following convention for indexing variables of predesawill be helpful. IfR isn-ary andR(x1, . .., x,)
is the corresponding predicate, we degR) (1, ...z, ..., zL, ... «%) for the predicate corresponding
to fla(R).
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First, we prove the claim for a relatioR = x(R') where R’ is a relation fromH. Suppose that
pr; R’ = D, for j € [n]. Itis not hard to see that

fla(R)(zl,....2f,..., o, 2l) = R} ,....ai) A N\ N\ Di(al).

Now we proceed by induction on the structure of a pp-definittd R. If R = R; A Rs thenfla(R) =
fla(Ry) A fla(R2). If R(x1,...,2,) = JyR/ (x1,...,2,,y) then
fla(R)(z}, ..., 2%, ... 2L, .. 28) =3t .. 00

no r'n

fla(R))(zt,...,2%, . o2k, 2l yt D) A /\ Di(y")).

CLAIM 3. LetR € def(x(H)) be ann-ary relation,«, 5 its congruences. Then (a) for any binary rela-
tion # on R and anya,b € R, (a,b) € 0 if and only if (fla(a), fla(b)) € fla(8); (b) relationsfla(«), fla(3)
are congruences o6fa(R), (c) equalitiesfla(a A 5) = fla(a) A fla(5), fla(a vV 3) = fla(a) V fla(5) hold,
and (d) the number af- [(3-] classes equals to that 8&(«) [respectivelyfla(5)], and|B| = |fla(B)| for
eacha- [3-] classB.

(a) follows from the observation thét(a, b) = (fla(a), fla(b)) for anya,b € R.

(b) To prove it use part (a) along with Claim 2.

(c) Note that iffla(a) = fla(b) thena = b. Hence,fla(a A §) = fla(a N B) = fla(a) N fla(B) =
fla(a) A fla(3). To provefla(a vV 3) = fla(a) V fla(3) we can use (a) to show that transitive closure is
preserved byla, that implies the result.

(d) For anya-classB by Claim 1 we havdB| = [fla(B)|. Using (a) we can also find a one-to-one
correspondence between andfla(«)-classes [respectively- andfla(3)-classes].

Finally, leta, 8, andé with § < «, 3 be congruences @, and let4,, ..., A,, andBs, ..., B be thex-
and (-classes respectively. Then  fla(4y),...,fla(An) and
fla(By),...,fla(By) are thefla(a)- andfla(3)-classes, respectively. Moreover, the numbep-afasses
in eacha A -classB is equal to that ofla(d)-classes irfla(B), and the number af Vv 3-classes is equal
to the number ofla(«) V fla(3)-classes. Therefor®! (R; o, 3;9) = M(fla(R); fla(a), fla(B); fla(d)). O

It is sometimes useful to replace relational structdrevith its expansion Let H be a relational structure
with vocabularyr and universed. StructureH’ is said to be an expansion #f if it has the same universe
H, and vocabulary”’” O 7, where every symbol from is interpreted ir{’ in the same way as if{. An
expansion of a structure can be thought of as throwing in sextra relations. If all the added relations
are pp-definable it then#CSP(H’) is polynomial time reducible tg#CSP(H). Therefore expanding
a structure by adding pp-definable relations does not chimegeomplexity of the problem. By taking an
expansion ofH if necessary, we shall assume that along with everarfy) relational symbolkR and any
D;,,...,D;, the vocabulary of{ contains a symbak’ such thatR’”* = RN (D;, x ... x D;)).

For an instance of #CSP(H), the algorithm in Fig. 12 constructs an instarigeof #CSP(x(H)).
The following lemma completes the reduction.

Lemma 5.2 Let G is an instance of#CSP(H) and G’ an instance of#CSP(x(H)) constructed by algo-
rithm Subdi r ect . Let also®, = pr, (G, H) for g € G. Then®(G', x(H)) is a subdirect power of (H)
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Algorithm Subdi r ect
INPUT: an instancej of #CSP(H)
OuTPUT: an instance;’ of #CSP(x(H)) with the same universe &

Step 1 find a compact representation ®fG, H) using MAaL’ TSEV
Step 2 foreachg € G find @,
Step 3 for each (n-ary) relational symbaoR do
Step 3.1 for eachtuple(gy,...,g,) € RY do
Step3.1.1 let R be the relational symbol such that’* = R™ N (g, X ... x Dy)
Step3.1.2 include (g1, .., g,) into RV

endfor

endfor

Step 4 output G’

Figure 12:

and
(G x(H) =[2G H)| - [] 1o

Moreover,Subdi r ect is polynomial time.

Proof: Lety € ®(G,H) be a homomorphism frorg to H. Let a set of mappingg(¢) from G’ to
Xx(H) be given by

x(p) ={¢: G — x(H) | foranyg € G"if &, = D; and+(g) = @ thenali] = ¢(g)}.

(Note thatG andG’ have a common universe.) We show that everg x(y) is a homomorphism from
G’ to x(H). Let R’ be a relational symbol an@, ..., g,) € R Tuple (g1, ..., 9,) COMeSs toR"Y" on
Step 3.1.2 from som&Y such thatR’”* = R N (®,, x ... x ®,,). Therefore(x(g1), .. ., ¢(gn)) € R
Sincepr; Rt = d,, fori € [n], we also havéy(g1), ..., (gn)) € Y(R'™). Thusy is a homomorphism.

For anyg € G’ and anya € @, there isp € ®(G,H) such thatp(g) = a, hence, for any) € x(¢)
we havey(g)[i] = a. Since for anyu; € D;, j € [{] — {i}, there exists) € x(¢) with ¥(g)[j] = a;, this
implies that®(G’, x(H)) is a subdirect power of (H).

Lety € ®(G, x(H)) be a homomorphism fro’ to x (7). Let us define a mapping~(y) from G to
H as follows. Fory € G if ¢(g) = @and®, = D; then sety ' (¢)(g) = a[i]. By the construction of(H)
andg’, if we change the valug = ¢(g) for someg € G with ®, = D; to anyb such thab[i] = a[i], then the
resulting mappingy’ is still a homomorphism frong’ to x(#) andx~!(¢’) = x~!(¢). For a fixedg this

can be done iq% ways. Conversely, for any homomorphisime ®(G, H), any mappinge: G’ — x(H)

such thaty ! () = 1 is a homomorphism of’ to x (#). Therefore for each homomorphisime ®(G, )

there ard [ % homomorphisms € ®(G’, x(H)) such thaty~! = 1. The result follows.

Finally, since Step 3 makes only one pass over every tuplelafions inG, this step can be done in
linear time. Thus the time complexity of the algorithm is doated by Step 1, which is polynomial time,
as so is algorithm ML’ TSEV. O
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5.3 Structure of Mal'tsev instances

Let G be a#CSP(H) instance andG| = m. In this section we study certain structural propertiehefdet
of homomorphism® (G, H) from G to H. It will be convenient to assume that the unive€sef G equals
[m]. Set®(G,H) can be thought of as an-ary relation pp-definable ifi{. By the results of the previous
subsection we may assume thHat= ®(G,H) is a subdirect power of{. Recall that for a congruence
6 € Con(H) by 6™ we denote the congruence Bfsuch that(a, b) € 6™ if and only if (a[g], b[g]) € ¢ for
all ¢ € G. For congruenceg < v € Con(H) and a mapping: G — H/ﬁ, by 77 we denote a mapping
from G to 7—(/7 given by77(g) = 7(g)".

Let M be the set of prime quotients of a maximal chainlin= Con(H)/s. As before we assume
M ={1,...,¢}. Letalsow € M. Taker, an element OR/wT- It can be thought of as a mapping frain

to H/er. This mapping is always a homomorphism frgiro H/w+, but not every such homomorphism
belongs tOR/wT' Indeed, ifw = ¢ andw, is the total relation, a homomorphism from agyo H/er, a

1-element structure, always exists, howevecan be empty. By (G, H; 7) we denote the set of elements
o from R, that is, homomorphisms frogi to H, such thap“+ = .

We study the structure ¢b(G,H; 7) up tow_. More precisely, letF, ..., E, be thew* -classes and
hi,...,h, representatives of these classes. For any homomorpbism® (G, H;7) and anyh € E;,
the valuep(h)“~ is completely determined by the valugh;), so we may focus on possible values of
such homomorphisms dny, ..., h,.. Our goal is to show that these values are in some sense miiemte
meaning that for any collectiom € 7(h1)/, ,...,ar € 7(h;)/, (recall thatr(h;) is aw-class) there
is o € ®(G,H; 7) such thato(h;)“~ = a;. Unfortunately, this statement is false in general, howewnehe
end of this section we prove a result sufficiently close te tirie. Note also thak(G, H; 7) is considered
as a part ofd(G, H). Although, it is possible to restrict the original instarszethat its solutions are only
members of® (G, H;7), it leads to several complications. The most important efrttis that elements
of G would have different domains, and those domains would h#ere&ht congruence lattices that may
significantly differ fromCon(H) or any part of it.

First we consider a similar problem for another prime quitie,, < A,. This will help us because,
sincek, A wy = w_, valuesp(h;)" andr(h;) determinep(h;)“~. We prove that the required property
is true in this case. Le#, ..., A; be thex] -classes andy, ..., g, representatives of these classes. By
Cy,...,C% we denote the,-classes fromr(g,)*, u € [¢].

Lemma 5.3 For any choice of,, € [s,], u € [k], there is a homomorphisme R such that for each € [£]
o(gu)™ = Ci,.

Proof: If we setB, to be the),,-class containing (g) thenr witnesses thakRN (B x ... x By,) # <.
Let R = R/, .m and By = By/y,, forg € G. Then, by Corollary 3.19, we have

R'N(By x...xBy,) =Ry, x...x Ry,

whereR) = pry, R N]],c4, By The result follows. o

If &'V (ws)™ were equal to\]} this would mean tha® (G, H; 7) intersects with every'-class, and
sincex, A wi = w_, this non-empty intersection would provide a homomorphigith prescribed values
modulow_. However in generak! vV (wy)™ # A}, so it is important to find:? V (w4)™. To do that
we describe the intervak?, \'] in the congruence latticEon(R). It will be more convenient to think of
elements ofk as of tuples rather than mappings.
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Lemma 5.4 Every prime quotient in the intervat!", \™?] of the congruence latticEon(R) has the Boolean

type, the intervalx, \'] is a distributive lattice isomorphic to the latti@g! of subsets of &-element set,
wherek is the number of -classes, and every congruence in this interval can be sgpiied ag s, J C [k],
given by:(a, b) € n;ifand only if(a[g,], b[g.]) € k., Whenevew € [k] — J and(a[g.], blg.]) € A\ When

u € J.

Proof: ReplacingRk with R/ = we may assume that, = Ag. Thus if tuplesa, b € R are such that

algy] = blg,] for all u € [k], thena = b. Therefore, it suffices to consider relatiét! = pry, 1R

We study intervals of the forry, nu¢,)] for J C [k] andv € [k] — J. Any such interval is non-trivial,
meaningn,; < 1;u{}- Indeed, by Lemma 5.3, for any C [k] andv € [k] — J there are tuplea,b € R

such thata[g,] # b[g,], buta[g,] = b|g,] for all u € [k] — {v}. By the same reasaf}; < 7y, for any

v € [k].

First, we show that every such interval is a prime quotierdteNhat interva(n s, n,5u.}] is prospective
to [AY,,ngy ] Indeed, if(a,b) € 5 thenalg,] = blg,] for u € [k] — J, and if (a,b) € 7y, then
a[gy] = blg,] for all u # v, implying n; A 1y, = Ak CIf (a,b) € njufv}, then by Lemma 5.3 there is a
tuplec such that(g,| = c[g,] for all u # vandc|g,] = b[g,] for allu € [k]—.J. Hencen; Vg, = 1n50f0}-

It suffices to show that the intervals of the forf, < n{v} are prime quotients. To simplify the notation
we assume = 1.

LetAX, <a < ng1y- Forany(a,b) € aand anyu # 1, alg,] = b[g,]. This means that is determined

by the relation

B = {{a,b) € H*| there area,b € R’ such thata,b) € «, a[g;] = a, b[g1] = b,
anda[g,] = b[g,] for all u # 1}.

Relations is a congruence dff andAy < 8 < A\,. AsAg < A, we getd = )\, and the rectangularity
of Rimpliesa = ny1y.

Let us now check that quotiedt?, < nq1y has the Boolean type. By Proposition 3.15(8); < A,

has the Boolean type, which means that there is a polymarpbisf(z1,...,z,) of H and elements
c,d,ay, ..., ap_1,b1,...,bp_1 Suchthatc,d) € \,, (a;,b;) € A\, fori € [n—1],andf(c,a1,...,an-1) =
fleybyy ... by—q) but f(d,ay,...,an—1) # f(d,b1,...,bp—1). By Lemma 5.3 there are,d anda;, b;,
i € [n— 1], from R such thatc[g1] = ¢, d[g1] = d, a;[g1] = a;, bi[g1] = b;, andclg,] = d[gu],
a;[gu] = bi[gu] fori € [n — 1] andu € [k] — {1}. Observe thafc,d), (a1, b1), ..., (an—1,bn-1) € N3
Then we havef(c,ay,...,a,—1) = f(c,by,...,b,—1) but f(d,a;,...,a,-1) # f(d,b1,...,b,_1),
that implies that);;, does not centralize itself moduld¥,, and soA g < n¢1y has the Boolean type.

We have proved that any interval of the folmy, n;u¢,] is @ prime quotient, and, by Lemma 3.5,
it has the Boolean type. Next we show that every prime qubtien< 8 with A% < o < g < Ak
is projective to one of such intervals, and therefore hasBthelean type. Suppose the contrary, and let
B < A¥ be a maximal congruence such that, for same: 3, [, 3] is projective to[n., n.jugvy] for no
J C [k], andv € [k] — J. Let J be a maximal set such thaj < «, andv any member ofk] — J. Then
nJ = Njufey SiNCea A nyugy = 1, if nyugyy < B the intervalla, 3] is prospective tdns, nug}], @
contradiction with the assumption made. Otherwise, by tbhdutarity of Con(R), [«, ] is prospective to
[V n5080), BY Nyugey]s @ contradiction with the maximality gf. Thus, every prime quotient from interval
[A% AF] has the Boolean type.

Finally, by Lemma 6.6 of [41], this implies that this intehelbes not contain a diamond, and,@s(R)
is modular,[A%,, \k] is distributive. Since the congruencesy, - - -, ey are join-irreducible elements of
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this lattice, andy, v ... VvV n, = A}, every elemend of this interval can be represented in the form

0= \/nu:nJ
ueJ

for someJ C [k]. O

Now we obtain a result similar to Lemma 5.3 for homomorphisnmulow_. Note thatw* -classes
cannot be used, because, in general, they have nothing imoorwith « -classes. Indeed, a pa, ¢')
belongs toa* for some congruence if, for any mappingso1, 02, (01(9),02(9)) € « if and only if
(01(9"), 02(¢")) € «. For different congruences such conditions are incomparable. However, if some
homomorphismr € R/WT is fixed, this argument does not work anymore. SirgeA w, = w_, ho-

momorphismr and a choice of values fari, ..., g, (provided they are taken from(g,)*~) determine a
mappinge : G — H/,, . Foranyg € g, the values ofj, ..., g, determine thes,-classo(g) belongs
to, andr(g) determines the -class ofo(g). Therefore every homomorphism frofnG, H;7) up tow_
can be defined by a certain choice of valuesdar. . ., g,.. The difficulty is that some choices do not define
any homomorphism. The next lemma shows which combinatiénalaes forgy, ..., g, correspond to
elements ofb(G, H; 7).

Lemma 5.5 There isJ,, C [k] such that for anyr € R/ W (we use notation fok,,-classes introduced

before Lemma 5.3), there afg with i,, € [s,], u € [k] — J,, satisfying the following conditions. For any
homomorphisny € 1/ m with ¢+ = 7 the collection ofi,, u € [k] — J,,, can be completed hy, with
iy € [sy] for u € J, such thato(g.) € 7(g.) N C} for u € [k]; and, for anyg € A,, u € [k], we have
o(g) = m(g) N C, whereC is thex,,-class corresponding to the choice@f for g,.

Conversely, for any choice 6f , u € J, the mapping defined in this way is an eIementhwT, and

ot =T,

Proof: Observe that in the congruence lattiGen(R) we haves! Aw’' = w™ andk]} < k' VW <
Al By Lemma5.457 VW' = n,, for someJ,, C [k]. This means that there are fixgd v € [k] — J,,
with 4,, € [s,], such that for any € R/(wi)m, with ¢+ = 7, we haveo(g.,) € C}! foru € [k] — J,.

Takep € R/wr_n with o“+ = 7. Clearly, 0"~ belongs tor’«/ m, and by what we showed above

0(gu) € C} foru € [k] — J,. The first part of the lemma follows.

To prove the converse statement, let us denoteptheclass containing: by D. Sincex[} andw’
permute, for any:'-classC' C D and anyw’['-classC’, the intersectiorC' N C” is nonempty. Therefore,
foranyp € R/Kgl such thatp(g,) = C}! foru € [k] — J,, there isp € R/ ,m such thato"~ = ¢ and

o“+ = T; thatisp(g) = ¢(g9) N 7(g). The lemma is proved. o

We complete this section by presenting a collection of coegces related te@_,w, and satisfying
condition (2). LetAy,..., Ay be thex} -classes, and lef, C [k] be the set defined in Lemma 5.5 for
w € M. Congruences,, u € J,, are defined as follows{a, b) € ~, if and only if (a[i], b[i]) € w_ for
i € Ay UUyep— o, Avr @nd(ali], b[i]) € wy otherwise. (Here again we treat elementsads tuples.)

Lemma 5.6 Congruencesy,, u € J,, satisfy condition (2).
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Proof: Again we use notation introduced before Lemma 5.3. Withoss lof generality we assume
Jo = {1,...,q}. First, observe tha; A ... A v, = ™. Let 3, = v, V&), thatis,(a,b) € 3,
if and only if (a[i], b[i]) € r fori € Ay UU,ep—s Ao and(afi], bli]) € A, otherwise. Let also
6 = y1V...Vy,. Itisnot hard to see tha@h A...AS, = [ andB; VvV G; = n,, foranyi, j € [¢]. Since lattice
Con(R) is modular, intervalgw™, 6] and [, ;] are isomorphic, where an isomorphism can be defined by
o(x) =z Vv K[}, see [37] Cha. IV, Theorem 2. Again by modularity equaliies ) = w'" V &' = 1y,
andid Ak} = W ARl = W™ imply 6 = w'". Therefore we may considgl, . . . , 3, instead ofyy, ..., v,
where we also may assume that = A . To simplify the notation we prove condition (2) foe 1.

By Lemma5.5{a,b) € gy ifand onlyifpry,ua, ., u..04,2 = Pra,ua,,u...04, P TUPIESDT 4,5 g, 2,
DI 4,0..u4, P Delong topr 4, 4, R, @nd(alg],blgl) € A, forg € Ay U... U A, Similarly, (a,b) €
B2 A ...\ By ifand only if pry, a,pry, b € pry, R, (alg],blg]) € A, for g € Ay, andpry,, a2 =
Pra,u. A, P € Pra,u.ua, R Takea, b € Rsuchthafa,b) € A andalg] = b[g]forg € Ag1U...UA,
and definec to be the tuple withc[g] = a[g] for ¢ € A; andc[g] = b[g] forg € A2 U ... U A;. By
Lemma5.5¢ € Rand(a,c) € 31, (c,b) € B2 A ... A B,. Thus(c,b) € BV (B2 A ... A By). O

6 Algorithm: computing the number of solutions

In this section we use the results proved in the previousasexto design an algorithm solving counting
CSPs for congruence singular structures.

Suppose that{ is congruence singular. Lé be an instance oftCSP(H); assume that the universe
G of G is [m]. As beforeM = {1,...,/} is the set of prime quotients of a maximal chain in the lattice
Con(H)/s.1f by # sy or1_ # Ay then we add extra element+ 1)_ or 0 to the set of congruences
w_,wy,w € M, see Fig 13. Otherwise we assufifet 1)_ = ¢, and0; = 1_, respectively. IrCon(H)
the chain corresponds to a number of prime quotients of tthredo. < w that have the Boolean type, and
intervals[w., (w + 1)_] such that every prime quotient from this interval has thenaffype, see Fig. 13.

A mappingT: G — H/p for 6 € Con(H) will be called amapping of leved. Recall that for a mapping
7 of level 6, by ®(G,H; ) we denote the set of all homomorphismse ®(G,H) with ¢ = 7. The
overall idea of the algorithm is to compute recursively nenstof the form®(G, H; 7)| for instancej and
mappingsr of levelw_ orw,, w € M. If 7 is a mapping of leve(¢ + 1)_ then|®(G, H,7)| = |®(G,H)],
and if 7 is a mapping of leved; then|®(G,H, )| = 1. Forw € M and a mapping from G to H/w+ or
to’H/ , , we show how to reduce computing the numpe(G, H, 7)| to computing numbergb (G, H, o)|
for certaine, mappings frong to H/ , orto H/(w — 1) respectively. The two cases; G — H/w+

andr: G — H/_, will be considered in the next two subsections.

6.1 Prime guotients of the Boolean type

LetA,..., A, be thex -classes ang, . . ., g; their representatives. Letbe a mapping fron®(G, H)/WT’
that is7(g) is aw-class forg € G. By J,, we denote the subset [gf] identified in Lemma 5.5. Without loss
of generality we assumé, = [q]. LetC}, . .. ,C¢, bethex,-classes fromr (g, ), the \,-class containing

elements fromr (g, ), for u € [k]. Recall that by definitioy € A, if and only if for anyp, o’ € ®(G, H) if
(0(gu), 0'(gu)) € kw then{o(g), 0 (g)) € k. and vice versa. Therefore, for apye A,, v € [k], and for
anyo € ®(G, H; ) the valuep(g)“~ is determined by(g,, )“~, and thato(¢)“~ = o(g)" N 7(g). In other
words, there is a one-to-one mappipgfrom the se{C}, ..., C% } to the set ofs,,-classes of (g)*« such
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Figure 13: The congruence lattice Bf, a maximal chain irCon(H)/ s, the corresponding prime quo-

tients, and<-classes. Prime quotients. < w., are shown by solid linesy-classes by ovals, dashed lines
represent chains of the affine type (not to be mistaken wihdtited line).

thato(g)“~ = ¢4(0(gu)"™) N7(g). Leti,, u € [k] — J, andi, € [s,], be thex,-classes corresponding to
T asin Lemmab.5.

Proposition 6.1 (1) For anyg-tupler such thatr[u] € [s,], the mapping,: G — H/ , , where for each
u € [k]

C':f[u] N7(gu), fued,

Ci N7(gu), otherwise

or(gu) = {

and for eachy € Ay, u € [q], 0r(9)”~ = pq(0r(9a)™) N7(g), belongs tOR/(w_)m.
@12(G.H.7) =) |96, H. 0r)l.
(3) Setsp (G, H, or) 1é\\re the classes of congruenge_)™ of the relation®(G, H, 7).

Proof: (1) follows straightforwardly from Lemma 5.5.

(2) Every homomorphisna from ®(G, H; 7) belongs to a certain sét(G, H, o, ), namely, the one with
r[u] = j, whereo(g,) € C}. for u € [g]. On the other hand all sets of this form are disjoint.

(3) Sincex, A wy = w_, all elements fromb(G, H, or) are (w_)"-related. Ifp € ®(G, H, or) and
o € (G, H, or) Wherer[u] # r'[u] then(o(g.), 0'(9u)) & w—, and thereforép, o') & (w_)™. O

We use the congruences, . . . , v, introduced in Section 5.3, ¢’) € v, if and only if (0(g), ¢'(9)) €
w_if g e A,0org € Agp1 U ... U A, and(o(g), ¢'(9)) € wy otherwise. By Lemma 5.6 congruences
Vi, - - -, Yq Satisfy condition (2), an@w_ )™ = v1 A ... A7,

Recall thatr can be treated as.d"-class and that/ (7,1, . . . ,74) denotes thg-dimensionak; x . . . x
sq-array such that its entry indexed bys equal to®(G, H, o.)|. By Proposition 4.6 (7,71, ...,74) has
rank 1, that is, there are numbets. .., t% , foru € [g], such that

7 Y8y ?

_ 41
|‘1>(g,7'[, QI‘)| - 7fr[l] Tt tz[q}'
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If numberst;ﬁ are known, we have

O(G, H,7) = D O(G, Hyor) = 3 thyy -ty

_ 1 2 q 1 2 q
= t] ( > trm-...-tr[q]) ot ( > trm-...-tr[q])
r| r[2

2],....,r[q] ],....r[q]
q s
= ...=]] i:tg
j=11i=1

that can be computed easily.
To find the number$§ we use the approach from the proof of Lemma 4.5. Fix a tuplsay,r =

(1,...,1). By r§ we denote the tuple, all entries of which are equal to theespwnding entries af, except
for thei-th entry that is equal tg. Then set
|f1>(g, H, Qr;)|

th =@ and ¢ =
j =20 M, 001 77 1®(G, H, or)|

fori e {2,...,q}.

Thus, we have reduced computing the numidgiG, H, 7)|, mappingr is of levelw,, to computing
numbers of the form®(G, H, o, )|, wherep,. is of levelw_.
J J

6.2 Quotients of the affine type

LetT € @(Q,H)/(w rym for somew € M — {¢}. Congruencdw + 1)_ is solvable over,, and we
make use of the following implication of Proposition 4.1.

Corollary 6.2 (1) Letoy, 02 € @(Q,H,T)/WT. Then|®(G, H, 01)| = |P(G, H, 02)].
(2) For anyp € @(Q,H,T)/MT,

(G, H,7)| = [2(G, M, 0)] - [®(G, H, )/ -

Thus, to reduce computin® (G, H, 7)|, wherer is of level (w+ 1) _, to computing|®(G, H, o)|, where
ois of levelw, it suffices to find the numbe® (G, H, Q)/WT|'

We consider first the case when is the equality relation, that is = 0. In this case the required
number can be found using the signatSigy of the relationk? = ®(G, H, 7) in a very simple way through
the following lemma. Observe that it does not apply to theaalsenl - = Ap.

Lemma 6.3 Let Sigy be the signature ob(G,H, ), and o, be the relation{(a,b) | (g,a,b) € Siggr}.
Then

(1) oy is @ congruence of (g);

(2) all o4 classes have the same cardinality, denotedy

) |P(G, H,T)|=v1-... V.
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Proof: (1) Relationay is pp-definable irt{ as the following formula shows

ag(x,y) = 321,00, 291, 2g4+1s - Zmy Ug1s - - -, U

(R(21, -5 2g—1,T, Zg1y - > 2m) AN R(21, ., 2g—1, Y5 Ugt1, - - s Um))-

Due to rectangularity oR this relation is an equivalence relation.

(2) follows straightforwardly from Proposition 4.1, ag < w_, and sav_ R ag.

(3) As every element gfrp,,,_1)®(G, H, 7) can be extended to an elementigiy, H, 7) by any member
of a certainn,,,-class, the number of such extensions equglsand we have

|‘1>(g,7'[,7')| = |pr[m—1]@(g’H’7—)| * U

Continuing this way we gt (G, H, 7)| = v1 - ... - Un. O

To find the signature ob(G, H, 7) we can use algorithm WL’ TSEV applied to the instance modified
in the following way. We shall assume that for each subakgyébiof H the vocabulary of{ contains a
unary relational symboRg such thatRY = B. Letgi,...,gx € G, and letBy, ..., By, be subalgebras
of H. By G U {(g1,B1),-..,{gk, Br)} we denote the relational structure with the same universg, as
and such that the interpretation of every relational symBof {Rp,,...,Rp,} equalsRY while the
interpretation ofRp equalsR% U{g:; | Bi = B}. Thus, the elementg, ..., g; are forced to be mapped
to By,..., By respectively. It is not hard to check th&{G, H, 7) is the set of solutions for the instance

gu{lg,7(9) | g € [m]}.
Observe that if we know the signature of reIati@(Q,H,r)/wT, which is a relation oveH/W+, we

still can use Lemma 6.3 to find the cardinality ]@f(g,H,r)/wT]. In order to do that we just have to
replaceH with H/W+. Therefore the problem we are facing now is how to find theagigne of this relation.

Unfortunately, it is not clear at all how to obtain this sigim& using the signature or a compact representation
of (G, H, ), nor we can use algorithm M.’ TSEV to compute the signature @f(G, H/er, 7), since in

general@(g,H/W+,r) # @(Q,H,T)/WT. Instead, to compute each member of the required signatere w

find a compact representation of a certain modified problenguEgorithm MaL’ TSEV.

More specifically, we first find the , -signatureof the relation® (G, H, 7). Letn be a positive integer,
let H be a finite set, lef be an equivalence relation di, let a, b be n-tuples, and leti, a, b) be any
element inn] x H2. We say thata, b) §-witnessesi, a, b) if (a[j], b[j]) € 0 for eachj < i, a[i] = a, and
bli] = b. Let R be amn-ary relation onH . Thed-signatureof R, Sigy C [n] x H?, is defined to be the set
containing all thos€i, a, b) € [n] x H? §-witnessed by tuples iR, that is

0Sigr = {(i,a,b) € [n] x H? | there area,b € R such thatla, b) #-witnessesi, a,b)}.
Lemma 6.4 Letr € @(Q,H)/(w +1)m
(1) Algorithmw-SIGNATURE (see Fig. 14) finds the_ -signaturew, Sigp of R = ®(G, H, 7).

(2) The signature ob (G, H, w)/wT can then be found by replacing eag@h a, b) € w,Sigp by (g, a“*,b“+)

Proof: (1) For anyg € [m], a triple (g,a,b) is added toS only if there arep, o’ € ®(G,H,T)
such thato(g) = a, 0'(g) = b, and(o(h), 0'(h)) € wy for everyh < g. Therefore,S C w,Sigg. If
(9,a,b) € w,Sigg thena € pr R. Hence there i® € R’ such thato(g) = a. Suppose thato’, o")
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Algorithm w- Si gnat ur e
INPUT: an instanc& of #CSP(H),w € M, andr € @(Q,H)/(w + 1™

OUTPUT: aw-signature ofb(G, H, 7)
Step 1 find a compact representatid®l of ®(G, H, ) using MAL' TSEV
Step 2 setS := & (thew, -signature ofb(G, H, 7))
Step 3 for each (g,a,b) € [m] x H? do
Step 3.1 if there isp € R’ such thato(g) = a then do
Step 3.1.1 find a compact representatid®’ of &(G’, H, ) where
G’ =GU{(Le(1)*+),.... (g — 1,0lg — 1)**)}
Step 3.1.2 if b € pr,R" then S := SU{(g,a,b)}
endif
endfor
Step 5 return S

Figure 14:

Algorithm Count i ng
INPUT: an instancej of #CSP(H) such that® (G, H) is a subdirect power df
OuTpPUT: the number of homomorphisms frognto H, i.e. |®(G, H)|
Step 1 let T be a (unique) mapping froig to H/VH;
return Count i ng- mappi ng(g, ({+1)_,7)

Figure 15:

w-witnesses the triplég, a,b). We have to show that there ¢&’ such that the paifp, ¢o"’) w-witnesses
(g,a,b). Itis straightforward thag” can be chosen to be(p, ¢, 0”), wherem is a Mal'tsev polymorphism
of H.

(2) By the definition,(g,a’,t’") belongs to the signature @(Q,H,r)/wT if and only if there are

0,0 € ®(G, H,7) such thato(g)“+ = d/, o'(9)“+ = ¥, and(o(h), o' (h)) € wy forall h < g. These
conditions mean that the pdip, o') w- -witnesses thaty, o(g), ¢o'(9)) € wSigR. O

6.3 The algorithm

We summarize results of the previous two subsections argkeprean algorithm solvingtCSP(H) for

a congruence singular structuté see Fig. 15, 16. The first of the presented algorithms jusates a
recursive process, while the second one implements theogheliscussed in the two previous subsections.
We assume that all information abadttrequired for the algorithm is known. This includes, for arste,
congruences, types of prime quotients, subalgebras geddrg certain sets, etc. As usudl, denotes the
set of prime quotients of a maximal chain@on(H)/ 5.

Comments on the algorithm Classes of}, can be computed on Step 2.1 by exploring a compact repre-
sentation@ of ®(G,H); such representation can be found by means of the algorithn’ MEV. Equiv-
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alence relation:;, is defined by binary projections @f(G, /), that are relations generated by, , () for
g, h € [m]. SetJ,, contains those,-classesA,, for which projectionpr, ®(G,H, ) equalsr(g,). Again,
one can find a compact representationddt;, H, 7) by applying algorithm ML’ TSEV to the problem
GU{(g:7(9)) | g € [m]}. Finally, to find a solutiory € ®(G,H,7)/,,: on Step 3.1 it suffices to com-

pute a compact representation ®fG, H, 7) in the same way as before, and then for any member of the
representation find the corresponding quotient mapping.

Complexity Observe that the depth of recursion of the algorithm is att@and does not depend on the
input. On each step considering a prime quotient of the BootEase the problem of finding the number
|®(G,H, )| reduces to finding; + ... + s numbers of the form® (G, H, o)|, wherep: G — H/,, .
Sincek < m and eacls, does not exceed{|, every step of this kind requires solving at mgt smaller
problems. On each step considering an interval of the affime ¢omputind® (G, H, 7)| reduces to solving

a problem of the form®(G, H, 0)|, 0: ¢ — H/w+ and finding thev -signature of®(G, H, ). To find

thew, -signature the algorithm runs M’ TSEV at mostm - | H|? times. If the time complexity of algorithm
MAL’ TSEV is p(m), then the overall time complexity of our algorithm(ig<|3m? - p(m))*.

7 #H-COLORING

Theorem 2.22 provides a complete classification of #P-ceta@nd polynomial time solvable# CoLo-
RING problems. However, it is difficult to express the criteridgatsed in the theorem in terms of (di)graphs.
By [29], an (undirected) grapH gives rise to a polynomial time solvablg#COLORING problem if and
only if every connected component &f is either trivial, or a complete bipartite graph, or a congplgraph
with loops at all vertices. In [13], we observed that an uectied graph satisfies this condition if and only if
it is invariant under a Mal'tsev operation.

In this section we compare the classification result from g8 for directed acyclic graphs (DAGs for
short) with Theorem 2.22. We show that every congruenceulandAG satisfies thé.ovasz-goodness
condition introduced in [32, 28]. The two conditions mustdogiivalent, however, the converse implication
probably uses some nontrivial properties of pp-definition3AGs and remains an open problem. Note that
similar difficulties arise when we try to translate other gah results on constraint satisfaction problems for
(di)graphs.

A DAG H = (V, E) is calledlayeredif V can be partitioned into subséfs, ..., V;, such that for any
(v,w) € E'we havev € V;, w € V;, for a certaini < ¢. Letv € V;, w € V},i < j. ThenH,, denotes
the subgraph off induced by the vertices such that there is a directed path freno «; similarly, H.,,,
denotes the subgraph &f induced by the vertices such that there is a directed path frano w; and
Hyw = Hy N Hyy,. The vertex set of the grap,, H,+,, whereH,, = (V', E') andH,,, = (V", E"),is
the set( (V' NV;) x (V' NV;))U...u((V'nV;) x (V"NV;)), apair((v,v'), (w,w')) is an edge if and only
if (v,w) € E"and(v',w’) € E”. Itis proved in [28] thatH,, H,,, for z,2’ € V; andy,y’ € V; has only
one connected component that spans all layers fraon;. If such main connected components of graphs
HyyHyy andH  H oy, 2,2 € Vi, t,t' € V;, are isomorphic then we writd,,H,1,, = H.;H . Finally
a layered graph is said to h@vasz-goodf for any ¢, j, 1 < i < j < ¢, and anyz,2’ € V;, y,y' € V; we
havenyHI/y/ = ny’Hz’y-

The key lemma for this result is a special case of the resyizfthat we state in our notation.

Lemma 7.1 If |®(G, Hy)| = |®(G, H2)| for all graphsG then graphsH;, H, are isomorphic.
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We show that ifH is congruence singular theé® (G, H,, H,,/)| = |®(G, Hyyy Hyry)| for any z, o’ €
Vi,y,y € V;, wherel < i < j < ¢, and any graptGG. This implies thatd,,H,., and H,, H,,, are
isomorphic, and sdi,,H,., = H,,H,,. We use an observation made in [28] thé&(G, H,H2)| =
|®(G, Hy)| - |®(G, Ha)|. If G = (W, F) is not layered then® (G, Hy,Hyoy)| = |®(G, Hyy Hyry)| = 0.
Let Wy, W5 denote the set of vertices on the highest and on the lowesHayG, respectively. As we know,
®(G, H) is arelation pp-definable iff. Now, let;, n, be congruences @ (G, H) such thaty, ¢') € n;,
i=1,2,iff p(v) = ¢'(v) forallv € W;. Itis not hard to see that sets of the fofifiy.. are classes of;, sets
of the formH.,,,, are classes of,, and sets of the formi,,,, are classes of; A7, (although there are classes
of those congruences not representable in the fdym H..,, or H,,,). SinceH is congruence singular, we
haverank(M (n1,m2)) = k wherek is the number of classes in V n,. Hence

(G, ny)| |(I)(G’sz')| —0
|(I)(G’ H:v’y)| |(I)(G’ H:v’y’)| ’
or®(G, Hyy), (G, Hyyy ) or (G, Hyyy ), ®(G, Hyryy) are in different classes @f V 72. In the latter case
either|®(G, Hyry)| = |2(G, Hyy )| = 001 |®(G, Hyy)| = |(G, Hyyy )| = 0. The result follows.
Observe that in this argument congruence singularity il is@ very restricted way: only projection
congruences of somewhat restricted type are used.

8 Concluding remarks and open problems

The result obtained in the paper is rather general. It ireduas particular case the results of [19, 29, 21,
32, 28, 48]. However, those results are stated in terms dicpbar problems, and deriving them from
Theorem 2.22 requires extra research.

Problem 2 Characterize congruence singular digraphs.

We also should note that in some cases, e.g., [29], the #Plet@ness results obtained for particular
problems are stronger than those which follow from our testdr instance, #P-completd#COLORING
problems in the case of undirected graphs remain #P-completn when restricted to inputs of bounded
degree.

Problem 3 LetH be a relational structure that is not congruence singulane the probler*CSP(H)
remains #P-complete when restricted to the class of strestof bounded degree? a class of structures with
other natural restrictions?

A major question left unanswered is how to check if a giveatiehal structure is congruence singular.
This problem may turn out to be even undecidable.

Problem 4 Give an algorithm for or prove that the following computai# problem is undecidable: Given
a relational structure check whether or not it is congruesagular.
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Algorithm Count i ng- mappi ng
INPUT: an instance&; of #CSP(H) such thatb (G, H) is a subdirect power of{,
acongruencé € {0,1_,14,...,¢4,(¢+ 1)_}, and a mapping of level
OuTPUT: the numbel®(G, H, 7)|
Step 1 if 6 = 04 thenreturn 1
Step 2 if § = w, for somew € M the do
Step 2.1 find thek} -classesAy, ..., Ay andchoosetheir representatives, . . . , gx,
setJ,, = {u1,...,uq,} C [k] asin Proposition 6.1, let', ..., C ber,-classes
belonging tor (g, ) foru € J
Step 2.2 setry[l] :=1,...,rglgl :=1
Step 2.3 sett :=Count i ng- mappi ng(G,w_, or,)
Step 2.4 for v =110 s,, do
Step2.4.1 setr[l] :=vandr2]:=1,...,r[¢]:=1
Step 2.4.2 t! :=Counti ng- mappi ng(G,w_, or)
endfor
Step 2.5 foru=2togdo
Step2.5.1 forv=1tos,do
Step2.5.1.1 setr[l]:=1,...,rfu—1]:=1,r[u] :=v,andrju+ 1] :=1,...,r[g] :=1
Step 2.5.1.2 sett? :=Count i ng- mappi ng(G,w—, or)

tu
Step 2.5.1.3 settl! .= =

endfor
endfor

q Su
Step 2.6 return (H > tﬁ)

u=1v=1
endif
Step 3 else ifd = (w+1)_ do
Step 3.1 find o € @(g,H,r)/wT
Step 3.2 setty :=Count i ng- mappi ng(G,wy, o)
Step 3.3 setS :=6- Si gnat ure(g,r,wy)
Step 3.4 setw, to be the size ofj,-classesy, = {(a“*,b*+) | (9,a,b) € S}

Step 3.5 return | to- [ vy
g=1
endif

Figure 16:
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