Electronic Colloguium on Computational Complexity, Report No. 95 (2007)

The Ideal Membership Problem and Polynomial Identity Testng

V. Arvind and Partha Mukhopadhyay

Institute of Mathematical Sciences
C.L.T Campus,Chennai 600 113, India
{arvi nd, parthamj@nsc.res.in

Abstract. Given a monomial ideal = (my, mas, - -, my) wherem; are monomials and a polynomigl
as an arithmetic circuit thieleal Membership Problenis to test if f € I. We study this problem and show
the following results.

(a) If the ideall = (mi,ma2,---,mi) for a constantk then there is a randomized polynomial-time
membership algorithm to test ff € I. This result holds even fof given by a black-box, whelfi is of
small degree.

(b) WhenI = (m1,m2,---,my) for aconstantt and f is computed by &'I7 X circuit with output gate
of bounded fanirwe can test whethef € I in deterministic polynomial time. This generalizes the
Kayal-Saxena result [KS07] of deterministic polynomiaté identity testing forX’ 17 X circuits with
bounded fanin output gate.

(c) Whenk is not constant the problem is coNP-hard. However, the protis upper bounded by coAR
over the field of rationals, and by col9%:P over finite fields.

(d) Finally, we discuss identity testing for certain restied deptht arithmetic circuits.

Foridealsl = (f1,---, f¢) where eacly; € Flz1,---,xz] is an arbitrary polynomial but is aconstant

we show similar results as (a) and (b) above.

1 Introduction

For a field F let Flxy,x9,---,z,] be the ring of polynomials ovef with indeterminates

x1,To, &y, Let] C Flxy, z, -+, x,] be an ideal given by a finite generator $et, g2, -+, 9, }

of polynomials. Thed = {>""_, a;g; | pi € Flx1,z2,- -+, 2,]}, and we writel = (g1, 92, -, gr).
Givenanideal = (g1, g2, -, gr) and apolynomiaf € F[zy,xo,- - -, z,] theldeal Membership

problem is to decide if € I.

Ideal Membership Testing is a fundamental algorithmic fmawbwith important applications
[COX92]. In general, however, Ideal Membership Testingasoriously intractable. The results of
Mayr and Meyer show that it is EXPSPACE-complete [MM82,M&8]r Nevertheless, because of its
important applications, algorithms for this problem areely studied, mainly based on the theory of
Grobner bases [COX92].

Polynomial Identity TestingA(IT) is a well-known problem in the field of computational comgle
ity and randomization: given an arithmetic circGittcomputing a polynomial if¥[z1, 2, - - - , ], the
problem is to determine whether the polynomial computed’y identically zero.

One can view the output of the circuit as a function froniF” — F and ask whether it is the
zero function. In general, this is not the same as asking enéhe polynomial computed Ly is
identically zero as a formal expressionfifx;, z2, - - - , z,,]. Notice thatz? — = € [F,,[x] computes the
zero function onF,, but as a formal expressiotf — x is not zero inF,[z]. However, if the formal
degree of the circuif’ is smaller than the size @&, then the interpretations are equivalent.

Over the yearspIT has played a significant role in our understanding of sewmsTpbrtant algo-
rithmic problems. Well-known examples are the randomiz€daigorithms for the matching problem
in graphs [Lov79,MVV87], and the AKS primality test [AKSQ4The PIT problem has also played
an indirect role in important complexity results suchrs- PSPACE[LFKN92,Sha92] and the proof
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of pcptheorem [ALMSS92}. The question whether PIT is in P has emerged as an imponpemt o
problem (see, for example, [AB03,KI03]).

Results of this paper: The main goal of this paper is to bring out interesting cotinas between
Monomial Ideal Membership and Polynomial Identity Testifge study of monomial ideals is central
to the theory of Grobner bases [COX92]. In Section 2 we éryilds in more detail.

Supposd = (mq,ma, - -, my) is a monomial ideal iff [z, x9, - - -, z,] generated by the mono-
mialsm;. In contrast to the general ideal membership problem nigstiembership in the monomial
ideal [ is trivial for a polynomialf € F[z1,zs,---,x,] that is given explicitly as aff-linear com-
bination of monomials. We only need to check if each monomwéalurring inf is divisible by some
generator monomiak;. However, as we show in this paper, the problem becomessiteg when
f is given by an arithmetic circuit. In that case, it turns ddttthe problem is tractable whenis a
constant and its complexity is similar to that of polynomidgntity testing. Given a monomial ideal
I = (my,ma,---,m,) formonomialsn; € F[xy,---,x,] and an arithmetic circuif’ over[F defining
a polynomialf € Flxy,x9,- -, z,], theMonomial Ideal Membershiproblem is to decide if € I.

In this paper, whenever there is an ideal given by a gengraét) it will be assumed that the exponent
of any variable that appear in a generator, is given in unary.

We study different versions of the problem by placing reiths on the arithmetic circui' and
the number of monomials generating the idéaMWe also consider a more general version of the
problem where we are allowed only black-box access to thgnpatial f. Our main results are the
following.

- A randomized test for Monomial Ideal Membership whemiven by an arithmetic circuit and
I = (mq,mq,---,my) for constantk. This is analogous to the Schwartz-Zippel randomized
polynomial identity test [Sch80,Zip79]. A similar randarad test forf given by a black-box
when f has small degree.

- Whenk is unrestricted the problem is coNP-hard, but we show thaiitthe counting hierarchy.

- The identity testing problem forX 11X circuits has recently attracted a lot of research
[DS05,KS07]. The main open problem is whether there is arghééstic polynomial-time iden-
tity test for X'I1 X circuits. For the special case &fI1 Y circuits with bounded fanin output gate
Kayal and Saxena [KS07] recently gave an ingenious detéstitippolynomial-time test.
Analogous to their result, we consider monomial ideal mawstiip, wheref is computed by a
X I1X circuit with bounded fanin output gate, afid= (m;,mq,-- -, my) for constant:. Using
the algorithm of [KS07] we give deterministicpolynomial-time algorithm for Monomial Ideal
Membership. More interestingly, we develop the algorithnal &s correctness proof based on
Grobner basis theory. We believe this approach is somesimgier and direct. It avoids proper-
ties such as Chinese remaindering in local rings and HeiffisegIthat is used in [KS07]. As a
byproduct, this gives us a different understanding of tlemiily testing algorithm of [KS07].

2 Preliminaries

We develop the rudiments of Grobner basis theory. Detaits lme found in the text [COX92] and
Madhu Sudan’s notes [Su98].

Let = denote indeterminates{xy,zs,--,x,}. Let F[z] denotes the polynomial ring
Flxy,zo,- -, 2,]. Let R be a commutative ring. A subring C R is anideal of R if IR C R. The

1 In the sense that properties of low-degree multivariatgmmhials are crucial to these proofs.



Hilbert basis theorem [COX92] states that any idealf F[xzq,xo, - - -, z,] is finitely generated|.e.
we can expres$ = {> ., pigi | pi € Flz1, 29, -+, 2,]}, where the finite collection of polynomials
{91,92," -+, gr} is a generating set (or basis) fbr

The notion of monomial ordering is key to defining Grobnesdm We restrict ourselves to the
lexicographic monomial orderingrhich we define below. Fat = (o, as, - - -, «, ) € N, we denote
the monomiak{" z5? - - - 28~ by z%.

Definition 1. Leta = (a1, ag,---,a,) and 8 = (B1, B2, -, 0,) € N". We saya_> { if, in the
vector differencexr — 3 € N, the left-most nonzero entry is positive. We say> z° (equivalently,
P < z¥)ifa > f.

The lexicographic monomial ordering naturally fixes a legdmonomialLM (f) for any poly-
nomial f. Let LC(f) denote the coefficient of M (f). Then theleading termof f is LT(f) =
LC(f)LM(f). Using the monomial ordering, we state the general form efdivision algorithm
overF[zy, zg, -, xy).

Theorem 1 (Theorem 3, pp.61)[COX92]Let f € F[z| and(f1, f2,- -, fs) be an ordered-tuple of
polynomials inF[z]. Thenf can be written asf = a1 fi1 +asfa+ -« -+ asfs +r, wherea;, r € F[z],

and eitherr = 0 or r is anF-linear combination of monomials, none of which is divigibly any of
LT(f1), LT(f2), - LT(fs).

The proof of the theorem is constructive. We give an inteitbutline as we use it often in the
paper. Letf denotes the ordering of the polynomidiss: f = (f1, f2,-- -, fs). The proof describes a
division algorithm Dividé f; f) which first sortsf by the monomial ordering. The algorithm proceeds
iteratively. It tries to eliminate the leading monomial retcurrent remainder by attempting to divide
it with the f;’s in the given order. The; that succeeds is the first one whose leading monomial divides
the leading monomial of the current remainder. Finally, ridv@ainder- that survives has the above
property. The algorithm is guaranteed termination as theamal ordering is a well ordering. The

following time bound for Dividéf; f) is easy to obtain.

Fact 2 (Section 6, pp.12-5]Su98] The running time of Dividgf; f) is bounded by (s [T, (d; +
1)°M), whered; is the maximum degree of among the polynomialg, f1, f2,- - -, fs.

If the remainderr output by Dividé f; f) is zero then clearlyf € (f1,---, fs). However, in
general, Dividéf; f) need not produce zero remainder evef & (f1,-- -, fs) asthe order of division
is important. Thus, it cannot be directly used as an ideal bezship test. In order to ensure this
property, we defin&robner basegwith respect to the lexicographic monomial ordering).

Definition 2. Fix < as the monomial ordering, and let C F[z] be any ideal. Then, the polynomi-
als g1, g2, -, g: form aGrdbner basifor J if J = (91,92, -+, 9s) and (LT (¢1),---, LT (gt)) =
(LT(]))

The following lemma states that the general division atbani of Theorem 1 carried out w.r.t. a
Grobner basis results in a unique remaindeggardless of the order in which division is applied.

Lemmal. LetG = {fi, f2, -, fs} be a Gidbner basis for an ideal C F[z] and f € F[z]. Then
there is auniquepolynomialr € F[z] such thatf can be written asf = a1 fi +asfo+---+asfs+r,

for a; € F[z|, and eitherr = 0 or r is an F-linear combination of monomials, none of which is
divisible by any oL T'(f1), LT (f2),-- -, LT(fs).



By Lemma 1 we can indeed testfifc .J given a Grobner basigfi, fo, - - -, fs} for J by comput-
ing Divide(f; f) and checking if the remainder is zero.
The following theorem gives us an easy to test sufficient itimmdto check if a given generating

set for an ideal is already a Grobner basis.

Theorem 3 (Theorem 3, proposition 4, pp.101)[COX92] Let I be a polynomial ideal given by a
basisG = {g1, 92, - -, g} such that all pairsi # j LM (g;) and LM (g;) are relatively prime. Then
G is a Grdbner basis forl .

Recall from the introduction thatmonomial ideals an ideal generated by a finite set of mono-
mials inF[z].2

Lemma?2 (Lemma 2, Lemma 3, pp.67-68)[COX92] Let I = (my,ma,---,ms) be a monomial
ideal andf € F[z]. Then,f € I if and only if each monomial of is in . Furthermore, a monomial
m is in the ideall if and only if there exist € [s], such thain, dividesm.

An immediate consequence of Lemma 2 is that we can test inndiglistic polynomial time if an
explicitly given polynomialf € F[z] is in a monomial ideal .

In this paper, we are primarily interested in the monomiaaldmembership problem and its
connection taPIT. In the proof of certain results we will also be making use mfperties of Grobner
bases.

3 Monomial Ideal Membership

In this section we consider monomial ideal membership whengiven by an arithmetic circuit. We
show that the problem is in randomized polynomial time if tn@mof generatorg for the monomial
ideal I is a constant. Whet is not a constant we show that it is coNP-hard and s contaimed i
coAMFP . We leave open a tight classification of the complexity o fioblem.

Lemma 3. Let, I = (my,mo,---,mg) be a monomial ideal i [z, zo,- -, x,]. Fori € [k], let
m; = x“lfilgc;i?e...-xgm. I;ew be ak-tuple given bys = (41,72, -, Jx), wherej; € [n]. Define the
ideal, I = («,”*,---,x,;*). Thenf € I if and only if, ¥o € [n]*, f € I,

Proof. Let f € I. So, f can be written a§ = pymy + ugmsa + -+ + ppmy, Wherep; € F[z]
for all i. Then, clearlyvo € [n]*, f € I,. To see the other direction, suppogeZ I. Write f =
ciMy + eo My + - - - + ¢, My, whereM;'s are the monomials of andc¢; € F are the corresponding
coefficients. Asf ¢ I, there is aj € [t], such thatM/; ¢ I. Thus, for alli € [k], m; does not
divide M;. So, each of then;’s contains some,,, such that the exponent of, is greater than the
exponent ofzy, in M;. Let {{1,¢s,---,¢;} arek such indexes. Now consider the iddal, where
w = ({1,0o,---, ). By Lemma 2,M; & I; and hencef & I. [ |

Using Lemma 3, we generalize the Schwartz-Zippel Lemmadora failored for Monomial Ideal
Membership.

Lemma4. Let f € Flzy,x2,- - -, x,] be a polynomial of total degre¢and I = (z{", 252, - - -, 2*)
be a monomial ideal as described in lemma 3. Fix a finite suBsetF, and letr{,ry,---,7,_1 be
chosen independently and uniformly at random fiem

Then,Prob. cs[f(z1, 2, -z, 11,72, -, rpep) €1 | f & I] < \%l'

2 Indeed, by Dickson’s Lemma an ideal generated by an arpisiavset of monomials is also generated by a finite subset
of monomials and hence is a monomial ideal.



Proof. First we write f = > _ m{l---xi"’f@(karl,---,xn), wherev = (ji,---,jk). Any term
in the above expression witfy > e; is already inl. Thus, it suffices to consider the sufnof
the remaining terms. More precisely, Let = [e; — 1] X [ea — 1] x -+ X [ex — 1]. We can
write f = Yovea®l o alf fol@pgr, oo wn) Wheres = (ji,j2,--, k) € A As f ¢ I, not
all f; are identically zero. Choose and fix one suchBy the Schwartz-Zippel lemma [MRO01],

Prob.cslfa(ri,ra, - ,rn—x) =0 | fa(@rg1, Thqo, -+, 2n) 0] < ‘%-

Notice that for anys = (j1,ja,--,jx) € A, the monomialz]' ---zJ* is not in I. Thus,
the ponnomiaIf(xl,mg, ey Ly T1, T2, ,Tn,k) c I iff Vo, f@(n,m, oo ,V“n,k) = 0. But
fa(ri,ra, -+, rn_k) = 0 with probability at mosti/|S|. This completes the proof. [
Theorem 4. Let f € FF[z] be given by an arithmetic circult’ and the ideall = (my, ma, -, myg)

generated by monomials;’s wherek is a constant. For such instances Monomial Ideal Membership
can be solved in randomized polynomial timerf{*) time).

Proof. First, we construct all the ideal§,l; | © € [n]*} as described in Lemma 3. Then for
each suchlz, we check if f € I;. The correctness of the algorithm follows from Lemma 3. Let
Iy = (2f',25?,---,z"). To checkf € I we assign random values 191, --,z, from S
and then evaluate the circuit in the ring R = F|xy,x9,- -, x%]/I5. To evaluate the circuit iR,

we need to compute each gate operation modylcstarting from the input gates. Notice that, as
(x(', 252 -, x}*) is a Grobner basis faf;, by Lemma 1 the actual order in which we evaluate the
gates is not important. Let,= Zle e;. Then it is easy to see that the running time of the algorithm
is poly(n, s, ¢*) (notice thate;’s are in unary). Furthermore, by Lemma 4, the success pilitpaif

the algorithm is seen to be 1 — (d/|S|). So, it is enough to consider sampling from a Ses.t,

|S| = 2d usingO(log d) random bits. ]

When the monomial ideal is not generated by a constant number of monomials the mahomi
ideal membership problem is coNP hard over any field.

Theorem 5. Given a polynomial f as an arithmetic circuit, and a monomial ideal =
(mi,me,---,my), itis coONP-hard to test whethef € I.

Proof. Indeed, we prove the coNP-hardness evenffgiven by all X’ arithmetic circuit. First we
consider the case when the fididis Q. We give a reduction fron3-CNF. Let F' = C; A Cy A

-+ A Cy is a3-CcNFformula over{zy, xo, - - -, z,, }, with C; are the clauses. Introduce new variables
{y1,92, -, yn} for {1,229, -, Z,}. Next, we encode each of the clause as a linear form (sum of
variables). For example, if; = =1 V 22 V Z3 then we encode it ag; + x2 + y3. Thus we get

a polynomialC' corresponding taF' : C(z,y) = Hle Li(z,y) , whereL;’s are the linear form
corresponding t@’;. Clearly,C(z, y) represents &/ X' circuit. Define a monomial ideal, = (z;y; |

1 < i < n). It follows that, if F' is satisfiable then not all the monomials@fare inI. So, in that
caseC' ¢ I by Lemma 2. Conversely assume thatZ /. That means(' has at least one monomiad
such thatn does not contain both; andy; for anyi. So, the variables of: correspond to a satisfying
assignment fof' (set the variables those are notinto zero).

Now, let the characteristic of the field be finite. The onlygaldhe proof differs from the above
is, we need to encode each clause as a sum of all seven mosoegedsenting the satisfying assign-
ment of that clause. For example, an assignmjénd, 1} of {x1, x5, x3} corresponds to a monomial
x1y2x3. Thus a claus€’, = x1 V z2 V Z3 will be encoded as a sum of all possible monomials except
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y1y2x3. Note that the polynomial’ corresponding td” is represented by A X' IT circuit. The rest of
the argument follows exactly as above. [

Next, we show some upper bounds for Monomial Ideal Membpnatien the number of mono-
mial generators is not restricted to a constant.

Theorem 6. 1. ForF = Q, Monomial Ideal Membership is itoAMP? where the input monomial
ideal I = (mq,mq,---,my) is given by a list of monomials anfde F|z] is given by an arithmetic
circuit C'.

2. ForF = F,, Monomial Ideal Membership is imNFMOdpP.

Proof. For the first part, suppode= Q andC is the input arithmetic circuit computinf) € F[z] and
the monomial ideal is (my,ma, - - -, my). We'll show thatNonmembershijs in AMFY | It suffices
for the AMFT algorithm to exhibit a nonzero monomial of f such thatm & (mq,ma,---,my).
l.e. m; does not dividem for : = 1,2,---, k. The base AM machine (call i#/) will guess such
a monomialm = z{'z5*--- z5» by nondeterministically picking the tuple,,---,e,) € N™ and
check thatm; does not dividem for all . It remains to verify thatn is a nonzero monomial of
f- W.l.o.g. we can assume thite Z[z]. We will describe a BpiP algorithm that takes as input
(C,m) and makes ong+P query to decide iin is a nonzero monomial itf. Write f as a finite
sum f = Y onn CaZ®. Since the input ta are the indeterminates and constants, the numbers
are bounded in absolute value Bff, where the size of{ € Z* in binary is bounded by some
polynomial in input size. Now, we observe that# 0 iff m occurs inf, wheree = (e, ez, -, €,).
The BPP machine guesses a random prinaé polynomial size, where the size is chosen suitably,
so thatcz # 0 iff ¢z # 0(mod p) with high probability. Now we define thg:P query that the BPP
machine will make by defining a suitable NP machisie The input toN is the triple(m, C, p) and
the number of accepting paths has the propadsy (m,C,p) = cz(modp). Such an NP machine
N would clearly suffice. We now define the NP machiie W.l.0.g. we can assume that each gate
of C has fanin two and is either a multiply gate or a plus gate. 8s@phere are plus gates irC.
The NP machingV nondeterministically branches inf computation paths, where on each path it
picks exactly one of the two inputs to the plus gate. As a tesaleach of th@' computation paths
N has picked a multiplicative subcircuit @f. Let 7 € {0,1}! denote such a computation path of
N and letC; denote the corresponding multiplicative subcircuitbfNotice that eaclt’,. defines a
monomial with a coefficient,m., and fromC,. in deterministic polynomial time we can compute
m, ande,(modp). Next, machineV proceeds as follows: i, = m then N extendsr into ¢, modp
accepting computation paths, and otherwiseejects alongr. Clearly,accy (m, C,p) = cz(modp).

For the second part wheh = [, the proof is similar. The crucial difference is that we do not
need to evaluate the circuit modulo a randomly chosen pfimghermore, we only need the number
of accepting paths aV modulop. Hence a MogP oracle suffices with an NP base machinem

4 Monomial Ideal Membership for X IT X circuits

Consider instancegf, I) of Monomial Ideal Membership whergis given by a¥' 173’ circuit with

top gate of bounded fanin ardd= (my,ma, - - -, my) a monomial ideal for constait By Lemma 3
this problem reduces to testingjffis in a monomial ideal of the formh = (2{*, 232, - -, 27*). As the
quotient ringF[xy, x9, - - -, x¢]/I is a local ring andf € I if and only if f = 0 over the local ring
Flx1,ze,- -, xx])/I we can apply the Kayal-Saxena deterministic identity #€S(([7] for such¥X'I7%

circuit over local ring8 to check this in overall time polynomial in the circuit size.

% More precisely, over local rings that allow polynomial-&rarithmetic in them.



However, in this section we develop the algorithm and itseminess proof based on Grobner
basis theory. The algorithm is essentially from [KS07]. Bwg¢ Grobner basis approach is somewhat
simpler and direct. It avoids invoking properties such asn€e remaindering in local rings and
Hensel lifting. The added bonus is that we get a differenteminess proof for the Kayal-Saxena
identity test.

Definition 3. A X1’ circuit C with n inputs over a field® computes a polynomial of the form:
Clxy, @2, an) = Sofy T192, Lij(x1, @2, -+, 2), wherek is the fanin of the tof gate, andd;
are the fanins of thé different// gates and’;;'s are linear forms oveif'[zq, z2, - - -, ).

First, we transform the circu@ into another circuit”’ as follows: LetZ;; = >")" | a;jix: + 3 for
a;5t, 3 € F. We replace each sudhy; by L;j = Y i, ez + By, wherey is a new indeterminate.
Let d be the maximum of the fanins of thé gates. For &I gate of fanind; introduced — d; new
input fanin wires each carrying

Proposition 1. For I = (z7*,25%,---,2*) and aXI1 ¥ circuit C' defined as above; < I if and
only if ¢’ e («§*, 2, -+, aF y — 1).

Notice that in the process of making this transformationréseilting ideal is not a monomial ideal
any more.

Thus, we can assume that in the cirdlittself everyL;; is of the form}"}" , oyz¢ and the degree
of the polynomial computed at ea¢hgate isd. We can naturally associate £g; its coefficient vector
(1,00, -+, ay) € F™. A collection of linear forms isndependenif their coefficient vectors forms a
linearly independent set ifi".

First we fix some notation. LeR denote the polynomial rind[z1, z2,- - -, zx], wherek will
be clear from the context wherB is used. Fora = (eji1,er12, - ,en) € N*7F let 2% de-
notez, ' z}"'; - - 2&. The only monomial ordering we use is the lex-ordering defiimeDefini-
tion 1 w.r.t. the orderr; < zo < --- < x,. We can consider aif € Flzy,---,z,] as a poly-
nomial in R[xy11, T42, - -, 2,). More precisely, we can writ¢ = > n»x Asz%, whereAd, €
Flx1,z2,---,xx] \ {0}. Leta; be such that®! is the lex-largest term such thdt;, # 0. Then we
denote theR-leading termA, 2% of f by LTx(f). Likewise, LMg(f) = 2%t andLCr(f) = A
is the R-leading monomial and:-leading coefficient off. For anyf,g € Flzy,---,z,], it is clear
that LMg(fg) = LMr(f)LMr(9), LCr(fg) = LCr(f)LCR(9).

Let f € Flxy,---,2,] and I = (fy, fa, -+, f¢e) be an ideal such that eacfj is in
Flx1,z9,- -+, 2x]. Then the following easy lemma states a necessary and sufficondition for f
tobeini.

Lemmab. Let I C F[z]| be an ideal generated by the polynomidls f2, - - -, f, such that for all
i € [0], fi € Flzy,22,---,x4). Letg be any polynomial if[z]. Write g = >~ n—k AaZ®. Then
g € I'ifand only if for alla, A5 € 1.

Consider polynomialg, g € F[z1, z,- - -, x,] and an ideal such thay € (I, f). The following
useful lemma gives a sufficient condition grunder which the remainderobtained when we invoke
Divide(g; f) (of Theorem 1) is in the idedl.

Lemma6. Let I = (f1, fo, -, f¢) be an ideal inF[zq,---,z,] wheref; € Flzy,- -, 2] = R.
Supposef is a polynomial such thak M ( f) contains only variables fromizy 1, zx12, -,z } (i.€.
LM(f) = LMRg(f)). Then for any polynomia in the ideal (7, f) we can writeg = gqf + r for
polynomialsg andr such that- € I and no monomial of is divisible byL M (f).
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Proof. The lemma is an easy consequence of the properties of thdeDagorithm explained in
Theorem 1. Notice that Dividg; f) will stop with a remainder polynomialsuch thay = ¢ f+r with
the property that no monomial efis divisible by LM ( f). However, we only know that € (I, f),
because both andq f are in(1, f). We now show that must be in/. First, as" € (I, f) we can write
r = Zle aifi + af, for polynomialsa; anda. Following Lemma 5, we write;; = >, a;5z* for
eachi and alsaz = >, a5z®. Notice that we can assunag ¢ I for all nonzeroag. Otherwise, we
can move that term to the’ a; f; part. SinceLM (f) does not divide any monomial of it follows
that LM (af) does not occur in a nonzero termsofTherefore,L T (af) must be cancelled by some
term onf:1 aifi. Clearly, LT (a f) is of the formc - a;z* for somea, 3, whereLC(f) = ¢ € F and
ag = LCg(a). Now, in3_;_; a;f; the coefficient oft® is 3_;_, a f; which must be equal te-c- ag.
Sincec € F it follows thatag is in I contradicting the assumption that none of the nonzgris in 1.

[ ]
Again, letl = (fy, fa,- -, f¢) such that thef; are inF[xq, zo, - - -, x¢]. Consider two polynomials
f and g such thatLM (f) contains only variables fromy 1,z 2, -, z, and eitherLM(f) >

LM (g) or LMR(f) = LMg(g) andLCg(g) € I. Then,g is in the ideal(], f) ifand only if g € I.

Lemma7.Let I = (fi,fs2, -+, f¢) be an ideal inF[zy,---,z,] such that eachf; is in
Flxy,z9,---,2x] = R. Supposef is a polynomial such thafl.M(f) is over the variables only
from {xp11, Thro, -, xn} (€. LM(f) = LMg(f)). Then for any polynomiay such that either
LM(f) > LM(g), or LMg(f) = LMg(g) andLCg(g) € I, g is in the ideal(I, f) if and only ifg
is in the ideall.

Proof. Suppose; € (I, f) andg ¢ I. We can writeg = a + bf, for polynomialsa andb, where
a € I. Also, we can assume thiatZ I, for otherwiseg € I and we are done. Lét= ZaeN"*k ba?,
wherebs € Flzy,x9,- -, zx] and we can assunig ¢ I for all & (otherwise we can move that term
as part ofa). Notice thatLTr(bf) = LTr(b) - LTr(f) = cbgLMg(b)LMRg(f) = cbzz? for some
7 and for somebs, wherec = LCg(f) € F. Sincebs ¢ I it follows that LCr(bf) ¢ I. Write
a =73 senn-k aaT®. By Lemmaba € I implies eachu, € 1. In particular,a; € I and isnotequal
to —LCgr(b- f) = —cbz asbz & I. Thus, the monomial Mg (bf) survives ina + bf. It follows
that LMg(g) = LMg(a + bf) > LMg(bf) > LMg(f) which forcesLMpr(f) = LMg(g) and
LCRr(g) € I by assumption. |b ¢ R thenLMg(b- f) > LMg(f) which impliesLMgr(g) >
LMFg(f) contradicting assumption. if€ R thenLTr(g) = LTr(a + bf) = (ag + b)LMg(f) for
someag, which forcesh € I because bothTr(g),as € I. ]

Let I C Fxy,---,z,] be an ideal andy, g, are two polynomials such that is in the ideals
(I,g1) and (I, g2). Using some Grobner basis theory we give a sufficient cmmdiin 7, g; and g-
under which we can infer thgtis in the ideal(Z, g1 g2).

Lemma8. Let I = (fi, fo, -, f¢) be an ideal ofFf[z1,x2, - -, z,], where f; are polynomials in
Flzy,x2, - -, zk]. Supposeg; and g, are polynomials such thaty, = Hfil(ka — «;), Where each
«; is a linear form overzy, xo, - - -, 21, and the leading terniT’(g;) of g; has only variables from

{Tr12,Tpys, -, xn}. Thenf € (I,g1g0) ifand only if f € (I,g1) and f € (I, go).

Proof. The reverse implication is obvious. We prove the forwareéation. Suppos¢ < (I, g;) and
f e, g2).Asf € (I,g2), we can writef = a + bge, Wherea € I andb is an arbitrary polynomial.
Notice that it suffices to provigy; is in the ideak 1, g1 g2). Now, sincef € (I, ¢;) anda € I it follows
thatbg, = f —a € (I, g1). By applying Lemma 6 to ideal and polynomialy; observe that we can
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write bgs = ag1 + (3, whereg is a polynomial in/ such that none of the monomials @iis divisible

by LT(g1). We have the following equatiah [T72 (241 — o) = ag + .

Substitutingz, 11 = a1 in the above equation, we gétg1)|s;.,=a; = —Blujsi=a;- NO-
tice that LT (g1]z;,,=a:) = LT(g1), asLT(g1) contains variables only fromy_ s, --,z,. Thus
the above substitution impliedT (3., =a1) = —LT((@91)lepi1=ar) = —LT(C|eyi1=a1) -

LT(91’$]€+1:041) = _LT(a‘ka:al) - LT(g1).

Thus LM (gy) divides LM (s, , ,=a,)- On the other hand, sinceM (g1) does not divide any
monomial of 3, LM (g1) cannot divide any monomial af M (53, ,-a,) @s the substitution only
introduces variables froMzy, - - -, 2 }. This gives a contradiction unleg,, ., —, = 0, which in
turn impliesa|y, =, = 0.

Thus we have proved thét;. 1 — 1) is a factor of bothn and 5. This leads us to the following
similar identity:b- H;lzzz(warl — (lj) = 101 —i—ﬂl, Wherea1 = Oé/(.%'qul — 041) andﬁl = ﬂ/(.%'qul —
aq). Clearly, by repeating the above argument we finally fet,o’g; + ', for some polynomials’
andf’ wherea = o/ g, andg = (' ¢». Putting it together we géigs = o/ g1g2 + 392 = &/ g1g2 + 0.
As ( € 1, it follows thatbg, is in the ideal(1, g1 g2). This completes the proof. [

Let I = (P, P, --,P;) be an ideal inF[xy,---,x,| such thatP;, € Flzy,zs,---,z;] and
LT(P) = x‘j for eachi. Fori # j the leading termd.T'(P;) = mf and LT(P;) = x?j are
clearly relatively prime. Therefore by Theorem 3, it follethat{ P;, P, - - -, Py} is in fact a Grobner
basis for/. We summarize this observation.

Lemma9. Let I = (P, P, --,P;) be an ideal inF[zy,---,z,] such that eachP; is in
Flzy, 29, -+, z;] and LT (P;) = xf Then{P, };c| is a Grobner basis for.

Let f € F[zy,x2,---,2] be a given polynomial and be the maximum ofdeg(f) and
deg(F;),1 < i < k. We can invoke Dividéf; P, P, ---, P;) (Theorem 1) to test whethet € 1.
By Fact 2 the running time for this testd(d*).

Now we state the main theorem of this section.

Theorem 7. Let C € Fxy,22---,x,] be given by a¥X 11X (¢,d) circuit for a constant/ and

I = (my,ma,---,my) be amonomial ideal for constakt For such instances, Monomial Ideal Mem-
bership can be checked in deterministic polynomial timec8igally, the running time is bounded by
nkpoly(n, dmam{[,k})_

By Lemma 3 it clearly suffices to give a polynomial-time detistic algorithm for testing if a

X113 (¢,d) circuit C'is in a monomial ideal of the forru{", - - -, z7*). As explained in the beginning
of this section, we transform the circiitto C’ in which all linear forms are made homogeneous using
a new indeterminatg, andC € I ifand only if C’ € (z{*,---, 2",y — 1). In fact, in the following

theorem we prove a stronger result which along with LemmaRIgiTheorem 7.

Theorem 8. Let C be a givenY'II1 X' (¢, d) circuit for a constant! and I = (Py, P»,-- -, P;) be an
ideal inF[z1, - - -, z,,] such thatP; € Fz1,xo, - --,2;] and LT (P;) = x% for eachi. Further, suppose
d; < dfor all i € [k]. Then testing it € I can be done deterministically in tinpely(dme= {6k},

Proof. We first describe the algorithm and then prove its correstraad running time bound.

As explained in the beginning of the section, we can assuateathlinear forms appearing iy
are homogeneous arid itself is a homogeneous degrégolynomial. By Lemma 9, the generating
set for! is a Grobner basis. L&t (1, 2, -, x,) = Y1, T;. Foralli € [(], T} = []’_, Li;, where
L;;'s are the linear forms oveéf(z, z, - - -, xy].



If ¢ =1,thenC = T). Letg(xy,x9,- -, xx) be the product of those linear formsBf using only
variables from{z, xo, - - -, 21 }. Clearly,g(x1, 29, - - -, 2;,) has at most’* monomials. We explicitly
computeg by multiplying out all such linear forms. By Lemma 5, clea€lye I if and only if g € I,
which can be checked in time pghf) following the Fact 2.

So, assume/ > 1. If all the linear forms appearing iy, 75, ---,7, are only over
{x1,29,---, 21}, then again the ideal membership testing is easy. Becautimeé poly(d*) we can
write C' itself as anF-linear combination of monomials imy, xo, - - -, ;. and apply Fact 2 to check if
f € I intime poly(d®).

Now we consider the general case. By inspection we can waith’E = 5,7/ where theg; are
products of linear forms over onby;, x9, - - -, z,, whereas each linear form # involves at least one
other variablé'. If 3; € I (which we can test in polynomial time using Fact 2) we dropttren 7}
from the sumy_‘_, 7;. This enables us to writ€' asC' = 3T} + BTy + - - - + B, T}, for some
m < ¢, where we have assumed for simplicity of notation thag I for first m terms.

As before, letR = Flzy, 29, -, x]. W.l.o.g, assume thak Mz (T]) > LMg(T)) for all i €
[2,3,---,m]. We can determindTr(T}) for eachZ] in polynomial time since they are given as
product of linear forms. Thud,Mr(T]) > LMg(C). Now, letr € R be the coefficient oL Mg (17)
in C. We can compute in polynomial time by computing the coefficient of LMz (77) in each
T/ and computing: = Y., 3. Then we check that € I (which is a necessary condition for
C to be inI by Lemma 5). By Fact 2 we can cheeke I in time poly(d®). It is clear that, either
LMg(T]) > LMg(C) or LMg(T]) = LMg(C) andr € I. Thus, by the Lemma €' € I if and
only if C € (I1,17).

Next, we group the linear forms Ifi: let, 7] = T11T12 - - - Ty, such that for alt € [t],

Thi = (Li +min)(Li + mig) - - (Li + mis, ),

where {L;}!_, are distinct linear formsin F[zjy1,---,2,] and m;;’s are linear forms in
Flxy,- -, zk]. Notice that the polynomial®;; are relatively prime to each other.

We next compute linear transformationgoy, 09, -+, 0.} from F™ to F™ with the following
property: fori € [t], o; fixes {x;}}_,, mapsL; to ;. ; and maps{zjo, Tx+3, -, s} tO SOME
suitable linear forms in such a way that, is an invertible linear transformation. As;’s are over
{zK11, -+, 2y}, itis easy to see that sueh exist and are easy to compute.

Let Oy = 3 ey Lj- Fori € [t], letCy; = 04(Ch) and letly; be the ideakl, o;(13;)). The
algorithm will now recursively check for each of tel7 X’ (¢ — 1,d) circuits C1;, thatCy; is in the
ideal I;; and declare” € I if and only if Cy; € Iy; for each:.

Notice that the ideall;; has generating set = {P, P, -+, P, Pxy1}, Where P,,q €
Flxy,zo, -, xgy1) aNdLM (Pyyq) = xZ’ff. By Lemma 9,G is a Grobner basis faf;.

The correctness of the algorithm follows directly from téidwing claim.

Claim. Foreachs : 1 < s <tC e (I,T11Ti2---T1s) ifand only if Cy; € Ij; for 1 <i < s.

In particular,C € (I,T7) ifand only if Cy; € I; for 1 <i <t.

Proof of Claim:The forward implication is easy: & € (I,T11T12 - - - T1s) then clearlyC' € (I,T1;)
foreachl < i < s. As eachy; is aninvertible linear map it follows in turn that(C) € (I, 0;(T1;)) =
I; for1 < i < s.SinceCy; = O'Z(C) — Ui(Tl) andai(Tl) S <O'Z(TM)> it follows thatCy; € Iy; for
1< <s.

We prove the other direction of the claim by induction©he base case= 1 is trivial. Induc-
tively assume itis true fos — 1. l.e. if Cy; € I1;for1 <i < s—1thenC € (I,T11 T2 - ~Ty(s—1))-

4 |f there are no linear forms contributing to the proddg{(respectively?) we will set it to1.
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We now prove the induction step far. SupposeCy; € I; for 1 < i < s. LetT =
T11Thz -+ - Ti(s—1)- By induction hypothesis we hav€ € (I,T). Furthermore(s € I, implies
by definition thatC' € (I,T}5). Now we apply the linear map, to obtaino,(C) € (I,04(T")) and
05(C) € (I,0,(T15)). The maps, ensures thal T(T},) is of the formz% . Furthermore, by the
definition of o, it follows that LT (o5(7")) has only variables ikxy o, -+, x,}. Lettingg, = o4(T)
andg, = o4(T1s) in Lemma 8, it follows immediately that,(C') € (I,04(T - T1s)) which implies
the induction step since; is invertible.

Claim. The above algorithm runs in time pdgly, dmax{65}),

Proof of Claim: To analyze the running time, we need to observe the followdagirrence relation :
let T'(¢,n) is the time required to test' € I. It is easy to see from the description of the algorithm
that, 7'(¢,n) < tT(¢ — 1,n) + poly(n, d*). So,T(¢,n) = poly(n, d™>{¢k}) ast = O(d). ]

Theorem 7 is an immediate consequence of Theorem 8I For(0), Theorem 7 is actually the
Kayal-Saxena deterministic test with a new proof.

5 Monomial Ideal Membership for black-box polynomials

In Theorem 4 we have shown that monomial ideal membership iandomized polynomial time
whenf € [F[z] is given as an arithmetic circuit and the monomial ideal&giby a constant number
of generator monomials. We now show that eveffi i§ accessed only vialaack-box if the degree

of f is polynomial in the input sizeve can still solve monomial ideal membership in randomized
polynomial time (assumind is generated by constant number of monomials). In [OT88h-Be
and Tiwari gave an interpolation algorithm for sparse matiate polynomials over integers. Our
algorithm is an easy application of their result. We firsatketheir result in a form suitable for us.

Theorem 9. [OT88] Let f € Z[zy,z2, -, x,) be at-sparse multivariate polynomial given as a
black-box (byt-sparse we mean the number of monomialg is bounded by), d be the degree of
f, andb be a bound on the size of its coefficients. There is a detestitirdlgorithm that queries
the black-box for values of on different inputs and reconstructs the entire polynonfiah time
poly(t,n,d,b).

Ben-Or and Tiwari’s result directly gives a deterministadymomial time algorithm for Monomial
Ideal Membership wherf is at-sparse black-box polynomial ovér, and I is any monomial ideal.
The algorithm simply reconstrucisand checks if each of its monomials isiin

Next, suppose is a black-box polynomial of small degree ahdis a monomial ideal generated
by constant number of monomials.

Theorem 10. Let f € Z[z] of degreed given as a black-box such thais a bound on the size of its
coefficients. Suppode= (mi,mo, - -, my) for constantt. Then we can test if € I in randomized
timepoly(n*, d*, b).

Proof. By Lemma 3, it suffices to give a randomized polynomial tifgmethm for testing iff € I,
wherev € [n]k. W.l.o.g. assumd; = (2{', 252, -+, 2}%). Fix S = {1,2,---,s} and assign ran-
dom values{ry, 72, -+, "n_i} 10 {Tp41, --,2,} from S. Note that f(x1, 2o, - -, xp,7) is a dF-
sparse polynomial. By Theorem 9 we can reconstfifet , xo, - - - , 21, 7) in poly(n, d*, b) time. Let
g(x1, 22, -, x) = f(x1, 29, -, 2, 7). OUr randomized algorithm declargse I; if each mono-
mial of g is in . By Lemma 4, it follows that the success probability of thgoaithm is at least — g.

[ ]
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6 Bounded variable Ideal Membership

In this section we discuss our results for the ideal memigegsioblem when = (fi,-- -, f;) such
that f; € Flxq,---,xx] for a constant and the polynomialf is given by an arithmetic circuit. We
call this variantbounded variable Ideal Membership

A pioneering result in polynomial Ideal Membership testisgiermann’s algorithm that is based
on the following theorem.

Theorem 11 (Hermann's theorem). [He26] Consider polynomials f, f1, fo, - -, fmm €
Flxy,zq,---,2x] for a field F such thatmax{deg(fi),deg(f2), --,deg(fm),deg(f)} < d.
If fisin the ideall = (fi,f2, -, fm) then f can be expressed ap = > ", ¢;fi where
deg(g;) < (2d)?" for eachi.

Supposef is given explicitly as afff-linear combination of terms. Using the bounds of Hermann'’s
theorem, Hermann’s algorithm treats the coefficientg; @fs unknowns and does membership testing
in (f1, f2,---, fm) by solving a system of linear equations w'rm(2d)’“2k unknowns. This can be
solved using Gaussian elimination in time’() (24)0(%2"),

Similarly, for an explicitly givenf € Flzy,---,z,], n > k, using Lemma 5 we can apply Her-
mann’s algorithm to test if membership ¢fin (f1, f2,- -, fm) in time polynomial in the size of
andmO®® (24)0*2") I k is a constant, this gives a polynomial running time bound.

A natural question here is the complexity of Ideal Membearshihen f is given by an arithmetic
circuit whose membership we want to test in idéat (f1, fa,- - -, fm), Wheref; € Flzy,-- -, xy] for
constantt. Recall that in Theorem 4 we showed a similar problermfienomialideals with constant
number of monomials is in randomized polynomial time. Irsthection we will restrict ourselves to
polynomialsf computed by arithmetic circuits of polynomial degree inithygut size. We can follow
essentially the same proof idea in the Theorem 4. Noticethat/ if and only if f = 0 in the ring
Rlzgi1, Tpyo, -, x| Where R = Flxy,zo,---,xr]/I. We need the following proposition about
zeros of a univariate polynomial over an arbitrary ring.

Proposition 2. Let R be an arbitrary commutative ring containing a fididIf f € R[x] is a nonzero
polynomial of degreé then f(a) = 0 for at mostd distinct values of. € F.

Proof. Supposei,as,---,aqs+1 € F are distinct points such thgta;) = 0,1 < i < d + 1. Then,
we can writef(z) = (z — a1)q(x), for ¢(x) € R[z]. Now, dividing ¢(z) by z — a9 yields ¢(x) =
(z — a2)q/(z) + g(a2), for someq/(x) € R[z]. Thus,f(z) = (z — a1)(z — az)q/ () + (x — a1)g(az).
Puttingz = az in this equation give$a; — a1)q(az) = 0. Butay — a; is a nonzero element i and
is hence invertible. Thereforg(az) = 0. Consequentlyf(x) = (z — a1)(z — a2)¢'(x). Applying
this argument successively for the othgfinally yields f(x) = g(x) Hf;’f (x —a;) for some nonzero
polynomial g(z) € R|x]. Sincerif(x — a;) is a monic polynomial, this forcedeg(f) > d + 1
which is a contradiction. [

Using an induction argument as in [TZ06, Lemma D.3], we can easily derive the following
analog of the Schwartz-Zippel test for arbitrary commutatings.

Lemma 10. Let R be an arbitrary commutative ring containing a fididLetg € R[x1, x2, -, Tp)]
be any polynomial of degree at maktf g Z 0, then for any finite subset of IF we have

md

ProbneA,---,ameA[g(al,aza cam) =0]g#0] < 7|
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Now we describe our ideal membership test: Choose arftl fixF of size2(n—k)d and randomly
assign values fron§ to the variables i{zy.1, - - -, z,, }. Notice thatf, given by a polynomial degree
arithmetic circuitC, is in I if and only if f = 0 in the ring R[xg11, Zg12, -, xn] WhereR =
Flzq,x9, -+, 2] /1, Since the given generating set fbruses only variables, - - -, x. After the
random substitution we are left with an arithmetic cirai{x1, - - -, 2 ). Notice that, by Lemma 10
if f & IthenC’(x1,---,x) ¢ I with probability at leastl/2. We now need to test whether the
polynomial computed by is in I. As C’ is of polynomial degreel and % is a constant, we can
explicitly written down the polynomial that it computes as B-linear combination of at most”
monomials. We are now left with the problem of testing-ife (f1,---, f¢) which we can do in
polynomial time using Hermann'’s algorithm &ss a constant. Similarly, Theorem 10 for black-box
polynomials can be easily extended to bounded variabld Membership.

Finally, whenf is given by a¥'I7 X’ circuit with bounded fanin output gate, we can easily argue
by following the algorithm in the proof of Theorem 8 that wdlend up with the problem of testing
if a polynomialg given by all ¥ circuitis in anideal f1, - - -, f¢), wheref; are all inF[x1, - - -, x¢] for
a constant. It is easy to see that we can apply Hermann'’s algorithm tolctgs in time polynomial
in (m + n + d)°*) which is a polynomial time bound ass constant. We summarize this result in
the following theorem.

Theorem 12. Let I = (f1, f2, -+, fm) be an ideal inF|xy,x9,---,x,] Where eachf; €
Flxy,zq,- -, xx] for constantk. If f be a polynomial given by an arithmetic circuit of polynomial
degree, then in randomized polynomial time we can tegt & 1. This result holds even if is
given by a black-box and the degree fofs polynomial in the input size. Further, ffis given by a
YIIX(¢,d) circuit with ¢ constant, then we can test whethfee I in deterministic polynomial time.

7 ldentity Testing for a restricted class of X 1T X IT circuits

In this section we examine the possibility of extending [KB® certain depth 4 circuits. We consider
certain restricted 11 X IT circuits with the topX’ gate having bounded fanin.

Any XITX1I circuit is of the formC = S| Ty, with T; = H?:l P;;, for polynomialsF;;. We
now define aestricted subclassf circuits which we denote by 17X 11 (¢, d, ¢). A circuit C' is in this
class if

(&) The fanin? of the output®’ gate is a constant.
(b) Furthermore, eack;; is the sum of at most different univariate polynomials, where: is also a
constant.

We show that the bounded variable Ideal Membership probten¥f7 X 11(¢, d, c¢) circuits can
be solved in polynomial time. As a consequence we obtain ermhrtistic polynomial-time identity
testing algorithm for such circuits. The key observatiotihésnext lemma which generalizes Lemma 8.

Lemma 11. Let I = (fy, f2, -, f¢) be an ideal off[z1, zo,- - -, x,], Wwhere f; are polynomials in
Flxy,- -, z]. Suppose; and g, are the polynomials such that:

1. LM(gy) = 2%, wherei € {k + 1,k +2,---,n}.
2. LM(g2) < LM(g1) and LM (g2), LM (g1) are relatively prime.

Thenf € (I,g1)andf € (I,g9o) ifand only if f € (I, g1 g2).
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Proof. The reverse implication is obvious. We prove the forwargation. ASLM (g2) < LM (g1)
andLM (g2), LM (g1) are relatively prime, it follows thag, € Flzq, z2,- -, zi—1].

As f € (I,g2), we can writef = a + bge, Wherea € I andb is an arbitrary polynomial.
Furthermore, by Lemma 6 we can write, = ag; + 3, with 3 € I such that no monomial gf
is divisible by LT'(g1). Thusg, dividesag; + (. Let p be any irreducible factor af,. As the ideal
(p) generated by the polynomial is a prime ideal ofR = F[xy, 9, -, 2,-1], the quotient ring
D = R/(p) is an integral domain. Ag dividesag; + 3, it follows thatag; = —f in D[z;]. We
will now argue that3 anda must be both zero i ]x;], which will imply that p divides botha and
3. Note thatLMp(B) = —LMp(«) - LMp(g1) (by comparing theit:; degrees in the rind[x;]).
But LMp(g1) = LM(¢1) = mf from the statement of the lemma. Considerin@s a polynomial
of R[z;], notice thatS has degree strictly less thah since LM (g1) = xf does not divide any
monomial of 3. Sincep € R = F[x1,z2, -+, x;—1], it follows thatg as a polynomial ofD[z;] also
has degree strictly less than Thus,LMp(g1) can not divideL Mp(/3). The only possibility left is
thata = § = 0 in D[xz;], which implies thap dividesa and 3.

This leads us to the following similar identityy}, = 191 + 61, wherea; = «/p andfy = 3/p.
Clearly, by the same argument applied to each irreducildefeof go (with repetition) we finally
getb = o’gy + ', for polynomialsa’ and 3’ wherea = o/gs and3 = 3 g¢-. Putting it together,
bge = /g1 - g2+ B'g2 = &’ g1 - g2 + 8. As 5 € I, it follows thatbgs, is in the ideal(1, g1 g2). This
completes the proof. [

Now we present the polynomial time algorithm for boundedalae ideal membership instances
(f,I), where the polynomiaf is given by a¥X 11X II(¢,d, c¢) circuit. The polynomial-time identity
test for Y I X1 (¢, d, ¢) circuits is a corollary.

Theorem 13. Let C be a givenXIIXII(¢,d,c) circuit and I = (fy, fa,--, fm) be an ideal in
Flzq,---,z,] such that eaclf; € F|xy,x9, - - -, xx] Wherek is a constant. Then testingdf € I can
be done deterministically in tim@oly(n, d).

Proof. We first writeC =T + 15 + - - - + T, where eacly; = H;l:l P;; such that eacl#;; is the
sum of at most many univariate polynomials. The case- 1 and the case when ea€his only over
indeterminates:, - - -, xx can be directly handled using Hermann’s algorithm (Theotéin time
poly(d?").

We describe the general case. et= Flxy, 22, -, zx]. We can writeC' = 1T} + (2T +
<o+ By T) for somem < ¢, wherep; € Randg; ¢ I, andT] are nontrivial polynomials in
R[zg41,- -+, 2,]. We can easily determinBTr (7)) for eachT from the polynomialsP;;, and rear-
range thel! so thatLMpr(T]) > LMg(Ty) > --- > LMg(T},). Thus,LMg(T}) > LMg(C). The
coefficientr of LMg(T7]) in C is also easily computable in polynomial time: we find the ot
v; of LMp(T}) in T} fori = 1,2,---,m. Note thatr = >~ ;. If » % 0 then notice that ¢ I
impliesC ¢ I. We check ifr € I using Hermann’s algorithm (Theorem 11) in time p(d%/'“). We
need to continue the testife I. That means eithet My (7]) > LMg(C) or LMr(T]) = LMg(C)
andr € I.By Lemma 7, e I'ifand only if Y", 3,1/ € (I,T7).

Next, we group the factorB;; occurring in} according to the leading monomials. &t. be the
product of all factorsP;; of 77 such thatL M (Py;) is a power ofz,, forr = k + 1,k +2,-- -, .
For an indexr if there are no such factoB,; then setly, = 1. Thus we havey = []"_, Tt
where some of the factoff,;,. are1 and can be ignored. Clearly, for &1}, # 1 andT, # 1 we have
LM(TM) > LM(TlS) if r > s.

LetCy = >, 5, T]. For each- such thafl}, # 1, letI;, denote the idedll, T}, ). The algorithm
recursively checks if’; is in the ideall;,. for each ideal;, and declare§’ € I ifand only if Cy € Iy;
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for eachi. Notice thatC; is a X I[I X 11 (¢ — 1,d, c) circuit and the generators df;’s are now over
k + c indeterminates which is still a constant.

Claim. ¢y =>_1", 3T/ € (I,T7) ifand only if Cy € I, for eachr such thatl}, # 1.

Proof of Claim: We first write 77 as T} = Ti;,T1i, - - - Thi,, Where allTy;, # 1. Letting go =
Tvi, T, -+~ Ty, , andg; = T3;, in Lemma 11, we get thafy, € (I,7]) = (I, g201) if and only
if C1 € I;, andCy € (I, Ty, T, - T1i, ). A similar repeated application of Lemma 11 yields
Cy € (I,T7) ifand only if Cy € (I,Ty;;) for eachj = 1,---,t. This completes the correctness proof
of the algorithm.

We now show that the time bound is poly d™a={:2"}). Let T(¢, d,n) denote the time taken to
test if C € I. The algorithm description implies the following recurcerrelation forl" from which
the running time bound is immediate.

dT(¢,d, n) + poly(n,d2") if ¢ > 1;

T, d,n) <
(bdyn) < {poly(n,dzk) if £=1.
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