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Abstract

The purpose of this paper is to provide efficient algorithms that decide membership
for classes of several Boolean hierarchies for which efficiency (or even decidability) were
previously not known. We develop new forbidden-chain characterizations for the single
levels of these hierarchies and obtain the following results:

• The classes of the Boolean hierarchy over level Σ1 of the dot-depth hierarchy are
decidable in NL (previously only the decidability was known). The same remains true
if predicates mod d for fixed d are added.

• If modular predicates for arbitrary d are allowed, then the classes of the Boolean
hierarchy over level Σ1 are decidable.

• For the restricted case of a two-letter alphabet, the classes of the Boolean hierarchy
over level Σ2 of the Straubing-Thérien hierarchy are decidable in NL. This is the first
decidability result for this hierarchy.

• The membership problems for all mentioned Boolean-hierarchy classes are logspace
many-one hard for NL.

• The membership problems for quasi-aperiodic languages and for d-quasi-aperiodic lan-
guages are logspace many-one complete for PSPACE.

1 Introduction

The study of decidability and complexity questions for classes of regular languages is a central
research topic in automata theory. Its importance stems from the fact that finite automata
are fundamental to many branches of computer science, e.g., databases, operating systems,
verification, and hardware and software design.

There are many examples for decidable classes of regular languages (e.g., locally testable lan-
guages), while the decidability of other classes is still a challenging open question (e.g., dot-depth
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two, generalized star-height). Moreover, among the decidable classes there is a broad range of
complexity results. For some of them, e.g., the class of piecewise testable languages, efficient
algorithms are known that work in nondeterministic logarithmic space (NL) and hence in poly-
nomial time. For other classes, a membership test needs more resources, e.g., deciding the
membership in the class of star-free languages is PSPACE-complete.

The purpose of this paper is to provide efficient algorithms that decide membership for classes of
several Boolean hierarchies for which efficiency (or even decidability) were not known previously.
Many of the known efficient decidability results for classes of regular languages are based on
so-called forbidden-pattern characterizations. Here a language belongs to a class of regular
languages if and only if its deterministic finite automaton does not have a certain subgraph (the
forbidden pattern) in its transition graph. Usually, such a condition can be checked efficiently,
e.g., in nondeterministic logarithmic space [Ste85a, CPP93, GS00a, GS00b].

However, for the Boolean hierarchies considered in this paper, the design of efficient algorithm
is more involved, since here no forbidden-pattern characterizations are known. More precisely,
wherever decidability is known, it is obtained from a characterization of the corresponding class
in terms of forbidden alternating chains of word extensions. Though the latter also is a forbidden
property, the known characterizations are not efficiently checkable in general (Exceptions are
the special ‘local’ cases Σ%

1(n) and C1
k(n) where decidability in NL is known [SW98, Sch01].) To

overcome these difficulties, we first develop alternative forbidden-chain characterizations (they
essentially ask only for certain reachability conditions in transition graphs). With our new
characterizations at hand, we explicitly provide efficient algorithms for membership tests in NL
and prove their correctness. For two of the considered Boolean hierarchies, these are the first
decidable characterizations at all, i.e., for the classes Σ%

2(n) for the alphabet A = {a, b}, and for
the classes Στ

1(n)).

Definitions. We sketch the definitions of the Boolean hierarchies considered in this paper;
formal definitions can be found in section 2. Σ%

1 denotes the class of languages definable by
first-order Σ1-sentences of the signature % = {≤, Qa, . . .} where for every letter a ∈ A, Qa(i)
is true if and only if the letter a appears at the i-th position in the word. Σ%

1 equals level
1/2 of the Straubing-Thérien hierarchy (STH for short) [Str81, Thé81, Str85, PP86]. Σ%

2 is the
class of languages definable by similar first-order Σ2-sentences; this class equals level 3/2 of the
Straubing-Thérien hierarchy. Let σ be the signature obtained from % by adding constants for the
minimum and maximum positions in words and adding functions that compute the successor
and the predecessor of positions. Σσ

1 denotes the class of languages definable by first-order
Σ1-sentences of the signature σ; this class equals level 1/2 of the dot-depth hierarchy (DDH for
short) [CB71, Tho82]. Let τd be the signature obtained from σ by adding the unary predicates
P 0
d , . . . , P

d−1
d where P jd (i) is true if and only if i ≡ j(mod d). Let τ be the union of all τd. Στd

1 (n)
(resp., Στ

1(n)) is the class of languages definable by first-order Σ1-sentences of the signature τd
(resp., τ). Cdk is the generalization of Σ%

1 where neighborhoods of k + 1 consecutive letters and
distances modulo d are expressible (Definition 2.5). For a class D (in our case one of the classes
Σ%

1, Σσ
1 , Cdk , Στd

1 , Στ
1 , and Σ%

2 for |A| = 2), the Boolean hierarchy over D is the family of classes

D(n)
df
={L

∣
∣L = L1 − (L2 − (. . .− Ln)) where L1, . . . , Ln ∈ D and L1 ⊇ L2 ⊇ · · · ⊇ Ln}.

The Boolean hierarchies considered in this paper are illustrated in Figure 1.
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Our Contribution. The paper contributes to the understanding of Boolean hierarchies of
regular languages in two ways:

1. For the classes Σσ
1 (n), Στd

1 (n), and Σ%
2(n) for the alphabet A = {a, b} we prove new char-

acterizations in terms of forbidden alternating chains. In case of Σ%
2(n) for the alphabet

A = {a, b}, this is the first characterization of this class.

2. For the classes Σσ
1 (n), Cdk(n), Στd

1 (n), and Σ%
2(n) for the alphabet A = {a, b} we construct

the first efficient algorithms for testing membership in these classes. In particular, this
yields the decidability of the classes Στ

1(n), and of Σ%
2(n) for the alphabet A = {a, b}.

We also show that the membership problems for all mentioned Boolean-hierarchy classes are
logspace many-one hard for NL. An overview of the obtained decidability and complexity results
can be found in Table 1. Moreover, we prove that the membership problems for quasi-aperiodic
languages and for d-quasi-aperiodic languages are logspace many-one complete for PSPACE.

Boolean hierarchies can also be seen as fine-grain measures for regular languages in terms of
descriptional complexity. Note that all Boolean hierarchies considered in this paper do not
collapse [Shu98, SS00, Sel04]. Moreover, all these hierarchies either are known or turn out to
be decidable (see Table 1 for the attribution of these results). If in addition the Boolean closure
of the base class is decidable, then we can even exactly compute the Boolean level of a given
language. By known results (summarized in Theorems 2.1 and 2.7), one can do this exact
computation of the level for the Boolean hierarchies over Σ%

1, Σ%
2 (for alphabet A = {a, b}), Ck,

Σσ
1 , and Στ

1 . To achieve the same for the Boolean hierarchies over Cdk and Στd
1 we need the

decidability of their Boolean closures which is not known.

Related Work. Due to the many characterizations of regular languages there are several
approaches to attack decision problems on subclasses of regular languages: Among them there
is the algebraic, the automata-theoretic, and the logical approach. In this paper we mainly use
the logical approach which has a long tradition starting with the early work of Trakhtenbrot
[Tra58] and Büchi [Büc62]. Decidability questions for Boolean hierarchies over classes of con-
catenation hierarchies were previously studied by [SW98, Sch01, GS01a, Sel04]. Enrichments
of the first-order logics related to the dot-depth hierarchy and the Straubing-Thérien hierarchy
were considered in [BCST92, Str94, MPT00, Sel04, CPS06]. For more background on regular
languages, starfree languages, concatenation hierarchies, and their decidability questions we
refer to the survey articles [Brz76, Pin95, Pin96a, Pin96b, Yu96, PW02, Wei04].

Paper Outline. The paper is organized as follows. After the preliminaries (section 2), we ex-
plain the general idea of an efficient membership algorithm for the classes Cdk(n) (section 3). This
easy example shows how a suitable characterization of a Boolean hierarchy can be turned into
an efficient membership test. Later we will construct similar, but more complicated algorithms
for other Boolean hierarchies. In section 4 we develop new alternating-chain characterizations
for the Boolean hierarchies over Σσ

1 , Στd
1 , and Σ%

2 for the alphabet A = {a, b}. In section 5
we exploit these characterizations and design efficient algorithms for testing the membership in
these classes. In particular, we obtain the decidability of the classes Στ

1(n) and Σ%
2(n) for the

alphabet A = {a, b}. Finally, section 6 provides lower bounds for the complexity of the consid-
ered decidability problems. As a consequence (with the exception of Στ

1(n)) the membership
problems of all considered Boolean levels are logspace many-one complete for NL. In contrast,
the membership problems of the general classes FOτ and FOτd are logspace many-one complete
for PSPACE and hence are strictly more complex.
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Figure 1: Boolean hierarchies considered in this paper.

Boolean hierarchy classes decidability complexity

Σ%
1(n) [SW98] NL-complete [SW98]

C1
k(n) [GS01a, Sel01] NL-complete [Sch01]

Σσ
1 (n) [GS01a] NL-complete [this paper]

Cdk(n) [Sel04] NL-complete [this paper]

Στd
1 (n) [Sel04] NL-complete [this paper]

Στ
1(n) [this paper] no efficient bound known

(see Remark 5.6)

Σ%
2(n) for |A| = 2 [this paper] NL-complete [this paper]

Table 1: Overview of decidability and complexity results.

4



2 Preliminaries

In this section we recall definitions and results that are needed in later proofs. If not stated
otherwise, A denotes some finite alphabet with |A| ≥ 2. Let A∗ and A+ be the sets of finite
(resp., of finite non-empty) words over A. If not stated otherwise, variables range over the
set of natural numbers. We use [m,n] as abbreviation for the interval {m,m + 1, . . . , n}. For
a deterministic finite automaton M = (A,Z, δ, s0, F ) (dfa for short), the number of states is
denoted by |M | and the accepted language is denoted by L(M). Moreover, for words x and y
we write x ≡M y if and only if δ(s0, x) = δ(s0, y). For a class of languages C, BC(C) denotes
the Boolean closure of C, i.e., the closure under unions, intersection, and complementation.

All hardness and completeness results in this paper are with respect to logspace many-one
reductions, i.e., whenever we refer to NL-complete sets (resp., PSPACE-complete sets) then we
mean sets that are logspace many-one complete for NL (resp., PSPACE).

2.1 The Logical Approach to Regular Languages

Relate to any alphabet A = {a, . . .} the signatures % = {≤, Qa, . . .} and σ = {≤
, Qa, . . . ,⊥,>, p, s}, where ≤ is a binary relation symbol, Qa (for any a ∈ A) is a unary
relation symbol, ⊥ and > are constant symbols, and p, s are unary function symbols. A
word u = u0 . . . un ∈ A+ may be considered as a structure u = ({0, . . . , n};≤, Qa, . . .) of
signature σ, where ≤ has its usual meaning, Qa(a ∈ A) are unary predicates on {0, . . . , n}
defined by Qa(i) ⇔ ui = a, the symbols ⊥ and > denote the least and the greatest ele-
ments, while p and s are respectively the predecessor and successor functions on {0, . . . , n}
(with p(0) = 0 and s(n) = n). Similarly, a word v = v1 . . . vn ∈ A∗ may be considered as
a structure v = ({1, . . . , n};≤, Qa, . . .) of signature %. For a sentence φ of σ (resp., %), let
Lφ = {u ∈ A+|u |= φ} (resp., Lφ = {v ∈ A∗|v |= φ}). Sentences φ,ψ are treated as equivalent
when Lφ = Lψ. A language is FOσ-definable (resp., FO%-definable) if it is of the form Lφ, where
φ ranges over first-order sentences of σ (resp., %). We denote by Σσ

k (resp., Πσ
k) the class of

languages that can be defined by a sentence of σ having at most k − 1 quantifier alternations,
starting with an existential (resp., universal) quantifier. The classes Σ%

k and Π%
k are defined

analogously with respect to %.

It is well-known that the class of FOσ-definable languages (as well as the class of FO%-definable
languages) coincides with the class of regular aperiodic languages which are also known as the
star-free languages. Moreover there is a levelwise correspondence to concatenation hierarchies,
i.e., the classes Σ%

k, Π%
k, and BC(Σ%

k) coincide with the classes of the Straubing-Thérien hierar-
chy [PP86], while the classes Σσ

k , Πσ
k , and BC(Σσ

k) coincide with the classes of the dot-depth
hierarchy [Tho82].

We will consider also some enrichments of the signature σ. Namely, for any positive integer d let
τd be the signature σ∪{P 0

d , . . . , P
d−1
d }, where P rd is the unary predicate true on the positions of

a word which are equivalent to r modulo d. By FOτd-definable language we mean any language
of the form Lφ, where φ is a first-order sentence of signature τd. Note that signature τ1 is
essentially the same as σ because P 0

1 is the valid predicate. In contrast, for d > 1 the FOτd-
definable languages need not to be aperiodic. E.g., the sentence P 1

2 (>) defines the language L
consisting of all words of even length which is known to be non-aperiodic. We are also interested
in the signature τ =

⋃

d τd. Barrington et al. [BCST92, Str94] defined quasi-aperiodic languages
and showed that this class coincides with the class of FOτ -definable languages. With the same
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proof we obtain the equality of the class of d-quasi-aperiodic languages and the class of FOτd-
definable languages [Sel04]. It was observed in the same paper that Στ

n =
⋃

dΣτd
n for each n > 0,

where Σn with an upper index denotes the class of regular languages defined by Σn-sentences
of the corresponding signature in the upper index.

Theorem 2.1 For the following classes D it is decidable whether a given dfa M accepts a
language in D.

1. BC(Σ%
1) [Sim75]

2. BC(Σ%
2) for |A| = 2 [Str88]

3. BC(Σσ
1 ) [Kna83]

4. BC(Στ
1) [MPT00]

Proof BC(Σ%
1) is the class of piecewise testable languages (or equivalently, the first level of

the Straubing-Thérien hierarchy) which was shown to be decidable by Simon [Sim75]. BC(Σ%
2)

is the second level of the Straubing-Thérien hierarchy which is known to be decidable only for
the alphabet {a, b} [Str88]. BC(Σσ

1 ) is the first level of the dot-depth hierarchy shown to be

decidable by Knast [Kna83]. The decidability of BC(Στ
1) is obtained as follows: Let Σ%∪REG

1

denote the class of languages definable by first-order Σ1-sentences of % that additionally may
use arbitrary regular numerical predicates. By [MPT00, Corollary 10 and Theorem 12] and
[Sel04, Theorem 3.4], BC(Σ%∪REG

1 ) = BC(Στ
1). Chaubard, Pin, and Straubing [CPS06] credit

[MPT00] with the decidability of BC(Σ%∪REG
1 ). 2

We do not know a reference for the decidability of BC(Στd
1 ) which is likely to be a generalization

of Knast’s proof.

2.2 Preliminaries on Boolean Hierarchies

Here we recall some definitions and facts on Boolean hierarchies. Let S be any set. By a base in
S we mean any class C of subsets of S which is closed under union and intersection and contains
∅ and S as elements. It is easy to see that, e.g., Σ%

1 is a base in A∗ and Σσ
1 , Στd

1 are bases in A+.

For any base C and n ≥ 1, let C(n) be the class of all sets of the form
⋃

i(L2i \ L2i+1), where
L0 ⊇ L1 ⊇ · · · is a descending sequence of sets from C and Li = ∅ for i ≥ n. The sequence
{C(n)}n≥1 is known as the Boolean hierarchy (BH) over C. As is well-known, C(n)∪ co(C(n)) ⊆
C(n + 1) for every n, and the class

⋃

n C(n) coincides with the Boolean closure BC(C) of C. A
BH has several nice characterizations (see e.g. [KSW87, CGH+88]), in particular C(n) coincides
with the class of languages L that can be written as L = L1 − (L2 − (. . . − Ln)) for some
L1, L2, . . . , Ln ∈ C with L1 ⊇ L2 ⊇ · · · ⊇ Ln.

If any partial order S = (S;≤) is given we observe that the class C consisting of all upper sets
of S is a base in S. Recall that a set L ⊆ S is upper if x ∈ L and x ≤ y imply y ∈ L. By
an alternating chain of length n for a set L ⊆ S we mean a sequence (x0, . . . , xn) of elements
of S such that x0 ≤ · · · ≤ xn and xi ∈ L ⇔ xi+1 6∈ L for every i < n. Such a chain is called
a 1-alternating chain if x0 ∈ L, otherwise it is called a 0-alternating chain. Variants of the
following fact frequently appear when treating BH’s of different kind [Sel04, Proposition 4.6].
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Proposition 2.2 Let S = (S;≤) be a partial order and C the base of upper sets in S. For all
L ⊆ S and n ≥ 1, L ∈ C(n) if and only if L has no 1-alternating chains of length n.

So there is a generic method to prove characterizations of classes of a BH in terms of forbidden
alternating chains: One has to identify a partial order such that the respective base is just the
class of all upper sets. Even more, the latter can be carried out over a different base. Let us
first observe the following assertion which essentially coincides with [Sel04, Proposition 4.1].

Proposition 2.3 Let C a base in S, M a base in T and f : T → S be a surjection such that
f(M) ∈ C for all M ∈ M. Moreover, let L ∈ C(n) for some n ≥ 1 and f−1(L) ∈ M(n), i.e.,
f−1(L) =

⋃

i(M2i \M2i+1) for some Mi ∈ M with M0 ⊇M1 ⊇ · · · and Mi = ∅ for i ≥ n. Then
L =

⋃

i(f(M2i) \ f(M2i+1)), f(M0) ⊇ f(M1) ⊇ · · · , f(Mn) = ∅ and therefore L ∈ C.

Now we can identify a condition which is sufficient to characterize membership in the classes of
a BH over one base in terms of alternating chains over a different base. It follows immediately
from Propositions 2.2 and 2.3.

Theorem 2.4 Let C be a base in S and L ⊆ S. Moreover, let T = (T ;≤) be some partial order,
M be the base of upper sets in T and f : T → S be a surjection. If f(M) ∈ C for all M ∈ M
and f−1(L) ∈ M for all L ∈ C then for all n ≥ 1 it holds that

L ∈ C(n) ⇔ f−1(L) has no 1-alternating chain of length n in (T ;≤).

Observe that (T ;≤) may depend on L. One way to apply the theorem is to prove that (T ;≤) is
a well partial order (i.e., it has neither infinite descending chains nor infinite antichains). Then
the upper sets M in (T ;≤) can be finitely represented which helps to show that f(M) ∈ C for
all M ∈ M. This approach has been carried out for the BH over Σσ

1 [GS01a] and Στd
1 [Sel04].

We recall these results in the following subsections.

2.3 Preliminaries on the Classes Cd
k
(n)

In section 3 we will also refer to ‘local’ versions of the BH’s over the classes Σσ
1 and Στd

1 which
were considered in [Ste85a, GS01a, Sel01, Sel04]. For any k ≥ 0 the following partial order on
non-empty words was studied in [Ste85a, GS01a, Sel01]: u ≤k v, if u = v ∈ A≤k or u, v ∈ A>k,
pk(u) = pk(v), sk(u) = sk(v), and there is a k-embedding f : u → v. Here pk(u) (sk(u)) is the
prefix (resp., suffix) of u of length k, and the k-embedding f is a monotone injective function
from {0. . . . , |u| − 1} to {0. . . . , |v| − 1} such that u(i) · · · u(i+ k) = v(f(i)) · · · v(f(i) + k) for all
i < |u| − k. Note that the relation ≤0 is just the subword relation.

In [Sel04] the following generalization of this partial order was considered.

Definition 2.5 ([Sel04]) Let k ≥ 0 and d > 0.

1. We say that a k-embedding f : u→ v is a (k, d)-embedding, if P rd (i) implies P rd (f(i)) for
all i < |u| and r < d.
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2. For all u, v ∈ A+, let u ≤d
k v mean that u = v ∈ A≤k or u, v ∈ A>k, pk(u) = pk(v),

sk(u) = sk(v), and there is a (k, d)-embedding f : u→ v.

3. With Cdk we denote the class of all upper sets in (A+;≤d
k).

Note that for d = 1 the order ≤d
k coincides with ≤k. From Proposition 2.2 we obtain the

following characterization of the classes Cdk(n), first established in [GS01a, Sel01, Sel04].

Proposition 2.6 For all L ⊆ A+ and n ≥ 1, L ∈ Cdk(n) if and only if L has no 1-alternating
chains of length n in (A+;≤d

k).

Moreover, it is shown in these papers that (A+;≤d
k) is a well partial order and that Στd

1 =
⋃

k C
d
k

and hence Στ
1 =

⋃

k,d C
d
k .

Theorem 2.7 ([Ste85a]) It is decidable whether a given dfa M accepts a language in BC(Ck).

For d > 1 it is not known whether BC(Cdk) is decidable. However, we expect that this can be
shown by generalizing the proof in [Ste85a].

2.4 Preliminaries on the Classes Σσ
1

and Στd

1

In case of the Boolean hierarchy over Σσ
1 a more sophisticated characterization of the single

levels is known [GS01a]. Let M = (A,Z, δ, s0, F ) be a dfa. A word u ∈ A+ is M -idempotent if
δ(s, u) = δ(s, uu) for all states s ∈ Z. Define cM = (n + 1)(n+1)n+1

where n = |M |. The set of
structured words is defined as

AM

df=
{
w0 u1 w1 u2 w2 · · · um wm

∣
∣ ui, wi ∈ A+, |wi|, |ui| ≤ cM

and each ui is M -idempotent
}
.

For a structured word x = w0 u1 w1 u2 w2 · · · um wm ∈ AM let x
df
=w0u1w1 · · · umwm. It is

shown in [GS01a] that every word can be structured. So f : AM → A+ with f(x)
df
=x is a

surjection.

For x, y ∈ AM we write x�
M
y if there exist words ui ∈ A

+ and xi, zi ∈ AM such that

x = x0 u1 x1 u2 x2 · · · um xm and

y = x0 u1 z1 u1 x1 u2 z2 u2 x2 · · · um zm um xm.

Theorem 2.8 ([GS01a]) Let M be a dfa, L = L(M) ⊆ A+ and n ≥ 1. Then L ∈ Σσ
1 (n) if

and only if f−1(L) has no 1-alternating chain of length n in (AM ;�
M

).

Next we recall a generalization of the last result to the BH over Στd
1 for any d > 1 as already

observed in [Sel04]. Let Ad
M

denote the set of structured words w0 u1 w1 u2 w2 · · · um wm such
that 0 < |wi|, |uj | ≤ cA · d for all i ∈ [0, n], j ∈ [1, n] and |wi| ≡ |uj| ≡ 0 (mod d) for all
i ∈ [0, n − 1], j ∈ [1, n]. The relation �

M
and the function f : Ad

M
→ A+ are defined exactly as

above. Then small modifications of the proofs in [GS01a] yield the conditions of f from Theorem
2.4 and hence the following result (for details see the journal version of [Sel04] submitted to
Theoretical Informatics and Applications).

Theorem 2.9 ([Sel04]) Let M be a dfa, L = L(M) ⊆ A+ and d, n ≥ 1. Then L ∈ Στd
1 (n) if

and only if f−1(L) has no 1-alternating chain of length n in (Ad
M ;�

M
).
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3 Efficient Algorithms for Cd
k(n)

The main objective of this paper is the design of efficient algorithms deciding membership for
particular Boolean hierarchies. For this, two things are needed: First, we need to prove suitable
characterizations for the single levels of these hierarchies. This gives us certain criteria that can
be used for testing membership. Second, we need to construct algorithms that efficiently apply
these criteria. If both steps are successful, then we obtain an efficient membership test.

Based on known ideas for membership tests for C1
0(n) [SW98]1 and C1

k(n) [Sch01], in this section
we explain the construction of a nondeterministic, logarithmic-space membership algorithm
for the classes Cdk(n). This is the first efficient membership test for this general case. Our
explanation has an introductory character, since it shows how a suitable characterization of a
Boolean hierarchy can be turned into an efficient membership test. Later (in section 5) we will
use similar, but more complicated constructions.

We start with the easiest case k = 0 and d = 1, i.e., with the classes C1
0(n). By Proposition 2.6,

L /∈ C1
0(n) ⇔ L has a 1-alternating ≤0-chain of length n. (1)

We argue that for a given L, represented by a finite automaton M , the condition on the right-
hand side can be verified in nondeterministic logarithmic space. So we have to test whether
there exists a chain w0 ≤0 · · · ≤0 wn such that wi ∈ L if and only if i is even. This is done by
the following algorithm.

0 // On input of a deterministic, finite automaton M = (A, Z, δ, z0, F)
the algorithm tests whether L(M) ∈ C1

0(n).
1 let s0 = · · · = sn = z0
2 do

3 nondeterministically choose a ∈ A and j ∈ [0, n]
4 for i = j to n

5 si = δ(si, a) // stands for the imaginary command: wi = wia

6 next i

7 until ∀i, [si ∈ F ⇔ i is even]
8 accept

The algorithm guesses the words w0, . . . , wn in parallel. However, instead of constructing these
words in the memory, it guesses the words letter by letter and stores only the states si =
δ(z0, wi). More precisely, in each pass of the loop we choose a letter a and a number j, and
we interpret this choice as appending a to the words wj, . . . , wn. Simultaneously, we update
the states s0, . . . , sn appropriately. By doing so, we guess all possible chains w0 ≤0 · · · ≤0 wn
in a way such that we know the states si = δ(z0, wi). This allows us to easily verify the right-
hand side of (1) in line 7. Hence, testing non-membership in C1

0(n) is in NL. By NL = coNL
[Imm88, Sze87], also the membership test belongs to NL.

The algorithm can be modified such that it works for Cd0(n) where d is arbitrary: For this we
have to make sure that the guessed ≤0-chain is even a ≤d

0-chain, i.e., the word extensions must
be such that the lengths of single insertions are divisible by d. This is done by (i) introducing
new variables li that count the current length of wi modulo d and (ii) by making sure that

1For all n, the classes C1
0(n) and Σ%

1(n) coincide up to the empty word, i.e., C1
0(n) = {L ∩ A

+
∣
∣ L ∈ Σ%

1(n)}.
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li = li+1 whenever j ≤ i < n (i.e., letters that appear in both words, wi and wi+1, must appear
at equivalent positions modulo d). So also the membership test for Cd0(n) belongs to NL.

Finally, we adapt the algorithm to make it work for Cdk(n) where d and k are arbitrary. So
we have to make sure that the guessed ≤d

0-chain is even a ≤d
k-chain. This means that for a

single insertion u1u2 ≤d
0 u1vu2 it must additionally hold that the length k prefixes of u2 and

vu2 are equal. The latter is called the prefix condition. The algorithm can test this condition
by introducing new variables vi that contain a guessed preview of the next k letters in wi. Each
time a letter is appended to wi, (i) we verify that this letter is consistent with the preview vi
and (ii) we update vi by removing the first letter and by appending a new guessed letter. In
this way the modified algorithm carries the length k previews of the wi with it and it makes
sure that guessed letters are consistent with these previews. Moreover, we modify the algorithm
such that whenever j ≤ i < n, then the condition vi = vi+1 is tested. The latter makes sure
that single insertions u1u2 ≤d

0 u1vu2 satisfy the prefix condition and hence the involved words
are even in ≤d

k relation. This modified algorithm shows the following.

Theorem 3.1 For k ≥ 0 and d ≥ 1,

{M
∣
∣M is a deterministic finite automaton and L(M) ∈ Cdk(n)} ∈ NL.

We now explain why the above idea does not immediately lead to a nondeterministic,
logarithmic-space membership algorithm for the classes Σσ

1 (n), although an alternating chain
characterization for Σσ

1 (n) is known from Theorem 2.8. Note that the described algorithm for
Cdk(n) stores the following types of variables in logarithmic space.

1. variables si that contain states of M

2. variables li that contain numbers from [0, d − 1]

3. variables vi that contain words of length k

However, the characterization of the classes Σσ
1 (n) (Theorem 2.8) is unsuitable for our algorithm:

In order to verify the condition on the right-hand side of Theorem 2.8, we have to guess a
sequence of structured words x1, . . . , xn and have to make sure that xi�M

xi+1. In particular,
we have to make sure that certain parts of xi and xi+1 are M -idempotent. Again we would try
to guess the words xi letter by letter, but now we have to make sure that (larger) parts u of these
words are M -idempotent. We do not know how to verify the latter condition in logarithmic
space. (Note however, that in linear space the membership test is possible: Just guess a word
u letter by letter and simultaneously store/update for each state s the state δ(s, u).)

In a similar way one observes that the characterization of the classes Στd
1 (n) at the end of

the previous section cannot be used for the construction of an efficient membership test. So
new characterizations of Σσ

1 (n) and Στd
1 (n) are needed in order to obtain efficient membership

algorithms.
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4 New Characterizations of Boolean-Hierarchy Classes

In this section we develop new alternating-chain characterizations that allow the design of
efficient algorithms deciding membership for the Boolean hierarchies over Σσ

1 , Στd
1 , and Σ%

2 for
|A| = 2. We begin with the introduction of marked words and related partial orders which turn
out to be crucial for the design of our algorithms. In subsection 4.2 we prove characterizations for
Σσ

1 (n) and Στd
1 (n) in terms of alternating chains of marked words. Subsection 4.3 shows a way to

exploit these results for the classes Στ
1(n). Finally, subsection 4.4 develops an alternating-chain

characterization for Σ%
2(n) restricted to an alphabet that contains exactly two letters.

4.1 Marked Words

For a fixed finite alphabet A, let A df
=

{
[a, u]

∣
∣ a ∈ A,u ∈ A∗

}
be the corresponding marked

alphabet. Words over A are called marked words. For w ∈ A∗ with w = [a1, u1] · · · [am, um]
let w

df
=a1 · · · am ∈ A∗ be the corresponding unmarked word. Sometimes we use the functional

notation fi(w) = a1u
i
1 · · · amu

i
m, i.e., f0(w) = w. Clearly, f0 : A∗ → A∗ is a surjection. For

x = x1 · · · xm ∈ A+ and u ∈ A∗ we define [x, u] df=[x1, ε] · · · [xm−1, ε][xm, u].

Next we define a relation on marked words. For w,w′ ∈ A∗ we write w�w′ if and only if there
exist m ≥ 0, marked words xi, zi ∈ A∗, and marked letters bi = [ai, ui] ∈ A where ui ∈ A+ such
that

w = x0b1 x1b2 x2 · · · bm xm, and

w′ = x0b1 z1b1 x1b2 z2b2 x2 · · · bm zmbm xm.

We call bi the context letter of the insertion zibi. We write w�dw′ if w�w′ and |f0(zibi)| ≡ 0
(mod d) for all i. Note that �1 coincides with � and observe that �d is a transitive relation.

For a dfa M = (A,Z, δ, s0, F ) and s, t ∈ Z we write s
w

−→
M

t, if δ(s,w) = t and for all i,

δ(s, a1 · · · ai) = δ(s, a1 · · · aiui). So s
w

−→
M

t means that the marked word w leads from s to t in a

way such that the labels of w are consistent with loops in M . We say that w is M -consistent,
if for some t ∈ Z, s0

w
−→
M

t and denote by BM the set of marked words that are M -consistent.

Every M -consistent word has the following nice property.

Proposition 4.1 For w = [c1, u1] · · · [cm, um] ∈ BM it holds that

∀j ≥ 0, f0(w) ≡M c1u
j
1 · · · cmu

j
m.

We will frequently use this fact without further reference.

4.2 New Characterization of the Classes Σσ
1
(n) and Στd

1
(n)

We extend Theorem 2.9 and add a characterization in terms of alternating chains on M -
consistent marked words. Because we can also restrict the length of the labels ui, denote
by BcM for any c > 0 the set of marked words [a0, u0] · · · [an, un] that are M -consistent and
satisfy |ui| ≤ c for all i ≤ n.

11



Theorem 4.2 Let d, n ≥ 1, M be a dfa, c = |M ||M |, and L = L(M) ⊆ A+. Then the following
assertions are equivalent:

(1) L ∈ Στd
1 (n)

(2) f−1
0 (L) has no 1-alternating chain of length n in (BM ;�d)

(3) f−1
0 (L) has no 1-alternating chain of length n in (BcM ;�d)

Proof “(1) ⇒ (2)” We check the contraposition. Let f−1
0 (L) have a 1-alternating chain

(x0, . . . , xn) in (BM ;�d). Since in the definition of �d we suppose that the loops ui are non-
empty, just as in [GS01a] we obtain that (fkd(x0), . . . , fkd(xn)) is a 1-alternating chain for L
in (A+;≤d

k). By Lemma 2.6, L 6∈ Cdk(n). Since k was arbitrary and Στd
1 =

⋃

k C
d
k , we obtain

L 6∈ Στd
1 (n).

“(2) ⇒ (3)” Obvious.

“(3) ⇒ (1)” Assume that L 6∈ Στd
1 (n). Then by Theorem 2.9, f−1(L) has a 1-alternating chain

(x0, . . . , xn) in (Ad
M ;�

M
) with

xi ∈ f−1(L) ⇐⇒ xi ∈ L ⇐⇒ i is even. (2)

We turn structured words into marked words via g : Ad
M → A+ with

g(w0 u1 w1 u2 w2 · · · um wm) df=[w0, ε][u1, u1][w1, ε] · · · [um, um][wm, ε].

Observe that
∀x ∈ AM , x = f0(g(x)). (3)

By the definition of structured words, all ui are M -idempotent and hence

∀x ∈ AM , g(x) is M -consistent. (4)

Moreover, from the definition of Ad
M

, �
M

and �d
M

we obtain

∀x, y ∈ Ad
M , [x�

M
y ⇒ g(x)�dg(y)]. (5)

Consider (w0, . . . , wn) with wi
df= g(xi). By (4) and definition of AM we have wi ∈ BcM . By

(5),(3) and (2) the sequence (w0, . . . , wn) is a 1-alternating chain for f−1
0 (L) in (BM ;�d).

We show how to modify the sequence (w0, . . . , wn) to obtain a 1-alternating chain of length n
for f−1

0 (L) in (BcM ;�d) (then the negation of statement 3 holds, as desired). It suffices to show
that for any u ∈ A+ there is a v ∈ A+ such that |v| ≤ c and δu = δv where δu : Z → Z is
the function defined by δu(z) = δ(z, u). Indeed, then we simply replace any label u ∈ A+ in
the words w0, . . . , wn by label v ∈ A+ with |v| ≤ c and δu = δv . Consequently, the resulting
sequence (w′

0, . . . , w
′
n) is a 1-alternating chain of length n for f−1

0 (L) in (BcM ;�d)).

To obtain such a label, it suffices to show that for any u ∈ A+, |u| > c, there is a v ∈ A+ such
that |v| < |u| and δu = δv . So assume |u| > c and consider the functions δu1 , for all prefixes
u1 v u of u. Since there are strictly more than c such prefixes but only c functions from Z to Z,
there must exist prefixes u1 @ u2 v u with δu1 = δu2 . Let u3 be the word satisfying u = u2u3,
then δu = δu2δu3 = δu1δu3 = δu1u3, hence we can take v = u1u3. 2

In the special case d = 1 we have in particular an alternative to Theorem 2.8.

Theorem 4.3 Let M be a dfa, L = L(M) ⊆ A+ and n ≥ 1. Then L ∈ Σσ
1 (n) if and only if

f−1
0 (L) has no 1-alternating chain of length n in (BM ;�).
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4.3 An Upper Bound on d for languages in Στ
1
(n)

For s ∈ A+, a marked word w = [a0, u0] · · · [an, un] and i ≤ n, by an i-insertion in w we mean
a marked word of the form [a0, u0] · · · [ai, ui][s, ε][ai+1, ui+1] · · · [an, un], where s = uki for some
k > 0. A variant of w is a marked word that is obtained from w be several such (simultaneous)
insertions. Obviously, such insertions do not change the property that a marked word w is
M -consistent and that w has labels of bounded length.

Lemma 4.4 If w ∈ BcM and w′ is a variant of w then w′ ∈ BcM and f0(w) ≡M f0(w
′).

The next lemma is the main technical fact of this subsection.

Lemma 4.5 Let M be a dfa, c = |M ||M |, d = c!, e a non-zero multiple of d, and (w0, . . . , wn)
a chain in (BcM ;�d). Then there exists a chain (y0, . . . , yn) in (BcM ;�e) such that f0(wi) ≡M

f0(yi) for all i ≤ n.

Proof The marked words y0, y1, . . . are defined by induction (actually, for simplicity we explain
the construction of a couple of elements in this sequence). Set y0 = w0.

Since w0�
dw1, there are representations

w0 = x0b1 x1b2 x2 · · · bm xm and

w1 = x0b1 z1b1 x1b2 z2b2 x2 · · · bm zmbm xm

where m ≥ 0, xi, zi ∈ A∗, bi = [ai, vi] ∈ A, vi ∈ A+ and |f0(zi)| ≡ −1 (mod d) for all i.
(Similar representations exist for any pair (wi, wi+1) of the chain (w0, . . . , wn), and we work
actually with a fixed sequence of such representations.) Since d is a multiple of any |vj |, we
have |f0(zj)| + 1 = |vj | · qj for some q1, . . . , qm ≥ 1. Let kj = qj(e− 1).

Let y1 be obtained by insertion of [v
kj

j , ε] in w1 after the first entry of bj in the representation
of w1, for all j = 1, . . . ,m. Consider the induced representation of y1. By the choice of kj,
y0�

ey1. By Lemma 4.4, y1 ∈ BcM and f0(w1) ≡M f0(y1).

In case n > 1, we construct y2 as follows. The above representation of (w0, w1) induces an
embedding of words g0 : w0 → w1 that sends any xi in w0 to the same xi in w1 and any
bi in w0 to the first entry of bi in w1. A similar embedding gi : wi → wi+1 exists for the
representation of (wi, wi+1) fixed above, for each i < n. Let w′

2 be the marked word obtained

from w2 by the insertion of [v
kj

j , ε] after g1(g0(bj)), for each j = 1, . . . ,m. Then y1�
dw′

2 (w.r.t.
the representation of (y1, w

′
2) induced by the representation of (w1, w2)). Let y2 be obtained

from (y1, w
′
2) by the same construction as y1 was obtained from (w0, w1). Then y1�

ey2 and, by
Lemma 4.4, y2 ∈ BcM and f0(w2) ≡M f0(y2).

In case n > 2 we proceed similarly to the previous paragraph. 2

Theorem 4.6 In notation of Lemma 4.5, L(M) ∈ Στ
1(n) implies L(M) ∈ Στd

1 (n).
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Proof We prove the contraposition. Let L(M) 6∈ Στd
1 (n). By Theorem 4.2, there is an 1-

alternating chain (w0, . . . , wn) for L = L(M) in (BcM ;�d). We have to show that L(M) 6∈ Στ
1(n).

By [Sel04], it suffices to show that L(M) 6∈ Στe
1 (n) for all non-zero multiples e of d. Fix such an

e. By Lemma 4.5, there is a chain (y0, . . . , yn) in (BcM ;�e) such that f0(wi) ≡M f0(yi) for all
i ≤ n. Then (y0, . . . , yn) is an alternating chain for L. By Theorem 4.2, L(M) 6∈ Στe

1 (n). 2

4.4 Characterization of the Classes Σ%
2
(n) for |A| = 2

In this subsection we prove an alternating-chain characterization for the classes of the Boolean
hierarchy over Σ%

2 for the special case |A| = 2. Together with the later provided algorithm
this establishes the first decidability result for this hierarchy. Note that only in case |A| = 2
decidability of BC(Σ%

2) [Str88] and Σ%
3 [GS01b] is known.

As it turns out for this Boolean hierarchy, it is neither clear how to use an approach via
structured words nor how to apply Theorem 2.4 with marked words. Instead, we use a different
approach from [GS01b] which connects Σ%

k with Σσ
k−1 and apply it to the interleaving Boolean-

hierarchy classes. This translation finally allows us to exploit our new characterization of Σσ
1 (n)

(Theorem 4.3) for the construction of the needed characterization of Σ%
2(n).

4.4.1 Formal Language Classes

As mentioned in the introduction, the classes Σ%
k, Π%

k, and BC(Σ%
k) coincide with the classes of

the Straubing-Thérien hierarchy [PP86], while the classes Σσ
k , Πσ

k , and BC(Σσ
k) coincide with

the classes of the dot-depth hierarchy [Tho82]. We state this correspondence more precisely.

For a class C of languages over A let Pol(C) be the class of languages of A∗ that can be written
as a finite, possibly empty union of languages L0a1L1 · · · amLm with m ≥ 0, Li ∈ C and ai ∈ A,
and denote by BC(C) its Boolean closure (complements w.r.t. A∗). Then Σ%

0 = {∅, A∗} and for
k ≥ 0 it holds that Σ%

k+1 = Pol(BC(Σ%
k)). Analogously, let Pol+(C) be the class of languages

that of A+ can be written as a finite, possibly empty union of languages u0L1u1L2 · · ·Lmum
with m ≥ 0, Li ∈ C and ui ∈ A∗ (if m = 0 then u0 6= ε), and denote by BC(C) the Boolean
closure (complements w.r.t. A+) of C. Then Σσ

0 = {∅, A+} and for k ≥ 0 it holds that Σσ
k+1 =

Pol+(BC(Σσ
k)). Note that we take complements in BC(C) w.r.t. A+ (resp. A∗) if C is a class of

languages of A+ (resp. A∗).

To ease notations, we first observe that the membership in a class of the BH over Σ%
2 does not

depend on ε. This can be easily generalized to higher levels.

Proposition 4.7 Let A be some finite alphabet, n ≥ 1 and L ⊆ A∗.

1. If L ∈ Σ%
2(n) then L ∩A+ ∈ Σ%

2(n) and L ∪ {ε} ∈ Σ%
2(n).

2. If L ∈ Π%
2(n) then L ∩A+ ∈ Π%

2(n) and L ∪ {ε} ∈ Π%
2(n).

Proof Note that A+ =
⋃

a∈AA
∗aA∗ ∈ Σ%

1 ⊆ BC(Σ%
1) and {ε} ∈ Π%

1 ⊆ BC(Σ%
1). Since

Σ%
2 = Σ%

2(1) and Π%
2 = Π%

2(1) are closed under union and intersection the proposition is true for
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n = 1. We argue for the first statement by induction on n. If n+ 1 is even, then L ∈ Σ%
2(n+ 1)

can be written as L = L1 ∩ L2 with L1 ∈ Σ%
2(n) and L2 ∈ Π%

2 [CGH+88]. So also L ∩ A+ =
L1 ∩ L2 ∩A

+ ∈ Σ%
2(n+ 1), since L2 ∩A

+ ∈ Π%
2. Moreover, L ∪ {ε} = (L1 ∪ {ε}) ∩ (L2 ∪ {ε}) ∈

Σ%
2(n + 1), since L1 ∪ {ε} ∈ Σ%

2(n) by hypothesis and L2 ∪ {ε} ∈ Π%
2. If n + 1 is odd, then

L ∈ Σ%
2(n + 1) can be written as L = L1 ∪ L2 with L1 ∈ Σ%

2(n) and L2 ∈ Σ%
2 [CGH+88]. So

also L ∩ A+ = (L1 ∩ A
+) ∪ (L2 ∩ A

+) ∈ Σ%
2(n + 1), since L1 ∩ A

+ ∈ Σ%
2(n) by hypothesis and

L2 ∩A
+ ∈ Σ%

2. Moreover, L∪ {ε} = L1 ∪L2 ∪ {ε} ∈ Σ%
2(n+ 1) since L2 ∪ {ε} ∈ Σ%

2. The second
statement can be shown with dual arguments. 2

4.4.2 A-Factorizations

We fix A = {a, b} for the remainder of this section and recall some definitions from [GS01b].
Let Aar

df={a1, . . . , ar}, A
b
r

df={b1, . . . , br} and Ar
df=Aar ∪ A

b
r for r ≥ 1. Every word x ∈ A∗ can be

decomposed into maximal blocks of equal letters, i.e., x = x1x2 · · · xk for some k ≥ 1 and for
words xi of maximal length such that xi ∈ {a}+∪{b}+. We call this the A-factorization of x and
observe that it is unique due to the maximality condition. We say that a letter c ∈ Ar is of type
a if c ∈ Aar , and it is of type b if c ∈ Abr. For every r ≥ 1 we define a mapping hr : A∗ → (Ar)

∗

which maps every xi to a single letter from Ar. More precisely, let r ≥ 1, x ∈ A∗ and let
x = x1x2 · · · xk for some k ≥ 1 be the A-factorization of x. Then hr(x)

df
= c1c2 · · · ck ∈ (Ar)

∗

where

ci
df
=

{
amin{l,r} : if xi = al for some l ≥ 1

bmin{l,r} : if xi = bl for some l ≥ 1.

Moreover, for L ⊆ A∗ and L′ ⊆ (Ar)
∗ we define hr(L) df=

⋃

x∈L{hr(x)} and h−1
r (L′) df=

{
x ∈ A∗

∣
∣

hr(x) ∈ L′
}
. It is important to notice that not all words from (Ar)

∗ can appear in the range of
hr. The maximality condition in A-factorizations ensures that the type of letters in every word
hr(x) alternates between a and b. We call such words well-formed and set W

df
=hr(A

∗).

Proposition 4.8 It holds that W = (Ar)
∗ \

(
(Ar)

∗AarA
a
r(Ar)

∗ ∪ (Ar)
∗AbrA

b
r(Ar)

∗
)
.

In particular, the levels of the BH over Σσ
1 and the BH over Σ%

2 are closely related via h−1
r .

Lemma 4.9 Let A = {a, b}, n ≥ 1 and L ⊆ (Ar)
+ for some r ≥ 1.

1. If L ∈ Σσ
1 (n) then h−1

r (L) ∈ Σ%
2(n).

2. If L ∈ Πσ
1 (n) then h−1

r (L) ∈ Π%
2(n).

Proof Let L ⊆ (Ar)
+ for some r ≥ 1 and let n ≥ 1. To see the first statement suppose

L ∈ Σσ
1 (n). So there exist L1, L2, . . . , Ln ∈ Σσ

1 with L1 ⊇ L2 ⊇ · · · ⊇ Ln such that L =
L1 − (L2 − (. . . − Ln)). We set L′

i
df
=h−1

r (Li) and claim that

1. L′
i ∈ Σ%

2,

2. L′
1 ⊇ L′

2 ⊇ · · · ⊇ L′
n, and

3. h−1
r (L) = L′

1 − (L′
2 − (. . . − L′

n)).
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To see the first claim observe that

L′
i = h−1

r ((Li ∩W ) ∪ (Li ∩W )) = h−1
r (Li ∩W ) ∪ h−1

r (Li ∩W ) = h−1
r (Li ∩W ),

since h−1
r (Li ∩W ) = ∅. In [GS01b, Claim 5] it is shown that h−1

r (Li ∩W ) ∈ Σ%
2. Claim 2 is

immediate since L1 ⊇ L2 ⊇ · · · ⊇ Ln. For claim 3, let x ∈ h−1
r (L), so hr(x) ∈ L ⊆ L1 and

hence x ∈ h−1
r (L1) = L′

1. To complete the inclusion from left to right observe that hr(x) ∈ L2j

implies hr(x) ∈ L2j+1, since hr(x) ∈ L, so x ∈ L′
2j implies x ∈ L′

2j+1. For the reverse inclusion

let x ∈ A∗\h−1
r (L). If x 6∈ L′

1 we are done. Otherwise we see that x ∈ L′
2j+1 implies x ∈ L′

2j+2

with the same argument as before.

For the second statement of the lemma let L ∈ Πσ
1 (n). Then (Ar)

+\L ∈ Σσ
1 (n) and by the

first statement of the lemma we have h−1
r ((Ar)

+\L) ∈ Σ%
2(n). Since Π%

2(n) is closed under
intersection with A+ (Proposition 4.7) it holds that

L′ df=A+ ∩
(
A∗\h−1

r ((Ar)
+\L)

)
∈ Π%

2(n).

We claim that h−1
r (L) = L′. For the inclusion from left to right observe that every x ∈ h−1

r (L) is
non-empty and that hr(x) ∈ L ⇒ hr(x) 6∈ (Ar)

+\L, so x 6∈ h−1
r ((Ar)

+\L). Conversely, let x be
a non-empty word from A∗\h−1

r ((Ar)
+\L) and assume that hr(x) 6∈ L. Then hr(x) ∈ (Ar)

+\L,
so x ∈ h−1

r ((Ar)
+\L) which is a contradiction. 2

Note that also this lemma can be generalized to Boolean hierarchies over higher levels.

4.4.3 Alternating-chain Characterization

In the following we will make use of a certain padding operation.

Lemma 4.10 Let L(M) ⊆ A∗ for some dfa M and let (w0, . . . , wn) be a chain in (BM ,�).
For every dfa M ′ with L(M ′) ⊆ A∗ there exists a chain (w′

0, . . . , w
′
n) in (BM ′ ,�) such that

f0(wi) ≡M f0(w
′
i).

Proof Let L(M ′) ⊆ A∗ for some dfa M ′. To obtain w′
i from wi let r

df
= |M ′| and substitute each

letter [a, u] of wi with u 6= ε by [a, ε][ur!, ur!]. Since wi ∈ BM we have f0(wi) ≡M f0(w
′
i). To see

that w′
i � w′

i+1 holds, note that it suffices to look at each insertion separately. So assume that
wi = xby and wi+1 = xbzby with x, y, z ∈ A∗ and context letter b = [a, u]. Then

w′
i = x′ [a, ε][ur!, ur!] y′

� w′
i+1 = x′ [a, ε][ur!, ur!] z′ [a, ε][ur!, ur!] y′.

Finally observe that every w′
i is M ′-consistent, since ur! is M ′-idempotent. 2

Now we give a characterization in terms of marked words that obey an additional constraint.
For u ∈ A∗ let α(u) be the set of letters in u. We say that a marked word w = [c1, u1] · · · [cm, um]
satisfies the alphabet condition if for all ui 6= ε it holds that α(ui) = A.

16



zz

x vs1 s2s0

uu

+ −

Figure 2: A dfa M = (A,Z, δ, s0, F ) has pattern P if and only if there exist x, u, v, z ∈ A∗

and s1, s2 ∈ Z such that s1 = δ(s0, x) = δ(s0, xu), s2 = δ(s0, xv) = δ(s0, xvu), δ(s1, z) ∈ F ,
δ(s2, z) 6∈ F , and α(v) ⊆ α(u).

Theorem 4.11 Let A = {a, b}, n ≥ 1 and let L(M) ⊆ A∗ for some dfa M such that L = L(M)
is a star-free language. Then L ∈ Σ%

2(n) if and only if f−1
0 (L) has no 1-alternating chain

(w0, . . . , wn) in (BM ;�) such that all wi satisfy the alphabet condition.

Proof “⇒ ”: Let L = L1 − (L2 − (. . . − Ln)) for some Li ∈ Σ%
2 with L1 ⊇ L2 ⊇ · · · ⊇ Ln.

If M1, . . . ,Mn denote the minimal dfa’s that accept the languages L1, . . . , Ln, respectively, we
define e = (max1≤i≤n |Mi|)! and set g(w) = fe(w) for notational convenience. Assume to the
contrary that (w0, . . . , wn) is a 1-alternating chain for f−1

0 (L) in (BM ;�) such that all wi satisfy
the alphabet condition. We first show that

∀1 ≤ k, l ≤ n, [g(wk−1) ∈ Ll ⇒ g(wk) ∈ Ll]. (6)

Assume that for some k, l this is not true and let

wk−1 = x0c1 x1 · · · xm−1cm xm and

wk = x0c1 z1c1 x1 · · · xm−1cm zmcm xm

for suitable m ≥ 0, xi, zi ∈ A∗ and ci = [di, ui] ∈ A where ui ∈ A+ and α(ui) = A. So we have

g(wk−1) = g(x0)d1u
e
1 g(x1) · · · g(xm−1)dmu

e
m g(xm) and

g(wk) = g(x0)d1u
e
1 g(z1)d1u

e
1 g(x1) · · · g(xm−1)dmu

e
m g(zm)dmu

e
m g(xm).

For 1 ≤ i ≤ m let vi be the word that is obtained from g(wk) by deleting the factors g(zj)dju
e
j

for all j > i. Note that v0 = g(wk−1) ∈ Ll and by assumption, vm = g(wk) 6∈ Ll. So there must
exist some j with 1 ≤ j ≤ m− 1 such that vj ∈ Ll but vj+1 6∈ Ll.

Observe that for suitable words y, z ∈ A∗ we have

vj = y dj+1u
e
j+1 z

vj+1 = y dj+1u
e
j+1

︸ ︷︷ ︸

x
df=

g(zj+1)dj+1u
e
j+1

︸ ︷︷ ︸

v
df=

z.

Since u
df
=uej+1 is Mj-idempotent and α(u) = A we see that Mj has pattern P in its transition

graph, which is forbidden for languages in Σ%
2 (see Figure 2, [PW97]). Hence (6) holds.
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For 0 ≤ k ≤ n, let rk = |{1 ≤ l ≤ n | g(wk) ∈ Ll}|. Since all wi are M -consistent we have
f0(wi) ≡M g(wi). From f0(w0) ∈ L we get g(w0) ∈ L ⊆ L1 and so r0 ≥ 1. It follows from (6)
that

1 ≤ r0 ≤ r1 ≤ · · · ≤ rn ≤ n.

In particular, there must be some k with rk−1 = rk. By (6) it holds that (g(wk−1) ∈ Ll ⇒
g(wk) ∈ Ll) for all l. So (g(wk−1) ∈ L ⇔ g(wk) ∈ L) and hence due to M -consistency
(f0(wk−1) ∈ L ⇔ f0(wk) ∈ L). The latter contradicts our assumption that (w0, . . . , wn) alter-
nates.

“ ⇐ ”: We need to show that if L 6∈ Σ%
2(n), then f−1

0 (L) has a 1-alternating chain (w0, . . . , wn) in
(BM ;�) such that all wi satisfy the alphabet condition. We may assume that L = L(M) where
M = (A,Z, δ, s0, F ) is a minimal dfa. To see this, suppose for the moment that we have already
shown the existence of a 1-alternating chain (w0, . . . , wn) in (BM ;�) with alphabet condition.
With Lemma 4.10 we obtain marked words w′

0, . . . , w
′
n ∈ BM ′ having the same properties for

every dfa M ′ with L(M ′) = L. Note that the padding operation in this lemma does not violate
the alphabet condition.

Since L is a star-free language we know that M is a permutation-free dfa [Sch65, MP71]. So
for r df= |M | it holds that δ(s, cr) = δ(s, cr+1) for letters c ∈ A and all s ∈ Z. Hence words and
their A-factorizations are related as follows:

∀x, y ∈ A∗, [hr(x) = hr(y) ⇒ x ≡M y]. (7)

We distinguish two cases.

Case 1: n ≥ 1 is even. In light of Proposition 4.7 we may assume w.l.o.g. that ε 6∈ L. Since for
all marked words w in a chain f0(w) 6= ε, Lemma 4.10 provides M ′-consistent words if M ′ is
some dfa with L(M ′) = L ∪ {ε}.

Now let L′ df=hr(L) ⊆ (Ar)
+ and observe that h−1

r (L′) = L. The inclusion from right to left is
immediate, for the reverse inclusion let x ∈ h−1

r (L′) so hr(x) ∈ hr(L), i.e., there is some y ∈ L
with hr(y) = hr(x) and from (7) we get x ∈ L. By Lemma 4.9 it holds that

L = h−1
r (L′) 6∈ Σ%

2(n) ⇒ L′ 6∈ Σσ
1 (n).

So from our assumption it follows that L′ 6∈ Σσ
1 (n).

Recall from [GS01b, Lemma 1] that hr(L) is a regular language: If M is given one can easily
construct some dfa which behaves on input aj (or bj) for 1 ≤ j ≤ r in the same way as M
on input aj (resp., bj) and which additionally rejects all non-well-formed inputs from (Ar)

+.
So let M ′ be some dfa with L(M ′) = L′. Then by Theorem 4.3 there is a 1-alternating chain
(w0, . . . , wn) for L′ in ((Br)M ′ ;�). Here (Br)M ′ denotes the set of all M ′-consistent marked
words over Ar.

Supposew ∈ (Br)
∗
M ′ isM ′-consistent with f0(w) ∈ L′ ⊆W and let w′�w. Then also f0(w

′) ∈W
because every two consecutive letters of f0(w

′) also appear in f0(w) (recall that the context letter
of an insertion is repeated at the end of the insertion). Since n is even, we have f0(wn) ∈ L′

and hence
∀0 ≤ k ≤ n, [f0(wk) ∈W ]. (8)

Moreover, fi(wn) ∈ L′ ⊆W for all i ≥ 0. So every label u 6= ε in each letter [c, u] of wn consists
of letters of both types a and b. Since all marked letters of any wk also appear in wn we have

∀0 ≤ k ≤ n ∀ letters [c, u] of wk, [u 6= ε ⇒ (u has letters of both types a and b)]. (9)
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basic alphabets

marked words

M-consistent
marked words

gr

gr

hr

f0 f0

(Br)M

(Ar)
∗

(Ar)
∗

Ar = {a1, . . . ar, b1, . . . , br}A = {a, b}

A∗

A∗

BM

Figure 3: Overview of alphabets and mappings used in the proof of Theorem 4.11.

Next we define a mapping gr from (Ar)
∗ back to A∗. For aj ∈ Aar (resp., bj ∈ Abr) with 1 ≤ j ≤ r

let gr(aj)
df
=aj (resp., gr(bj)

df
= bj), and for xi ∈ Ar let gr(x1x2 · · · xm)

df
= gr(x1)gr(x2) · · · gr(xm).

Then it holds that
∀x ∈W, [hr(gr(x)) = x]. (10)

We extend gr to marked alphabets and define for [c, u] ∈ Ar that gr([c, u])
df
=[gr(c), gr(u)] ∈ A∗

and gr([c1, u1] · · · [cm, um])
df
= gr([c1, u1]) · · · gr([cm, um]). Note that for all w ∈ (Ar)

+ it holds
that f0(gr(w)) = gr(f0(w)). See Figure 3 for an overview of alphabets and mappings used in
this proof.

Let vk
df= gr(wk) for 0 ≤ k ≤ n. We claim that (v0, . . . , vn) is a 1-alternating chain with alphabet

condition for f−1
0 (L) in (A∗,�), i.e.,

1. every vk satisfies the alphabet condition,

2. f0(vk) ∈ L if and only if k is even, and

3. v0�v1� · · · �vn.

The first statement is immediate from (9) together with the definition of gr. To see the second
statement we show that

∀0 ≤ k ≤ n, [f0(wk) ∈ L′ ⇔ f0(vk) ∈ L]. (11)

If f0(wk) ∈ L′, then there exists some x ∈ L such that hr(x) = f0(wk). By (8) and (10) we have

hr(f0(vk)) = hr(f0(gr(wk))) = hr(gr(f0(wk))) = f0(wk) = hr(x).

It follows from (7) that also f0(vk) ∈ L. Conversely, if f0(vk) = f0(gr(wk)) = gr(f0(wk)) ∈ L,
then f0(wk) = hr(gr(f0(wk))) ∈ hr(L) = L′. Together, this shows (11).

It remains to argue that the third statement holds. Again, we consider each insertion in every
wk−1 � wk for 1 ≤ k ≤ n separately. So assume that wk−1 = xdy and wk = xdzdy with
x, y, z ∈ (Ar)

∗ and d = [c, u] ∈ Ar. W.l.o.g. let c = aj . Then vk−1 and vk can be written as
follows:
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vk−1 = gr(x) gr(d) gr(y)
= gr(x) [a, ε] · · · [a, ε] [a, gr(u)] gr(y)

vk = gr(x) [a, ε] · · · [a, ε]
︸ ︷︷ ︸

x′
df=

[a, gr(u)
︸ ︷︷ ︸

d′
df=

] gr(z) [a, ε] · · · [a, ε]
︸ ︷︷ ︸

z′
df=

[a, gr(u)]
︸ ︷︷ ︸

d′

gr(y)
︸ ︷︷ ︸

y′
df=

So vk−1 = x′d′y′ � x′d′z′d′y′ = vk with x′, y′, z′ ∈ A∗ and context letter d′ ∈ A.

Note that the marked words v0, . . . , vn need not to be M -consistent yet. To finally obtain M -
consistent words v′0, . . . , v

′
n with the same properties 1.-3. as above, we start the reasoning with

a padded version (w′
0, . . . , w

′
n) of the chain (w0, . . . , wn) provided by Theorem 4.3. As in Lemma

4.10 we substitute in wk each non-empty label u by ur! in a way such that each such label is
preceded in f0(wk) by the M -idempotent factor ur!. More precisely, each letter [c, u] where
u 6= ε is mapped to [c · ur!, ur!]. Due to the homomorphic definition of gr we get consistency
with M after mapping with gr. As observed before, this operation does not violate the alphabet
condition.

Case 2: n ≥ 1 is odd. Again, we may assume w.l.o.g. that ε ∈ L. Now let L = A∗\L
and L′ df

=hr(L) ⊆ (Ar)
+ and observe that h−1

r (L′) = L as before. By Lemma 4.9, we have
L′ ∈ Πσ

1 (n) ⇒ L = h−1
r (L′) ∈ Π%

2(n) so it holds that

L 6∈ Σ%
2(n) ⇒ L 6∈ Π%

2(n) ⇒ L′ 6∈ Πσ
1 (n).

Let M ′ be some dfa with L(M ′) = L′. By Theorem 4.3 and duality arguments we obtain a 0-
alternating chain (w0, . . . , wn) for L′ in ((Br)M ′ ;�). Since n is odd we have again f0(wn) ∈ L′,
so we can argue exactly as in case 1 to get a 0-alternating chain (v′0, . . . , v

′
n) with alphabet

condition for L in (BM ;�). This is a 1-alternating chain with respect to L. 2
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0 // Algorithm Ln on input (M, S) where M = (A, Z, δ, z0, F) is a

deterministic, finite automaton and S is a set of states of M.

The algorithm tests whether the states in S share a nonempty loop.
1 if |S| > 2n+2 then reject

2 let s1, . . . , sk be all states in S and let t1 = s1, . . . , tk = sk
3 do

4 nondeterministically choose a ∈ A

5 for i = 1 to k

6 ti = δ(ti, a)
7 next i

8 until ∀i, si = ti
9 accept

Figure 4: Algorithm Ln for n ≥ 1.

5 Decidability and Complexity

In section 4, we developed new alternating-chain characterizations for the classes Σσ
1 (n), Στd

1 (n),
and Σ%

2(n) for |A| = 2 (Theorems 4.3, 4.2, and 4.11). We now apply these characterizations and
design efficient algorithms for testing the membership in these classes. As corollaries we obtain
new decidability results: The classes Στ

1(n) and Σ%
2(n) for |A| = 2 are decidable.

We start with the characterization given in Theorem 4.3 and design a nondeterministic,
logarithmic-space membership test for Σσ

1 (n). For this end we construct families of algorithms
{Ln}n≥1, {Rk}k≥0, and {Qk}k≥0 which are shown in the Figures 4–6. Before we formally
describe the behavior of these algorithms, we first give some intuition.

Our algorithms have a nontrivial recursion structure. More precisely, Qk calls Rk and Lk. Rk
calls Qk−1 and two instances of Rk−1. Ln is an elementary procedure that makes no further
calls. So the recursion structure of these algorithms looks as follows.

R0 Q0

-Q1R1

j?

� L1

-Q2R2

j?

� L2

?

-Q3R3

j?

�

?

L3

?

All paths in this picture are finite and hence the number of recursive calls is finite. Later
(in the proof of Theorem 5.4) we will inductively show that each single algorithm works in
nondeterministic logarithmic space.
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0 // Algorithm Rk on input (M, a, S, s1, . . . , sk, t1, . . . , tk) where M = (A, Z, δ, z0, F)
is a deterministic, finite automaton, a ∈ A, S is a set of states

of M, and si, ti are states of M. (see Lemma 5.1)
1 if k = 0 then accept

2 if |S| > 2k+2 − 2 then reject

3 if {δ(s1, a), . . . , δ(sk, a), t1, . . . , tk} 6⊆ S then reject

4 nondeterministically choose a bit d

5 if d = 0 then

6 // insertion between s1 and t1
7 nondeterministically choose S1, S2 ⊆ S such that |S1|, |S2| ≤ 2k+1 − 2

8 nondeterministically choose s′
1
, . . . , s′

k
∈ S1 and t′

1
, . . . , t′

k
∈ S2

9 if δ(s1, a) 6= s′
1
or δ(t′

1
, a) 6= t1 then reject

10 if Rk−1(M, a, S1, s2, . . . , sk, s
′
2
, . . . , s′

k
) rejects then reject

11 if Rk−1(M, a, S2, t
′
2
, . . . , t′

k
, t2, . . . , tk) rejects then reject

12 if Qk−1(M, s
′
1
, . . . , s′

k
, t′

1
, . . . , t′

k
) rejects then reject

13 else

14 // no insertion between s1 and t1
15 if δ(s1, a) 6= t1 then reject

16 nondeterministically choose S′ ⊆ S such that |S′| ≤ 2k+1 − 2

17 if Rk−1(M, a, S
′, s2, . . . , sk, t2, . . . , tk) rejects then reject

18 endif

19 accept

Figure 5: Algorithm Rk for k ≥ 0.

0 // Algorithm Qk on input (M, s0, . . . , sk, t0, . . . , tk) where M = (A, Z, δ, z0, F)
is a deterministic, finite automaton and si, ti are states of M.

(see Lemma 5.1)
1 s′

0
= s0, s

′
1

= s1, . . . , s
′
k

= sk
2 do

3 nondeterministically choose S ⊆ Z such that |S| ≤ 2k+2 − 2

4 if S = ∅ then

5 // adding a letter marked with the empty word

6 nondeterministically choose a ∈ A

7 for i = 0 to k

8 s′
i

= δ(s′
i
, a)

9 next i

10 else

11 // adding a letter marked with a nonempty word

12 if Lk(M, S) rejects then reject

13 nondeterministically choose a ∈ A and t′
0
, . . . , t′

k
∈ S

14 if δ(s′
0
, a) 6= t′

0
then reject

15 if Rk(M, a, S, s
′
1
, . . . , s′

k
, t′

1
, . . . , t′

k
) rejects then reject

16 endif

17 s′
0

= t′
0
, s′

1
= t′

1
, . . . , s′

k
= t′

k

18 until ∀i, s′
i

= ti
19 accept

Figure 6: Algorithm Qk for k ≥ 0.
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Intuition of the algorithm Ln: Let M be a deterministic finite automaton M and S be
a set of at most 2n+2 states. The computation Lk(M,S) tests whether the states in S share
a nonempty loop. This means it tests whether there exists u ∈ A∗ such that for all s ∈ S,
δ(s, u) = s.

Intuition of the algorithm Rk: We consider the computation R2(M,a, S, s1, s2, t1, t2)
for a deterministic finite automaton M = (A,Z, δ, z0, F ), a letter a, some S ⊆ Z and states
s1, s2, t1, t2 ∈ Z. This computation tests whether there exists a nonempty word u and a chain
of marked words [a, u]�w1�w2 such that s1

w1−→
M

t1 and s2
w2−→
M

t2. So we look for the follow-

ing situation where the arrows mark the positions in the words where particular states are
demanded.

[a, u]

[a, u] [a, u]

w2

w1

?
[a, u] [a, u] [a, u] [a, u]

?

s′2 s′′

6

6 6

6

s′ s′1 t1 t2

6

s2

6

s1

6

t′1

6

t′2

Note that the initial letter [a, u] propagates in a binary-tree-like fashion to the words w1 and w2.
So our algorithm has to make sure that after each letter [a, u], the automaton reaches a state
that has a loop with label u. However, we cannot simply store the word u in logarithmic space.
So we pursue a different strategy and guess in before (i.e., in algorithm Q2) all states that are
reached after reading one of the shown letters [a, u]. These states are collected in the set S, i.e.,
in our example, S = {s′1, s

′
2, t1, t2, s

′, s′′}. With help of the algorithm L2 (which is called by Q2)
we can test whether all states in S share some nonempty loop u, i.e., for all s ∈ S, δ(s, u) = s.
Therefore, if the algorithm R2 makes sure that each state that is reached after reading one of
the shown [a, u] belongs to S, then all states reached after some [a, u] have a loop with label u.
Note that the size of S grows exponentially in the length of the considered chain [a, u]�w1�w2,
but this length is constant.

Intuition of the algorithm Qk: We consider Q2(M,s0, s1, s2, t0, t1, t2) for a deterministic
finite automaton M = (A,Z, δ, z0 , F ) and states s0, s1, s2, t0, t1, t2 ∈ Z. This computation

tests whether there exists a chain of nonempty marked words w0�w1�w2 such that s0
w0−→
M

t0,

s1
w1−→
M

t1, and s2
w2−→
M

t2. This is illustrated in the following figure.
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6

t0

6
w1

w0

w2

t1

6 6

s2 t2

6

6

s1 s0

Now we formally describe the behavior of the algorithms Rk and Qk.

Lemma 5.1 Let k ≥ 0, M = (A,Z, δ, z0 , F ) be a deterministic, finite automaton, a ∈ A,
u ∈ A+, and s0, . . . , sk, t0, . . . , tk ∈ Z.

∃S ⊆ Z s.t. |S| ≤ 2k+2−2, ∀s ∈ S[δ(s, u) = s],
and Rk(M,a, S, s1, . . . , sk, t1, . . . , tk)

⇔
∃w1, . . . , wk ∈ A+,(

[a, u]�w1�· · ·�wk ∧ ∀
i∈[1,k]

[si
wi−→
M

ti]
)

(12)

Qk(M,s0, . . . , sk, t0, . . . , tk) ⇔ ∃w0, . . . , wk ∈ A+
(

w0� · · · �wk ∧ ∀
i∈[0,k]

[si
wi−→
M

ti]
)

(13)

Proof We prove the equivalences (12) and (13) simultaneously by induction on k. First observe
that for k = 0, both sides of (12) are always true. So (12) holds for k = 0.

Claim 5.2 If (12) holds for some k, then (13) holds for this k.

Proof So assume that (12) holds for a particular k. We prove the equivalence (13) for this k.

“⇒” Consider an accepting path of Qk(M,s0, . . . , sk, t0, . . . , tk) and let n ≥ 1 be the number of
passes through the loop. Fix some j such that 1 ≤ j ≤ n. Below we explain how the j-th pass
can be considered as the choice of particular words wj,0, . . . , wj,k ∈ A+. For this let sbi (resp.,
sei ) denote the value of si at the beginning (resp., end) of the j-th pass.

If S = ∅, then choose wj,0 = · · · = wj,k = [a, ε] where a is the letter that was chosen in line 6.

Note that in this case, by the lines 7–9, for all i ∈ [0, k], sbi
wj,i
−→
M

sei .

If S 6= ∅, then by line 12, there exists u ∈ A+ such that all states in S share the loop u. (Remem-
ber that Lk(M,S) simply tests whether the states in S share a nonempty loop.) Let wj,0 = [a, u]
where a is the letter that was chosen in line 13. By line 15, Rk(M,a, S, s′1, . . . , s

′
k, t

′
1, . . . , t

′
k)

holds. So the left-hand side of (12) holds for s′1, . . . , s
′
k, t

′
1, . . . , t

′
k, and hence, by our assumption,

the right-hand side of (12) holds for s′1, . . . , s
′
k, t

′
1, . . . , t

′
k. In particular, there exist correspond-

ing words w1, . . . , wk. Let wj,i = wj for i ≥ 1. Observe with help of the right-hand side of (12)

that for all i ∈ [0, k], sbi
wj,i
−→
M

sei .

So in both cases (S = ∅ and S 6= ∅) there exist words wj,0, . . . , wj,k ∈ A+ such that

wj,0�· · · �wj,k and for all i, sbi
wj,i
−→
M

sei . So if we define wi = w1,i · · ·wn,i for i ∈ [0, k], then

w0�· · · �wk and for all i, si
wi−→
M

ti. This shows the implication from left to right in (13).
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“⇐” Let w0, . . . , wk be as in the right-hand side of (13). Let w0 = w1,0w2,0 · · ·wn,0 be the
decomposition of w0 into letters from A. This induces a decomposition wi = w1,iw2,i · · ·wn,i
for i ∈ [1, k] such that the wj,i are nonempty words over A and for j ∈ [1, n] it holds that
wj,0�· · · �wj,k. Note that if for some j, |wj,k| = 1, then wj,0 = · · · = wj,k ∈ A and hence we
may assume that this letter is marked with the empty word (since there is no insertion at this
letter and so the mark is not needed).

We describe an accepting path of Qk(M,s0, . . . , sk, t0, . . . , tk). More precisely, by induction
on j we show that there exists a path on which after the j-th pass of the loop it holds that
for all i, s′i = δ(si, w1,i · · ·wj,i). For j = 0 this holds trivially by line 1. So let j > 0. By
induction hypothesis there is a path on which after the (j − 1)-st pass of the loop it holds that
s′i = δ(si, w1,i · · ·wj−1,i). We continue this path and describe the necessary choices in the j-th
pass.

If wj,0 = [a, ε], then we are done by choosing S = ∅ in line 3 and a in line 6. Otherwise,
wj,0 = [a, u] for some nonempty word u. Hence [a, u]�wj,1� · · · �wj,k. We choose t′i = δ(s′i, wj,i).

Observe that for all i ∈ [1, k], s′i
wj,i
−→
M

t′i (otherwise this contradicts si
wi−→
M

ti which holds by as-

sumption). We apply (12) to [a, u]�wj,1� · · · �wj,k and s′1, . . . , s
′
k, t

′
1, . . . , t

′
k. It follows that there

exists S ⊆ Z such that |S| ≤ 2k+2−2, ∀s ∈ S[δ(s, u) = s], and Rk(M,a, S, s′1, . . . , s
′
k, t

′
1, . . . , t

′
k).

So if we choose t′0, . . . , t
′
k and S in this way, then we pass the lines 12, 14, and 15. Therefore,

after the j-th pass, s′i = δ(si, w1,i · · ·wj,i). This completes the induction and shows that after
the n-th pass, s′i = δ(si, w1,i · · ·wn,i) = δ(si, wi) = ti. In this way we find an accepting path of
Qk(M,s0, . . . , sk, t0, . . . , tk). This proves Claim 5.2. 2

Claim 5.3 If (12) and (13) hold for some k, then (12) holds for k + 1.

Proof We prove the equivalence (12) for k + 1.

“⇒” Let S be as in the left-hand side of (12) with respect to k + 1. We consider an accepting
path of Rk+1(M,a, S, s1, . . . , sk+1, t1, . . . , tk+1). Note that we must reach line 4 and so we guess
a bit d.

Case 1: d = 1. Here we reach line 16 and so δ(s1, a) = t1. Since for acceptance we must reach
line 19, there exists S′ ⊆ S such that |S′| ≤ 2k+2 − 2 and Rk(M,a, S′, s2, . . . , sk+1, t2, . . . , tk+1)
accepts. So the left-hand side of (12) holds with respect to Rk(M,a, S′, s2, . . . , sk+1, t2, . . . , tk+1).
Hence by our assumption, there exist w2, . . . , wk+1 ∈ A+ such that [a, u]�w2� · · · �wk+1 and

for all i ∈ [2, k + 1], si
wi−→
M

ti. So with w1 = [a, u] we obtain [a, u]�w1� · · · �wk+1 and for all

i ∈ [1, k + 1], si
wi−→
M

ti.

Case 2: d = 0. Here we reach line 7 and so we choose S1, S2 according to line 7 and
s′1, . . . , s

′
k+1, t

′
1, . . . , t

′
k+1 according to line 8. From our assumption that (12) holds with re-

spect to k and from the acceptance of Rk(M,a, S1, s2, . . . , sk+1, s
′
2, . . . , s

′
k+1) in line 10 (this

must accept, since we reach line 19) it follows that

∃x2, . . . , xk+1 ∈ A+
(

[a, u]�x2� · · · �xk+1 ∧ ∀
i∈[2,k+1]

[si
xi−→
M

s′i]
)

. (14)

Similarly, from the acceptance of Rk(M,a, S2, t
′
2, . . . , t

′
k+1, t2, . . . , tk+1) in line 11 it follows that

∃z2, . . . , zk+1 ∈ A+
(

[a, u]�z2� · · · �zk+1 ∧ ∀
i∈[2,k+1]

[t′i
xi−→
M

ti]
)

. (15)
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Finally, from our assumption that (13) holds with respect to k and from the acceptance of
Qk(M,s′1, . . . , s

′
k+1, t

′
1, . . . , t

′
k+1) in line 12 it follows that

∃y1, . . . , yk+1 ∈ A+
(

y1� · · · �yk+1 ∧ ∀
i∈[1,k+1]

[s′i
yi−→
M

t′i]
)

. (16)

Let x1 = z1 = [a, u] and let wi = xiyizi for i ∈ [1, k + 1]. From (14), (15), and (16) we obtain

[a, u]�w1�w2� · · · �wk+1 and for all i ∈ [1, k+1], si
wi−→
M

ti. This establishes the right-hand side

of (12) with respect to k + 1.

“⇐” Assume that there exist w1, . . . , wk+1 ∈ A+ such that [a, u]�w1� · · · �wk+1 and for all

i ∈ [1, k + 1], si
wi−→
M

ti.

Case 1: w1 = [a, u]. We describe the choice of S and we describe an accepting path of
Rk+1(M,a, S, s1, . . . , sk+1, t1, . . . , tk+1). By assumption, (12) holds for k. So we can ap-
ply it to the chain [a, u]�w2�· · · �wk+1. So there exists an S′ ⊆ Z such that |S′| ≤
2k+2 − 2, ∀s ∈ S′[δ(s, u) = s], and Rk(M,a, S′, s2, . . . , sk+1, t2, . . . , tk+1) accepts. In par-
ticular, {δ(s2, a), . . . , δ(sk+1, a), t2, . . . , tk+1} ⊆ S′ (by line 3). Let S = S′ ∪ {t1}. From

s1
w1−→
M

t1 we obtain δ(s1, a) = t1 and so {δ(s1, a), . . . , δ(sk+1, a), t1, . . . , tk+1} ⊆ S. Therefore,

Rk+1(M,a, S, s1, . . . , sk+1, t1, . . . , tk+1) passes the lines 2 and 3. At line 4 we choose d = 1 and
so we reach line 16. Here we chose S′ as defined above. This brings us to line 19 where we
accept.

Case 2: w1 6= [a, u]. So w1 = [a, u]y1[a, u] for some y1 ∈ A∗. This decomposition of w1 induces
for i ∈ [2, k + 1] a decomposition wi = xiyizi such that

[a, u]�x2� · · · �xk+1, (17)

y1�y2�· · · �yk+1, and (18)

[a, u]�z2� · · · �zk+1. (19)

So there exist states s′1, . . . , s
′
k+1, t

′
1, . . . , t

′
k+1 such that for i ∈ [1, k + 1], si

xi−→
M

s′i, s
′
i

yi
−→
M

t′i,

and t′i
xi−→
M

ti where x1 = z1 = [a, u]. From (17) and (19) together with our assumption

that (12) holds for k we obtain: There exist S1, S2 ⊆ Z such that |S1|, |S2| ≤ 2k+2 − 2,
∀s ∈ S1[δ(s, u) = s], ∀s ∈ S2[δ(s, u) = s], Rk(M,a, S1, s2, . . . , sk+1, s

′
2, . . . , s

′
k+1) accepts,

and Rk(M,a, S2, t
′
2, . . . , t

′
k+1, t2, . . . , tk+1) accepts. Moreover, by (18) and our assumption that

(13) holds for k, Qk(M,s′1, . . . , s
′
k+1, t

′
1, . . . , t

′
k+1) accepts. Let S = S1 ∪ S2 ∪ {s′1, t1}. Hence

|S| ≤ 2k+3−4+2 = 2k+3−2. Similar to Case 1, we observe that δ(s1, a) = s′1, δ(t
′
1, a) = t1, and

{δ(s1, a), . . . , δ(sk+1, a), t1, . . . , tk+1} ⊆ S. So Rk+1(M,a, S, s1, . . . , sk+1, t1, . . . , tk+1) passes the
lines 2 and 3. At line 4 we choose d = 0 and so we reach the lines 7 and 8 where we choose S1, S2

and s′1, . . . , s
′
k+1, t

′
1, . . . , t

′
k+1 as described above. By (17)–(19), this lets us pass the lines 9–12

and therefore, we reach line 19 where we accept. This proves Claim 5.3. 2

Now Lemma 5.1 immediately follows from the Claims 5.2 and 5.3 by induction on k. This
finishes the proof of Lemma 5.1. 2

Theorem 5.4 For every n ≥ 1,

{M
∣
∣M is a deterministic finite automaton and L(M) ∈ Σσ

1 (n)} ∈ NL.
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Proof Let M = (A,Z, δ, z0, F ) be a deterministic finite automaton such that ε /∈ L(M). By
Theorem 4.3 and Lemma 5.1,

L(M) /∈ Σσ
1 (n) ⇔ there exist t0, . . . , tn ∈ Z and w0, . . . , wn ∈ A+ such that

1. ∀i, [ti ∈ F if and only if i is even],
2. w0�w1� · · · �wn, and
3. ∀i, z0

wi−→
M

ti.

⇔ there exist t0, . . . , tn ∈ Z such that Qn(M,z0, . . . , z0, t0, . . . , tn) and
for all i, [ti ∈ F if and only if i is even].

So the following algorithm decides whether L(M) /∈ Σσ
1 (n).

1 nondeterministically choose t0, . . . , tn ∈ Z such that ti ∈ F ⇔ i ≡ 0(2)
2 if Qn(M, z0, . . . , z0, t0, . . . , tn) then reject else accept

If the algorithm Qn accepts a language in NL, then L(M) /∈ Σσ
1 (n) is decidable in NLNL = NL.

Hence, also L(M) ∈ Σσ
1 (n) is decidable in NL. So it remains to show that Qn accepts a language

in NL.

We start with the algorithm Ln shown in Figure 4. On input of a deterministic, finite automaton
M = (A,Z, δ, z0 , F ) and a set S ⊆ Z where |S| ≤ 2n+2 this algorithm tests whether there exists
a nonempty word u such that for all s ∈ S, δ(s, u) = s. So it tests whether all states in S
share some nonempty loop. The algorithm works in nondeterministic logarithmic space, since
|S| ≤ 2n+2 which is a constant. So Ln accepts a language in NL.

Now let us turn to the algorithms Rk and Qk shown in the Figures 5 and 6. We show that Rk
and Qk accept sets in NL.

First, let us observe that if Rk accepts a set in NL, then Qk accepts a sets in NL. The algorithm
Qk has to store O(k) single states of M and a set of at most 2k+2 − 2 states of M . This is
possible in logarithmic space, since k is constant. Furthermore, the algorithm uses Lk and Rk
as oracles. Hence, if Rk accepts a set in NL, then Qk accepts a set in NLNL = NL.

We proceed by induction on k and show that Rk and Qk accept sets in NL. This is obvious for
R0 and by the observed implication, it also holds for Q0. So let k > 0. The algorithm Rk has
to store O(k) single states and three sets of at most 2k+2 − 2 states. This is a constant number
of states, since k is constant. Moreover, Rk uses the algorithms Qk−1 and Rk−1 as oracles. So
by induction hypothesis, Rk accepts a set in NLNL = NL, and by the observed implication, Qk
accepts a set in NL. 2

Theorem 5.5 For every n ≥ 1,

{M
∣
∣M is a deterministic finite automaton and L(M) ∈ Στd

1 (n)} ∈ NL.

Proof The algorithm used in Theorem 5.4 tests for alternating chains in (BM ;�). We can
generalize this algorithm for alternating chains in (BM ;�d). By Theorem 4.2, this yields a
membership algorithm for the classes Στd

1 (n).
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To make this idea work, we have to modify the algorithms Qk and Rk such that they additionally
verify length conditions modulo d. We denote these algorithms by Qk,d and Rk,d. More precisely,
Qk,d obtains an additional parameter l and it makes sure that the number of guessed letters
a ∈ A is equivalent to l modulo d (i.e., the number of iterations of the loop at the lines 2–18
is equivalent l modulo d). Moreover, whenever Rk,d calls Qk,d, then the additional parameter
is set to l = d − 1. By doing so we make sure that all insertions have a length equivalent to 0
modulo d. Finally, the following algorithm decides whether L(M) /∈ Στd

1 (n).

1 nondeterministically choose t0, . . . , tn ∈ Z such that ti ∈ F ⇔ i ≡ 0(2)
2 if Qn,d(M, z0, . . . , z0, t0, . . . , tn, l) for some l ∈ [0, d− 1]

then reject else accept

Now the same argument as in the proof of Theorem 5.4 shows that Στd
1 (n) is decidable in NL.

2

Remark 5.6 Unfortunately, we do not obtain NL-decidability for the classes Στ
1(n). The reason

is that the d in Theorem 4.6 is extremely big, i.e., we only know the upper bound d ≤ (mm)!
where m is the size of the automaton. We leave the question for an improved bound open. Note
that if d can be bounded polynomially in the size of the automaton, then Στ

1(n) is decidable in
NL. Although d is very large, it is still computable from the automaton M which implies the
decidability of all levels Στ

1(n). This settles a question left open in [Sel04].

Theorem 5.7 For every n ≥ 1, the following set is decidable.

{M
∣
∣M is a deterministic finite automaton and L(M) ∈ Στ

1(n)}

Proof Follows from the Theorems 4.6 and 5.5. 2

Theorem 5.8 For every n ≥ 1,

{M
∣
∣M is a deterministic finite automaton over the alphabet {a, b} and L(M) ∈ Σ%

2(n)} ∈ NL.

Proof If one compares the characterizations of Σσ
1 (n) (Theorem 4.3) and Σ%

2(n) (Theorem 4.11),
then one notices that two new aspects appear in the characterization of Σ%

2(n).

1. It assumes chains satisfying the alphabet condition.

2. It works only for star-free languages.

We can easily change the decision algorithm for Σσ
1 (n) such that it verifies alphabet conditions.

For this we only have to modify the algorithm Ln (Figure 4) such that it makes sure that the
loop (lines 3–8) guesses at least one letter a and at least one letter b.

Regarding the second item, we cannot simply test for membership in SF, since such a test is
PSPACE-complete [CH91]. However, we can get rid of the restriction on star-free languages by
testing whether L(M) ∈ Σ%

3. Note that Σ%
2(n) ⊆ Σ%

3 ⊆ SF. Moreover, it is known [GS01b] that
for the alphabet A = {a, b} this test is decidable in NL. 2
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Figure 7: The 2-counting pattern with |a| = |x| = 1.

6 Exact Complexity Estimations

We show that with the exception of Στ
1(n), the membership problems of all classes of Boolean

hierarchies considered in this paper are NL-complete. In contrast, the membership problems of
the general classes FOτ and FOτd are PSPACE-complete and hence are strictly more complex.

We start with an easy fact that gives lower bounds uniformly for all classes under discussion.
Let A be an alphabet with a, b ∈ A.

Proposition 6.1 Let C be any class of regular quasi-aperiodic languages over A with ∅ ∈ C.
Then it is NL-hard to decide whether a given dfa M accepts a language in C.

Proof Let G be the class of structures G = ([0, n];E, 0, n) where n ≥ 1 and ([0, n];E) is a
directed acyclic graph in which any vertex has at most 2 out-going edges, 0 has no in-going
edges and n has no out-going edges. From the NL-completeness of the reachability problem it
follows that the problem R of deciding whether in a given structure G as above n is reachable
from 0 is NL-complete. Hence, it suffices to relate (in logarithmic space) to any G ∈ G a dfa
M = (A,Z, δ, s0, F ) such that L(M) = ∅ for G 6∈ R and L(M) is not quasi-aperiodic otherwise.

Set Z = [0, n + 1], s0 = 0, F = {n} and define the transition function as follows:

if q < n and q has no out-going edges, set δ(q, x) = q for all x ∈ A;

if q < n and E(q, s) for exactly one s ≤ n, set δ(q, a) = s and δ(q, x) = q for all x ∈ A \ {a};

if q < n and E(q, s1), E(q, s2) for two distinct s1, s2 ≤ n, set δ(q, a) = s1, δ(q, b) = s2 and
δ(q, x) = q for all x ∈ A \ {a, b};

set δ(n, a) = n+ 1 and δ(n, x) = n for all x ∈ A \ {a};

set δ(n + 1, a) = n and δ(n + 1, x) = n+ 1 for all x ∈ A \ {a}.

If G 6∈ R then n is not reachable from 0 in M , hence L(M) = ∅. If G ∈ R then n is reachable
from 0 by a word in {a, b}∗, and {n, n+1} forms the balanced 2-counting pattern [Gla07, Sel04]
shown in Figure 7. By [Sel04], existence of such a reachable pattern implies that L(M) is not
quasi-aperiodic. 2

The last proposition together with the upper bounds established in the previous sections im-
mediately imply the following exact complexity estimations.
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Figure 8: The n-counting pattern with initial state s0.

Theorem 6.2 Let k ≥ 0, n ≥ 1, d ≥ 1 and C is one of the classes Cdk(n), Σσ
1 (n), Στd

1 (n), or
Σ%

2(n) for |A| = 2. Then the set {M
∣
∣M is a deterministic finite automaton and L(M) ∈ C} is

NL-complete.

Proof Follows from Proposition 6.1 and the Theorems 3.1, 5.4, 5.5, and 5.8. 2

We conclude this section with a corollary of the PSPACE-completeness of deciding FOσ which
was established by Stern [Ste85b] and by Cho and Huynh [CH91]. It shows that the complexity
of deciding the classes FOτ and FOτd is strictly higher than the complexity of deciding the
classes mentioned in Theorem 6.2. (Note that NL is closed under logspace many-one reductions,
NL ⊆ DSPACE(log2 n) [Sav70] and DSPACE(log2 n) ( PSPACE [HS65]. Hence the classes FOτ

and FOτd can not be decided in NL.)

Theorem 6.3 The classes FOτ and FOτd are PSPACE-complete.

Proof For the upper bound, slight modifications of the proof in [Ste85b] that the class of
aperiodic languages is in PSPACE suffice. As is well-known, aperiodicity is equivalent to the
non-existence of the n-counting pattern for each n ≥ 2 (see Figure 8). Since the dfa-minimization
is computable in polynomial time, it suffices to consider minimal dfa’s. Let us recall the idea
of the proof in [Ste85a] that, given a minimal dfa M , it is decidable in PSPACE whether M
has a counting pattern, i.e., whether there are a state p of M , a number r and a word v such
that δ(p, v) 6= p and δ(p, vr) = p. By Savitch’s theorem, it suffices to decide the last property
in nondeterministic polynomial space.

The idea of the algorithm is as follows (we assume that the set of states of M is {1, . . . ,m}):
Guess subsequent letters of v and compute the array A[1], . . . , A[m] such that A[i] = δ(i, v) for
all i ∈ [1,m]. Then guess a state p and a number r and check, using the array A, the properties
δ(p, v) 6= p and δ(p, vr) = p (see [Ste85b] for additional details).

To show that the question “L(M) ∈ FOτd” is in PSPACE, we use the following result that is
an easy corollary of the characterization of FOτd-definable languages from [Sel04]: a regular
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Figure 9: The balanced n-counting pattern with initial state s0 and |v| = |u|.

language L is in FOτd if and only if the minimal automaton M of L has no d-balanced counting
patterns, i.e., counting patterns as above, but with the additional condition |v| ≡ 0 (mod d).
It follows that it suffices to modify Stern’s algorithm as follows: instead of guessing subsequent
letters of v, we have just to guess d subsequent letters at each step.

To show that the relation “L(M) ∈ FOτ” is in PSPACE, we use the following result that is an
easy corollary of the characterization of FOτ -definable languages from [Sel04]: a regular language
L is in FOτ if and only if the minimal automaton M of L has no balanced counting patterns
(see Figure 9). It suffices to check in PSPACE whether there are a state p of M , a number
r and words v, u such that |u| = |v|, δ(p, v) 6= p, δ(p, vr) = p and any state in the sequence
p, δ(p, v), . . . , δ(p, vr−1) has a u-loop. This time it suffices to modify Stern’s algorithm as follows:
Guess synchronously subsequent letters of v and u (thus guaranteeing that |u| = |v|) and
compute the array A[1], . . . , A[m] as above and the array B[1], . . . , B[m] such that B[i] = δ(i, u)
for all i ∈ [1,m]. Then guess a state p and a number r and check the properties δ(p, v) 6= p,
δ(p, vr) = p (using the array A) and the loop property (using the array B).

For the lower bound, we use the result in [CH91] that the class SF({a, b}) of star-free languages
over the binary alphabet {a, b} is PSPACE-complete. So it suffices to show that SF({a, b})
is reducible (in polynomial time) to FOτ (A) and FOτd(A) for any alphabet A ⊇ {a, b}. The
proof is especially simple for |A| > 2. Relate to any dfa M = ({a, b}, Z, δ, s0 , F ) the dfa
M ′ = (A,Z, δ′, s0, F ) by adjoining the 1-letter loops δ′(q, x) = x for all q ∈ Z and x ∈ A\{a, b}.
If L(M) is star-free, then M has no counting pattern, then M ′ also has no counting pattern,
and hence L(M ′) is star-free and so is in FOτd(A) for any d. If L(M) is not star-free, then M
has a counting pattern as in Figure 8, then M ′ has a balanced counting pattern as in Figure 9
(take u = x|v| for some x ∈ X \ {a, b}). By [Sel04], the existence of such a balanced pattern
implies L(M ′) 6∈ FOτ (A).

It remains to reduce SF({a, b}) to FOτ ({a, b}) and FOτd({a, b}). The idea is the same as in
the previous paragraph, but this time we use the coding a 7→ ba, b 7→ ab and organize the
1-letter loops using the remaining 2-letter words aa and bb. Of course, this time the automaton
M ′ = ({a, b}, Z ′, δ′, s′0, F

′) is a bit more complex as above. We choose now two disjoint copies
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Za and Zb of Z (which are also disjoint from Z), a bijection s 7→ sa between Z and Za, and a
bijection s 7→ sb between Z and Zb. Set Z ′ = Zb ∪Z ∪Za, s′0 = s0, F

′ = {sb, s, sa | s ∈ F} and
define the transition function δ′ : Z ′ × {a, b} → Z ′ as follows (where s ∈ Z):

δ′(s, a) = sa, δ′(s, b) = sb, δ′(sa, a) = sa, δ′(sa, b) = δ(s, b), δ′(sb, b) = sb, δ′(sb, a) = δ(s, a).

Let h : {a, b}∗ → {a, b}∗ be the monoid morphism such that h(a) = ba and h(b) = ab. Since
δ′(s, ba) = δ(s, a) and δ′(s, ab) = δ(s, b), we have δ′(s, h(v)) = δ(s, v) for all s ∈ Z and v ∈
{a, b}∗.

Now, assume that M has a counting pattern (s1, . . . , sn), n > 1, as in Figure 8, for some
witnesses v, x, z ∈ {a, b}∗. Assume that the first letter of the non-empty word v is a, i.e., v = aṽ
for some ṽ ∈ {a, b}∗ (if the first letter of v is b, the argument is symmetric). Then (s1, . . . , sn) is
also a counting pattern of M ′, with the witnesses v′ = h(v) = bah(ṽ), x′ = h(x) and z′ = h(z).
Then the “shift” (sb1, . . . , s

b
n) is also a counting pattern of M ′, with suitable witnesses v′b, x

′
b and

z′b (e.g., as v′b we can take the cyclic shift ah(ṽ)b of v′). Moreover, any of the states sb1, . . . , s
b
n

has a b-loop. As in the easy case of a bigger alphabet A, M ′ has a balanced counting pattern.

It remains to show that if M ′ has a counting pattern (s1, . . . , sn), n > 1, for some witnesses
v′, x′, z′ ∈ {a, b}∗, then M also has a counting pattern. Represent v′ in the form v′ = ak11 · · · akm

m

where m,ki ≥ 1, ai ∈ {a, b} and ai+1 6= ai for all i ∈ [1,m−1]. Note that in fact m ≥ 2, because
ak11 cannot be a witness for a non-trivial counting pattern by definition of δ′.

We check that all the states s1, . . . , sn are in one and the same of the sets Z,Za, Zb. Let first
k1 = · · · = km = 1, i.e., v′ is a repetition-free word, and assume w.l.o.g. that am = a. Since
δ′(q, a) ∈ Z∪Za for all q ∈ Z ′, we subsequently get s2, . . . , sn, s1 ∈ Z∪Za. Assume that a1 = a.
Then, since δ′(q, a) ∈ Za for all q ∈ Z ∪ Za, we subsequently get s2, . . . , sn, s1 ∈ Za. Now let
a1 = b. In this case, (s1 ∈ Z ⇒ s2, . . . , sn ∈ Z) and (s1 ∈ Za ⇒ s2, . . . , sn ∈ Za). Now let
ki ≥ 2 for some i ∈ [1,m]. Choose the largest such i and assume w.l.o.g. that ai = a. Since
δ′(q, aj) ∈ Za for all q ∈ Z ′ and j ≥ 2, δ′(s1, a

k1
1 · · · aki

i ) ∈ Za. Arguing as above, we see that
in fact s2, . . . , sn, s1 ∈ Z ∪ Za. If am = a we subsequently get s2, . . . , sn, s1 ∈ Za. If am = b we
subsequently get s2, . . . , sn, s1 ∈ Z.

Now assume that s1, . . . , sn ∈ Z and consider the path in M ′ starting at s1 and labeled by the
word v′. This path may contain one-letter loops (e.g., such a loop can appear in case k1 ≥ 2).
Let v′′ be the word obtained from v′ by deleting all labels of such 1-letter loops. Then v′′ may
also serve as a witness for the counting pattern (s1, . . . , sn), because δ′(si, v

′′) = δ′(si, v
′) for all

i ∈ [1, n]. Moreover, v′′ = h(v) for a unique v ∈ {a, b}+, hence δ(si, v) = si+1 for all i ∈ [1, n−1]
and δ(sn, v) = s1. The same construction applied to the word x′ yields a word x ∈ {a, b}∗ such
that δ′(s0, h(x)) = s1, hence δ(s0, x) = s1.

Consider now the word z′ ∈ {a, b}∗ such that t1 = δ′(s1, z
′) ∈ F ′ and t2 = δ′(s2, z

′) 6∈ F ′;
we want to find a word z ∈ {a, b}∗ such that δ(s1, z) ∈ F and δ(s2, z) 6∈ F . If z′ = ε, then
take z = ε. Otherwise, represent z′ in the form z′ = bl11 · · · bluu where u, li ≥ 1, bi ∈ {a, b} and
bi+1 6= bi for all i ∈ [1,m − 1]. Clearly, both t1 and t2 are in one and the same of the sets
Z,Za, Zb. W.l.o.g. we may even assume that t1, t2 ∈ Z, because otherwise we could take the
word bl11 · · · b

lu−1

u−1 in place of z′. Now we can apply the same construction as above and find a
word z ∈ {a, b}∗ such that t1 = δ′(s1, h(z)) and t2 = δ′(s2, h(z)), hence also t1 = δ(s1, z) and
t2 = δ(s2, z). Therefore, s1, . . . , sn, v, x, z form a counting pattern in M .

It still remains to consider the case s1, . . . , sn ∈ Za (the case s1, . . . , sn ∈ Zb is symmetric). This
case is reduced to the case s1, . . . , sn ∈ Z as follows. We have si = uai for unique u1, . . . , un ∈ Z,
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and the last letter of v′ is a. It is easy to see that the sequence (u1, . . . , un), together with
suitable “shifts” of v′, x′, z′ is a cycle of M ′, hence the argument above applies. 2

Acknowledgement. We are grateful to Klaus Wagner for many helpful discussions.
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[KSW87] J. Köbler, U. Schöning, and K. W. Wagner. The difference and the truth-table
hierarchies for NP. RAIRO Inform. Théor., 21:419–435, 1987.
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