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Abstract

The Counting Constraint Satisfaction Problem (#CSP(H)) over a finite relational structureH can be
expressed as follows: given a relational structureG over the same vocabulary, determine the number of
homomorphisms fromG toH. In this paper we characterize relational structuresH for which#CSP(H)
can be solved in polynomial time and prove that for all other structures the problem is #P-complete.

1 Introduction

In the Counting Constraint Satisfaction Problem,#CSP(H), over a finite relational structuresH the objec-
tive is, given a finite relational structureG, to compute the number of homomorphisms fromG toH. Various
particular cases of the #CSP arise and have been extensivelystudied in a wide range of areas from logic
and graph theory [4, 19, 29, 38, 42, 51, 57, 61, 62], to artificial intelligence [56, 58], to statistical physics
[3, 17, 49]. In different areas this problem often appears indifferent equivalent forms: (1) the problem of
finding the number of models of a conjunctive formula, (2) theproblem of computing the size (number of
tuples) of the evaluationQ(D) of a conjunctive query (without projection)Q on a databaseD and also (3)
the problem of counting the number of assignments to a set of variables subject to specified constraints.

Since the seminal papers [59, 33], the complexity of the decision counterpart of #CSP, the Constraint
Satisfaction Problem or CSP for short, has been an object of intensive study. The ultimate goal of that
research direction is to classify finite relational structures with respect to the complexity of the corresponding
CSP. We shall refer to this research problem as theclassification problem. A number of significant results
have been obtain, see e.g. [59, 33, 5, 7, 1], but a full classification is far from being completed.

Although the classification problem for the general #CSP hasbeen tackled for the first time very re-
cently, a massive work has been done in the study of the complexity of various particular counting CSPs.
These particular problems include classical combinatorial problems such as #CLIQUE, GRAPH RELIA -
BILITY , ANTICHAIN , PERMANENT etc. [51, 57, 61, 62] expressible in the form of #CSP; the counting
SATISFIABILITY and GENERALIZED SATISFIABILITY problems (in these problems the objective is to find
the number of satisfying assignments to a propositional formula) [19, 58] which correspond to#CSP(H)
for 2-element structuresH, counting the number of solution of equations over finite semigroups [55, 48]
and many others.

However, the main focus of research in this area has been #H -COLORING problem and its variants.
In the #H -COLORING problem the aim is to find the number of homomorphisms from a given graphG
to the fixed graphH. Thus, it is equivalent to#CSP(H) whereH is a graph. Dyer and Greenhill [29]
proved that, for every undirected graphH, its associated #H -COLORING problem is either in FP (we shall
call such problemstractable) or is #P-complete. They also provided a complete characterization of the
tractable problems. This result has been extended to the counting LIST #H -COLORING problem [25, 21],
which allows additional restrictions on possible images ofa node. Recently, Dyer, Goldberg, and Paterson
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[32, 28] obtained a similar classification for directed acyclic graphs. Furthermore, some other variants of
the #H -COLORING problem for undirected graphs have been intensively studied during the last few years
[23, 24]. Another direction in this area is the study of problems with restricted input, that is subproblems
of the #H -COLORING problem in which the input graphG must be planar [42, 60], a partialk-tree [22],
sparse or of low degree [38, 39], etc. Finally, we should mention the approach to counting problems using
approximation and randomized algorithms, see e.g. [47, 27,26, 30].

The counting CSP admits various generalizations. In one of them, Weghted #CSPevery tuple from
relations are assigned weights that are used to compute weights of mappings from one relational structure
to another, and the problem is to find the sum of the weights of all mappings [31]. A particular case of
the Weighted #CSP, in which only one binary relation is allowed, is often referred to aspartition functions
[53, 34]. Partition functons are widely used in statisticalphisics [3, 17, 49]. Recently, further generalizations
of the counting CSPs attracted considerable attention in connection with the study ofholographic reductions,
see e.g. [18].

In [13] we started a systematic study of the classification problem for the general #CSP. The main
approach chosen was thealgebraic approachwhich has proved to be quite useful in the study of the decision
CSP [44, 45, 5, 7, 1]. This approach uses invariance properties of predicates definable in relational structures.
Invariance properties are usually expressed aspolymorphismsof the predicates, that is (multi-ary) operations
on the universe of the relational structure compatible withthe predicates.

In [13], we proved that if#CSP(H) is tractable, thenH has aMal’tsevpolymorphism, that is a ternary
operationm(x, y, z) satisfying the identitiesm(x, y, y) = m(y, y, x) = x. Another observation was that
thecongruences, i.e. the definable equivalence relations, ofH play a very important role. In particular, these
results allowed us to come up with a simple proof of the resultof [29]1. In [14], another necessary condition
for the tractability of#CSP(H) was identified. It imposes certain restrictions onto possible congruences of
H, in terms of cardinalities of their equivalence classes.

In this paper, after giving general definitions (Sections 2.1 and 2.2) and introducing the basics of the
algebraic approach (Sections 2.3, 2.4 and 2.5), we go deeperinto the structure of congruence lattices of
relational structures with a Mal’tsev polymorphism (Sections 3.1 and 3.3), its connections with types of
prime quotients (Section 3.2), and the structure of relations with a Mal’tsev polymorphism (Section 3.4). In
Section 4 we identify two more necessary conditions for tractability, again expressed in terms of properties
of congruences. Then, in Section 5, several observations are made in preparation to introducing an algorithm
solving the problem#CSP(H) for every relational structureH satisfying all the conditions obtained. The
algorithm is then described in details in Section 6. Thus, wecompletely solve the classification problem for
the general counting CSP. Finally, in Section 7 we compare our result with a recent result of [28] classifying
the complexity of the#H -COLORING problem for directed acyclic graphs.

We intensively use methods and results from a number of areasof algebra: lattice theory, tame congru-
ence theory, commutator theory and ring theory. To make the paper available for a wider audience we avoid
excessive use of algebraic terminology. In spite of that, some parts of the paper, Section 4 and especially
proofs, may require from the reader some familiarity with basic algebraic objects and ideas. The keen reader
is referred to textbooks [16, 35, 37, 41]. The reader should be aware that to avoid yet another layer of objects
we use algebraic terminology for relational structures, while in the algebraic literature the same concepts
are used for “dual” objects, universal algebras.

1Note that the hardness results [29] remain true even for graphs of degree at most 3, and so are stronger than those in [13].
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2 Preliminaries

2.1 Relational structures and homomorphisms

Our notation concerning relations and relational structures is fairly standard. Let[n] denote the set{1, . . . , n}.
The set of alln-tuples of elements from a setH is denoted byHn. We denote tuples of elements in bold-
face, for instance,a, and their components bya[1],a[2], . . .. For a subsetI = {i1, . . . , ik} ⊆ [n] and an
n-tuplea, by prIa we denote theprojection ofa ontoI, thek-tuple(a[i1], . . . ,a[ik]). For ann-ary relation
R ⊆ Hn, its projection ontoI is defined to beprIR = {prIa | a ∈ R}. If Di = priR for i ∈ [n] we
say thatR is a subdirect productof D1, . . . ,Dn. If D1 = . . . = Dn = H thenR is said to be ann-th
(or n-ary) subdirect powerof H. For a = (a[1], . . . ,a[n]) andb = (b[1], . . . ,b[m]), (a,b) denotes the
tuple (a[1], . . . ,a[n],b[1], . . . ,b[m]), while 〈a,b〉 denotes the pair of tuples. Sometimes we need more
complicated indexing. LetI, J ⊆ [n] be disjoint,I = {i1, . . . , ik}, J = {j1, . . . , j`}, and assume that
i1 < . . . < ik andj1 < . . . < j`. Let alsoa = (a[i1], . . . ,a[ik]) andb = (b[j1], . . . ,b[j`]). Then(a,b)
denotes the tuplec whose entries are indexed by elements of the setI ∪J such thatc[i] = a[it] if i = it ∈ I
andc[i] = b[jt] if i = jt ∈ J .

A vocabularyis a finite set of relational symbolsR1, . . . , Rn each of which has a fixed arity. Arelational
structureover vocabularyR1, . . . , Rn is a tupleH = (H;RH

1 , . . . , R
H
n ) such thatA is a non-empty set,

called theuniverseof H, and eachRH
i is a relation onH having the same arity as the symbolRi. LetG,H

be relational structures over the same vocabularyR1, . . . , Rn. A homomorphismfrom G to H is a mapping
ϕ : G → H from the universe ofG (the instance) to the universeH of H (the template) such that, for every
relationRG (say,m-ary) ofG and every tuple(a1, . . . , am) ∈ RG , we have(ϕ(a1), . . . , ϕ(am)) ∈ RH.

A relationR is said to beprimitive positive definable(pp-) in H, if it can be expressed using the predi-
catesRH

i of H together with the binary equality predicate onH (denoted∆H), conjunction, and existential
quantification. We usedef(H) to denote the set of all pp-definable relations.

Example 2.1 LetH be a 3-element structure with the universe{a, b, c} and one binary disequality relation
R. StructureH can be thought of as a 3-element complete graph. Then pp-formula

Q(x, y, z) = ∃t, u, v, w(R(t, x) ∧R(t, y) ∧R(t, z) ∧R(u, v) ∧R(v,w)

∧R(w, u) ∧R(u, x) ∧R(v, y) ∧R(w, z))

defines relation

Q =





a a b a b b a a c a c c b b c b c c
a b a b a b a c a c a c b c b c b c
b a a b b a c a a c c a c b b c c b



 ,

consisting of all triples containing exactly 2 different elements from{a, b, c} (triples are written vertically).
Another useful way to represent relationQ is to view it as the set of restriction of homomorphisms from

the graph shown in Fig. 1 toH restricted onto{x, y, z}. Observe that this connection between pp-definitions
and restrictions of homomorphisms is rather general.

2.2 Constraint Satisfaction Problem

The counting constraint satisfaction problem can be formulated in several ways (see Section 1). We use the
model theoretic form of this problem.
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Definition 2.2 Let H be a class of relational structures. In thecounting constraint satisfaction problem
associated withH (#CSP(H)), the objective is, given a structureH ∈ H and a structureG, to compute the
number of homomorphisms fromG to H. We will refer to this problem as to auniform #CSP.

If H consists of a single structureH, then we write#CSP(H) instead ofCSP({H}) and refer to such
problem as anon-uniform homomorphism problem, because the inputs are just source structures.

Example 2.3 (#H -COLORING, [29, 40, 50]) A graphH is a structure with a vocabulary consisting of one
binary symbolR. Then#CSP(H) is widely known as the#H -COLORING Problem, in which the objective
is to compute the number of homomorphisms from a given graph intoH.

Example 2.4 (#3-SAT, [19, 20, 61, 62])An instance of the #3-SAT problem is specified by giving a propo-
sitional logic formula in CNF each clause of which contains 3literals, and asking how many assignments
satisfy it. Therefore, #3-SAT is equivalent to#CSP(S3), whereS3 is the 2-element relational structure
with the universe{0, 1} and the vocabularyR1, . . . , R8. PredicatesRS3

1 , . . . , RS3

8 are the 8 predicates ex-
pressible by 3-clauses.

Example 2.5 (Systems of linear equations)Let F be a finite field and #LINEAR EQUATIONS(F ) is the
problem of finding the number of solutions to a system of linear equations overF . It is not hard to see that
#LINEAR EQUATIONS(F ) is equivalent to#CSP(L), whereL is the class of relational structures with the
universeF and the relations corresponding to hyperplanes of finite-dimensional vector spaces overF .

In fact, #LINEAR EQUATIONS(F ) cannot be straightforwardly reduced to#CSP(L) in polynomial
time. The reason is that the representation of relations by linear equations is much more concise than that
by a list of tuples, see discussion after Example 2.6. However, in this case some reduction exists. It is
carried out by first reducing a system of linear equations to asystem of equations each of which contains
at most 3 variables; clearly, some new variables should be introduced at this step. Then such a system
is straightforwardly reduced to#CSP(L3), whereL3 is the the relational structure fromL containing all
ternary relations expressible by linear equations.

Example 2.6 (Equations over semigroups, [55, 48])Let S be a finite semigroup, that is, a set with a bi-
nary associative operation. An equation overS is an expression of the formx1 ·x2 · . . . ·xm = y1 ·y2 · . . . ·ym

where· is the semigroup operation, andxi, yj are either indeterminates or constants. Then#EQN∗
S stands

for the problem of counting the number of solutions to a system of semigroup equations.
The problem#EQN∗

S is equivalent to the problem#CSP(S) whereS is the class of structures with
universeS and relations expressible as the set of solutions of a semigroup equation.

In the last two examples, as well as for many other uniform problems, there is a minor ambiguity
concerning a representation of the input. We always assume that in uniform problems the relations of
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the template are represented explicitly, by a list of tuplesof the relation. In Examples 2.5, 2.6 such a
representation is not the most natural one. However, the class of relations admitting a succinct representation
is rather limited (see, e.g. [43]), and thus such representations are unsuitable for the study of the general
problem. Moreover, changing representation does not affect the complexity of non-uniform problems.

Every counting CSP belongs to the class #P. However, the exact complexity of #CSP(H) strongly
depends on the structureH. We say that a relational structureH is #-tractableif #CSP(H) is solvable in
polynomial time;H is #P-completeif #CSP(H) is #P-complete. Note that all reductions used in this paper
are Turing reductions. The research problem we deal with in this paper is the following one.

Problem 1 (classification problem) Characterize #-tractable and #P-complete relational structures.

Example 2.7 (1) Dyer and Greenhill [29] proved that ifH is an undirected graph then#H -COLORING can
be solved in polynomial time if and only if every connected component ofH is either a complete bipartite
graph, or a complete graph with all loops present, or a singlevertex. Otherwise the problem is #P-complete.

(2) A 2-element relational structureH is #-tractable if and only if every predicate ofH can be represented
by a system of linear equations over the 2-element field [19, 20]. Otherwise,H is #P-complete.

(3) #CSP(L3) is solvable in polynomial time.

(4) The problem#EQN∗
S is solvable in polynomial time if and only ifS is a direct product of a uniformly in-

flated Abelian group, inflated left-zero semigroup, and an inflated right-zero semigroup. Otherwise#EQN∗
S

is #P-complete. For details see [48].

2.3 Polymorphisms, Algebras and Complexity

Any operation on a setH can be extended in a standard way to an operation on tuples over H, as follows.
For any (m-ary) operationf , and any collection of tuplesa1, . . . ,am ∈ Hn, definef(a1, . . . ,am) to be
(f(a1[1], . . . ,am[1]), . . . , f(a1[n], . . . ,am[n])), that is,f acts onHn component-wise. Thenf preserves
ann-ary relationR (orR is invariant underf , or f is apolymorphism ofR) if for any a1, . . . ,am ∈ R the
tuplef(a1, . . . ,am) belongs toR. For a given set of operations,C, the set of all relations invariant under
every operation fromC is denoted byInv(C). For a relational structureH we usePol(H) to denote the set
of all operations preserving every relation ofH.

Example 2.8 LetR be the solution space of a system of linear equations over a field F . Then the operation
m(x, y, z) = x − y + z is a polymorphism ofR. Indeed, letA · x = b be the system definingR, and
x,y, z ∈ R. Then

A ·m(x,y, z) = A · (x− y + z) = A · x−A · y +A · z = b.

In fact, the converse can also be shown: ifR is invariant underm then it is the solution space of a certain
system of linear equations.

The following proposition links together polymorphisms and pp-definability of relations.
Proposition 2.9 ([36, 2, 46])LetH be a finite structure, and letR ⊆ Hn be a non-empty relation. ThenR
is preserved by all polymorphisms ofH if and only ifR is pp-definable inH.

The connection between polymorphisms and the complexity ofcounting CSPs is provided by the fol-
lowing result.

Proposition 2.10 ([13]) Let H1 and H2 be relational structures with the same universe. IfPol(H1) ⊆
Pol(H2) then#CSP(H2) is polynomial time reducible to#CSP(H1).
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Theorem 2.10 amounts to say that all the information about the complexity of#CSP(H) can be extracted
from the family of polymorphisms ofH. Sets of polymorphisms often provide a more convenient and
concise way of describing a class of constraint satisfaction problems. For example, in [13], we used poly-
morphisms to identify some conditions necessary for the #-tractability of a relational structure. A ternary
operationm(x, y, z) on a setH is said to beMal’tsev if m(x, y, y) = m(y, y, x) = x for all x, y ∈ H.

Proposition 2.11 ([13]) If H is a relational structure which is invariant under no Mal’tsev operation then
H is #P-complete.

Notice that ifH has a Mal’tsev polymorphism then the decision CSP corresponding toH can be solved in
polynomial time [6, 12].

Example 2.12 Mal’tsev operationm(x, y, z) is a polymorphism of graphH1 shown in Fig. 2, wherem is
given by

m(i1j1, i2j2, i3j3) = ij,

i = i1 [j = j1] unlessi1 = i2 [j1 = j2], in this casei = i3 [j = j3].
GraphH2 has no Mal’tsev polymorphisms. Indeed, if somef(x, y, z) is a Mal’tsev operation, then

f

((

a
c

)

,

(

a
d

)

,

(

b
d

))

=

(

b
d

)

6∈ E(H2).

H2

b

dc

a

11

01

10

00

H1

Figure 2:

In our algebraic definitions we follow [16, 54]. For algebraic notions and results concerning the decision
CSP the reader is referred to [9, 15].

A (universal) algebra is an ordered pairA = (A,F ) whereA is a non-empty set andF is a family of
finitary operations onA. The setA is called theuniverseof A, operations fromF are calledbasic. An
algebra with a finite universe is referred to as afinite algebra, while the set of basic operations needs not to
be finite.

Any relational structureH with universeH can be converted into an algebraAlg(H) = (H;Pol(H)).
Conversely, every algebraA = (A;F ) corresponds to a class of structuresStr(A) with universeA and
relations fromInv(F ). Using this correspondence we can define #-tractable algebras. An algebraA is
said to be#-tractable if every structureH ∈ Str(A) is #-tractable; it is said to be#P-completeif some
H ∈ Str(A) is #P-complete.

We shall express the complexity of#CSP(H) in terms ofAlg(H). For example, if an algebra has a
Mal’tsev operation, it is called aMal’tsev algebra. Proposition 2.11 implies that if#CSP(H) is tractable
thenAlg(H) is Mal’tsev.
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2.4 Subalgebras and congruences

We shall use various constructions on algebras, but two of these constructions, subalgebras and congruences,
can be defined for relational structures, and are very usefuland illustrative in this context.

A subalgebraof a structureH = (H;RH
1 , . . . , R

H
k ) is a unary relation pp-definable inH, and acon-

gruenceof H is an equivalence relation pp-definable inH. For a subsetB ⊆ H, the substructure ofH
inducedbyB is defined to beH

B
= (B;RH

1 B
, . . . , RH

k B
), whereRi

B
= Ri ∩ B

mi , Ri ismi-ary. For an

equivalence relationα anda ∈ H, the class ofα containingα is denoted byaα and the set of all classes
of α by H/α. The quotient structureH/α is defined to beH/α = (H/α;RH

1 /α, . . . , R
H
k /α), where

Ri/α = {(aα
1 , . . . , a

α
mi

) | (a1, . . . , ami
) ∈ Ri}.

Example 2.13 Let H = (V,E) be a digraph without sources and sinks, i.e. the in-degree and out-degree
of each vertex is non-zero. We define two binary relations,ξH andζH, on the vertex setH of H: 〈a, b〉 ∈
ξH if and only if a, b have a common out-neighbour and〈a, b〉 ∈ ζH if and only if a, b have a common
in-neighbour; in other words,ξH = {〈a, b〉 | (a, c), (b, c) ∈ E for a certainc ∈ H}, ζH = {〈a, b〉 |
(c, a), (c, b) ∈ E for a certainc ∈ H}. RelationsξH and ζH are pp-definable inH, as the following
pp-formulas show

ξH(x, y) = ∃z(E(x, z) ∧E(y, z)), ζH(x, y) = ∃z(E(z, x) ∧E(z, y)).

In general,ξH, ζH are reflexive and symmetric relations. However, ifH has a Mal’tsev polymorphismm,
they are also transitive. Indeed, suppose that〈a, b〉 ∈ ξH, d ∈ H is their common out-neighbour, andc is
an out-neighbour ofa. If c is not an out-neighbour ofb, thenH containsH2 (see Fig. 2) as a subgraph and
(b, c) is not an edge, which contradicts the assumption thatH has a Mal’tsev polymorphism. Therefore,
the out-neighbourhoods ofa, b are equal whenever〈a, b〉 ∈ ξH, that implies transitivity. Thus,ξH, ζH are
congruences ofH.

For the graphH3 shown in Fig. 3, theξH3
-classes are{a, b, c}, {d, e}, and theζH3

-classes are{a, b, e}, {c, d}.

e
d

c

b

a

3H

Figure 3:

Proposition 2.14 ([13]) Let H be a relational structure,B andα its subalgebra and congruence respec-
tively.

(1) If H is #-tractable then so areH
B

andH/α.

(2) If H
B

or H/α is #P-complete thenH is #P-complete.

In a similar way we define congruences of relations. LetR ∈ def(H) be ann-ary relation. It can be
viewed as a subalgebra ofnth direct power ofH. A congruence onR is a2n-ary relationQ ∈ def(H) such
thatpr{1,...,n}Q = pr{n+1,...,2n}Q = R, and, ifQ is treated as a binary relation onR, it is an equivalence
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relation. An important example of a congruence onR is the following. Letα ∈ Con(H) and denote by
αn the relation onR given by〈a,b〉 ∈ αn if and only if 〈a[i],b[i]〉 ∈ α for all i ∈ [n]. As the following
pp-definition shows,αn is a congruence ofR

αn(x1, . . . , xn; y1, . . . , yn) = R(x1, . . . , xn) ∧R(y1, . . . , yn) ∧

n
∧

i=1

α(xi, yi).

Example 2.15 Let us reconsider relationQ on the 3-element set{a, b, c}, whose pp-definition is given in
Example 2.1. We show that the binary relationT onQ that relates triples with the same set of entries is
a congruence ofQ. This can be done in two ways: we may verify that the followingpp-formula defines
exactly that (6-ary on{a, b, c}) relation

T (x, y, z, x′, y′, z′) = ∃t, u, v, w, u′, v′, w′(R(t, x) ∧R(t, y) ∧R(t, z) ∧R(u, v)

∧R(v,w) ∧R(w, u) ∧R(u, x) ∧R(v, y) ∧R(w, z) ∧R(t, x′) ∧R(t, y′) ∧R(t, z′)

∧R(u′, v′) ∧R(v′, w′) ∧R(w′, u′) ∧R(u′, x′) ∧R(v′, y′) ∧R(w′, z′),

or we may observe that theT is formed by restrictions of homomorphisms from the graph shown in Fig. 4
toH onto{x, y, z, x′, y′, z′}.

a

b c

z’

y’

z

y

x

x’

Figure 4:

The existence of a Mal’tsev polymorphism provides a necessary condition for the #-tractability of a
relational structure. However, it is not a sufficient condition, as Example 2.17 below shows. In the Section 4
we prove two more necessary conditions. A particular case ofone of them is that proved in [14].

Let α, β be congruences of aH, whereα, β are incomparable, that is, neitherα ⊆ β, norβ ⊆ α. Let
A1, . . . , Ak andB1, . . . , B` be theα- andβ-classes respectively (see Fig. 5). ThenM(α, β) denotes the
k × `-matrix (mij), wheremij = |Ai ∩Bj |.

Proposition 2.16 ([8]) LetH be a relational structure, and letα, β be incomparable congruences ofH. If
rank(M(α, β)) > k, wherek is the number of classes of the smallest congruence containing bothα andβ,
then#CSP(H) is #P-complete.

Classes of the smallest congruenceγ containing bothα andβ can be easily represented in terms of
matrixM(α, β): This matrix (as well as any other square matrix) after suitable synchronized permutations
of rows and columns can be partitioned into a collection of square cells sitting on the diagonal, so that all
entries outside the cells equal zero. The finest partition ofthis kind gives the classes ofγ.
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−classesβ

−classesα

Figure 5:

Example 2.17 LetH be the graphH3 shown in Fig. 3,α = ξH3
andβ = ζH3

. We haveA1 = {a, b, c}, A2 =
{e, d}, B1 = {a, b, e}, B2 = {c, d} and

M(α, β) =

(

2 1
1 1

)

.

By Proposition 2.16, the problem#CSP(H3) is #P-complete.

2.5 Varieties and Complexity

It will be convenient for us to jump back and forth between model-theoretic and algebraic views to the
CSP. The language of relational structures is more convenient when describing algorithms. On the other
hand, standard algebraic constructions allow us to strengthen necessary conditions for #-tractability, and
eventually formulate a criterion for #-tractability.

Definition 2.18 (1) LetA = (A;F ) be an algebra. Thek-th direct powerof A is the algebraAk = (Ak;F )
where we treat each(say,n-ary) operationf ∈ F as acting onAk component-wise.

(2) Let A = (A;F ) be an algebra, and letB be a subset ofA such that, for any(say,n-ary) f ∈ F , and
for anyb1, . . . , bn ∈ B, we havef(b1, . . . , bn) ∈ B. Then the algebraB = (B;F

B
), whereF

B
consists of

restrictions of operationsf ∈ F ontoB, is called asubalgebraof A.
Note that a setB is a subalgebra of a structureH if and only ifB is the universe of a subalgebra of

Alg(H).

(3) Let A1 = (A1;F1) and A2 = (A2;F2) such thatF1 = {f1
i | i ∈ I}, F2 = {f2

i | i ∈ I}, andf1
i , f

2
i

are of the same arityni, i ∈ I. A mappingϕ : A1 → A2 is called ahomomorphismfrom A1 to A2 if
ϕf1

i (a1, . . . , ani
) = f2

i (ϕ(a1), . . . , ϕ(ani
)) holds for all i ∈ I and all a1, . . . , ani

∈ A1. If the mappingϕ
is onto thenA2 is said to be ahomomorphic imageof A1.

A common way of constructing homomorphic images is through congruences and quotient algebras. A
congruenceof an algebraA = (A;F ) is an equivalence relation onA invariant under all operations from
F . Let θ be a congruence ofA. The algebraA/θ = (A/θ;F/θ), whereF/θ = {f/θ | f ∈ F} andf/θ
is given byf/θ(a

θ
1, . . . , a

θ
n) = (f(a1, . . . , an))θ is called aquotient algebra. Observe that an equivalence

relation is a congruence of a structureH if and only if it is a congruence ofAlg(H).

Theorem 2.19 ([13]) LetA = (A;F ) be a finite algebra. Then
(1) if A is #-tractable then so is every subalgebra, homomorphic image, and direct power ofA.
(2) if A has a #P-complete subalgebra, homomorphic image, or directpower, thenA is #P-complete.
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For an algebraA the class of algebras that are homomorphic images of subalgebras of direct powers
of A is called thevariety generated byA, and is denoted byvar(A). An operationf on the universe of an
algebraA = (A;F ) that preserves all relations invariant underF is called aterm operation ofA. Every
term operation ofA can be obtained from operations ofF by means of superposition.

An operationf on a setA is said to beidempotentif the equalityf(x, . . . , x) = x holds for allx ∈ A.
Algebras whose basic operations are idempotent possess many useful properties. Thefull idempotent reduct
of an algebraA = (A;F ) is the algebraId(A) = (A;Fid) whereFid consists of all idempotent term
operations ofA. There is another way to characterizeFid. If A = Alg(H) for a certain relational structure
H, then Id(A) = Alg(Hid), whereHid is an expansion ofH by unary relationsKh, h ∈ H, andKh

is interpreted as theconstant relation{(h)}, containing only one tuple, namely(h). We will need the
following simple observation about relational structureswith idempotent polymorphisms.

Lemma 2.20 LetH be a relational structure whose polymorphisms are idempotent,R ∈ def(H) ann-ary
relation,α a congruence ofR, andB anα-class. ThenB is a relation pp-definable inH.

Indeed, leta ∈ B. Since every polymorphism ofH is idempotent, the constant relationsK
a[i], i ∈ [n],

are pp-definable inH. Then

B(x1, . . . , xn) = ∃y1, . . . , yn(R(x1, . . . , xn) ∧ α(x1, . . . , xn; y1, . . . , yn)

∧K
a[1](y1) ∧ . . . ∧Ka[n](yn)).

The following theorem shows the connection between complexity and full idempotent reducts.

Theorem 2.21 ([13]) (1) A finite algebraA is #-tractable[#P-complete] if and only if so isId(A).
(2) A relational structureH is #-tractable[#P-complete] if and only if so isHid.

If A is an idempotent algebra and the condition of Proposition 2.16 is true for every pair of congruences of
A thenA is said to becongruence singular. If every finite algebra in a variety is congruence singular then
the variety is called congruence singular. We call a relational structureH congruence singular ifAlg(H)
generates a congruence singular variety. By Proposition 2.16 and Theorems 2.19, 2.21, every structureH
that is not #P-complete is congruence singular. The main result of the paper is that this condition is sufficient
for #-tractability.

Theorem 2.22 A relational structureH [an algebraA], is #-tractable if and only ifHid is congruence
singular [Id(A) generates a congruence singular variety].

Observe that the condition of having a Mal’tsev polymorphism (term operation) is not included into the
criterion. As we shall see later (Lemma 3.3) every congruence singular structure has a Mal’tsev polymor-
phism.

We complete this section with a more combinatorial characterization of congruence singular relational
structures. LetH be a relational structure,R a relation pp-definable inH, andα, β, δ congruences ofR
such thatδ ≤ α, β. By M(R;α, β; δ) we denote the matrixM(α, β) computed forR in the quotient
structureH/δ. More precisely, letA1, . . . , Ak andB1, . . . , B` be theα- andβ-classes respectively. Then
M(R;α, β; δ) is thek × `-matrix (mij) wheremij equals the number ofδ-classes inAi ∩Bj .

Lemma 2.23 A relational structureH is congruence singular if and only if for any relationR pp-definable
in H and any congruencesδ, α, β ofR such thatδ ≤ α, β, the rank of the matrixM(R;α, β; δ) equals the
number of classes in the smallest congruence containing both α andβ.
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Proof: Let A = Alg(H). We show that for any finite algebraB from the variety generated byA and
congruencesα, β of B there are a relationR pp-definable inH and congruencesδ, α′, β′ of R with δ ≤ α, β
such thatM(α, β) = M(R;α′, β′; δ); and, conversely, for anyR, δ, α′, β′, there areB andα, β satisfying
the above equality.

TakeB, α, andβ. By the HSP-Theorem (see, e.g., [16])B is a homomorphic image of a subalgebra of
(say,k-th) direct power ofA. Let C denote the subalgebra of the direct power, and letB be a homomorphic
image ofC, letϕ be the homomorphism, and letγ be the corresponding congruence ofC, that is〈a, b〉 ∈ γ
if and only if ϕ(a) = ϕ(b). The universeC of C can be viewed as a subset ofHk — recall thatH is the
universe ofA — invariant under all polymorphisms ofH. ThusC is ak-ary relation pp-definable inH. We
chooseR = C. Then the term operations ofC are the polymorphisms ofH acting onR component-wise.
Furthermore,γ is an equivalence relation onC invariant under all operations ofC, and therefore under all
polymorphisms ofH. Henceγ is a congruence ofR, and we setδ = γ. Finally, defineα′, β′ as follows:
α′ = {〈a,b〉 ∈ R2 | 〈ϕ(a), ϕ(b)〉 ∈ α}, andβ′ = {〈a,b〉 ∈ R2 | 〈ϕ(a), ϕ(b)〉 ∈ β}. Everyα′- or
β′-classD corresponds to theα-, respectively,β-classϕ(D) = {ϕ(a) | a ∈ D}, and this correspondence
is one-to-one. Theδ-classes insideD are also in a one-to-one correspondence with the elements ofϕ(D).
This implies the equality of the matrices.

Now take ak-ary relationR pp-definable inH and congruencesδ, α′, β′ ofR. First we setC = (R; {fC |
f ∈ Pol(H)}, wherefC acts onk-tuples fromR component-wise. SinceR is invariant under all polymor-
phisms ofH these operations are well-defined. AlgebraB can be defined as the quotient algebraC/δ, and
congruencesα, β as follows:α = {〈aδ ,bδ〉 | 〈a,b〉 ∈ α′} andβ = {〈aδ ,bδ〉 | 〈a,b〉 ∈ β′}. As before,
we have one-to one correspondences betweenα-, β- andα′-, β′- classes, as well as, betweenδ-classes and
elements ofB, that implies the result. 2

3 Congruence lattices and the structure of relations

3.1 Lattices and congruence lattices

In this section we look closer at the family of congruences ofa relational structureH. All definitions and
results given here were originally introduced for algebras. As our algorithms are described in terms of
relational structures, we reformulate them in terms of structures, replacing congruences of algebras with
congruences of structures, and term operations of an algebra with polymorphisms of a structure. However,
the notions we arrive to for a structureH are exactly the same as those defined for the algebraAlg(H).

The set of all congruences of structureH is denoted byCon(H). Letα, β ∈ Con(H). The intersection
of α andβ is again a congruence ofH and is denotedα ∧ β. As is well known, the smallest equivalence
relation containing bothα andβ is the transitive closure ofα ∪ β. It can be shown that this equivalence
relation is a congruence ofH, denoted byα∨ β. The setCon(H) together with the operations∧ (meet) and
∨ (join) is called thecongruence latticeof H. The setCon(H) is naturally ordered with respect to inclusion.
The least element ofCon(H) is the equality relation, denoted by∆, and the greatest element is the total
relation, denoted by5.

If R is a relation pp-definable inH, thenCon(R) denotes the set of all congruences onR. This set
depends onH as well as onR, but usuallyH is clear from the context. The setCon(R) is also a lattice.

Lattices can also be introduced in an abstract way, as a set along with operations∧ and∨ satisfying
certain conditions, see [37]. The structure of a lattice allows one to define a partial order≤ onL: a ≤ b if
and only ifa ∧ b = a, or, equivalently,a ≤ b if and only if a ∨ b = b. Note thata ∧ b anda ∨ b are the
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greatest lower and the least upper bound ofa, b, respectively, in terms of this order.
We will deal with lattices of several particular types. A lattice L is said to be (a)modular if, for any

a, b, c ∈ L such thatb ≤ a, the equalitya ∧ (b ∨ c) = b ∨ (a ∧ c) holds; (b)meet semi-distributiveif, for
anya, b, c ∈ L such thata ∧ b = a ∧ c, the equalitya ∧ b = a ∧ (b ∨ c) holds; (c)distributive if for any
a, b, c ∈ L, the equalitya∧ (b∨ c) = (a∧ b)∨ (a∧ c) holds. Modular and distributive lattices are very well
studied, see, e.g., [37, Ch. II, IV].

A lattice L is modular if and only if it contains nopentagon, Fig. 6(a), as a sublattice. Note that this
does not mean thatL does not contain this configuration in terms of order: It mustalso be the case that
a∧ c = b∧ c = d anda∨ c = b∨ c = e, see e.g., [37, Theorem 2, Ch. II]. Similarly,L is distributive if and
only if it contains no pentagons or diamond, see Fig. 6(b), asa sublattice. It is also not hard to check that a
diamond is not a meet semi-distributive lattice. Thus we obtain the following

��

��

��

��

�	


�

�


���� ��

(b)(a)

Figure 6: Pentagon (a) and diamond (b)

Observation 3.1 Every modular semi-distributive lattice is distributive.

One particularly useful property of modular lattices is thefollowing. A pair a, b of elements from a
latticeL is called aprime quotient, denoteda ≺ b, if a ≤ b and there is noc ∈ L such thata ≤ c ≤ b and
c 6= a, b. Supposea ≤ b. A sequencea = c0 ≺ c1 ≺ . . . ≺ ck = b is called amaximal chainfrom a to b.
Observe that such a chain is maximal in the sense that there are no other elements between theci. Number
k is called thelengthof the chain.

Proposition 3.2 (The Jordan-Ḧolder Chain Condition, [37], Th. 1, Ch. II.2) For any two elementsa ≤
b of a modular lattice, all maximal chains froma to b have the same length.

For elementsa, b of a latticeL such thata ≤ b, the interval [a, b] is the set of allc with a ≤ c ≤ b.
Intervals[a, b] and [c, d] are said to beperspectiveif b ∨ c = d, b ∧ c = a or a ∨ d = b, a ∧ d = c (see
Fig. 8(a)). Thus perspectivity is a binary relation on the set of intervals ofL. Two intervals that belong to
the transitive closure of this relation are said to beprojectiveto each other.

3.2 Congruence lattices and types of prime quotients

If H has a Mal’tsev polymorphism, the setCon(H) cannot be just an arbitrary collection of equivalence
relations. In particular, any two membersα, β of Con(H) must bepermutable, that isα ◦ β = β ◦ α. This
means that, for anyα-classA and anyβ-classB belonging the sameα ∨ β-class,A ∩B is non-empty (see
Fig. 7). As is easily seen, congruencesα, β are permutable if and only ifα ◦ β = β ◦ α = α ∨ β.

Lemma 3.3 If a relational structureH is congruence singular[an algebraA generates a congruence sin-
gular variety], then it has a Mal’tsev polymorphism[a Mal’tsev term operation].

Therefore for any relationR pp-definable inH its congruence latticeCon(R) is modular.

12



α β α β

αβ

−classes −classes

−classes−classes

^ v

Figure 7:

Proof: By the well known result of Mal’tsev [16], Theorem 12.1, an algebraA has a Mal’tsev term
operation if and only if any two congruences of any algebra inthe variety generated byA are permutable.
Therefore it suffices to prove that if the variety generated by Alg(H) for a structureH is congruence singular
then it is congruence permutable.

SupposeH is congruence singular,B ∈ var(Alg(H)), andα, β ∈ Con(B). If α ⊆ β or β ⊆ α then
they are obviously permutable. If the congruences are incomparable thenrank(M(α, β)) = k wherek is
the number ofα ∨ β-classes. It is convenient to representα ∨ β-classes as cells of matrixM(α, β). The
equalityrank(M(α, β)) = k implies, in particular, that all entries in a cell are non-zero. Therefore, for any
a, b from the sameα ∨ β-class, say,a belongs toα-classA1 andβ-classB1, andb belongs toα-classA2

andβ-classB2, we haveA1 ∩ B2 6= ∅ andA2 ∩ B1 6= ∅, as the corresponding entries ofM(α, β) must
be non-zero. Then〈a, b〉 ∈ α ◦ β, as anyc ∈ A1 ∩ B2 witnesses, and〈a, b〉 ∈ β ◦ α, as anyd ∈ A2 ∩ B1

witnesses. Thusα ◦ β = β ◦ α = α ∨ β.
The second part of the lemma follows from the observation that Con(R) is the congruence lattice of

certain algebra in the variety generated byAlg(H) and the fact that the congruence lattice of a congruence
permutable algebra is modular. 2

A pair of congruences〈α, β〉 is said to be aprime quotientif they form a prime quotient in the congru-
ence lattice.

We shall use some notions and results of tame congruence theory [41]. Tame congruence theory is a tool
to study a local structure of universal algebras and relational structures through certain properties of prime
quotients of the congruence lattice. In general, this theory identifies five possible types of such quotients
defined in a fairly sophisticated way. Fortunately, in our case of relational structures with a Mal’tsev poly-
morphism, only two of those types can occur, and the definition of these possible types can be significantly
simplified.

A prime quotientα ≺ β is said to be of theaffinetype, if, for anyβ-classB, there is a moduleMB with
the base setB/α over a ringRB such that for anyf(x1, . . . , xn, y1, . . . , ym) ∈ Pol(H) anda1, . . . , am ∈ H,
if the operationg(x1, . . . , xn) = f(x1, . . . , xn, a1, . . . , am) preservesB, then it can be represented as an
operation of the moduleMB :

(g
B
(x1, . . . , xn))/α = c1x1 + . . .+ cnxn + a.

In all other cases,α ≺ β has theBooleantype.

Example 3.4 LetL2 be a 2-element relational structure whose relational symbols are interpreted as solution
spaces of systems of linear equations. ThenL2 has only two congruences:∆2, the equality relation, and
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∇2, the total binary relation. As Example 2.8 shows, the prime quotient∆2 ≺ ∇2 is of the affine type.
Thus, the affine type corresponds to some kind of “linearity”in a broad sense.

Prime quotientsα1 ≺ β1 andα2 ≺ β2 are said to be perspective [projective] if the intervals[α1, β1] and
[α2, β2] are perspective [projective] inCon(H).

Lemma 3.5 ([41], Lemma 6.2)If α1 ≺ β1 andα2 ≺ β2 are projective quotients inCon(H), then they have
the same type.

3.3 Congruence lattices of relational structures with a Mal’tsev polymorphism

We will often distinguish two cases: when the congruence lattice of our relational structure omits the affine
type, and when the affine type occurs in this lattice. Note that, since by Lemma 3.3 we need to consider only
structures with a Mal’tsev polymorphism, all congruence lattices we consider are modular

3.3.1 Distributive lattices and structures omitting the affine type

If H omits the affine type then, by Theorem 9.15 of [41],Con(H) is meet semi-distributive, and by Observa-
tion 3.1 it is distributive. We will need several propertiesof distributive lattices. An elementa of a latticeL
is said to bejoin-irreducible if for any b, c ∈ L such thata = b ∨ c eitherb = a or c = a (see Fig, 8(b)). By
[a) we denote theprincipal ideal generatedby a, i.e. the set of all elementsb ∈ L with b ≤ a (see Fig 8(d)).
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Figure 8: Perspective intervals (a), join-irreducible (b)and meet-irreducible (c) elements, and principal
ideal (d)

Proposition 3.6 ([37], Theorem 9, Corollary 11, Ch. II.1) For any finite distributive latticeL there is a
finite set,M , and a injective mappingJ : L→ 2M (the set of all subsets) such thatJ (a∨b) = J (a)∪J (b)
andJ (a ∧ b) = J (a) ∩ J (b).

SetM can be chosen to beJ(L), the set of all join irreducible elements ofL, andJ (a) to beJ(L)∩ [a).

Example 3.7 The lattice shown in Fig. 9(a) is distributive. Its representation as a lattice of subsets is also
shown.

Proposition 3.8 ([37], Corollary 14, Ch. II.1) Every maximal chain of a finite distributive latticeL has
length|J(L)|.

Let L be a distributive lattice with∆ and5, the least and greatest elements, respectively, and letJ its
set representation as described in Proposition 3.6.
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Corollary 3.9 For any prime quotienta ≺ b in L, |J (b) − J (a)| = 1.

Proof: Take a maximal chain in[a) that starts at∆ and ends ata. Then continue it bya ≺ b and by a
maximal chain fromb to 5. The resulting chain is a maximal chain inL and therefore has length|J(L)|.
SinceJ (∆) = ∅ andJ (5) = J(L), the difference of set representations of consecutive elements of the
chain is 1-element. 2

Lemma 3.10 An interval[a, b] is projective to interval[c, d] if and only ifJ (b) − J (a) = J (d) − J (c).

Proof: Assume we havea = b∧ c, d = b∨ c. ThenJ (d) = J (c) ∪J (b) = J (a)∪ (J (b)−J (a))∪
J (c) = J (c) ∪ (J (b) − J (a)), andJ (b) − J (a) andJ (c) are disjoint.

Conversely, let[a, b], [c, d] be intervals such thatJ (b)−J (a) = J (d)−J (c). LetJ (b)−J (a) = K.
Setc′ = a ∨ c andd′ = b ∨ c. Clearly,J (d′) = J (c′) ∪ K, sob ∧ c′ = a, b ∨ c′ = d′ andc′ ∧ d = c,
c′ ∨ d = d′. Intervals[a, b] and[c, d] are projective. 2

Lemma 3.11 Let L be a distributive lattice and letC be a maximal chaina0 ≺ a1 ≺ . . . ≺ ak, where
a0, ak are the least and greatest elements ofL, respectively. Then for any prime quotienta ≺ b in L there is
a uniqueω ∈ [k] such thata ≺ b is projective toaω−1 ≺ aω. Moreover,J (b)−J (a) = J (aω)−J (aω−1).

Proof: Let a ≺ b be a prime quotient andω ∈ [k] such thatJ (b) − J (a) = J (aω) − J (aω−1). By
Lemma 3.10 intervals[a, b] and[aω−1, aω] are projective. SinceJ (aω) − J (aω−1) 6= J (aω′) − J (aω′−1)
wheneverω 6= ω′, the result follows by Lemma 3.10. 2

It will be convenient for us to use another representation ofelements of a distributive latticeL. Take a
maximal chainC in L, say,a0 ≺ a1 ≺ . . . ≺ ak, wherea0, ak are the least and greatest elements ofL,
respectively, and letM = {1, . . . , k} be the set of its prime quotients, whereω ∈ M denotes the quotient
aω−1 ≺ aω. An elementa ∈ L corresponds to the setM(a) of quotients fromM that are projective to
quotients of the formc ≺ d ≤ a. As the following lemma shows this alternative representation is equivalent
toJ .

Lemma 3.12 There is a one-to-one correspondenceϕ between the setJ(L) of join irreducible elements of
latticeL and setM such that, for anya ∈ L, an elementb ∈ J(L) satisfies the inequalityb ≤ a if and only
if there is a prime quotientc ≺ d ≤ a projective toϕ(b). Thus,M(a) = {ϕ(b) | b ∈ J (a)}.
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Proof: For a join-irreducible elementb ∈ J(L) let b′ denote the only element inL such thatb′ ≺ b.
Clearly,J (b) − J (b′) = {b}, therefore by Lemma 3.10 all such quotients are not projective to each other.
We setϕ(b) = ω whereω is the unique prime quotient inM such thatb′ ≺ b is projective toaω−1 ≺ aω.
If b ∈ J (a) then clearlyϕ(b) ∈ M(a). It remains to show the converse, that is for any prime quotient
c ≺ d ≤ a there isb ∈ J(L) with b ≤ a such thatc ≺ d is projective tob′ ≺ b.

Let J (a) = {b1, . . . , b`}. Then for any elementc ≤ a we haveJ (c) ⊆ {b1, . . . , b`}. For any prime
quotientc ≺ d ≤ a if J (d) − J (c) = {bi}, thenJ (d) − J (c) = J (bi) − J (b′i), and, therefore, by
Lemma 3.10, the quotientsc ≺ d andb′i ≺ bi are projective. 2

For a relational structureH and its congruence latticeCon(H) we use the following notation. LetC be a
maximal chain∆H = θ0 ≺ θ1 ≺ . . . ≺ θ` = 5H . The setM is defined to be the set of the prime quotients
of this chain. Slightly abusing the notation the quotientθω−1 ≺ θω will be denoted byω. A congruence
θ ∈ Con(H) corresponds to the setM(θ) of quotients fromM that are projective to quotients of the form
γ ≺ β ≤ θ. The bottom end of a prime quotientω ∈M will be denoted byω−, and the top one byω+.

The following proposition comprises properties ofCon(H) that follow easily from the representation of
this lattice as a lattice of subsets.

Proposition 3.13 (1) Every prime quotient inCon(H) is projective to one and only one of the intervals of
C.

(2) For anyω ∈M , M(ω+) = {1, . . . , ω}.

(3) MappingM is a representation ofCon(H) by subsets ofM .

(4) For anyω ∈M , that is, any prime quotient inC, there is the greatest prime quotientκω ≺ λω projective
to ω; that is, for anyα ≺ β projective toω we haveα ≤ κω andβ ≤ λω.

(5) For anyω ∈ M , the congruenceκω is meet-irreducible, that is, ifκω = α ∧ β thanκω = α or κω = β
(see Fig. 8(c)).

Proof: Items (1)–(3) follow straightforwardly from Lemmas 3.11 and 3.12. In part (2) Lemma 3.11 is
applied to the interval[∆H , ω+].

(4) Letκω be the join of allα ∈ Con(H) such thatω 6∈ M(α). By parts (2) and (3) of the proposition
ω 6∈ M(κω). Then setλω = κω ∨ ω+. Sinceω 6∈ M(ω−), we haveω− ≤ κω andM(λω) = M(κω) ∪
M(ω−) ∪ {ω} = M(κω) ∪ {ω}.

Let α ≺ β be a prime quotient projective toω, that isM(β) − M(α) = {ω}. Thenω 6∈ M(α), so
α ≤ κω. As M(β) − M(α) = M(λω) − M(κω), we haveβ ≤ λω, and by Lemma 3.10α ≺ β and
κω ≺ λω are projective.

(5) Supposeκω = α ∧ β. Thenω 6∈ M(α) or ω 6∈ M(β). By the choice ofκω, eitherα ≤ κω or
β ≤ κω. 2

3.3.2 Relational structures admitting the affine type

Let us again consider the congruence latticeCon(H). A congruenceβ is said to besolvableoverα if there
areα = θ1 ≺ . . . ≺ θk = β such that all the prime quotientsθi ≺ θi+1 have the affine type. Then

s
∼ denotes

the binary relation onCon(H) defined as follows:α
s
∼ β if and only if α ∨ β is solvable overα ∧ β.

Proposition 3.14 (1)
s
∼ is an equivalence relation and, moreover, acongruenceof Con(H); that is, for any

α1, α2, β1, β2 ∈ Con(H) such thatα1
s
∼ α2, β1

s
∼ β2, we have(α1∨β1)

s
∼ (α2∨β2), (α1∧β1)

s
∼ (α2∧β2).
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Figure 10: Congruence lattice and its quotient lattice modulo
s
∼. Prime quotients of the affine type are

shown by thick lines; the greatest elements in the classes of
s
∼ are encircled

(2) Every classS of
s
∼ has the greatestαS and the leastβS elements (with respect to≤), and equals the

interval [βS , αS ]. Every prime quotient insideS has the affine type.

(3) The quotient latticeLH = Con(H)/ s
∼ is distributive (see Fig. 10).

Proof: (1) is Lemma 7.4 of [41].
(2) The first part follows from the well known fact that every class of any congruence of a finite lattice is

an interval, and therefore every class has the least and the greatest elements. Letα ≺ β be a prime quotient
in S. We haveα

s
∼ β, that isα = α∧β andα∨β = β are connected with a chain of prime quotients of the

affine type. However,Con(H) is modular, henceα ≺ β is the only such chain.
(3) Theorem 7.7(2) from [41] claims thatLH is meet semi-distributive. SinceCon(H) is modular, so is

LH, and by Observation 3.1LH is distributive. 2

The
s
∼-class containing congruenceα will be denoted byα∼.

Proposition 3.14(3) implies thatLH can be represented as a lattice of subsets of a finite setM . Similar
to Subsection 3.3.1,M can be chosen to be the set of prime quotients of a maximal chain C in LH. Note
that the endpoints ofω ∈M are setsS1, S2 of congruences fromCon(H) (S1 corresponds to the bottom end
of ω). By ω− we denote the greatest element ofS1, and byω+ the least element ofS2 such thatω− ≤ ω+.
Let β ≺ γ be the greatest quotient inLH projective toω. Again,β andγ are setsT1, T2 of congruences
from Con(H) (T1 corresponds toβ). By κω we denote the greatest element ofT1, andλω the least element
in T2 such thatκω ≤ λω (see Fig. 11).

Proposition 3.15 (1) Intervals[ω−, ω+] and [κω, λω] are prime quotients.

(2) Prime quotientω− ≺ ω+ is projective toκω ≺ λω.

(3) Prime quotientsω− ≺ ω+ andκω ≺ λω have the Boolean type.

(4) Congruenceκω is meet-irreducible.

Proof: (1) Let ω− ≤ α ≤ ω+. Since(ω−)∼ ≺ (ω+)∼, congruenceα belongs to one of the two
s
∼-classes. It cannot be the case thatα ∈ (ω−)∼ andα 6= ω−, becauseω− is the greatest element in(ω−)∼.
If α ∈ (ω+)∼ thenα = ω+, asω− ≤ α andω+ is the least element in(ω+)∼ with this property.

Forκω andλω the argument is the same.
(2) Since(ω−)∼ ≤ (κω)∼ andκω is the greatest element in(κω)∼, it follows thatω− ≤ κω. Then

(κω ∧ ω+)∼ = (κω)∼ ∧ (ω+)∼ = (ω−)∼, hence, asω− is the greatest element in(ω−)∼,we obtainω− ≤
κω∧ω+ ≤ ω−, that is,κω∧ω+ = ω−. Next,(κω∨ω+)∼ = (κω)∼∨(ω+)∼ = (λω)∼. Sinceκω ≤ κω∨ω+,
it follows thatκω∨ω+ ≥ λω. Thus intervals[ω−, ω+] and[κω, κω∨ω+] are projective. By the Isomorphism
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Figure 11: Congruence lattice and congruencesκω, λω. Solid lines represent prime intervals of the Boolean
type, ovals represent

s
∼-classes

Theorem for modular lattices, see Theorem 2, Chapter IV of [37], they are isomorphic. Hence, asω− ≺ ω+

is a prime quotient,[κω, κω ∨ ω+] is also a prime quotient, which impliesκω ∨ ω+ = λω.
(3) If ω− ≺ ω+ or κω ≺ λω had the affine type, the

s
∼-classes(ω−)∼ and(ω+)∼, or (κω)∼ and(λω)∼,

respectively, would be equal. A contradiction with the assumptions made.
(4) Supposeκω = α ∧ β, thenα∼ ∧ β∼ = (κω)∼. By Proposition 3.13(κω)∼ is meet-irreducible,

thereforeα∼ = κ∼ω or β∼ = κ∼ω . If, say,α∼ = (κω)∼ thenα = κω. 2

3.4 Structure of relations invariant under a Mal’tsev operation

3.4.1 Basic properties

The following proposition contains some basic properties of relations invariant under a Mal’tsev operation,
which will be constantly used.

Proposition 3.16 Let H be a structure with a Mal’tsev polymorphismm and letR be ann-ary relation
pp-definable inH. Then for anyI ⊆ [n] the following properties hold
(1)R is rectangular, that is ifa,b ∈ prIR, c,d ∈ pr[n]−IR and(a, c), (a,d), (b, c) ∈ R, then(b,d) ∈ R.
(2) The relationθI = {〈a,b〉 ∈ (prIR)2 | there isd ∈ pr[n]−IR such that(a,d), (b,d) ∈ R} is a congru-
ence ofprIR.
(3) There is a one-to-one correspondenceπ betweenθI - andθ[n]−I-classes such thatR is a disjoint union
of sets of the formB × C, whereB andC are aθI- andθ[n]−I-class, respectively, related byπ.

Proof: (1) It suffices to observe that

m

((

a

d

)

,

(

a

c

)

,

(

b

c

))

=

(

b

d

)

.

(2) It is straightforward thatθI is reflexive and symmetric. If〈a,b〉, 〈b, c〉 ∈ θI , say,(a,d), (b,d) ∈ R
and (b, e), (c, e) ∈ R, then by rectangularity(a, e) ∈ R implying 〈a, c〉 ∈ θI . Finally, if, say, I =
{1, . . . , k} and[n] − I = {k + 1, . . . , n} thenθI is defined by the pp-formula

θI(x1, . . . , xk, y1, . . . , yk) = ∃xk+1, . . . , xn(R(x1, . . . , xk, xk+1, . . . , xn)

∧R(y1, . . . , yk, xk+1, . . . , xn)).
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(3) LetB be aθI-class andC aθ[n]−I-class such that(a,b) ∈ R for somea ∈ B, b ∈ C. Then for any
c ∈ C there isd ∈ prIR with (d,b), (d, c) ∈ R. By rectangularity we get(a, c) ∈ R. Repeating the same
argument for tuples fromB we concludeB×C ⊆ R. Finally, if for somea ∈ B there isb ∈ pr[n]−IR−C
with (a,b) ∈ R then, as(a, c) ∈ R for anyc ∈ C, we have〈b, c〉 ∈ θ[n]−I, contradicting the assumption
b ∈ pr[n]−IR− C. 2

Binary relations invariant with respect to a Mal’tsev operation have particularly simple form. LetB1, B2

be subalgebras ofH and letα1 ∈ Con(B1), α2 ∈ Con(B2) be such that|B1/α1
| = |B2/α2

|. Let alsoϕ be
a one-to-one mapping fromB1/α1

toB2/α2
. The thick mappingcorresponding toϕ is the binary relation

R = {(a, b) ∈ B1 × B2 | ϕ(aα1) = bα2}. Any congruenceα is the thick mapping corresponding to the
identity mapping onH/α. Proposition 3.16(3) implies the following

Corollary 3.17 LetH be a relational structure with a Mal’tsev polymorphism. Then every binary relation
R pp-definable inH is a thick mapping.

Indeed, letR be a subdirect product ofB1 andB2, and letα1 = θ{1}, α2 = θ{2}. Then by Proposi-
tion 3.16(3) there is a one-to-one correspondenceϕ betweenα1- andα2-classes such thatR is a disjoint
union of sets of the formB × ϕ(B), B is anα1-class. ThusR is the thick mapping corresponding toϕ.

We shall use thick mappings throughout the paper. Somewhat related to thick mappings is the following
relation on the set of coordinate positions of a relation. Let R be ak-ary subdirect power ofH. By α∗

we denote a relation on the set[k] defined as follows:i, j arenot in α∗ if there area,b ∈ R such that
〈a[i],b[i]〉 ∈ α, but 〈a[j],b[j]〉 6∈ α, or 〈a[j],b[j]〉 ∈ α, but 〈a[i],b[i]〉 6∈ α.

3.4.2 The Boolean type and rectangularity properties

Let A be a finite algebra. AlgebraA is calledsubdirectly irreducibleif there is a congruenceµ, themonolith
of A, such that∆A ≺ µ and for any congruenceγ 6= ∆A we haveµ ≤ γ. Similarly, we call a relational
structureH subdirectly irreducible ifCon(H) has a monolith, that is a congruenceµ satisfying the conditions
above.

Let R ∈ def(H), whereH is a subdirectly irreducible structure with a Mal’tsev polymorphism, be an
k-ary subdirect power ofH. The equivalence relationµ∗ is defined in the same way as before. Note that if
〈i, j〉 ∈ µ∗ thenpri,jR is the graph of a bijective mappingψ, that is,pri,jR = {(a, ψ(a)) | a ∈ H}. If the
prime quotient∆H ≺ µ has the Boolean type, Lemma 2.7 from [11] characterizesµ∗-classes in terms of
so-calledcoherent sets. It shows that in this caseµ∗-classes are the coherent sets. Then Lemma 2.6 of [11]
can be restated as follows.

Lemma 3.18 (Lemma 2.6, [11])LetR be ann-ary subdirect power ofH and the structureH is subdirectly
irreducible. Let alsoµ be its monolith, let prime quotient∆H ≺ µ have the Boolean type, and letI1, . . . , I`
be theµ∗-classes (or, equivalently, the coherent sets). Let alsoB1, . . . , Bn beµ-classes such thatR∩ (B1×
. . .×Bn) 6= ∅, and

RIj
= prIj

R ∩
∏

i∈Ij

Bi.

ThenR ∩ (B1 × . . .×Bn) = RI1 × . . . ×RI`
.

Recall that for a congruenceα ∈ Con(H), we denote byαn the congruence ofR consisting of pairs
〈a,b〉 of tuples such that〈a[i],b[i]〉 ∈ α for all i ∈ [n].
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Corollary 3.19 LetH be a structure with a Mal’tsev polymorphism, letM be a maximal chain inCon(H),
let R be ann-ary subdirect power ofH and ω ∈ M . Let alsoB1, . . . , Bn be some classes ofλω and
I1, . . . , I` the classes ofκ∗ω. Let alsoR′ = R/κn

ω
, whereR/κn

ω
= {((a[1])κω , . . . , (a[n])κω ) | a ∈ R}, and

B′
i = Bi/κω

for i ∈ [n]. Then eitherR ∩ (B1 × . . .×Bn) = ∅, or

R′ ∩ (B′
1 × . . .×B′

n) = R′
I1
× . . .×R′

I`
,

whereR′
Ij

= prIj
R′ ∩

∏

i∈Ij
B′

i.

Proof: RelationR′ can be treated as a subdirect power ofH/κω
. Sinceκω is meet-irreducible by

Proposition 3.15(4), the congruence lattice of structureH/κω
has a monolith,λω, and therefore is subdi-

rectly irreducible. Now the result follows straightforwardly from Proposition 3.15(3) and Lemma 3.18.2

Remark 3.20 (1) LetIj = {ij1, . . . , ijkj
}. EveryR′

Ij
can be represented as the set{(a, ψjij2(a), . . . , ψjijkj

(a)) |

a ∈ B′
ij1

}, where(prij1,ijm
R′) ∩ (B′

ij1
×B′

ijm
) is the graph of mappingψjijm

.
(2) Another way to state Corollary 3.19 is the following. Leti1, . . . , i` be representatives of theκ∗ω-

classes. Then for any choice ofκω-classesa′im ∈ B′
im

, m ∈ [`], there isa ∈ R such thata[im] ∈ a′im for
all m ∈ [`].

4 Necessary condition for tractability

In this section we prove two more necessary conditions for #-tractability. Both of them follow from Propo-
sition 2.16, but they allow us to design an algorithm for #CSP.

If the algebra corresponding to a structureH does not omit the affine type, then we have a stronger
necessary condition for the tractability of#CSP(H).

Proposition 4.1 If H is congruence singular then for any congruencesδ ≤ α < β ∈ Con(H) such that
α

s
∼ β, any n-ary relation R ∈ def(H), and any sequencesA1, . . . , An andB1, . . . , Bn of α-classes

such thatAi, Bi belong to the sameβ-class for eachi ∈ [n], if R1 = R ∩ (A1 × . . . × An) 6= ∅ and
R2 = R ∩ (B1 × . . . ×Bn) 6= ∅, then|R1/δn| = |R2/δn|.

Suppose that Proposition 4.1 is proved in the caseα ≺ β, that is, the following lemma is true (we prove
it later).

Lemma 4.2 If H is congruence singular then for any congruencesδ ≤ α ≺ β ∈ Con(H) such thatα ≺ β
has the affine type, anyn-ary relationR ∈ def(H), and any sequencesA1, . . . , An andB1, . . . , Bn of
α-classes such thatAi, Bi belong to the sameβ-class for alli ∈ [n], if R1 = R ∩ (A1 × . . . × An) 6= ∅

andR2 = R ∩ (B1 × . . . ×Bn) 6= ∅, then|R1/δn| = |R2/δn|.

Then the general case follows.
Proof: [of Proposition 4.1] We proceed by induction on the length ofa maximal chainα = α1 ≺ . . . ≺

αk = β. Lemma 4.2 provides the base case of induction. Suppose thatthe proposition is proved forδ ≤ α <
γ whereγ ≺ β. That is for any sequencesA′

1, . . . , A
′
n andB′

1, . . . , B
′
n of α-classes such thatAi, Bi belong

to the sameγ-class for eachi ∈ [n], if R′
1 = R∩(A′

1× . . .×A
′
n) 6= ∅ andR′

2 = R∩(B′
1× . . .×B

′
n) 6= ∅,

then|R′
1/δn| = |R′

2/δn|.
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Let A′′
i , B

′′
i be theγ-classes containingAi, Bi, respectively, andR′′

1 = R ∩ (A′′
1 × . . . × A′′

n), R′′
2 =

R ∩ (B′′
1 × . . .×B′′

n). Sinceγ ≺ β and this prime quotient has the affine type, we can apply Lemma4.2 to
the triple of congruencesδ ≤ γ ≺ β to obtain|R′′

1/δn| = |R′′
2/δn|. Then we apply Lemma 4.2 to the triple

of congruencesα ≤ γ ≺ β, and obtain the equality|R′′
1/αn| = |R′′

2/αn|; denote this number byN . By
the induction hypothesis, everyαn-class insideR′′

1 (and insideR′′
2) contains the same number ofδn-classes.

Therefore|R′′
1/δn| = N · |R1/δn| and|R′′

2/δn| = N · |R2/δn|. Equality|R1/δn| = |R2/δn| follows. 2

To prove Lemma 4.2 we make use of some basics of commutator theory in congruence modular varieties
(see [35]). As usual we introduce all required notions for relational structures rather than for algebras. Let
H be a relational structure with a Mal’tsev polymorphismm,R ∈ def(H) ak-ary relation, andα, β, γ con-
gruences ofR. Congruenceα centralizesβ moduloγ, denotedC(α, β; γ), if, for any (n-ary) polymorphism
f of H, any〈u,v〉 ∈ α and any〈a1,b1〉, . . . , 〈an−1,bn−1〉 ∈ β,

〈f(u,a1, . . . ,an−1), f(u,b1, . . . ,bn−1)〉 ∈ γ

⇐⇒ 〈f(v,a1, . . . ,an−1), f(v,b1, . . . ,bn−1)〉 ∈ γ.

The smallest congruenceγ such thatC(α, β; γ) is called thecommutatorof α, β, denoted[α, β].

Example 4.3 Let H be a 3-element structure with the universeH = {0, 1, 2} and 4-ary relationR that
contains the tuples listed below (written vertically)









0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
0 1 1 0 1 0 0 1









(these are the tuples(a, b, c, d) satisfying the equalitya + b ≡ c + d (mod 2)), and also tuples obtained
from them by replacing some of the 1’s with 2. Consider unary relationH. Setβ = 5H , and setα to be
the congruence with classesA0 = {0} andA1 = {1, 2}. Observe thatα is a congruence, since it is given
by the following pp-formula

α(x, y) = ∃zR(x, y, z, z).

It is not hard to show that the polymorphisms ofH are the operationsf(x1, . . . , xn) satisfying the
following condition: there is an operationg(y1, . . . , yn) on {0, 1} such that (a)g(y1, . . . , yn) = e1y1 +
. . .+ enyn + e (mod 2), and (b) ifxi ∈ Ayi for i ∈ [n] thenf(x1, . . . , xn) ∈ Ag(y1,...,yn).

We show that[β, β] ≤ α. Letf(x1, . . . , xn) be a polymorphism ofH andg(y1, . . . , yn) = e1y1 + . . .+
enyn + e the corresponding linear operation on{0, 1}. Let alsou, v, a1, . . . , an−1, b1, . . . , bn−1 ∈ H be
such that〈u, v〉 ∈ β and〈ai, bi〉 ∈ β (asβ is the total relation, these are just any elements ofH). Let u ∈
Au′

, v ∈ Av′ andai ∈ Aa′

i , bi ∈ Ab′i for i ∈ [n − 1]. If 〈f(u, a1, . . . , an−1), f(u, b1, . . . , bn−1)〉 ∈ α then
g(u′, a′1, . . . , a

′
n−1) = g(u′, b′1, . . . , b

′
n−1). Using the linearity ofg we havee2a′1+. . .+ena

′
n−1+e = e2b

′
1+

. . . + enb
′
n−1 + e (mod 2). Therefore g(v′, a′1, . . . , a

′
n−1) = g(v′, b′1, . . . , b

′
n−1), and

so〈f(v, a1, . . . , an−1), f(v, b1, . . . , bn−1)〉 ∈ α. The converse implication is similar.

The next propesition follows from Proposition 4.3 and Theorem 4.9 of [35], Theorem 7.2 of [41]

Proposition 4.4 Let H be a relational structure with a Mal’tsev polymorphism,R ∈ def(H) a (k-ary)
relation, andα, β congruences ofR. Then
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(1) [α, β] = [β, α];

(2) if α ≺ β, then this prime quotient has the affine type if and only if[β, β] ≤ α;

(3) if α ≤ β and [β, β] ≤ α, there is a congruenceθ of β (whereβ is considered as a2k-ary relation from
def(H)) such that the set{(a,b) | 〈a,b〉 ∈ α} is a class ofθ.

Now we are in a position to prove Lemma 4.2.

Proof: [of Lemma 4.2] By switching to the quotient structureH/δ we may assume thatδ is the equality
relation. To prove Lemma 4.2 we consider several congruences of R, including αn andβn. As we are
concerned aboutα-classes within someβ-classes, we can restrictR to a singleβn-class. By Lemma 2.20
everyβn class ofR is a relation pp-definable inH, so letR′ be an arbitrary such class.

CLAIM 1. [βn, βn] ≤ αn.

Let f be a (k-ary) polymorphism ofH, and let〈u,v〉 ∈ βn and〈a1,b1〉, . . . , 〈ak−1,bk−1〉 ∈ β
n where

u,v,ai,bi ∈ R′ for i ∈ [k − 1]. If 〈f(u,a1, . . . ,ak−1), f(u,b1, . . . ,bk−1)〉 ∈ αn then
〈f(u[i],a1[i], . . . ,ak−1[i]), f(u[i],b1[i], . . . ,bk−1[i])〉 ∈ α for eachi ∈ [n]. SinceC(β, β;α), this implies
〈f(v[i],a1[i], . . . ,ak−1[i]), f(v[i],b1[i], . . . ,bk−1[i])〉 ∈ α for each index i ∈ [n]. Thus
〈f(v,a1, . . . ,ak−1), f(v,b1, . . . ,bk−1)〉 ∈ αn.

Everyαn-class ofR′ has the formR′∩(A1×. . .×An) for certainα-classesA1, . . . , An. LetC1, . . . , Ck

be theαn-classes ofR′, and|Ci| = `i. We have to prove that̀i = `j for anyi, j ∈ [k].
We treat the congruenceβn restricted ontoR′ as a2n-ary relation pp-definable inH; let us denote it by

Q. By the choice ofR′ we haveQ = R′2. Proposition 4.4(3) implies that there is a congruenceγ of Q such
that the setD of pairs of the form(a,b), a,b ∈ R′ and〈a,b〉 ∈ αn, is aγ-class. Letγ′ = γ ∨ α2n.

CLAIM 2. (1) Every classE of γ′ is the union(C1 × CϕE(1)) ∪ . . . ∪ (Ck × CϕE(k)) for a certain bijective
mappingϕE : [k] → [k].
(2) The setD is a class ofγ′; and for this classϕD is the identity mapping.

Note that for any tuplesa,b, c,d ∈ R such thata, c ∈ Ci andb,d ∈ Cj we have〈(a,b), (c,d)〉 ∈ α2n.
We start with (2). Clearly,D has the required form of a union for the identity mappingϕD. SinceD is

a class ofγ and a union ofα2n-classes, it is a class ofγ ∨ α2n = γ′.
(1) It suffices to prove three claims: (a) for anyCi, Cj , if (Ci × Cj) ∩ E 6= ∅ thenCi × Cj ⊆ E;

(b) if (a,b), (c,d) ∈ E and 〈a, c〉 ∈ αn, then 〈b,d〉 ∈ αn; and (c) for anyCi there isCj such that
(Ci × Cj) ∩E 6= ∅.

Property (a) follows from the inclusionα2n ≤ γ′.
To prove (b) suppose that there are(a,b), (c,d) ∈ E such that〈a, c〉 ∈ αn, but〈b,d〉 6∈ αn. Asα2n ≤

γ′, we may assumea = c. Sinceγ′ is a congruence onQ, and therefore is reflexive,(a,a,a,a), (b,b,d,d),
(a,b,a,b) ∈ γ′, consideringγ′ as a 4-ary relation onR′. Then we have

m









a

a

a

a

a

b

a

d

b

b

d

d









=









b

a

d

a









∈ γ′ and m









a

b

a

b

a

a

a

a

b

a

d

a









=









b

b

d

b









∈ γ′,

which implies that(b,d) ∈ D, and therefore〈b,d〉 ∈ αn, a contradiction.
To prove (c) suppose that, for someCi and for anyCj , (Ci×Cj)∩E = ∅. Takea ∈ Ci and(b, c) ∈ E.

Then(b, c,b, c), (b,b,b,b), (a,a,b,b) ∈ γ′ (the last tuple belongs toγ′ because(a,a), (b,b) ∈ D). We
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have

m









b

c

b

c

b

b

b

b

a

a

b

b









=









a

d

b

c









∈ γ,

whered = m(c,b,a). Thus(a,d) ∈ E, a contradiction

Suppose that̀i 6= `j for somei, j ∈ [k]; clearly if suchi, j exist we can choosei = 1. Without loss
of generality we also assume`1 < `j . We present a pair of congruences ofR′ that violate the condition of
Proposition 2.16. One of them isγ′ the other one isβ′ defined to be the congruenceαn×βn. In other words,
〈(a,b), (c,d)〉 ∈ β′ if and only if 〈a, c〉 ∈ αn. It is not hard to see thatγ′ ∨ β′ = βn × βn andγ′ ∧ β′ =
αn × αn. Indeed,α2n ≤ γ′ ∧ β′. If 〈(a,b), (c,d)〉 ∈ γ′ ∧ β′ then〈a, c〉 ∈ αn, since〈(a,b), (c,d)〉 ∈ β′,
and by Claim 2 this implies〈b,d〉 ∈ αn. Thusγ′ ∧ β′ ≤ αn × αn. Let (a,b), (c,d) ∈ R′. As β2n is
the total binary relation onR′ these pairs are in the sameβ2n-class. By Claim 2 there ise ∈ R′ such that
〈(a,b), (c, e)〉 ∈ γ′. Since〈(c, e), (c,d)〉 ∈ β′ we have〈(a,b), (c,d)〉 ∈ γ′ ◦ β′ ⊆ γ′ ∨ β′.

Every class ofαn × αn is the Cartesian product of two classesCi, Cj of αn. Therefore, its cardinality
equals̀ i`j. Thus, the row of the matrixM(γ′, β′) corresponding to aγ′-classE looks as follows

(

`1`ϕE(1) `2`ϕE(2) · · · `k`ϕE(k)

)

.

The row corresponding to the classD is
(

`21 `22 · · · `2k
)

.

AsQ = R′2, there is aγ′-classE such thatC1 × Cj ⊆ E (recall that̀ 1 < `j). SinceH is congruence
singular, the rows ofM(γ′, β′) corresponding to classesD andE are proportional, that is

`1
`ϕE(1)

=
`2

`ϕE(2)
= . . . =

`k
`ϕE(k)

.

Let j1 = 1, j2 = ϕE(1) = j, andjt = ϕE(jt−1) for t > 2. Let alsom > 1 be the minimal number such
thatjm = 1. We prove`jt > `jt−1

that leads to a contradiction, as it would imply that`1 < `jm = `1. By
the assumption madèj1 = `1 < `j = `j2, which gives us the base case. From the equalities above we have
`2jt

= `jt−1
`jt+1

. Therefore if̀ jt−1
< `t then`t < `jt+1

, which proves the induction step. 2

Example 4.3 (continued)Reconsider the relational structureH from Example 4.3. By Proposition 4.1 the
problem#CSP(H) is #P-complete. Indeed, consider congruencesα andβ = 5H of H. We showed that
[β, β] ≤ α, therefore by Proposition 4.4, prime quotientα ≺ β has the affine type. Settingδ = ∆H we see
thatα-classesA0 andA1 contain different number of elements.

The constrution used in the proof of Proposition 4.1 in this case looks as follows. Congruenceβ is the
binary relationH2. Congruenceγ′ of β such thatD = {(0, 0), (1, 1), (1, 2), (2, 1), (2, 2)} is its class can be
chosen to be the congruence with classesD andE = {(0, 1), (0, 2), (1, 0), (2, 0)}; and it is easy to see that
we can useR defined in Example 4.3 for that. Finally, the classes ofβ′ = α × β are{(0, 0), (0, 1), (0, 2)}
and{(1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}. Therefore

M(R; γ′, β′;∆H) =

(

1 4
2 2

)

,

and its rank equals 2.
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We will also need another corollary from Proposition 2.16. Let T be ak-dimensional array, that is a
collection of numbersT [i1, . . . , ik] indexed by tuples(i1, . . . , ik), where1 ≤ ik ≤ mk. ArrayT has rank 1,
denotedrank(T ) = 1, if for each` ∈ [k], and anyi1, . . . , i`−1, i`+1, . . . , ik, j1, . . . , j`−1, j`+1, . . . , jk with
iu, ju ∈ [mu], we have

T [i1, . . . , i`−1, 1, i`+1, . . . , ik]

T [j1, . . . , j`−1, 1, j`+1, . . . , jk]
= . . . =

T [i1, . . . , i`−1,m`, i`+1, . . . , ik]

T [j1, . . . , j`−1,m`, j`+1, . . . , jk]
. (1)

Observe that ifk = 2, and thusT is a matrix,T has rank 1 in the sense introduced above if and only ifT
has the row- (column-) rank 1.

Lemma 4.5 Array T has rank 1 if and only if for each̀∈ [k] there are numberst`1, . . . , t
`
mk

such that

T [i1, . . . , ik] = t1i1 · . . . · t
k
ik
.

Proof: If numberst`1, . . . , t
`
mk

with the required properties exist then equalities (1) are trivially true. To
prove the converse we observe that (1) implies that for anyi1, . . . , ik and` ∈ [k]

T [i1, . . . , ik] = T [i1, . . . , i`−1, 1, i`+1, . . . , ik] ·
T [1, . . . , 1, i`, 1, . . . , 1]

T [1, . . . , 1]
.

Therefore

T [i1, . . . , ik] = T [i1, 1, . . . , 1] ·

k
∏

`=2

T [1, . . . , 1, i`, 1, . . . , 1]

T [1, . . . , 1]
.

Choosingt1i = T [i, 1, . . . , 1] for i ∈ [mi] andtji = T [1,...,1,i,1,...,1]
T [1,...,1] for 2 ≤ j ≤ k andi ∈ [mj ] we obtain the

result. 2

Now letR be a relation pp-definable in a structureH with a Mal’tsev polymorphism, and letγ1, . . . , γk

be congruences onR such that for eachi ∈ [k]

γi ∨ (γ1 ∧ . . . ∧ γi−1 ∧ γi+1 ∧ . . . ∧ γk) = γ1 ∨ . . . ∨ γk (2)

Let alsoC be a class ofγ = γ1 ∨ . . . ∨ γk, and letAi
1, . . . , A

i
mi

be the classes ofγi from C. Condition (2)
means that for anyj1, . . . , jk the setA1

j1
∩ . . . ∩Ak

jk
is a nonempty class ofβ = γ1 ∧ . . . ∧ γk. Indeed, let̀

be the smallest number such that for certainj1, . . . , j` the setA1
j1
∩ . . . ∩A`

j`
= ∅. Then for anya,b ∈ C

we have
〈a,b〉 ∈ γ` ∨ (γ1 ∧ . . . ∧ γ`−1 ∧ γ`+1 ∧ . . . ∧ γk) ≤ γ` ∨ (γ1 ∧ . . . ∧ γ`−1).

Moreover, as congruences ofR are permutable,〈a,b〉 ∈ γ` ◦ (γ1 ∧ . . . ∧ γ`−1). Supposea ∈ A`
j and

b belongs to a classA1
j1

∩ . . . ∩ A`−1
j`−1

of γ1 ∧ . . . ∧ γ`−1. Then there existsc such thatc ∈ A`
j and

c ∈ A1
j1
∩ . . . ∩ A`−1

j`−1
, a contradiction. It is also clear that any two classes of this form are different. We

consider ak-dimensional arrayM(C; γ1, . . . , γk), where

M(C; γ1, . . . , γk)[i1, . . . , ik] = |A1
i1
∩ . . . ∩Ak

ik
|.

Proposition 4.6 Let γ1, . . . , γk be congruences of a structureH that has a Mal’tsev polymorphism, let
them satisfy condition (2), and letC be a class ofγ1 ∨ . . . ∨ γk. Then, ifH is congruence singular then
rank(M(C; γ1, . . . , γk)) = 1.
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Proof: We consider congruencesγi andβi = γ1∧ . . .∧γi−1 ∧γi+1∧ . . .∧γk. To simplify the notation
we assumei = k. If H is congruence singular, thenrank(M(C; γk, βk;∆H)) = 1. Let Aj

1, . . . , A
j
mj be

the classes ofγj from C. The classes ofβk have the formA1
i1
∩ . . . ∩Ak−1

ik−1
, the classes ofγk ∧ βk are the

classes ofγ1 ∧ . . . ∧ γk. Therefore every row ofM(C;βk, γk;∆H) is equal to

(M(C; γ1, . . . , γk)[i1, . . . , ik−1, 1], . . . ,M(C; γ1, . . . , γk)[i1, . . . , ik−1,mk])

for somei1, . . . , ik−1. Sincerank(M(C; γk, βk)) = 1, we get

M(C; γ1, . . . , γk)[i1, . . . , ik−1, 1]

M(C; γ1, . . . , γk)[j1, . . . , jk−1, 1]
= . . . =

M(C; γ1, . . . , γk)[i1, . . . , ik−1,mk]

M(C; γ1, . . . , γk)[j1, . . . , jk−1,mk]
,

for anyj1, . . . , jk−1, js ∈ [ms]. The proposition is proved. 2

An important example of a collection of congruences satisfying condition (2) is the following (we prove
it in Section 5.3). Letω ∈M , and letI1, . . . , Ik be the classes ofκ∗ω. Congruenceγj is given by:〈a,b〉 ∈ γj

if and only if 〈a[i],b[i]〉 ∈ ω− for i ∈ Ij and〈a[i],b[i]〉 ∈ ω+ otherwise.

5 Algorithms: prerequisites

5.1 Decision CSPs over structures with a Mal’tsev polymorphism.

If a relational structureH has a Mal’tsev polymorphism, then the decision CSP with the templateH can
be solved in polynomial time [6, 12]. Here we shall use the algorithm presented in [12], and we call it
MAL’ TSEV. This algorithm builds a sort of a succinct (polynomial size) representation for the set of all
solutions.

Let n be a positive integer, letH be a finite set, leta, b ben-tuples and let(i, a, b) be any element in
[n] ×H2. We say that pair〈a,b〉 witnesses(i, a, b) if pr[i−1]a = pr[i−1]b, a[i] = a, andb[i] = b. We also
say thata andb witness(i, a, b) meaning that〈a,b〉 witnesses(i, a, b).

Let R be anyn-ary relation onH. The signatureof R, SigR ⊆ [n] × H2, is defined to be the set
containing all triples(i, a, b) ∈ [n] ×H2 witnessed by tuples inR, that is

SigR = {(i, a, b) ∈ [n] ×H2 | there area,b ∈ R such that〈a,b〉 witnesses(i, a, b)}.

Note that in our notation(i, a, b) ∈ SigR if and only if 〈a, b〉 belongs to the relationθi computed for the
relation pr[i]R (see Section 3.4.1). In particular, asH has a Mal’tsev polymorphism, relationpr[i]R is
rectangular, and hence for any(i, a, b) ∈ SigR and anya ∈ pr[i]R with a[i] = a, the tupleb such that
pr[i−1]b = pr[i−1]a andb[i] = b also belongs topr[i]R.

A subsetR′ of R is called arepresentationof R if SigR′ = SigR. If furthermore,|R′| ≤ 2|SigR| thenR
is called acompactrepresentation ofR. Observe that every relationR has compact representations.

Let H be a relational structure andR′ ⊆ Hn for somen. By 〈R′〉H we denote the relationgenerated
byR′, that is, the smallest relationR pp-definable inH and such thatR′ ⊆ R. Alternatively,〈R′〉H can be
constructed fromR′ by adding every tuplea that can be obtained asf(a1, . . . ,an) wheref is an (n-ary)
polymorphism ofH anda1, . . . ,an ∈ R′. SinceH is usually clear from the context we shall omit this
subscript. The key lemma proved in [12] states that ifR is a relation pp-definable in a relational structure
with a Mal’tsev polymorphism, andR′ is a representation ofR, then〈R′〉 = R. Given an instanceG of
the constraint satisfaction problemCSP(H), m = |G|, the set of all solutionsΦ(G,H) to this problem can
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be thought of as anm-ary relation pp-definable inH. The algorithm presented in [12] finds a compact
representation of this set.

We will need to know the unary and binary projections of the relation Φ(G,H), that is, sets of the form
Φg = {ϕ(g) | ϕ ∈ Φ(G,H)} for g ∈ G, andΦg,h = {(ϕ(g), ϕ(h)) | ϕ ∈ Φ(G,H)} for g, h ∈ G. Let
R′ be a compact representation ofΦ(G,H). If a ∈ Φg then(g, a, a) ∈ SigΦ(G,H), soΦg = pr{g}R

′. It is
also not hard to see (see also [12]) thatΦg,h is equal to〈prg,hR

′〉. Therefore, we may assume that we have
a precomputed table that for each subset ofH × H gives the binary relation it generates. Then every time
we need to findΦg,h using a compact representationR′, we just find the corresponding projection ofR′ and
look up the table.

If there are no complexity restrictions imposed, as in the case of precomputation, the relation generated
by some setQ ⊆ Hn can be computed by employing the standard methods. LetQ = {a1, . . . ,am}. First,
find allm-ary polymorphisms ofH. This can be done using theindicator problem[46]. Next, include into
〈Q〉 all tuples that can be represented asf(a1, . . . ,am) for anm-ary polymorphismf .

5.2 Reduction to subdirect powers.

In general, for an instanceG of #CSP(H) the setsΦg, g ∈ G, are subalgebras ofH that are not necessarily
equal toH. For us, however, it is much more convenient to deal with the case whenΦ(G,H) is a subdirect
power ofH, that isΦg = H for all g ∈ G. We show how to transform the problem so thatΦg is H for all
g ∈ G. To do this we borrow some methods from the multi-sorted CSP,see, e.g. [10].

LetD1, . . . ,D` be the subalgebras ofH (includingH itself). We define a relational structureχ(H) as
follows. The universe ofχ(H) isD = D1× . . .×D`; theith component of an elementa ∈ D is denoted by
a[i]. For any (n-ary) relationR pp-definable inH and such thatprjR = Dij , we set(a1, . . . , an) ∈ χ(R) if
and only if(a1[i1], . . . , an[in]) ∈ R. In particular, each unary relation ofχ(H) corresponding to a relation
of H contains all elements ofD and, therefore, can be thrown out. For any coordinate position i of any non-
unary relationR, the setpriχ(R) equalsD. Finally, to defineχ(H) formally, for each relational symbolR,
we interpret it asRχ(H) = χ(R).

Lemma 5.1 If H is congruence singular thenχ(H) is also congruence singular.

Proof: LetR be ann-ary relation overD. It naturally defines aǹn-ary relationfla(R) overH that we
call flatteningof R:

fla(R) = {fla(a) ∈ H`n | there isa ∈ R such that

(fla(a)[`(j − 1) + 1], . . . , fla(a)[`j]) = a[j] for eachj ∈ [n]}.

As is easily seen,fla is a one-to-one mapping between the set ofn-tuples and the set of̀n-tuples, and also
betweenn-ary and`n-ary relations.

CLAIM 1. |fla(R)| = |R|.

CLAIM 2. If R is pp-definable inχ(H) thenfla(R) is pp-definable inH.

The following convention for indexing variables of predicates will be helpful. IfR isn-ary andR(x1, . . . , xn)
is the corresponding predicate, we usefla(R)(x1

1, . . . , x
`
1, . . . , x

1
n, . . . , x

`
n) for the predicate corresponding

to fla(R).
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First, we prove the claim for a relationR = χ(R′) whereR′ is a relation fromH. Suppose that
prjR

′ = Dij for j ∈ [n]. It is not hard to see that

fla(R)(x1
1, . . . , x

`
1, . . . , x

1
n, . . . , x

`
n) = R′(xi1

1 , . . . , x
in
n ) ∧

n
∧

j=1

∧̀

i=1

Di(x
i
j).

Now we proceed by induction on the structure of a pp-definition of R. If R = R1 ∧ R2 thenfla(R) =
fla(R1) ∧ fla(R2). If R(x1, . . . , xn) = ∃yR′(x1, . . . , xn, y) then

fla(R)(x1
1, . . . , x

`
1, . . . , x

1
n, . . . , x

`
n) = ∃y1, . . . , y`

fla(R′)(x1
1, . . . , x

`
1, . . . , x

1
n, . . . , x

`
n, y

1, . . . , y`) ∧
∧̀

i=1

Di(y
i)).

CLAIM 3. LetR ∈ def(χ(H)) be ann-ary relation,α, β its congruences. Then (a) for any binary rela-
tion θ onR and anya,b ∈ R, 〈a,b〉 ∈ θ if and only if 〈fla(a), fla(b)〉 ∈ fla(θ); (b) relationsfla(α), fla(β)
are congruences offla(R), (c) equalitiesfla(α ∧ β) = fla(α) ∧ fla(β), fla(α ∨ β) = fla(α) ∨ fla(β) hold,
and (d) the number ofα- [β-] classes equals to that offla(α) [respectively,fla(β)], and |B| = |fla(B)| for
eachα- [β-] classB.

(a) follows from the observation thatfla(a,b) = (fla(a), fla(b)) for anya,b ∈ R.
(b) To prove it use part (a) along with Claim 2.
(c) Note that iffla(a) = fla(b) thena = b. Hence,fla(α ∧ β) = fla(α ∩ β) = fla(α) ∩ fla(β) =

fla(α) ∧ fla(β). To provefla(α ∨ β) = fla(α) ∨ fla(β) we can use (a) to show that transitive closure is
preserved byfla, that implies the result.

(d) For anyα-classB by Claim 1 we have|B| = |fla(B)|. Using (a) we can also find a one-to-one
correspondence betweenα- andfla(α)-classes [respectively,β- andfla(β)-classes].

Finally, letα, β, andδ with δ ≤ α, β be congruences ofR, and letA1, . . . , Am andB1, . . . , Bk be theα-
and β-classes respectively. Then fla(A1), . . . , fla(Am) and
fla(B1), . . . , fla(B`) are thefla(α)- and fla(β)-classes, respectively. Moreover, the number ofδ-classes
in eachα ∧ β-classB is equal to that offla(δ)-classes infla(B), and the number ofα ∨ β-classes is equal
to the number offla(α) ∨ fla(β)-classes. ThereforeM(R;α, β; δ) = M(fla(R); fla(α), fla(β); fla(δ)). 2

It is sometimes useful to replace relational structureH with its expansion. LetH be a relational structure
with vocabularyτ and universeH. StructureH′ is said to be an expansion ofH if it has the same universe
H, and vocabularyτ ′ ⊇ τ , where every symbol fromτ is interpreted inH′ in the same way as inH. An
expansion of a structure can be thought of as throwing in someextra relations. If all the added relations
are pp-definable inH then#CSP(H′) is polynomial time reducible to#CSP(H). Therefore expanding
a structure by adding pp-definable relations does not changethe complexity of the problem. By taking an
expansion ofH if necessary, we shall assume that along with every (n-ary) relational symbolR and any
Di1 , . . . ,Din the vocabulary ofH contains a symbolR′ such thatR′H = R ∩ (Di1 × . . .×Din).

For an instanceG of #CSP(H), the algorithm in Fig. 12 constructs an instanceG′ of #CSP(χ(H)).
The following lemma completes the reduction.

Lemma 5.2 Let G is an instance of#CSP(H) andG′ an instance of#CSP(χ(H)) constructed by algo-
rithm Subdirect. Let alsoΦg = prgΦ(G,H) for g ∈ G. ThenΦ(G′, χ(H)) is a subdirect power ofχ(H)
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Algorithm Subdirect
INPUT: an instanceG of #CSP(H)
OUTPUT: an instanceG′ of #CSP(χ(H)) with the same universe asG

Step 1 find a compact representation ofΦ(G,H) using MAL’ TSEV

Step 2 for each g ∈ G find Φg

Step 3 for each (n-ary) relational symbolR do
Step 3.1 for each tuple(g1, . . . , gn) ∈ RG do
Step 3.1.1 letR′ be the relational symbol such thatR′H = RH ∩ (Φg1

× . . .× Φgn)

Step 3.1.2 include (g1, . . . , gn) intoR′G
′

endfor
endfor

Step 4 output G′

Figure 12:

and

|Φ(G′, χ(H))| = |Φ(G,H)| ·
∏

g∈G

|D|

|Φg|
.

Moreover,Subdirect is polynomial time.

Proof: Let ϕ ∈ Φ(G,H) be a homomorphism fromG to H. Let a set of mappingsχ(ϕ) from G′ to
χ(H) be given by

χ(ϕ) = {ψ : G′ → χ(H) | for anyg ∈ G′ if Φg = Di andψ(g) = a thena[i] = ϕ(g)}.

(Note thatG andG′ have a common universe.) We show that everyψ ∈ χ(ϕ) is a homomorphism from
G′ to χ(H). LetR′ be a relational symbol and(g1, . . . , gn) ∈ R′G

′

. Tuple(g1, . . . , gn) comes toR′G
′

on
Step 3.1.2 from someRG such thatR′H = RH ∩ (Φg1

× . . .×Φgn). Therefore(ϕ(g1), . . . , ϕ(gn)) ∈ R′H.
SincepriR

′H = Φgi
for i ∈ [n], we also have(ψ(g1), . . . , ψ(gn)) ∈ χ(R′H). Thusψ is a homomorphism.

For anyg ∈ G′ and anya ∈ Φg there isϕ ∈ Φ(G,H) such thatϕ(g) = a, hence, for anyψ ∈ χ(ϕ)
we haveψ(g)[i] = a. Since for anyaj ∈ Dj , j ∈ [`] − {i}, there existsψ ∈ χ(ϕ) with ψ(g)[j] = aj , this
implies thatΦ(G′, χ(H)) is a subdirect power ofχ(H).

Letϕ ∈ Φ(G′, χ(H)) be a homomorphism fromG′ to χ(H). Let us define a mappingχ−1(ϕ) from G to
H as follows. Forg ∈ G if ϕ(g) = a andΦg = Di then setχ−1(ϕ)(g) = a[i]. By the construction ofχ(H)
andG′, if we change the valuea = ϕ(g) for someg ∈ G with Φg = Di to anyb such thatb[i] = a[i], then the
resulting mappingϕ′ is still a homomorphism fromG′ to χ(H) andχ−1(ϕ′) = χ−1(ϕ). For a fixedg this
can be done in|D|

|Ψg|
ways. Conversely, for any homomorphismψ ∈ Φ(G,H), any mappingϕ : G′ → χ(H)

such thatχ−1(ϕ) = ψ is a homomorphism ofG′ toχ(H). Therefore for each homomorphismψ ∈ Φ(G,H)

there are
∏

g∈G
|D|
|Φg|

homomorphismsϕ ∈ Φ(G′, χ(H)) such thatχ−1 = ψ. The result follows.
Finally, since Step 3 makes only one pass over every tuple of relations inG, this step can be done in

linear time. Thus the time complexity of the algorithm is dominated by Step 1, which is polynomial time,
as so is algorithm MAL’ TSEV. 2
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5.3 Structure of Mal’tsev instances

Let G be a#CSP(H) instance and|G| = m. In this section we study certain structural properties of the set
of homomorphismsΦ(G,H) from G to H. It will be convenient to assume that the universeG of G equals
[m]. SetΦ(G,H) can be thought of as anm-ary relation pp-definable inH. By the results of the previous
subsection we may assume thatR = Φ(G,H) is a subdirect power ofH. Recall that for a congruence
θ ∈ Con(H) by θm we denote the congruence ofR such that〈a,b〉 ∈ θm if and only if 〈a[g],b[g]〉 ∈ θ for
all g ∈ G. For congruencesβ ≤ γ ∈ Con(H) and a mappingτ : G → H/β, by τγ we denote a mapping

from G toH/γ given byτγ(g) = τ(g)γ .

Let M be the set of prime quotients of a maximal chain inL = Con(H)/ s
∼. As before we assume

M = {1, . . . , `}. Let alsoω ∈ M . Takeτ , an element ofR/ωm
+

. It can be thought of as a mapping fromG

to H/ω+
. This mapping is always a homomorphism fromG to H/ω+

, but not every such homomorphism

belongs toR/ωm
+

. Indeed, ifω = ` andω+ is the total relation, a homomorphism from anyG to H/ω+
, a

1-element structure, always exists, however,R can be empty. ByΦ(G,H; τ) we denote the set of elements
% fromR, that is, homomorphisms fromG to H, such that%ω+ = τ .

We study the structure ofΦ(G,H; τ) up toω−. More precisely, letE1, . . . , Er be theω∗
−-classes and

h1, . . . , hr representatives of these classes. For any homomorphism% ∈ Φ(G,H; τ) and anyh ∈ Ei,
the value%(h)ω− is completely determined by the value%(hi), so we may focus on possible values of
such homomorphisms onh1, . . . , hr. Our goal is to show that these values are in some sense independent,
meaning that for any collectiona1 ∈ τ(h1)/ω−

, . . . , ar ∈ τ(hr)/ω−
(recall thatτ(hi) is aω+-class) there

is % ∈ Φ(G,H; τ) such that%(hi)
ω− = ai. Unfortunately, this statement is false in general, however, in the

end of this section we prove a result sufficiently close to this one. Note also thatΦ(G,H; τ) is considered
as a part ofΦ(G,H). Although, it is possible to restrict the original instanceso that its solutions are only
members ofΦ(G,H; τ), it leads to several complications. The most important of them is that elements
of G would have different domains, and those domains would have different congruence lattices that may
significantly differ fromCon(H) or any part of it.

First we consider a similar problem for another prime quotient, κω ≺ λω. This will help us because,
sinceκω ∧ ω+ = ω−, values%(hi)

κω andτ(hi) determine%(hi)
ω− . We prove that the required property

is true in this case. LetA1, . . . , Ak be theκ∗ω-classes andg1, . . . , gk representatives of these classes. By
Cu

1 , . . . , C
u
su

we denote theκω-classes fromτ(gu)λω , u ∈ [`].

Lemma 5.3 For any choice ofiu ∈ [su], u ∈ [k], there is a homomorphism% ∈ R such that for eachu ∈ [k]

%(gu)κω = Ciu .

Proof: If we setBg to be theλω-class containingτ(g) thenτ witnesses thatR∩ (B1× . . .×Bm) 6= ∅.
LetR′ = R/κm

ω
andB′

g = Bg/κω
for g ∈ G. Then, by Corollary 3.19, we have

R′ ∩ (B′
1 × . . .×B′

m) = R′
A1

× . . .×R′
Ak
,

whereR′
Au

= prAu
R′ ∩

∏

g∈Au
B′

g The result follows. 2

If κm
ω ∨ (ω+)m were equal toλm

ω this would mean thatΦ(G,H; τ) intersects with everyκm
ω -class, and

sinceκω ∧ ω+ = ω−, this non-empty intersection would provide a homomorphismwith prescribed values
moduloω−. However in generalκm

ω ∨ (ω+)m 6= λm
ω , so it is important to findκm

ω ∨ (ω+)m. To do that
we describe the interval[κm

ω , λ
m
ω ] in the congruence latticeCon(R). It will be more convenient to think of

elements ofR as of tuples rather than mappings.
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Lemma 5.4 Every prime quotient in the interval[κm
ω , λ

m
ω ] of the congruence latticeCon(R) has the Boolean

type, the interval[κm
ω , λ

m
ω ] is a distributive lattice isomorphic to the lattice2[k] of subsets of ak-element set,

wherek is the number ofκ∗ω-classes, and every congruence in this interval can be represented asηJ , J ⊆ [k],
given by:〈a,b〉 ∈ ηJ if and only if〈a[gu],b[gu]〉 ∈ κω wheneveru ∈ [k]−J and〈a[gu],b[gu]〉 ∈ λω when
u ∈ J .

Proof: ReplacingR with R/κm
ω

we may assume thatκω = ∆H . Thus if tuplesa,b ∈ R are such that

a[gu] = b[gu] for all u ∈ [k], thena = b. Therefore, it suffices to consider relationR′ = pr{g1,...,gk}
R.

We study intervals of the form[ηJ , ηJ∪{v}] for J ⊆ [k] andv ∈ [k] − J . Any such interval is non-trivial,
meaningηJ < ηJ∪{v}. Indeed, by Lemma 5.3, for anyJ ⊆ [k] andv ∈ [k] − J there are tuplesa,b ∈ R

such thata[gv ] 6= b[gv ], buta[gu] = b[gu] for all u ∈ [k] − {v}. By the same reason∆k
H < η{v} for any

v ∈ [k].
First, we show that every such interval is a prime quotient. Note that interval[ηJ , ηJ∪{v}] is prospective

to [∆k
H , η{v}]. Indeed, if〈a,b〉 ∈ ηJ thena[gu] = b[gu] for u ∈ [k] − J , and if 〈a,b〉 ∈ η{v} then

a[gu] = b[gu] for all u 6= v, implying ηJ ∧ η{v} = ∆k
H . If 〈a,b〉 ∈ ηJ∪{v}, then by Lemma 5.3 there is a

tuplec such thata[gu] = c[gu] for all u 6= v andc[gu] = b[gu] for all u ∈ [k]−J . HenceηJ∨η{v} = ηJ∪{v}.
It suffices to show that the intervals of the form∆k

H < η{v} are prime quotients. To simplify the notation
we assumev = 1.

Let∆k
H < α ≤ η{1}. For any〈a,b〉 ∈ α and anyu 6= 1, a[gu] = b[gu]. This means thatα is determined

by the relation

β = {〈a, b〉 ∈ H2 | there area,b ∈ R′ such that〈a,b〉 ∈ α, a[g1] = a, b[g1] = b,

anda[gu] = b[gu] for all u 6= 1}.

Relationβ is a congruence ofH and∆H < β ≤ λω. As ∆H ≺ λω, we getβ = λω, and the rectangularity
of R impliesα = η{1}.

Let us now check that quotient∆k
H ≺ η{1} has the Boolean type. By Proposition 3.15(3)∆H ≺ λω

has the Boolean type, which means that there is a polymorphism of f(x1, . . . , xn) of H and elements
c, d, a1, . . . , an−1, b1, . . . , bn−1 such that〈c, d〉 ∈ λω, 〈ai, bi〉 ∈ λω for i ∈ [n−1], andf(c, a1, . . . , an−1) =
f(c, b1, . . . , bn−1) but f(d, a1, . . . , an−1) 6= f(d, b1, . . . , bn−1). By Lemma 5.3 there arec,d andai,bi,
i ∈ [n − 1], from R′ such thatc[g1] = c, d[g1] = d, ai[g1] = ai, bi[g1] = bi, andc[gu] = d[gu],
ai[gu] = bi[gu] for i ∈ [n − 1] andu ∈ [k] − {1}. Observe that〈c,d〉, 〈a1,b1〉, . . . , 〈an−1,bn−1〉 ∈ η{1}.
Then we havef(c,a1, . . . ,an−1) = f(c,b1, . . . ,bn−1) but f(d,a1, . . . ,an−1) 6= f(d,b1, . . . ,bn−1),
that implies thatη{1} does not centralize itself modulo∆k

H , and so∆H ≺ η{1} has the Boolean type.
We have proved that any interval of the form[ηJ , ηJ∪{v}] is a prime quotient, and, by Lemma 3.5,

it has the Boolean type. Next we show that every prime quotient α ≺ β with ∆k
H ≤ α ≺ β ≤ λk

ω

is projective to one of such intervals, and therefore has theBoolean type. Suppose the contrary, and let
β ≤ λk

ω be a maximal congruence such that, for someα ≺ β, [α, β] is projective to[ηJ , ηJ∪{v}] for no
J ⊆ [k], andv ∈ [k] − J . Let J be a maximal set such thatηJ ≤ α, andv any member of[k] − J . Then
ηJ ≺ ηJ∪{v}. Sinceα ∧ ηJ∪{v} = ηJ , if ηJ∪{v} ≤ β the interval[α, β] is prospective to[ηJ , ηJ∪{v}], a
contradiction with the assumption made. Otherwise, by the modularity ofCon(R), [α, β] is prospective to
[α∨ηJ∪{v}, β∨ηJ∪{v}], a contradiction with the maximality ofβ. Thus, every prime quotient from interval
[∆k

H , λ
k
ω] has the Boolean type.

Finally, by Lemma 6.6 of [41], this implies that this interval does not contain a diamond, and, asCon(R)
is modular,[∆k

H , λ
k
ω] is distributive. Since the congruencesη{1}, . . . , η{`} are join-irreducible elements of
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this lattice, andη1 ∨ . . . ∨ η` = λm
ω , every elementθ of this interval can be represented in the form

θ =
∨

u∈J

ηu = ηJ

for someJ ⊆ [k]. 2

Now we obtain a result similar to Lemma 5.3 for homomorphismsmoduloω−. Note thatω∗
−-classes

cannot be used, because, in general, they have nothing in common withκ∗ω-classes. Indeed, a pair〈g, g′〉
belongs toα∗ for some congruenceα if, for any mappings%1, %2, 〈%1(g), %2(g)〉 ∈ α if and only if
〈%1(g

′), %2(g
′)〉 ∈ α. For different congruencesα such conditions are incomparable. However, if some

homomorphismτ ∈ R/ωm
+

is fixed, this argument does not work anymore. Sinceκω ∧ ω+ = ω−, ho-

momorphismτ and a choice of values forg1, . . . , gk (provided they are taken fromτ(gu)λω ) determine a
mapping% : G → H/ω−

. For anyg ∈ G, the values ofg1, . . . , gk determine theκω-class%(g) belongs

to, andτ(g) determines theω+-class of%(g). Therefore every homomorphism fromΦ(G,H; τ) up toω−

can be defined by a certain choice of values forg1, . . . , gk. The difficulty is that some choices do not define
any homomorphism. The next lemma shows which combinations of values forg1, . . . , gk correspond to
elements ofΦ(G,H; τ).

Lemma 5.5 There isJω ⊆ [k] such that for anyτ ∈ R/ωm
+

(we use notation forκω-classes introduced

before Lemma 5.3), there areiu with iu ∈ [su], u ∈ [k] − Jω, satisfying the following conditions. For any
homomorphism% ∈ R/ωm

−
with %ω+ = τ the collection ofiu, u ∈ [k] − Jω, can be completed byiu with

iu ∈ [su] for u ∈ Jω such that%(gu) ∈ τ(gu) ∩ Cu
iu

for u ∈ [k]; and, for anyg ∈ Au, u ∈ [k], we have
%(g) = π(g) ∩ C, whereC is theκω-class corresponding to the choice ofCu

iu
for gu.

Conversely, for any choice ofCu
iu

, u ∈ J , the mapping% defined in this way is an element ofR/ωm
−

, and

%ω+ = τ .

Proof: Observe that in the congruence latticeCon(R) we haveκm
ω ∧ ωm

+ = ωm
− andκm

ω ≤ κm
ω ∨ ωm

+ ≤
λm

ω . By Lemma 5.4,κm
ω ∨ ωm

+ = ηJω for someJω ⊆ [k]. This means that there are fixediu, u ∈ [k] − Jω,
with iu ∈ [su], such that for any% ∈ R/(ω−)m, with %ω+ = τ , we have%(gu) ∈ Cu

iu
for u ∈ [k] − Jω.

Take% ∈ R/ωm
−

with %ω+ = τ . Clearly, %κω belongs toτλω/κm
ω

, and by what we showed above

%(gu) ∈ Cu
iu

for u ∈ [k] − Jω. The first part of the lemma follows.
To prove the converse statement, let us denote theηJω -class containingτ by D. Sinceκm

ω andωm
+

permute, for anyκm
ω -classC ⊆ D and anyωm

+ -classC ′, the intersectionC ∩ C ′ is nonempty. Therefore,
for anyϕ ∈ R/κm

ω
such thatϕ(gu) = Cu

iu
for u ∈ [k] − Jω, there is% ∈ R/ωm

−
such that%κω = ϕ and

%ω+ = τ ; that is%(g) = ϕ(g) ∩ τ(g). The lemma is proved. 2

We complete this section by presenting a collection of congruences related toω−, ω+ and satisfying
condition (2). LetA1, . . . , Ak be theκ∗ω-classes, and letJω ⊆ [k] be the set defined in Lemma 5.5 for
ω ∈ M . Congruencesγu, u ∈ Jω, are defined as follows:〈a,b〉 ∈ γu if and only if 〈a[i],b[i]〉 ∈ ω− for
i ∈ Au ∪

⋃

v∈[k]−Jω
Av , and〈a[i],b[i]〉 ∈ ω+ otherwise. (Here again we treat elements ofR as tuples.)

Lemma 5.6 Congruencesγu, u ∈ Jω, satisfy condition (2).
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Proof: Again we use notation introduced before Lemma 5.3. Without loss of generality we assume
Jω = {1, . . . , q}. First, observe thatγ1 ∧ . . . ∧ γq = ωm

− . Let βu = γu ∨ κm
ω , that is, 〈a,b〉 ∈ βu

if and only if 〈a[i],b[i]〉 ∈ κω for i ∈ Au ∪
⋃

v∈[k]−J Av and 〈a[i],b[i]〉 ∈ λω otherwise. Let also
θ = γ1∨. . .∨γq. It is not hard to see thatβ1∧. . .∧βq = κm

ω andβi∨βj = ηJω for anyi, j ∈ [q]. Since lattice
Con(R) is modular, intervals[ωm

− , θ] and[κm
ω , ηJ ] are isomorphic, where an isomorphism can be defined by

ϕ(x) = x ∨ κm
ω , see [37] Cha. IV, Theorem 2. Again by modularity equalitiesθ ∨ κm

ω = ωm
+ ∨ κm

ω = ηJω

andθ∧κm
ω = ωm

+ ∧κm
ω = ωm

− imply θ = ωm
+ . Therefore we may considerβ1, . . . , βq instead ofγ1, . . . , γq,

where we also may assume thatκω = ∆H . To simplify the notation we prove condition (2) fori = 1.
By Lemma 5.5,〈a,b〉 ∈ β1 if and only ifprA1∪Aq+1∪...∪Ak

a = prA1∪Aq+1∪...∪Ak
b, tuplesprA2∪...∪Aq

a,
prA2∪...∪Aq

b belong toprA2∪...∪Aq
R, and〈a[g],b[g]〉 ∈ λω for g ∈ A2 ∪ . . . ∪ Aq. Similarly, 〈a,b〉 ∈

β2 ∧ . . . ∧ βq if and only if prA1
a,prA1

b ∈ prA1
R, 〈a[g],b[g]〉 ∈ λω for g ∈ A1, andprA2∪...∪Ak

a =
prA2∪...Ak

b ∈ prA2∪...∪Ak
R. Takea,b ∈ R such that〈a,b〉 ∈ λm

ω anda[g] = b[g] for g ∈ Aq+1∪. . .∪Ak,
and definec to be the tuple withc[g] = a[g] for g ∈ A1 andc[g] = b[g] for g ∈ A2 ∪ . . . ∪ Ak. By
Lemma 5.5,c ∈ R and〈a, c〉 ∈ β1, 〈c,b〉 ∈ β2 ∧ . . . ∧ βq. Thus〈c,b〉 ∈ β1 ∨ (β2 ∧ . . . ∧ βq). 2

6 Algorithm: computing the number of solutions

In this section we use the results proved in the previous sections to design an algorithm solving counting
CSPs for congruence singular structures.

Suppose thatH is congruence singular. LetG be an instance of#CSP(H); assume that the universe
G of G is [m]. As beforeM = {1, . . . , `} is the set of prime quotients of a maximal chain in the lattice
Con(H)/ s

∼. If `+ 6= 5H or 1− 6= ∆H then we add extra elements(`+ 1)− or 0+ to the set of congruences
ω−, ω+, ω ∈ M , see Fig 13. Otherwise we assume(` + 1)− = `+ and0+ = 1−, respectively. InCon(H)
the chain corresponds to a number of prime quotients of the form ω− ≺ ω+ that have the Boolean type, and
intervals[ω+, (ω + 1)−] such that every prime quotient from this interval has the affine type, see Fig. 13.

A mappingτ : G → H/θ for θ ∈ Con(H) will be called amapping of levelθ. Recall that for a mapping
τ of level θ, by Φ(G,H; τ) we denote the set of all homomorphisms% ∈ Φ(G,H) with %θ = τ . The
overall idea of the algorithm is to compute recursively numbers of the form|Φ(G,H; τ)| for instanceG and
mappingsτ of levelω− or ω+, ω ∈ M . If τ is a mapping of level(`+ 1)− then|Φ(G,H, τ)| = |Φ(G,H)|,
and if τ is a mapping of level0+ then|Φ(G,H, τ)| = 1. Forω ∈ M and a mappingτ from G to H/ω+

or

to H/ω−
, we show how to reduce computing the number|Φ(G,H, τ)| to computing numbers|Φ(G,H, %)|

for certain%, mappings fromG to H/ω−
or toH/(ω − 1)+

, respectively. The two cases,τ : G → H/ω+

andτ : G → H/ω−
will be considered in the next two subsections.

6.1 Prime quotients of the Boolean type

LetA1, . . . , Ak be theκ∗ω-classes andg1, . . . , gk their representatives. Letτ be a mapping fromΦ(G,H)/ωm
+

,

that isτ(g) is aω+-class forg ∈ G. By Jω we denote the subset of[k] identified in Lemma 5.5. Without loss
of generality we assumeJω = [q]. LetC1

u, . . . , C
u
su

be theκω-classes fromτ(gu)λω , theλω-class containing
elements fromτ(gu), for u ∈ [k]. Recall that by definitiong ∈ Au if and only if for any%, %′ ∈ Φ(G,H) if
〈%(gu), %′(gu)〉 ∈ κω then〈%(g), %′(g)〉 ∈ κω and vice versa. Therefore, for anyg ∈ Au, u ∈ [k], and for
any% ∈ Φ(G,H; τ) the value%(g)ω− is determined by%(gu)ω− , and that%(g)ω− = %(g)κω ∩ τ(g). In other
words, there is a one-to-one mappingϕg from the set{C1

u, . . . , C
u
su
} to the set ofκω-classes ofτ(g)λω such
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Figure 13: The congruence lattice ofH, a maximal chain inCon(H)/ s
∼, the corresponding prime quo-

tients, and
s
∼-classes. Prime quotientsω− ≺ ω+ are shown by solid lines,

s
∼-classes by ovals, dashed lines

represent chains of the affine type (not to be mistaken with the dotted line).

that%(g)ω− = ϕg(%(gu)κω) ∩ τ(g). Let iu, u ∈ [k] − Jω andiu ∈ [su], be theκω-classes corresponding to
τ as in Lemma 5.5.

Proposition 6.1 (1) For anyq-tupler such thatr[u] ∈ [su], the mapping%r : G → H/ω−
, where for each

u ∈ [k]

%r(gu) =

{

Cu
r[u] ∩ τ(gu), if u ∈ Jω

Cu
iu
∩ τ(gu), otherwise,

and for eachg ∈ Au, u ∈ [q], %r(g)ω− = ϕg(%r(gu)κω) ∩ τ(g), belongs toR/(ω−)m.

(2) |Φ(G,H, τ)| =
∑

r

|Φ(G,H, %r)|.

(3) SetsΦ(G,H, %r) are the classes of congruence(ω−)m of the relationΦ(G,H, τ).

Proof: (1) follows straightforwardly from Lemma 5.5.
(2) Every homomorphism% from Φ(G,H; τ) belongs to a certain setΦ(G,H, %r), namely, the one with

r[u] = ju where%(gu) ∈ Cu
ju

for u ∈ [q]. On the other hand all sets of this form are disjoint.
(3) Sinceκω ∧ ω+ = ω−, all elements fromΦ(G,H, %r) are(ω−)m-related. If% ∈ Φ(G,H, %r) and

%′ ∈ Φ(G,H, %r′) wherer[u] 6= r′[u] then〈%(gu), %′(gu)〉 6∈ ω−, and therefore〈%, %′〉 6∈ (ω−)m. 2

We use the congruencesγ1, . . . , γq introduced in Section 5.3:〈%, %′〉 ∈ γu if and only if 〈%(g), %′(g)〉 ∈
ω− if g ∈ Au or g ∈ Aq+1 ∪ . . . ∪ Ak, and〈%(g), %′(g)〉 ∈ ω+ otherwise. By Lemma 5.6 congruences
γ1, . . . , γq satisfy condition (2), and(ω−)m = γ1 ∧ . . . ∧ γq.

Recall thatτ can be treated as aωm
+ -class and thatM(τ, γ1, . . . , γq) denotes theq-dimensionals1×. . .×

sq-array such that its entry indexed byr is equal to|Φ(G,H, %r)|. By Proposition 4.6,M(τ, γ1, . . . , γq) has
rank 1, that is, there are numberstu1 , . . . , t

u
su

, for u ∈ [q], such that

|Φ(G,H, %r)| = t1
r[1] · . . . · t

q

r[q].
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If numberstij are known, we have

Φ(G,H, τ) =
∑

r

Φ(G,H, %r) =
∑

r

t1
r[1] · . . . · t

q
r[q]

= t11





∑

r[2],...,r[q]

t2
r[2] · . . . · t

q
r[q]



+ . . .+ t1s1





∑

r[2],...,r[q]

t2
r[2] · . . . · t

q
r[q]





= . . . =

q
∏

j=1

sj
∑

i=1

tji ,

that can be computed easily.
To find the numberstij we use the approach from the proof of Lemma 4.5. Fix a tupler, say,r =

(1, . . . , 1). By ri
j we denote the tuple, all entries of which are equal to the corresponding entries ofr, except

for thei-th entry that is equal toj. Then set

t1j = |Φ(G,H, %
r
1
j
)| and tij =

|Φ(G,H, %
r

i
j
)|

|Φ(G,H, %r)|
for i ∈ {2, . . . , q}.

Thus, we have reduced computing the number|Φ(G,H, τ)|, mappingτ is of levelω+, to computing
numbers of the form|Φ(G,H, %

r
i
j
)|, where%

r
i
j

is of levelω−.

6.2 Quotients of the affine type

Let τ ∈ Φ(G,H)/(ω + 1)m−
for someω ∈ M − {`}. Congruence(ω + 1)− is solvable overω+, and we

make use of the following implication of Proposition 4.1.

Corollary 6.2 (1) Let%1, %2 ∈ Φ(G,H, τ)/ωm
+

. Then|Φ(G,H, %1)| = |Φ(G,H, %2)|.

(2) For any% ∈ Φ(G,H, τ)/ωm
+

,

|Φ(G,H, τ)| = |Φ(G,H, %)| · |Φ(G,H, τ)/ωm
+
|.

Thus, to reduce computing|Φ(G,H, τ)|, whereτ is of level(ω+1)−, to computing|Φ(G,H, %)|, where
% is of levelω+, it suffices to find the number|Φ(G,H, %)/ωm

+
|.

We consider first the case whenω+ is the equality relation, that isω = 0. In this case the required
number can be found using the signatureSigR of the relationR = Φ(G,H, τ) in a very simple way through
the following lemma. Observe that it does not apply to the case when1− = ∆H .

Lemma 6.3 Let SigR be the signature ofΦ(G,H, τ), andαg be the relation{〈a, b〉 | (g, a, b) ∈ SigR}.
Then

(1) αg is a congruence ofτ(g);

(2) all αg classes have the same cardinality, denoted byvg;

(3) |Φ(G,H, τ)| = v1 · . . . · vm.
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Proof: (1) Relationαg is pp-definable inH as the following formula shows

αg(x, y) = ∃z1, . . . , zg−1, zg+1, . . . , zm, ug+1, . . . , um

(R(z1, . . . , zg−1, x, zg+1, . . . , zm) ∧R(z1, . . . , zg−1, y, ug+1, . . . , um)).

Due to rectangularity ofR this relation is an equivalence relation.
(2) follows straightforwardly from Proposition 4.1, asαg ≤ ω−, and soω−

s
∼ αg.

(3) As every element ofpr[m−1]Φ(G,H, τ) can be extended to an element ofΦ(G,H, τ) by any member
of a certainαm-class, the number of such extensions equalsvm, and we have

|Φ(G,H, τ)| = |pr[m−1]Φ(G,H, τ)| · vm.

Continuing this way we get|Φ(G,H, τ)| = v1 · . . . · vm. 2

To find the signature ofΦ(G,H, τ) we can use algorithm MAL’ TSEV applied to the instance modified
in the following way. We shall assume that for each subalgebra B of H the vocabulary ofH contains a
unary relational symbolRB such thatRH

B = B. Let g1, . . . , gk ∈ G, and letB1, . . . , Bk be subalgebras
of H. By G ∪ {〈g1, B1〉, . . . , 〈gk, Bk〉} we denote the relational structure with the same universe asG,
and such that the interpretation of every relational symbolR 6∈ {RB1

, . . . , RBk
} equalsRG while the

interpretation ofRB equalsRG
B ∪ {gi | Bi = B}. Thus, the elementsg1, . . . , gk are forced to be mapped

to B1, . . . , Bk respectively. It is not hard to check thatΦ(G,H, τ) is the set of solutions for the instance
G ∪ {〈g, τ(g)〉 | g ∈ [m]}.

Observe that if we know the signature of relationΦ(G,H, τ)/ωm
+

, which is a relation overH/ω+
, we

still can use Lemma 6.3 to find the cardinality of|Φ(G,H, τ)/ωm
+
|. In order to do that we just have to

replaceH with H/ω+
. Therefore the problem we are facing now is how to find the signature of this relation.

Unfortunately, it is not clear at all how to obtain this signature using the signature or a compact representation
of Φ(G,H, τ), nor we can use algorithm MAL’ TSEV to compute the signature ofΦ(G,H/ω+

, τ), since in

generalΦ(G,H/ω+
, τ) 6= Φ(G,H, τ)/ωm

+
. Instead, to compute each member of the required signature we

find a compact representation of a certain modified problem using algorithm MAL’ TSEV.
More specifically, we first find theω+-signatureof the relationΦ(G,H, τ). Let n be a positive integer,

let H be a finite set, letθ be an equivalence relation onH, let a, b ben-tuples, and let(i, a, b) be any
element in[n]×H2. We say that〈a,b〉 θ-witnesses(i, a, b) if (a[j],b[j]) ∈ θ for eachj < i, a[i] = a, and
b[i] = b. LetR be ann-ary relation onH. Theθ-signatureof R, θSigR ⊆ [n]×H2, is defined to be the set
containing all those(i, a, b) ∈ [n] ×H2 θ-witnessed by tuples inR, that is

θSigR = {(i, a, b) ∈ [n] ×H2 | there area,b ∈ R such that〈a,b〉 θ-witnesses(i, a, b)}.

Lemma 6.4 Let τ ∈ Φ(G,H)/(ω + 1)m−
.

(1) Algorithmω-SIGNATURE (see Fig. 14) finds theω+-signatureω+SigR ofR = Φ(G,H, τ).

(2) The signature ofΦ(G,H, π)/ωm
+

can then be found by replacing each(g, a, b) ∈ ω+SigR by(g, aω+ , bω+)

Proof: (1) For anyg ∈ [m], a triple (g, a, b) is added toS only if there are%, %′ ∈ Φ(G,H, τ)
such that%(g) = a, %′(g) = b, and〈%(h), %′(h)〉 ∈ ω+ for everyh < g. Therefore,S ⊆ ω+SigR. If
(g, a, b) ∈ ω+SigR thena ∈ prgR. Hence there is% ∈ R′ such that%(g) = a. Suppose that〈%′, %′′〉
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Algorithm ω-Signature
INPUT: an instanceG of #CSP(H), ω ∈M , andτ ∈ Φ(G,H)/(ω + 1)m−
OUTPUT: aω+-signature ofΦ(G,H, τ)
Step 1 find a compact representationR′ of Φ(G,H, τ) using MAL’ TSEV

Step 2 setS := ∅ (theω+-signature ofΦ(G,H, τ))
Step 3 for each (g, a, b) ∈ [m] ×H2 do
Step 3.1 if there is% ∈ R′ such that%(g) = a then do
Step 3.1.1 find a compact representationR′′ of Φ(G′,H, τ) where

G′ = G ∪ {〈1, %(1)ω+ 〉, . . . , 〈g − 1, %(g − 1)ω+〉}
Step 3.1.2 if b ∈ prgR

′′ then S := S ∪ {(g, a, b)}

endif
endfor

Step 5 return S

Figure 14:

Algorithm Counting
INPUT: an instanceG of #CSP(H) such thatΦ(G,H) is a subdirect power ofH
OUTPUT: the number of homomorphisms fromG toH, i.e. |Φ(G,H)|
Step 1 let τ be a (unique) mapping fromG toH/5H

;

return Counting-mapping(G, (`+ 1)−, τ)

Figure 15:

ω+-witnesses the triple(g, a, b). We have to show that there is%′′′ such that the pair〈%, %′′′〉 ω+-witnesses
(g, a, b). It is straightforward that%′′′ can be chosen to bem(%, %′, %′′), wherem is a Mal’tsev polymorphism
of H.

(2) By the definition,(g, a′, b′) belongs to the signature ofΦ(G,H, τ)/ωm
+

if and only if there are

%, %′ ∈ Φ(G,H, τ) such that%(g)ω+ = a′, %′(g)ω+ = b′, and〈%(h), %′(h)〉 ∈ ω+ for all h < g. These
conditions mean that the pair〈%, %′〉 ω+-witnesses that(g, %(g), %′(g)) ∈ ω+SigR. 2

6.3 The algorithm

We summarize results of the previous two subsections and present an algorithm solving#CSP(H) for
a congruence singular structureH, see Fig. 15, 16. The first of the presented algorithms just initiates a
recursive process, while the second one implements the method discussed in the two previous subsections.
We assume that all information aboutH required for the algorithm is known. This includes, for instance,
congruences, types of prime quotients, subalgebras generated by certain sets, etc. As usual,M denotes the
set of prime quotients of a maximal chain inCon(H)/ s

∼.

Comments on the algorithm Classes ofκ∗ω can be computed on Step 2.1 by exploring a compact repre-
sentationQ of Φ(G,H); such representation can be found by means of the algorithm MAL’ TSEV. Equiv-
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alence relationκ∗ω is defined by binary projections ofΦ(G,H), that are relations generated byprg,hQ for
g, h ∈ [m]. SetJω contains thoseκ∗ω-classesAu, for which projectionprgu

Φ(G,H, τ) equalsτ(gu). Again,
one can find a compact representation ofΦ(G,H, τ) by applying algorithm MAL’ TSEV to the problem
G ∪ {〈g, τ(g)〉 | g ∈ [m]}. Finally, to find a solution% ∈ Φ(G,H, τ)/ω∗

+
on Step 3.1 it suffices to com-

pute a compact representation ofΦ(G,H, τ) in the same way as before, and then for any member of the
representation find the corresponding quotient mapping.

Complexity Observe that the depth of recursion of the algorithm is at most 2` and does not depend on the
input. On each step considering a prime quotient of the Boolean case the problem of finding the number
|Φ(G,H, τ)| reduces to findings1 + . . . + sk numbers of the form|Φ(G,H, %)|, where% : G → H/ω−

.

Sincek ≤ m and eachsu does not exceed|H|, every step of this kind requires solving at most|H|m smaller
problems. On each step considering an interval of the affine type computing|Φ(G,H, τ)| reduces to solving
a problem of the form|Φ(G,H, %)|, % : G → H/ω+

and finding theω+-signature ofΦ(G,H, τ). To find

theω+-signature the algorithm runs MAL’ TSEV at mostm · |H|2 times. If the time complexity of algorithm
MAL’ TSEV is p(m), then the overall time complexity of our algorithm is(|H|3m2 · p(m))`.

7 #H -COLORING

Theorem 2.22 provides a complete classification of #P-complete and polynomial time solvable #H -COLO-
RING problems. However, it is difficult to express the criterion stated in the theorem in terms of (di)graphs.
By [29], an (undirected) graphH gives rise to a polynomial time solvable #H -COLORING problem if and
only if every connected component ofH is either trivial, or a complete bipartite graph, or a complete graph
with loops at all vertices. In [13], we observed that an undirected graph satisfies this condition if and only if
it is invariant under a Mal’tsev operation.

In this section we compare the classification result from [32, 28] for directed acyclic graphs (DAGs for
short) with Theorem 2.22. We show that every congruence singular DAG satisfies theLovász-goodness
condition introduced in [32, 28]. The two conditions must beequivalent, however, the converse implication
probably uses some nontrivial properties of pp-definitionsin DAGs and remains an open problem. Note that
similar difficulties arise when we try to translate other general results on constraint satisfaction problems for
(di)graphs.

A DAG H = (V,E) is calledlayeredif V can be partitioned into subsetsV1, . . . , V` such that for any
(v,w) ∈ E we havev ∈ Vi, w ∈ Vi+1 for a certaini < `. Let v ∈ Vi, w ∈ Vj , i < j. ThenHv∗ denotes
the subgraph ofH induced by the verticesu such that there is a directed path fromv to u; similarly, H∗w

denotes the subgraph ofH induced by the verticesu such that there is a directed path fromu to w; and
Hvw = Hv∗∩H∗w. The vertex set of the graphHxyHx′y′ , whereHxy = (V ′, E′) andHx′y′ = (V ′′, E′′), is
the set((V ′∩Vi)× (V ′′∩Vi))∪ . . .∪ ((V ′∩Vj)× (V ′′∩Vj)), a pair((v, v′), (w,w′)) is an edge if and only
if (v,w) ∈ E′ and(v′, w′) ∈ E′′. It is proved in [28] thatHxyHx′y′ for x, x′ ∈ Vi andy, y′ ∈ Vj has only
one connected component that spans all layers fromi to j. If such main connected components of graphs
HxyHx′y′ andHztHz′t′ , z, z′ ∈ Vi, t, t′ ∈ Vj, are isomorphic then we writeHxyHx′y′ ≡ HztHz′t′ . Finally
a layered graph is said to beLovász-goodif for any i, j, 1 ≤ i < j ≤ `, and anyx, x′ ∈ Vi, y, y′ ∈ Vj we
haveHxyHx′y′ ≡ Hxy′Hx′y.

The key lemma for this result is a special case of the result of[52] that we state in our notation.

Lemma 7.1 If |Φ(G,H1)| = |Φ(G,H2)| for all graphsG then graphsH1,H2 are isomorphic.
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We show that ifH is congruence singular then|Φ(G,HxyHx′y′)| = |Φ(G,Hxy′Hx′y)| for anyx, x′ ∈
Vi, y, y′ ∈ Vj , where1 ≤ i < j ≤ `, and any graphG. This implies thatHxyHx′y′ andHxy′Hx′y are
isomorphic, and soHxyHx′y′ ≡ Hxy′Hx′y. We use an observation made in [28] that|Φ(G,H1H2)| =
|Φ(G,H1)| · |Φ(G,H2)|. If G = (W,F ) is not layered then|Φ(G,HxyHx′y′)| = |Φ(G,Hxy′Hx′y)| = 0.
LetW1,W2 denote the set of vertices on the highest and on the lowest layers ofG, respectively. As we know,
Φ(G,H) is a relation pp-definable inH. Now, letη1, η2 be congruences ofΦ(G,H) such that〈ϕ,ϕ′〉 ∈ ηi,
i = 1, 2, iff ϕ(v) = ϕ′(v) for all v ∈Wi. It is not hard to see that sets of the formHu∗ are classes ofη1, sets
of the formH∗w are classes ofη2, and sets of the formHuw are classes ofη1∧η2 (although there are classes
of those congruences not representable in the formHu∗,H∗w, orHuw). SinceH is congruence singular, we
haverank(M(η1, η2)) = k wherek is the number of classes inη1 ∨ η2. Hence

∣

∣

∣

∣

|Φ(G,Hxy)| |Φ(G,Hxy′)|
|Φ(G,Hx′y)| |Φ(G,Hx′y′)|

∣

∣

∣

∣

= 0,

or Φ(G,Hxy),Φ(G,Hx′y′) or Φ(G,Hxy′),Φ(G,Hx′y) are in different classes ofη1 ∨ η2. In the latter case
either|Φ(G,Hx′y)| = |Φ(G,Hxy′)| = 0 or |Φ(G,Hxy)| = |Φ(G,Hx′y′)| = 0. The result follows.

Observe that in this argument congruence singularity is used in a very restricted way: only projection
congruences of somewhat restricted type are used.

8 Concluding remarks and open problems

The result obtained in the paper is rather general. It includes as particular case the results of [19, 29, 21,
32, 28, 48]. However, those results are stated in terms of particular problems, and deriving them from
Theorem 2.22 requires extra research.

Problem 2 Characterize congruence singular digraphs.

We also should note that in some cases, e.g., [29], the #P-completeness results obtained for particular
problems are stronger than those which follow from our result. For instance, #P-complete #H -COLORING

problems in the case of undirected graphs remain #P-complete even when restricted to inputs of bounded
degree.

Problem 3 LetH be a relational structure that is not congruence singular. Does the problem#CSP(H)
remains #P-complete when restricted to the class of structures of bounded degree? a class of structures with
other natural restrictions?

A major question left unanswered is how to check if a given relational structure is congruence singular.
This problem may turn out to be even undecidable.

Problem 4 Give an algorithm for or prove that the following computational problem is undecidable: Given
a relational structure check whether or not it is congruencesingular.
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Algorithm Counting-mapping
INPUT: an instanceG of #CSP(H) such thatΦ(G,H) is a subdirect power ofH,

a congruenceθ ∈ {0+, 1−, 1+, . . . , `+, (`+ 1)−}, and a mappingτ of level θ
OUTPUT: the number|Φ(G,H, τ)|
Step 1 if θ = 0+ then return 1
Step 2 if θ = ω+ for someω ∈M the do
Step 2.1 find theκ∗ω-classesA1, . . . , Ak andchoosetheir representativesg1, . . . , gk,

setJω = {u1, . . . , uq} ⊆ [k] as in Proposition 6.1, letCu
1 , . . . , C

u
su

beκω-classes
belonging toτ(gu)λω for u ∈ J

Step 2.2 setr0[1] := 1, . . . , r0[q] := 1
Step 2.3 sett :=Counting-mapping(G, ω−, %r0

)
Step 2.4 for v = 1 to su1

do
Step 2.4.1 setr[1] := v andr[2] := 1, . . . , r[q] := 1
Step 2.4.2 t1v :=Counting-mapping(G, ω−, %r)

endfor
Step 2.5 for u = 2 to q do
Step 2.5.1 for v = 1 to su do
Step 2.5.1.1 setr[1] := 1, . . . , r[u− 1] := 1, r[u] := v, andr[u+ 1] := 1, . . . , r[q] := 1
Step 2.5.1.2 settuv :=Counting-mapping(G, ω−, %r)

Step 2.5.1.3 settuv :=
tuv
t

endfor
endfor

Step 2.6 return

(

q
∏

u=1

su
∑

v=1

tuv

)

endif
Step 3 else ifθ = (ω + 1)− do
Step 3.1 find % ∈ Φ(G,H, τ)/ωm

+

Step 3.2 sett0 :=Counting-mapping(G, ω+, %)
Step 3.3 setS :=θ-Signature(G, τ, ω+)
Step 3.4 setvg to be the size ofηg-classes,ηg = {〈aω+ , bω+〉 | (g, a, b) ∈ S}

Step 3.5 return



t0 ·

m
∏

g=1

vg





endif

Figure 16:
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