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Abstract. Given a monomial ideal = (mq,m2, - -, my) wherem; are monomials and a polynomigl
as an arithmetic circuit thieleal Membership Problenis to test if f € 1. We study this problem and show
the following results.

(a) If the ideall = (mi,ma2,---,mi) for a constantk then there is a randomized polynomial-time
membership algorithm to test ff € I. This result holds even fof given by a black-box, whelfi is of
small degree.

(b) WhenI = (mq,mo,---,my) for aconstantt and f is computed by &'I7 X circuit with output gate
of bounded fanirwe can test whethef € I in deterministic polynomial time. This generalizes the
Kayal-Saxena result [KS07] of deterministic polynomiate identity testing for¥ 17 X circuits with
bounded fanin output gate.

(c) Whenk is not constant the problem is coNP-hard. However, the protis upper bounded by coARM

over the field of rationals, and by coMQdPP over finite fields.
(d) Finally, we discuss identity testing for certain restied deptht arithmetic circuits.
Foridealsl = (f1,---, f¢) where eacly; € F[z1,---,z] is an arbitrary polynomial but is aconstant
we show similar results as (a) and (b) above.

1 Introduction

For a field F let F[zy,x2, --,z,] be the ring of polynomials ovef with indeterminates
x1,T9, -, Ty Letl C Flxy,ze,- -, x,] be an ideal given by a finite generator $et, g2, -, g9, }
of polynomials. Therd = {>""_, a;gi | a; € Flz1, 22, -+, 2,]}, and we writel = (g1, 92, -, gr).

Givenanideal = (g1, g9, -, g,) and apolynomiaf € F|xy, xo, - -, x,] theldeal Membership
problem is to decide if € I.

Ideal Membership Testing is a fundamental algorithmic fmobwith important applications
[COX92]. In general, however, Ideal Membership Testingasoriously intractable. The results of
Mayr and Meyer show that it is EXPSPACE-complete [MM82,MB8]Jt Nevertheless, because of its
important applications, algorithms for this problem areely studied, mainly based on the theory of
Grobner bases [COX92].

Polynomial Identity TestingA(T) is a well-known problem in the field of computational comgle
ity and randomization: given an arithmetic circGitcomputing a polynomial iff [z, z2, - - - , 2], the
problem is to determine whether the polynomial computed’hy identically zero.

One can view the output of the circuit as a function froniF* — F and ask whether it is the
zero function. In general, this is not the same as askinghvéinghe polynomial computed Ly is
identically zero as a formal expressionfifx, z2, - - - , z,,]. Notice thatt? — x € F,[x] computes the
zero function onfF, but as a formal expressiatf — x is not zero inF,[z]. However, if the formal
degree of the circui€’ is smaller than the size @&f, then the interpretations are equivalent.

Over the yearspIT has played a significant role in our understanding of sevemabrtant algo-
rithmic problems. Well-known examples are the randomizé&ddigorithms for the matching problem
in graphs [Lov79,MVV87], and the AKS primality test [AKSQ4The PIT problem has also played
an indirect role in important complexity results suchras- PSPACE[LFKN92,Sha92] and the proof
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of pcptheorem [ALMSS92}. The question whether PIT is in P has emerged as an impornpemnt o
problem (see, for example, [AB03,KI03]).

Results of this paper: The main goal of this paper is to bring out interesting cotines between
Monomial Ideal Membership and Polynomial Identity Testifibe study of monomial ideals is central
to the theory of Grobner bases [COX92]. In Section 2 we eRrfitds in more detail.

Supposd = (mq,ma, -+, my) is a monomial ideal iff' x4, x2, - - -, x,,] generated by the mono-
mialsm;. In contrast to the general ideal membership problem nigstiembership in the monomial
ideal I is trivial for a polynomialf € F[x1, 9, - -, x,] that is given explicitly as aff-linear com-
bination of monomials. We only need to check if each monomwdalurring inf is divisible by some
generator monomiah;. However, as we show in this paper, the problem becomessiirg when
f is given by an arithmetic circuit. In that case, it turns ddttthe problem is tractable wheénis a
constant and its complexity is similar to that of polynomagntity testing. Given a monomial ideal
I = (my,ma,---,m,)formonomialsn; € Flzy,---,xz,] and an arithmetic circuit’ overTF defining
a polynomialf € F[xy,z9, -, x,], theMonomial Ideal Membershiproblem is to decide if € I.

In this paper, whenever there is an ideal given by a gengraét) it will be assumed that the exponent
of any variable that appear in a generator, is given in unary.

We study different versions of the problem by placing restns on the arithmetic circu@' and
the number of monomials generating the idéaWe also consider a more general version of the
problem where we are allowed only black-box access to thgnpatial f. Our main results are the
following.

- A randomized test for Monomial Ideal Membership whgigiven by an arithmetic circuit and
I = (my,maq,---,my) for constantk. This is analogous to the Schwartz-Zippel randomized
polynomial identity test [Sch80,Zip79]. A similar randarad test forf given by a black-box
when f has small degree.

- Whenk is unrestricted the problem is coNP-hard, but we show thairitthe counting hierarchy.

- The identity testing problem forX /73 circuits has recently attracted a lot of research
[DS05,KS07]. The main open problem is whether there is arghétigstic polynomial-time iden-
tity test for X' 11X circuits. For the special case &fl1 Y circuits with bounded fanin output gate
Kayal and Saxena [KS07] recently gave an ingenious detéstitinnolynomial-time test.
Analogous to their result, we consider monomial ideal mawstip, wheref is computed by a
X 11X circuit with bounded fanin output gate, afid= (mq, mo, - - -, my) for constantt. Using
the algorithm of [KS07] we give deterministicpolynomial-time algorithm for Monomial Ideal
Membership. More interestingly, we develop the algorithna és correctness proof based on
Grobner basis theory. We believe this approach is somesvwmgier and direct. It avoids proper-
ties such as Chinese remaindering in local rings and Heifised)Ithat is used in [KS07]. As a
byproduct, this gives us a different understanding of tleaiiy testing algorithm of [KSO07].

2 Preliminaries

We develop the rudiments of Grobner basis theory. Detaits lwe found in the text [COX92] and
Madhu Sudan’s notes [Su98].

Let z denote indeterminateszq,zo,---,z,}. Let F[z] denotes the polynomial ring
Flzy,x9, -+, z,]. Let R be a commutative ring. A subring C R is anideal of R if IR C R. The

1 In the sense that properties of low-degree multivariatgmwhials are crucial to these proofs.



Hilbert basis theorem [COX92] states that any idea&lf F|xz,x2, - - -, ;] is finitely generatedl.e.
we can expres$ = {>_7_, pigi | pi € Flx1,x2,- -, z,]}, where the finite collection of polynomials
{91, 92, -+, gr} is a generating set (or basis) for

The notion of monomial ordering is key to defining Grobnesdsm We restrict ourselves to the
lexicographic monomial orderinghich we define below. Fa = (a1, as, - -+, a;,) € N™, we denote
the monomiak (' 25?2 - - - 2% by z°.

Definition 1. Leta = (o, ag,---,a,) and 8 = (81, B2, -+, 0,) € N". We saya > {3 if, in the
vector differencex — 3 € N", the left-most nonzero entry is positive. We sa8y> z” (equivalently,
P <z ifa>p.

The lexicographic monomial ordering naturally fixes a legdnonomialLM ( f) for any poly-
nomial f. Let LC(f) denote the coefficient of M (f). Then theleading termof f is LT(f) =
LC(f)LM(f). Using the monomial ordering, we state the general form efdivision algorithm
overFlxy,zg, -, ).

Theorem 1 (Theorem 3, pp.61)[COX92] Let f € F[z] and(f1, f2,-- -, fs) be an ordered-tuple of
polynomials inF[z]. Thenf can be written asf = a; f1 + asfo+ - - - + as fs + r, wherea;, r € F|z],
and eitherr = 0 or r is anF-linear combination of monomials, none of which is divisibly any of

LT(f1), LT (f2), -+, LT(fs)-

The proof of the theorem is constructive. We give an intaitoutline as we use it often in the
paper. Letf denotes the ordering of the polynomigis: f = (f1, f2,-- -, fs). The proof describes a
division algorithm Dividé f; f) which first sortsf by the monomial ordering. The algorithm proceeds
iteratively. It tries to eliminate the leading monomial iretcurrent remainder by attempting to divide
it with the f;’s in the given order. Th¢; that succeeds is the first one whose leading monomial divides
the leading monomial of the current remainder. Finally, mainderr- that survives has the above
property. The algorithm is guaranteed termination as theamoal ordering is a well ordering. The

following time bound for Dividéf; f) is easy to obtain.

Fact 2 (Section 6, pp.12-5]Su98] The running time of Dividg'; f) is bounded by (s []7"_, (d; +

1)°(M), whered; is the maximum degree of among the polynomialg, f1, fa,- - -, f.
If the remainderr output by Dividd f; f) is zero then clearlyf € (f1,---, fs). However, in
general, Dividéf; f) need not produce zero remainder evefi i (f1,-- -, f,) asthe order of division

is important. Thus, it cannot be directly used as an ideal begship test. In order to ensure this
property, we defin&robner basegwith respect to the lexicographic monomial ordering).

Definition 2. Fix < as the monomial ordering, and let C F[z] be any ideal. Then the polynomi-
als g1, 92, - -, g: form aGrobner basior J if J = (g1,92, -+, 9s) and (LT (q1),---, LT (g¢)) =
(LT(J))

The following lemma states that the general division atpani of Theorem 1 carried out w.r.t. a
Grobner basis results in a unique remaindeggardless of the order in which division is applied.

Lemmal. LetG = {f1, f2, -, fs} be a Gbbner basis for an ideal C F[z] and f € F[z]. Then
there is auniquepolynomialr € F[z| such thatf can be written asf = a1 f1 +asfo+---+asfs+7,

for a; € F[z], and eitherr = 0 or r is an F-linear combination of monomials, none of which is
divisible by any oL T'(f1), LT (f2),- -, LT(fs).



By Lemma 1 we can indeed testfifc J given a Grobner basisfi, fa, - - -, fs} for J by comput-
ing Divide(f; f) and checking if the remainder is zero.
The following theorem gives us an easy to test sufficient itimmdto check if a given generating

set for an ideal is already a Grobner basis.

Theorem 3 (Theorem 3, proposition 4, pp.101)[COX92] Let I be a polynomial ideal given by a
basisG = {g1, 92, - -, gs} such that all pairsi # j LM ((g;) and LM (g;) are relatively prime. Then
G is a Grobner basis forl .

Recall from the introduction thatmonomial ideais an ideal generated by a finite set of mono-
mials in[F[z].2

Lemma2 (Lemma 2, Lemma 3, pp.67-68)[COX92] Let I = (my, ma, -, ms) be a monomial
ideal andf € F[z]. Thenf € I if and only if each monomial of is in I. Furthermore, a monomial
m is in the ideal! if and only if there exist € [s], such thatn; dividesm.

An immediate consequence of Lemma 2 is that we can test inndigtistic polynomial time if an
explicitly given polynomialf € F[z] is in a monomial ideal .

In this paper, we are primarily interested in the monomiglaldmembership problem and its
connection taPIT. In the proof of certain results we will also be making use miperties of Grobner
bases.

3 Monomial Ideal Membership

In this section we consider monomial ideal membership whengiven by an arithmetic circuit. We
show that the problem is in randomized polynomial time if tnémof generatorg for the monomial
ideal I is a constant. Wheh is not a constant we show that it is coNP-hard and is contaimed
coAMPP, We leave open a tight classification of the complexity of fhioblem.

Lemma 3. Let, I = (my,ma,---,my) be a monomial ideal iff[z1, zo, - -, xy]. Fori € [k], let
m; = xfilxgﬂe-‘--a:f;". I;ew be ak-tuple given byo = (51, jo,- - -, jx), Wherej; € [n]. Define the
ideal, I = (z,”*,---,z;”*). Thenf € I if and only if,¥o € [n]*, f € I.

Proof. Let f € I. So f can be written a§ = pymy + ugms + -+ + ppmy, Wherep; € F[z]
for all 7. Then clearlyvo € [n]*, f € I,. To see the other direction, suppogeZ I. Write f =
1My + coMsy + - - - + ¢ My, whereM;’s are the monomials of andc¢; € F are the corresponding
coefficients. Asf ¢ I, there is aj € [t], such thatM/; ¢ I. Thus, for alli € [k], m; does not
divide M;. So each of then;’'s contains some:,, such that the exponent af, is greater than the
exponent ofry, in M;. Let {¢,,¢5,---,¢;} arek such indexes. Now consider the id€al, where
w = (1,0y,---, ). By Lemma 2,M; & I; and hencef ¢ I. [

Using Lemma 3, we generalize the Schwartz-Zippel Lemmadora failored for Monomial Ideal
Membership.

Lemma4. Let f € Flz1, 29, - -, z,] be a polynomial of total degre¢and I = (z{*, 252, - -, z*)
be a monomial ideal as described in lemma 3. Fix a finite suBsetF, and letry, ro, - -, 7r,_; be
chosen independently and uniformly at random figm

Thenprob‘jES[f(xthWH y Ly T1,T2, " " - ,Tn_k) S I ’ f g [] S %

2 Indeed, by Dickson’s Lemma an ideal generated by an arpisnabset of monomials is also generated by a finite subset
of monomials and hence is a monomial ideal.



Proof. First we write f = S, @' -~ 2J¥ fo(xhyn, -, n), Wheres = (j1,---,j;). Any term
in the above expression witfy > e; is already in/. Thus, it suffices to consider the sufnof
the remaining terms. More precisely, Let = [e; — 1] x [ea — 1] x --- X [e;, — 1]. We can
write f = Sseadt o a fol@pg, -, @) Whereo = (ji, g2, jk) € A As f ¢ I, not
all f; are identically zero. Choose and fix one suchBy the Schwartz-Zippel lemma [MRO1],

Prob. cs(fa(ri,m2, - rnk) =0 | fa(Trs1, Thro, - 2n) # 0] < \%I'

Notice that for anys = (j1,2,--,jx) € ‘A, the monomialz]' ---zJ* is not in I. Thus,
the polynomial f (1,22, -, zk, 11,72, k) € I iff Yo, fz(r1,re, -, rn_r) = 0. But
fa(ri,ra,- -+, rn_k) = 0 with probability at mosti/|S|. This completes the proof. ]
Theorem 4. Let f € F[z] be given by an arithmetic circu® and the ideall = (mq,ma, -+, my)

generated by monomials;’s wherek is a constant. For such instances Monomial Ideal Membership
can be solved in randomized polynomial times(f*) time).

Proof. First, we construct all the ideal§/; | © € [n]*} as described in Lemma 3. Then for
each suchlz, we check if f € I;. The correctness of the algorithm follows from Lemma 3. Let
Iy = (af',25?,---,x;*). To checkf € I we assign random values t9.1,---,z, from S
and then evaluate the circuit in the ring R = Flx1, 9, - -, xx]/I5. TO evaluate the circuit iR,

we need to compute each gate operation mody)cstarting from the input gates. Notice that, as
(xt, x5? - -+, x*) is a Grobner basis fof;, by Lemma 1 the actual order in which we evaluate the
gates is not important. Let,= Zle e;. Then it is easy to see that the running time of the algorithm
is poly(n, s, e*) (notice thate;’s are in unary). Furthermore, by Lemma 4, the success pilitpaif

the algorithm is seen to be 1 — (d/|S|). Thus it is enough to consider sampling from a Set.t,

|S| = 2d usingO(log d) random bits. ]

When the monomial ideal is not generated by a constant number of monomials the mahomi
ideal membership problem is coNP hard over any field.

Theorem 5. Given a polynomial f as an arithmetic circuit, and a monomial ideal =
(mq,ma, -+, my), itis cONRhard to test whethef € I.

Proof. Indeed, we prove the coNP-hardness evenffgiven by all X’ arithmetic circuit. First we
consider the case when the fididis Q. We give a reduction fron3-CNF. Let /' = C; A Cy A

-+ A Cy is a3-CNFformula over{xy, xs,- - -, x, }, with C; are the clauses. Introduce new variables
{y1,y2, -+, yn} fOr {z1,Z2,---,Z,}. Next, we encode each of the clause as a linear form (sum of
variables). For example, €, = z; V 22 V Z3 then we encode it ag; + x2 + y3. Thus we get

a polynomialC' corresponding taF" : C(z,7) = Hle L;(z,y) , whereL;’s are the linear form
corresponding t@);. Clearly,C(z, §) represents &/ X circuit. Define a monomial ideal, = (z;y; |

1 < i < n). It follows that, if F' is satisfiable then not all the monomials@fare inI. In that case

C ¢ I by Lemma 2. Conversely assume thatZ 1. That means(’ has at least one monomial such
thatm does not contain botl; andy; for anyi. Thus, the variables of: correspond to a satisfying
assignment fof’ (set the variables those are notinto zero).

Now, let the characteristic of the field be finite. The onlygaldhe proof differs from the above
is, we need to encode each clause as a sum of all seven mosoeisdsenting the satisfying assign-
ment of that clause. For example, an assignmiénd, 1} of {1, x, z3} corresponds to a monomial
x1y2x3. Thus a claus€'; = x1 V z9 V Z3 Will be encoded as a sum of all possible monomials except
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y1y2x3. Note that the polynomial’ corresponding td” is represented by A 3 IT circuit. The rest of
the argument follows exactly as above. [

Next, we show some upper bounds for Monomial Ideal Membpnatien the number of mono-
mial generators is not restricted to a constant.

Theorem 6. 1. ForF = Q, Monomial Ideal Membership is itcoAMP? where the input monomial
ideal I = (my,ma,---,my) is given by a list of monomials anfde F[z] is given by an arithmetic
circuit C.

2. ForF = F,, Monomial Ideal Membership is icoNPYOtP,

Proof. For the first part, suppode= Q andC is the input arithmetic circuit computing € F[z] and
the monomial ideal is (my,ms, - --,m;). We'll show thatNonmembershijs in AMPP . It suffices
for the AMPY algorithm to exhibit a nonzero monomial of f such thatm & (my,ma,---,my).
l.e. m; does not dividem for i = 1,2,--- k. The base AM machine (call #/) will guess such
a monomialm = z{'z5?--- z&» by nondeterministically picking the tuple,---,e,) € N and
check thatm,; does not dividem for all 4. It remains to verify thaitn is a nonzero monomial of
f. W.l.o.g. we can assume th#te Z[z]. We will describe a BpP algorithm that takes as input
(C,m) and makes onetP query to decide ifn is a nonzero monomial irf. Write f as a finite
sum f = Y- nn CaZ®. Since the input ta” are the indeterminates and constants, the numbers
are bounded in absolute value BYf, where the size of{ € Z* in binary is bounded by some
polynomial in input size. Now, we observe that#£ 0 iff m occurs inf, wheree = (e, ea, -+, €,).
The BPP machine guesses a random pringé polynomial size, where the size is chosen suitably,
so thate; # 0 iff ¢z # 0(modp) with high probability. Now we define thg¢:P query that the BPP
machine will make by defining a suitable NP machisie The input toN is the triple(m, C, p) and
the number of accepting paths has the propadsy (m, C,p) = cz(modp). Such an NP machine
N would clearly suffice. We now define the NP machive W.l.0.g. we can assume that each gate
of C has fanin two and is either a multiply gate or a plus gate. Ss@here are plus gates irC.
The NP machineV nondeterministically branches inh computation paths, where on each path it
picks exactly one of the two inputs to the plus gate. As a teenleach of th@' computation paths
N has picked a multiplicative subcircuit ¢f. Let 7 € {0,1}' denote such a computation path of
N and letC’; denote the corresponding multiplicative subcircuitbfNotice that eaclt’,, defines a
monomial with a coefficient,m., and fromC,. in deterministic polynomial time we can compute
m, ande,(modp). Next, machineV proceeds as follows: ., = m thenN extendsr into ¢, modp
accepting computation paths, and otherwiéeejects alongr. Clearly,accy (m, C, p) = cz(modp).

For the second part wheh = I, the proof is similar. The crucial difference is that we do not
need to evaluate the circuit modulo a randomly chosen pimaghermore, we only need the number
of accepting paths aV modulop. Hence a MogP oracle suffices with an NP base machinem

4 Monomial Ideal Membership for X IT X circuits

Consider instance§f, I') of Monomial Ideal Membership whergis given by a¥'I7 X circuit with

top gate of bounded fanin add= (my,mas, - -, my) a monomial ideal for constait By Lemma 3
this problem reduces to testingjfifis in a monomial ideal of the formh = (z{*, 252, - - -, 2;*). As the
quotient ringF[z1, xs, -, x]/I is a local ring andf € I if and only if f = 0 over the local ring
Flzq,x9,- -+, x| /I we can apply the Kayal-Saxena deterministic identity #€StJ7] for such¥'[7 X

circuit over local ring3 to check this in overall time polynomial in the circuit size.

3 More precisely, over local rings that allow polynomial-érarithmetic in them.



However, in this section we develop the algorithm and itgaminess proof based on Grobner
basis theory. The algorithm is essentially from [KS07]. Bwg Grobner basis approach is somewhat
simpler and direct. It avoids invoking properties such ain€se remaindering in local rings and
Hensel lifting. The added bonus is that we get a differenteziness proof for the Kayal-Saxena
identity test.

Definition 3. A X1 circuit C' with n inputs over a fieldfF computes a polynomial of the form:
C(z1,22, ) = Soby [15) Lij(@1, @2, -+, 2,), wherek is the fanin of the top gate, andd;
are the fanins of thé differentI gates andL;;'s are linear forms oveff'[z, z2, - - -, x,).

First, we transform the circu@ into another circui’ as follows: LetL;; = >~ | a;jeay + (3 for
aijt, 8 € F. We replace each sudly; by Lj; = > i_ | aijize + By, wherey is a new indeterminate.
Let d be the maximum of the fanins of thié gates. For &I gate of fanind; introduced — d; new
input fanin wires each carrying.

Proposition 1. For I = (z7*,25?,---,2*) and aXII ¥ circuit C' defined as above; ¢ I if and
only if ¢’ € («f*, 22, -+, aF y — 1).

Notice that in the process of making this transformationréiseilting ideal is not a monomial ideal
any more.

Thus, we can assume that in the cirdlittself everyL;; is of the form}"}" , oy and the degree
of the polynomial computed at ea¢hgate isd. We can naturally associate £g; its coefficient vector
(1,00, -+,ay) € F™. A collection of linear forms isndependenif their coefficient vectors forms a
linearly independent set if".

First we fix some notation. LeR denote the polynomial rin@ [z, 2, - - -, zx|, wherek will
be clear from the context wherB is used. Fora = (epi1,ert2, - ,en) € N*7F let 2% de-
notex, "' z}"') - - 2&r. The only monomial ordering we use is the lex-ordering defiimeDefini-
tion 1 w.r.t. the orderr; < z2 < --- < z,,. We can consider aiff € Flzy,---,x,] as a poly-
nomial in R[xy41, Tp4o, - - -, T,). More precisely, we can writ¢ = > . . —» AaZ%, WhereA, €
Flz1, 22, -, x| \ {0}. Leta; be such that! is the lex-largest term such thdt;, # 0. Then we
denote theRk-leading termA, %t of f by LTg(f). Likewise, LMg(f) = z** andLCRr(f) = A
is the R-leading monomial and?-leading coefficient off. For any f,g € F[zy,---,x,), it is clear
that LMg(fg) = LMg(f)LMr(g), LCr(fg) = LCr(f)LCR(g).

Let f € Flzy,---,2z,] and I = (f1, fo, -+, f¢) be an ideal such that eacfi is in
Flz1,x9, -+, zk]. Then the following easy lemma states a necessary and eafficondition forf
to beinl.

Lemmab. Let I C F[z| be an ideal generated by the polynomidis fo, - - -, f, such that for all
i € [0], fi € Flz1,22,---,xx). Letg be any polynomial if[z]. Write g = >~ n-k AaZ®. Then
g € Iifand only if for alla, Ag € I.

Consider polynomialg, g € Flzy,x2,- - -, z,] and an ideal such thay € (I, f). The following
useful lemma gives a sufficient condition grunder which the remainderobtained when we invoke
Divide(g; f) (of Theorem 1) is in the idedl.

Lemma6. LetI = (f1, f2,---, f¢) be an ideal inF[zy,---,x,] where f; € Flzy,---, 2] = R.
Supposef is a polynomial such thak M (f) contains only variables froMizy, 1, g2, -, 2, } (i.€.
LM(f) = LMg(f)). Then for any polynomia4 in the ideal (I, f) we can writeg = ¢qf + r for
polynomialsqg andr such that- € I and no monomial of is divisible byL M ( f).

7



Proof. The lemma is an easy consequence of the properties of thdeDalgorithm explained in
Theorem 1. Notice that Divide; f) will stop with a remainder polynomiaisuch thay = ¢ f+r with
the property that no monomial efis divisible by LM (f). However, we only know that € (I, f),
because both andq f are in(I, f). We now show that must be in/. First, as- € (I, f) we can write
r = Zle aifi + af, for polynomialsa; anda. Following Lemma 5, we write;; = >, a;az* for
eachi and alsaz = >, a5z®. Notice that we can assunag ¢ I for all nonzeroag. Otherwise, we
can move that term to the’ a; f; part. SinceL M (f) does not divide any monomial of it follows
that LM (a f) does not occur in a nonzero termsofTherefore,LT(af) must be cancelled by some
term onle aif;- Clearly, LT (af) is of the formc- a5z for somea, 3, whereLC(f) = ¢ € F and
ag = LCg(a). Now, inY_%_, a; f; the coefficient ofi™ is 3¢_, aja f; which must be equal tec- aj.
Sincec € F it follows thata is in I contradicting the assumption that none of the nonzgris in /.

[ ]
Again, letl = (f1, fa,- -+, f¢) such that thef; are inF[z1, o, - - -, z]. Consider two polynomials
f and g such thatL M (f) contains only variables from 1, x5, --,2, and eitherLM (f) >

LM(g) or LMg(f) = LMg(g) andLCg(g) € I. Theng is in the ideal(I, f) ifand only if g € I.

Lemma?7.Let I = (fy,fo, -+, fs) be an ideal inF[zq,---,x,] such that eachf; is in
Flz1, 29, -+, 2,] = R. Supposef is a polynomial such thal.M/(f) is over the variables only
from {xgi1, ko, -, 20} (.. LM(f) = LMg(f)). Then for any polynomiaj such that either
LM(f) > LM(g), or LMgr(f) = LMg(g) andLCg(g) € I, g isin the ideal(I, f) if and only ifg
is in the ideall.

Proof. Suppose; € (I, f) andg ¢ I. We can writeg = a + bf, for polynomialsa andb, where
a € I. Also, we can assume thia¢Z I, for otherwisey € I and we are done. Lét=>"_ ok baZ®,
wherebs € Flzq, 22, -+, x| and we can assunig ¢ I for all & (otherwise we can move that term
as part ofa). Notice thatLTr(bf) = LTr(b) - LTr(f) = cbgLMg(b)LMR(f) = cbzz7 for some
7 and for somebs, wherec = LCg(f) € F. Sincebs ¢ I it follows that LCr(bf) ¢ I. Write
a = senn-t aaZ% By Lemma5a € I implies eachus € I. In particular,a; € I and isnotequal
to —LCg(b- f) = —cbg asbg ¢ I. Thus, the monomial Mg (bf) survives ina + bf. It follows
that LMg(g) = LMpg(a + bf) > LMg(bf) > LMg(f) which forcesLMpr(f) = LMg(g) and
LCRr(g) € I by assumption. Ib ¢ R thenLMpg(b- f) > LMg(f) which impliesLMpg(g) >
LMg(f) contradicting assumption. if € R thenLTr(g) = LTr(a + bf) = (as + b)LMg(f) for
someag, Which forcesh € I because both Tz (g),as € 1. |

Let I C Flxy,---,x,] be an ideal and, go are two polynomials such that is in the ideals
(I,g1) and (I, g2). Using some Grobner basis theory we give a sufficient cmmdidn 7, g; and g
under which we can infer thatis in the ideal(Z, g1 g2)-

Lemma8. LetI = (f1, fo, -, f¢) be an ideal ofF[xy, zo, - - -, x,], Where f; are polynomials in
Flxy,xo,- -, zx]. Suppose; and g, are polynomials such thagy = Hfil(xkﬂ — «;), where each
«; is a linear form overry, xo, - - -, 2%, and the leading ternl.7'(g1) of g; has only variables from

{Tkt2,Tt3, -, 2n}t. Thenf € (I, gigo) ifand only if f € (I, g1) and f € (I, g2).

Proof. The forward implication is obvious. We prove the revergedion. Suppos¢ € (I, ¢;) and
fe,g).Asf € (I,ge), we can writef = a + bge, Wherea € I andb is an arbitrary polynomial.
Notice that it suffices to provig; is in the ideak 7, g1 g2). Now, sincef € (I, g;) anda € I it follows
thatbge = f — a € (I, g1). By applying Lemma 6 to ideal and polynomialy; observe that we can
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write bge = ag1 + 3, whereg is a polynomial in/ such that none of the monomials @fis divisible

by LT (g1). We have the following equation- H?il(mkﬂ — ;) =agr + 0.

Substitutingz,+; = o in the above equation, we gétg1)|s, =1 = —Bley1=as- NO-
tice that LT (g1]z,,,=a1) = LT(g1), @asLT(g1) contains variables only from; o, - - -, z,. Thus
the above substitution implied7' (5|, =) = —LT((@91)|z)i1=ar) = —LT(zy=ay) -

LT(91|Ik+1=a1) = _LT(a|£Bk+1=a1) ' LT(gl)'

Thus LM (g1) divides LM (84, ,=a,). On the other hand, sinceM (g1) does not divide any
monomial of 3, LM(g1) cannot divide any monomial aEM (5., ,=a,) @s the substitution only
introduces variables fronizy, - - -, 21 }. This gives a contradiction unleg,, ., —., = 0, which in
turn impliesa|z, , ,—a, = 0.

Thus we have proved thét; 1 — «1) is a factor of bothw and 3. This leads us to the following
similar identity:b- H?QZQ(;%H — o ) = ongi + fi, whereay = of (211 — o) andpy = /(g1 —
aq). Clearly, by repeating the above argument we finally fyet,o’g; + 3/, for some polynomials/’
and’ wherea = o’go and = 3 go. Putting it together we gélyo = o/g192 + 392 = o’ g192 + .
As g € I, it follows thatbg, is in the ideal(I, g g2). This completes the proof. [

LetI = (P, P, -, P;) be an ideal inFlxy,---,z,] such thatP, € Flxy,x9,---,2;] and
LT(P,) = % for eachi. Fori # j the leading termd.T'(P;) = % and LT(P;) = x?j are
clearly relatively prime. Therefore by Theorem 3, it follethat{ P, P», - - -, Py} is in fact a Grobner
basis for/. We summarize this observation.

Lemma9. Let I = (P, P, ---,FP;) be an ideal inF[zq,---,z,] such that eachP; is in
Flz1, 22, -, 2] and LT(P;) = 2. Then{ P, };c| is a Grobner basis forl.

Let f € F[zq,z2, - -,z be a given polynomial and be the maximum ofdeg(f) and
deg(P;),1 < i < k. We can invoke Dividéf; P, P, -, P;) (Theorem 1) to test whethef € 1.
By Fact 2 the running time for this test@(d*).

Now we state the main theorem of this section.

Theorem 7. Let C € Fxy,z2---,2,] be given by aX 11X (¢,d) circuit for a constant/ and

I = (mqy,maq,---, my) be amonomial ideal for constakt For such instances, Monomial Ideal Mem-
bership can be checked in deterministic polynomial timec8igally, the running time is bounded by
nkpoly(n, dma:c{&k})_

By Lemma 3 it clearly suffices to give a polynomial-time deteristic algorithm for testing if a

XI1X(¢,d) circuit C'is in a monomial ideal of the forre(", - - -, z7*). As explained in the beginning
of this section, we transform the circditto C’ in which all linear forms are made homogeneous using
a new indeterminatg, andC € I ifand only if C’ € (z7*,---,z;*,y — 1). In fact, in the following

theorem we prove a stronger result which along with LemmaeRIgiTheorem 7.

Theorem 8. Let C be a givenY'I1 X (¢, d) circuit for a constant and I = (P;, P, ---, P;) be an
ideal inF[zq, - -, z,]| suchthatP;, € F[zq,zo,- -, z;]and LT (P;) = azf for eachi. Further, suppose
d; < dfor all i € [k]. Then testing it € I can be done deterministically in tinpely(dme= {6k},

Proof. We first describe the algorithm and then prove its corresstraend running time bound.

As explained in the beginning of the section, we can assuateathlinear forms appearing iy
are homogeneous ard itself is a homogeneous degrégolynomial. By Lemma 9, the generating
set forl is a Grobner basis. L&t (z1, 72, -+, x,) = Yoi_, Ti. Foralli € [¢], T; = [[{_, Li;, where
L;;'s are the linear forms ovef[x, zo, - - -, 2.



If ¢ =1,thenC = T;. Letg(x1,z2, - -, zi) be the product of those linear forms'Bf using only
variables from{xz1, o, - - -, x3,}. Clearly,g(x1, 2o, - - -, ;) has at most’* monomials. We explicitly
computeg by multiplying out all such linear forms. By Lemma 5, cleaéflye I ifand only if g € I,
which can be checked in time pghf) following the Fact 2.

So assumé > 1. If all the linear forms appearing ify,, 75, - - -, 7, are only oveKx1, xo, - - -,z },
then again the ideal membership testing is easy. Becausieyérpoly(d*) we can writeC itself as
anF-linear combination of monomials iny, zo, - - -,z and apply Fact 2 to check jf € I in time
poly(d*).

Now we consider the general case. By inspection we can waith’® = 3,7/ where thes; are
products of linear forms over onby;, x2, - - -, x,, whereas each linear form # involves at least one
other variablé If 3; € I (which we can test in polynomial time using Fact 2) we dropttven 7;
from the sumsz:1 T;. This enables us to writ€' asC = (1] + (o145 + - - - + BT, for some
m < ¢, where we have assumed for simplicity of notation thag I for first m terms.

As before, letR = F[zy,z9,- -, x]. W.Lo.g, assume thakMp (1) > LMg(T)) for all i €
[2,3,---,m]. We can determind.Tr(T!) for eachZ/ in polynomial time since they are given as
product of linear forms. Thud,Mz(T}) > LMgr(C). Now, letr € R be the coefficient of. M (1)
in C. We can compute in polynomial time by computing the coefficient of LMz (77) in each
T! and computing = > ", 5;v;. Then we check that € I (which is a necessary condition for
C to be inI by Lemma 5). By Fact 2 we can cheeke I in time poly(d®). It is clear that, either
LMg(T]) > LMg(C) or LMg(T]) = LMg(C) andr € I. Thus, by the Lemma € € I if and
only if C' e (I,T7).

Next, we group the linear forms ifi[: let, 7] = 711742 - - - T14, such that for alf € [t],

T = (LZ + mzl)(Lz + mi2) T (Ll + misi)’

where {L;}!_, are distinct linear formsin Flzyi1,---,z,] and m;;'s are linear forms in
Flzq,-- -, zk]. Notice that the polynomial®;; are relatively prime to each other.

We next compute linear transformationgo, o9, -+, 0} from F” to F™ with the following
property: fori € [t], o; fixes {xi}le, mapsL; to zx; and maps{zyio, Tgt3, -, Ty} 10O SOME
suitable linear forms in such a way that, is an invertible linear transformation. As;’s are over
{Zky1,- -+, 2}, itis easy to see that sueh exist and are easy to compute.

LetC = ZJE[Z}\{I}T’J For: € [t], letCy; = Ji(Cl) and letly; be the ideal([, JZ(T12)> The
algorithm will now recursively check for each of tiel7 X’ (¢ — 1,d) circuits C1;, thatCy; is in the
ideal I1; and declare” € [ if and only if Cy; € Iy; for eachi.

Notice that the ideall;; has generating set = {P,, P, -+, Py, Pxy11}, Wwhere Py, €
Flx1, 29, , 2gr1] @nd LM (Pyyq) = xZ’fll. By Lemma 9,G is a Grobner basis fak;.

The correctness of the algorithm follows directly from th#édwing claim.

Claim. Foreachs : 1 < s <tC € (I,T11T12---T1s) ifand only if Cy; € I; for 1 <i < s.

In particular,C € (I,T7) ifand only if Cy; € I; for 1 <i <.

Proof of Claim:The forward implication is easy: & € (I,T11T12--- T1s) then clearlyC' € (I, Ty;)
foreachl < i < s. As eachy; is aninvertible linear map it follows in turn that(C) € (I, 0;(T1;)) =
L for 1 < i < s.SinceCy; = 04(C) — 0;(Th) ando;(T1) € (0;(T1;)) it follows thatCy; € Iy; for
1< <s.

We prove the other direction of the claim by induction©iThe base case= 1 is trivial. Induc-
tively assume itis true fos — 1. L.e. if Cy; € I1; for 1 <i < s—1thenC € (I, T11T12 - Ti(5-1))-

4 |f there are no linear forms contributing to the prod@g(respectively;) we will set it to1.
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We now prove the induction step for. SupposeCy; € I; for 1 < i < s. LetT =
T11Tha - - Ti(s—1)- By induction hypothesis we haw€ € (I,T). Furthermore(C:s € I;5 implies
by definition thatC' € (I,T5). Now we apply the linear map, to obtainos(C) € (I,04(T")) and
0s(C) € (I,05(T15)). The mapo ensures thalT'(T,) is of the formmzingls. Furthermore, by the
definition of o, it follows that LT (o5(7")) has only variables ikzy o, - -, z,}. Lettingg; = o4(T)
andgs = o5(T15) in Lemma 8, it follows immediately that,(C) € (I,0+(T - T15)) which implies
the induction step since; is invertible.

Claim. The above algorithm runs in time pdgly, a6k},

Proof of Claim: To analyze the running time, we need to observe the followangirrence relation :
let T'(¢,n) is the time required to test € I. It is easy to see from the description of the algorithm
that, 7'(¢,n) < tT(¢ — 1,n) + poly(n, d*). HenceT'(¢,n) = poly(n, d™®{¢+}) ast = O(d). =

Theorem 7 is an immediate consequence of Theorem 8] For(0), Theorem 7 is actually the
Kayal-Saxena deterministic test with a new proof.

5 Monomial Ideal Membership for black-box polynomials

In Theorem 4 we have shown that monomial ideal membership randomized polynomial time
when f € F[z] is given as an arithmetic circuit and the monomial idealV&giby a constant number
of generator monomials. We now show that eveffi i§ accessed only vialalack-box if the degree

of f is polynomial in the input sizeve can still solve monomial ideal membership in randomized
polynomial time (assumind is generated by constant number of monomials). In [OT88h-Be
and Tiwari gave an interpolation algorithm for sparse matiate polynomials over integers. Our
algorithm is an easy application of their result. We firsatetheir result in a form suitable for us.

Theorem 9. [OT88] Let f € Z[xy,z2,---,z,] be at-sparse multivariate polynomial given as a
black-box (byt-sparse we mean the number of monomialg is bounded by), d be the degree of
f, andb be a bound on the size of its coefficients. There is a detesticiralgorithm that queries
the black-box for values of on different inputs and reconstructs the entire polynonfiah time
poly(t,n,d,b).

Ben-Or and Tiwari’s result directly gives a deterministadymomial time algorithm for Monomial
Ideal Membership whelf is at-sparse black-box polynomial ovér, and is any monomial ideal.
The algorithm simply reconstrucisand checks if each of its monomials isfin

Next, suppose is a black-box polynomial of small degree ahds a monomial ideal generated
by constant number of monomials.

Theorem 10. Let f € Z[z] of degreed given as a black-box such thais a bound on the size of its
coefficients. Suppode= (m;,mo, - - -, my) for constantt. Then we can test if € I in randomized
timepoly(n*, d*,b).

Proof. By Lemma 3, it suffices to give a randomized polynomial tifgoathm for testing iff € I,
wherev € [n]F. W.l.o.g. assumd; = (z{',252,---,27%). Fix S = {1,2,---,s} and assign ran-
dom values{ry, 72, -+, 7n_g} t0 {Tp41,---,2,} from S. Note thatf(x1, 2o, - -, 21, 7) is a dk-
sparse polynomial. By Theorem 9 we can reconstfifat,, zo, - - - , 1, 7) in poly(n, d*, b) time. Let
g(x1, e, -+, x1) = f(x1, 29, -+, 2, 7). Our randomized algorithm declargsc I if each mono-
mial of g is in I. By Lemma 4, it follows that the success probability of thgoaithm is at least — g.

[ ]
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6 Bounded variable Ideal Membership

In this section we discuss our results for the ideal memljegstoblem when/ = (f1,-- -, f¢) such
that f; € Flxy,---, x| for a constant and the polynomialf is given by an arithmetic circuit. We
call this variantboounded variable Ideal Membership

A pioneering result in polynomial Ideal Membership testisgiermann’s algorithm that is based
on the following theorem.

Theorem 11 (Hermann's theorem). [He26] Consider polynomials f, fi, fo, -, fm €
Flzy, 29, -+, 2] for a field F such thatmax{deg(f1),deg(f2),---,deg(fm),deg(f)} < d.
If fis in the ideall = (fi,f2,- -, fm) then f can be expressed ap = > ", g;fi where
deg(g;) < (2d)?" for each:.

Supposef is given explicitly as afi-linear combination of terms. Using the bounds of Hermann’s
theorem, Hermann'’s algorithm treats the coefficients; @s unknowns and does membership testing
in (f1, f2, -+, fm) by solving a system of linear equations W'nm(2d)’“2k unknowns. This can be
solved using Gaussian elimination in time’() (24)0(*2"),

Similarly, for an explicitly givenf € F[zq,---,z,], n > k, using Lemma 5 we can apply Her-
mann’s algorithm to test if membership éfin (f1, f2,- -, fm) in time polynomial in the size of
andm©® (2d)°*2") I £ is a constant, this gives a polynomial running time bound.

A natural question here is the complexity of Ideal Membegrshihen f is given by an arithmetic
circuit whose membership we want to test in idéat (f1, fo, -, fm), Wheref; € Flxq, - -, xx] for
constantc. Recall that in Theorem 4 we showed a similar problermionomialideals with constant
number of monomials is in randomized polynomial time. Irsthéction we will restrict ourselves to
polynomialsf computed by arithmetic circuits of polynomial degree inithgut size. We can follow
essentially the same proof idea in the Theorem 4. Noticefthat! if and only if f = 0 in the ring
Rlxgi1, T2, +,Tyn] Where R = Flxq, 29, -+, z]/I. We need the following proposition about
zeros of a univariate polynomial over an arbitrary ring.

Proposition 2. Let R be an arbitrary commutative ring containing a fididIf f € R|[x] is a nonzero
polynomial of degreé then f(a) = 0 for at mostd distinct values of, € F.

Proof. Supposei,as,---,aq11 € F are distinct points such thata;) = 0,1 < < d+ 1. Then
we can writef (z) = (z — a1)q(z) for q(z) € R[z]. Now, dividing ¢(z) by x — as yields ¢(x) =
(z — az)q () + q(az), for someq'(z) € Rlz]. Thus,f(z) = (z — a1)(z — a2)q () + (z — a1)q(az).
Puttingx = as in this equation givesas — a1)q(a2) = 0. Butay — a; is a nonzero element ifi and
is hence invertible. Therefore(as) = 0. Consequentlyf(z) = (z — a1)(x — a2)¢'(z). Applying

this argument successively for the othgfinally yields f(x) = g(x) Hfjll (x —a;) for some nonzero
polynomial g(z) € R[z]. Since][[**! (z — a;) is a monic polynomial, this forcedeg(f) > d + 1
which is a contradiction. ]

Using an induction argument as in [TZ06, Lemma D.3], we can easily derive the following
analog of the Schwartz-Zippel test for arbitrary commutatings.

Lemma 10. Let R be an arbitrary commutative ring containing a fididLetg € R[z1, 22, -, )
be any polynomial of degree at mastf g # 0, then for any finite subset of IF we have

md
Prob, ea,...amealg(ar,az, -, am) =0 g # 0] < T4
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Now we describe our ideal membership test: Choose arffl fixF” of size2(n—k)d and randomly
assign values fron$' to the variables iz 1, - - -, z,, }. Notice thatf, given by a polynomial degree
arithmetic circuitC, is in [ if and only if f = 0 in the ring R[xky1, Tk12, -+, Tn] WhereR =
Flxy,zo,- -+, 2x]/I, since the given generating set fbruses only variables, - - -, x;. After the
random substitution we are left with an arithmetic cira@i{z1, - - -, z;). Notice that, by Lemma 10
if f & IthenC'(x1,---,2;) ¢ I with probability at leastl /2. We now need to test whether the
polynomial computed by’ is in I. As C’ is of polynomial degreel and k is a constant, we can
explicitly written down the polynomial that it computes as B-linear combination of at most”
monomials. We are now left with the problem of testing-ife (f,---, f¢) which we can do in
polynomial time using Hermann'’s algorithm &ads a constant. Similarly, Theorem 10 for black-box
polynomials can be easily extended to bounded variabld Membership.

Finally, whenf is given by aX'I1 X circuit with bounded fanin output gate, we can easily argue
by following the algorithm in the proof of Theorem 8 that wdlvend up with the problem of testing
if a polynomialg given by all ¥ circuitis in anideal f1, - - -, f¢), wheref; are all inF[xq, - - -, 4] for
a constant. It is easy to see that we can apply Hermann’s algorithm tolctigs in time polynomial
in (m + n + d)°) which is a polynomial time bound asds constant. We summarize this result in
the following theorem.

Theorem 12. Let I = (fy, f2, -, fm) be an ideal inF|xy,x9,---,x,] Where eachf; €
Flxy,zo,- -, 2] for constantk. If f be a polynomial given by an arithmetic circuit of polynomial
degree, then in randomized polynomial time we can tegt & I. This result holds even if is
given by a black-box and the degree fofs polynomial in the input size. Further, jfis given by a
YIIX(¢,d) circuit with ¢ constant, then we can test whethfee I in deterministic polynomial time.

7 ldentity Testing for a restricted class of X 1T 3 IT circuits

In this section we examine the possibility of extending [KE@ certain depth 4 circuits. We consider
certain restricted 11 X IT circuits with the topX' gate having bounded fanin.

Any 11511 circuit is of the formC' = 3¢, T;, with T; = [[{_, P;;, for polynomials?;;. We
now define aestricted subclasef circuits which we denote by’ I7 X' 11(¢, d, ¢). A circuit C'is in this
class if

(a) The fanin¢ of the output)’ gate is a constant.

(b) For each variable; occurring inP;;’s, the term of maximunx;, degree is a power aof;, only.
(c) Any variablez;, occurs in at most different P;; for anys: € [¢], wherec is also a constant.
(d) Furthermore, each;; contains at most different variables.

We show that the bounded variable Ideal Membership probten¥f7 X 11(¢, d, c¢) circuits can
be solved in polynomial time. As a consequence we obtainermétistic polynomial-time identity
testing algorithm for such circuits. The key observatiotihesnext lemma which generalizes Lemma 8.

Lemma 11. LetI = (fy, f2, -, f¢) be an ideal off[z1, zo,- - -, x,], Wwhere f; are polynomials in
Flxy,- -, z]. Suppose; and g, are the polynomials such that:

1. LM(g1) = %, wherei € {k + 1,k +2,---,n}.
2. LM(g2) < LM(g1) and LM (g2), LM (g1) are relatively prime.

Thenf € (I,g1) and f € (I,g2) ifand only if f € (I, g192).
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Proof. The reverse implication is obvious. We prove the forwargation. ASLM (g2) < LM (g1)
andLM/ gq), LM (gy) are relatively prime, it follows thajs € Flzq, 22, -, zi—1].

As f € (I,g2), we can writef = a + bgs, Wherea € I andb is an arbitrary polynomial.
Furthermore, by Lemma 6 we can write; = ag; + 3, with € I such that no monomial of
is divisible by LT'(g1). Thusg, dividesag; + (. Let p be any irreducible factor af,. As the ideal
(p) generated by the polynomial is a prime ideal ofR = F|xy,z9,---,2;-1], the quotient ring
D = R/(p) is an integral domain. Ap dividesag; + 3, it follows thatag; = —f in D[z;]. We
will now argue that3 anda must be both zero i |x;], which will imply that p divides botha and
3. Note thatLMp(B) = —LMp(«) - LMp(g1) (by comparing theit:; degrees in the rind[x;]).
But LMp(g1) = LM (¢1) = xf from the statement of the lemma. Considerin@s a polynomial
of R[z;], notice that3 has degree strictly less thah since LM (g1) = azf does not divide any
monomial of 3. Sincep € R = F[x1, z, -, x;—1], it follows thatg as a polynomial ofD[z;] also
has degree strictly less than Thus,LMp(g1) can not divideL Mp(/3). The only possibility left is
thata = 8 = 0 in D[z;], which implies thap dividesa and .

This leads us to the following similar identityy), = 191 + 61, wherea; = o/p andpy = 3/p.
Clearly, by the same argument applied to each irreduciliorfeof g (with repetition) we finally
getb = o’gy + ', for polynomialsa’ and 3’ wherea = o/g; and3 = 3 go. Putting it together,
bge = g1 - g2+ g2 = &’ g1 - g2 + 8. As 3 € I, it follows thatbgs is in the ideal(l, g1 g2). This
completes the proof. [

Now we present the polynomial time algorithm for boundedalae ideal membership instances
(f,I), where the polynomiaf is given by aX'I1X'II(¢,d, c) circuit. The polynomial-time identity
test for Y11 X 11 (¢, d, ¢) circuits is a corollary.

Theorem 13. Let C be a givenXIIXII(¢,d,c) circuit and I = (fy, fa,--, fm) be an ideal in
Flzq,---,xz,] such that eaclf; € Flxy,x9, - - -, x| Wherek is a constant. Then testingdf € I can
be done deterministically in tim@oly(n, d).

Proof. We first writeC = T, + 15 + --- + Ty, where eacl; = H?zl P;;. The cas¢ = 1 and the
case when each; is only over indeterminates, - - - , z; can be directly handled using Hermann’s
algorithm (Theorem 11), in time pofy2").

We describe the general case. lRet= Flxy,x9, -, zx]. We can writeC' = 11 + 5215 +
<+ + BT, for somem < ¢, wherep; € Randg; ¢ I, andT] are nontrivial polynomials in
R[zg41,- -+, x,]. We can easily determingTz (7)) for each; from the polynomialsp;;, and rear-
range thel”! so thatL Mg (T}]) > LMg(Ty) > - > LMg(T,).° Thus,LMg(T]) > LMg(C). The
coefficientr of LMg(T7]) in C is also easily computable in polynomial time: we find the ot
v; of LMp(T{) in T} fori = 1,2,---,m. Note thatr = >_"", ;7. If » # 0 then notice that ¢ I
impliesC ¢ I. We check ifr € I using Hermann’s algorithm (Theorem 11) in time p(@i%/k). We
need to continue the testifc 1. That means eithet My (77) > LMg(C) or LMr(T]) = LMg(C)
andr € I.By Lemma 7, e Iifand only if ", 3,1/ € (I,T7).

Next, we group the factorB;; occurring inT} according to the leading monomials. &t. be the
product of all factorsP;; of 77 such thatLM (P,;) is a power ofz,, forr = k + 1,k +2,-- -, .
For an index- if there are no such factor8,; then setl’}, = 1. Thus we havel] = Hf:kH T,
where some of the factof;,. are1 and can be ignored. Clearly, for dl},. # 1 andT; # 1 we have
LM(TlT) > LM(Tls) if r > s.

5 Notice the conditior(b) in the definition of X1 XTI (¢, d, ¢) circuit.
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LetCy = ", 3T). For eachr such thatl}, # 1, letI;, denote the idea|l, T3,). Notice that
Ty, is a polynomial over at most different variables. The algorithm recursively checkg'ifis in
the ideall;, for each ideall;,, and declare¢’ € I if and only if Cy € I;; for eachi. Notice thatC; is
aXIIXII(¢—1,d,c) circuit and the generators &f;’s are now ovek + ¢? indeterminates (at most)
which is still a constant.

Claim. Cy = Y"1, 5T} € (I,T7) ifand only if C; € I, for eachr such thafly, # 1.

Proof of Claim: We first write 77 as T} = Ti;T1i, - - - Thi,, Where allTy;, # 1. Letting go =
Tvi, T, -+~ Ty, , andg; = T3;, in Lemma 11, we get thafy, € (I,7]) = (I, g201) if and only
if Cv € I;, andCy € (I,Ty;,Thi, ---Thi, ). A similar repeated application of Lemma 11 yields
Cy € (I,T7) ifand only if Cy € (I, Ty;;) for eachj = 1,---,t. This completes the correctness proof
of the algorithm.

We now show that the time bound is pOty dmax{“k}). LetT'(¢,d,n) denote the time taken to
testif C' € I. The algorithm description implies the following recurcerrelation forl” from which
the running time bound is immediate.

dT(¢,d,n) + poly(n,d?*) if £ > 1;

T, d <
(””)—{pmwmdﬂ) if =1
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