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Abstract

In a breakthrough result, Razborov (2003) gave optimal fdeginds
on the communication complexity of every functidrof the form f(x, y) =
D(|x A y|) for someD : {0,1,...,n} — {0,1}, in the bounded-error quan-
tum model with and without prior entanglement. This was prbby the
multidimensionatliscrepancy method. We give an entirelfféient proof of
Razborov’s result, using the origin@ne-dimensionadiscrepancy method.
This refutes the commonly held intuition (Razborov 2003t ttne original
discrepancy method fails for functions such as DISJOINTRES

More importantly, our communication lower bounds hold fomach
broader class of functions for which no methods were aviglablamely,
fix an arbitrary functiorf : {0, 1})"/? — {0, 1} and letA be the Boolean matrix
whose rows are each an application foto some subset of the variables
X1, 7 X1, - - ., Xn, —Xn. We prove that the communication complexity Afin
the bounded-error quantum model with and without entangieris Q(d),
whered is the%—approximate degree df From this result, Razborov’s lower
bounds follow easily.

Our proof technique is novel and has two ingredients. The i&s
a certain equivalence of approximation and orthogonafit§uclideann-
space, which we establish using linear-programming dualihe second is
a new construction of suitably structured matrices with kmectral norm,
which we realize using matrix analysis and the Fourier fizins overzy.
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1 Introduction

LetD : {0,1,...,n} — {0,1} be an arbitrary predicate. Consider the communica-
tion problemf : {0, 1}" x {0, 1}" — {0, 1} given by

f(xy) € D(xAy),

where|x A y| stands for the number of positions wherandy both have a 1As
usual, the objective is for Alice and Bob to evaludig, y), where Alice holdsx
and Bob holdsg;.

As we will see shortly, the hardness of this communicatiabj@m depends on
whetherD changes value close to the middle of the raf4, . . ., n}. Specifically,
define

to(D) €1{0,1,...,[n/2]},
t1(D) € {0,1,...,[n/27}

to be the smallest integers such tlats constant in the rangé&d(D), n — £1(D)].
The figure below illustrates this definition for a typical gieateD:

14®) 1,0)
D

Let Qj/3(f) denote the quantum communication complexityfolvith error 1/3
in the model with prior entanglement. Defi@g,3(f) analogously for the model
without prior entanglement. In a breakthrough result, Raab [18] established
optimal lower bounds on the quantum communication complefievery function
of the above form:

Theorem 1.1 (Razborov [18]).Let D : {0,1,...,n} — {0,1} be an arbitrary

predicate. Put €X, y) def D(x A yl). Then
Qua(f) > Qj5(f) > Q(Vnto(D) + &1(D)).



We give an entirely dferent proof of this theorem. In fact, we give communi-
cation lower bounds for a substantially broader class ations that were beyond
the reach of the current techniques. The setting for our weds follows. Letn
andt be integers wittt | n. Fix an arbitrary functionf : {0,1}! — {0, 1}. Consider
the communication problem of computing

f(X|V @ w),
where:
e the bit stringx € {0, 1}" is Alice’s input;
e the bit stringw € {0, 1}' and the seV c {1,2,...,n} with |V| = t are Bob’s
inputs;

e and x|y denotes the projection of onto the indices V. Formally, Xy def

(Xig> Xip» - - > Xi,) € {0, 1}', wherei; < iz < --- < it are the elements &f
We prove communication lower bounds for this problem in tloeifwled-error
guantum model with and without prior entanglement. Our lobaund is in terms
of theapproximate degredeg 5(f) of f, which is the least degree of a multivariate
polynomial p with

1f(2) - p(2)| < for eachz € {0, 1}".

Wl

We prove:

Theorem 1.2 (Main Theorem). Any quantum protocol, with or without prior
entanglement, that solves the above problem with error gty at most1/5
on each input must exchange at least

1 n
7 deaa()- Iog(;) _2
qubits.

The lower bound of Theorem 1.2 continues to hold when the\sei® restricted
to have a particularly simple form; see Section 4 for details

The value of Theorem 1.2 is that the notion of approximataeeglays an
important role in complexity theory and has been studieddantdess works.
In particular, tight estimates of the approximate degree aailable for many
functions, including all symmetric functions (Paturi 19@2d some DNF formulas
(Aaronson & Shi, 2004). As a result, our work gives strongdowounds on
communication foanyof these base functionswith high approximate degree. To
illustrate the applicability of Theorem 1.2, we use it toggarshort and elementary
proof of Razborov’'s celebrated result, Theorem 1.1.
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Motivation. Our work is of interest for several reasons. First, the bednd
error quantum model with prior entanglement is the most phwenodel of
bounded-error communication. Despite encouraging rgquenfress [2, 3, 15, 18],
proving lower bounds in this model remaindfaiult, and few general methods
are available. We address this state fifias by establishing, in Theorem 1.2,
communication lower bounds for a rather broad class of fanstfor which
no methods were previously known. In particular, Razb@qwoof technique
depends crucially on the high symmetry of the functi@{& A y|), in addition to
their high approximate degree. Our Theorem 1.2, on the dtaed, completely
removes the symmetry requirement; the symmetry or nonsymnoé the base
function f is irrelevant.

Second, our proof of Theorem 1.2 contributes consideradalenical novelty.
One of its ingredients is a new construction of matrices Vewhspectral norm, the
pattern matriceswhich correspond to hard communication problems. Matrad-an
ysis and the Fourier transform ov&}§ are critical to this construction. The pattern
matrices reduce our task to finding, in the vicinity of thedbo&sction f, a real-
valued function that is orthogonal to the low-degree pdtityctions. This is where
the other major ingredient of our proof is needed,AlpproximatioyOrthogonality
Principle. It asserts a certain equivalence between approximatiorodhdgonal-
ity, and we prove it using linear-programming duality. We able to carry out
this development in the general setting of Euclideaspace, making for a cleaner
and simpler proof. We describe the technical content ofghjger in greater detail
under “Technigues” below.

It is noteworthy that our proof of Theorem 1.2 fits in the framek of the
original, one-dimensionatliscrepancy method (described in detail in Section 2.4),
as opposed to Razborov’s approach known asnétidimensionaldiscrepancy
method. This refutes the commonly held intuition that thiginal discrepancy
method could not have yielded Theorem 1.1. For example, &tazlwrites, “even
this generalized form of the discrepancy method does ndt Weorthe disjointness
predicate” [18, p. 155]. In view of our results, that statetneas in error [19].
We emphasize that it does ndfect the remainder of Razborov’s article, which is
correct.

Finally, we find it already valuable tofi@r a new proof of Razborov’s re-
sult. This result is one of the strongest in communicatiomplexity and, as
such, deserves more than one proof. Despite sustaifiedseby various au-
thors [2,3,8-10,15], no such alternate proof exists. Asttanaf fact, the next-best
lower bounds for general predicates are nowhere close toréhel.1. To illus-
trate, consider the familiatisjointness predicate yiven byD(t) = 1 & t = 0.
Theorem 1.1 shows its communication complexity t@X¢g/n), while the next-best
lower bound [2, 3] is oni2(logn).



Razborov’s proof technique has seen several applicatioct)ding direct-
product theorems [11], separations for small-bias comuoatiuin [4], and learning
theory [12]. We hope that the ideas in this paper will also €iséls beyond quantum
communication.

Our Techniques. Razborov's proof proceeds by tmeultidimensionaldiscrep-
ancy method, a powerful extension of the original discregamethod. Central
to that technique are the so-called combinatorial matriedsch have rare and
useful spectral properties. By contrast, we use the simptaginal discrepancy
method. Roughly speaking, this original method works asvd. LetF(x,y) be
the Boolean function whose communication complexity imtéiiest. The method
says: find a “hard” functiorH(x, y) in the vicinity of F, thereby proving thafF
itself must be “somewhat hard.” More precisely, the disareyy method asks for a
function H(X, y) and a distribution: on (x, y)-pairs such that:

e F andH are highly correlated undet, and

¢ all low-cost quantum protocols have negligible advantageamputingH
under.

If suchH indeed exists, it follows that no low-cost protocol can comey- to high
accuracy (or else it would be a good predictor for the hardtfon H as well!).

The discrepancy method thus reduces our task to finding ttieftiaction H.

It is here that we contribute a new technique. A key ingredigrihis technique
is a new construction of matrices with low spectral norm aniteble structure,
the pattern matrices.The idea of a pattern matrix originated in a recent article by
the author [22], where we introduced a somewh&edent family of matrices and
placed an upper bound on their spectral norm (with the endtrefsseparatinghC°
from depth-2 majority circuits). This paper gives exact, closed-fornexpression
for the singular values of a pattern matrix and their muttipes, substantially
improving on the estimates from [22]. These exact calatatiare in fact crucial to
our main result: the earlier estimates would not be strorgigh. As an additional
benefit, our exact analysis here improves the main resul@2pf we discuss this
in the concluding part of this work, Section 7.

The pattern matrices further reduce our challenge to pgothie existence of a
functiony : {0, 1)' — R with two properties. Firsty must be well-correlated with
the base functiorf. Secondy must be orthogonal to all low-degree parity func-
tions. To infer the existence of sug¢hwe prove theApproximatioyOrthogonality
Principle, which states that the notions of approximation and orthatjtynin
Euclideam-space are equivalent in a certain precise sense. Our peooERploits
linear-programming duality.



Once Theorem 1.2 is established, Razborov’s lower bourldsvfoeadily as a
special case.

Organization. We start with a thorough review of technical preliminaries i
Section 2. The two sections that follow are concerned wightwo principal ingre-
dients of our technique, the pattern matrices and the ApmratioryOrthogonality
Principle. Section 5 integrates them into the discrepanethod and establishes
our main result, Theorem 1.2. Section 6 deduces from it Raxfslower bounds.
Section 7 uses our exact spectral calculations to strengtiee author’s earlier
result [22] on classical discrepancy and its applicatiansa®.

2 Preliminaries

This section provides relevant technical background. Werilee our notation
(Section 2.1) and then briefly review matrix analysis (Sec®.2), the quantum
communication model (Section 2.3), and the discrepancyhodefor communi-
cation lower bounds (Section 2.4). Finally, we recall fuméatal results on the
approximation of Boolean functions by polynomials (Sett5).

2.1 General

A Boolean functioris a mappingX — {0, 1}, whereXis a finite set. TypicallyX =
{0,1}" or X = {0, 1}" x {0, 1}". A predicateis a mappingD : {0,1,...,n} — {0, 1}.
The notation fi] stands for the sdfl, 2,...,n}. For a setS C [n], its characteristic
vectorls € {0, 1}" is defined by

(kh:{lie&

0 otherwise.

Forb € {0, 1}, we put-b 1 _b. Forxe {0, 1}, we write|X| def l{i : % = 1}|. For

X,y € {0,1}", the notationx A y refers as usual to the component-wise ANDxof
andy. In particular,|x A y| stands for the number of positions wherandy both
have a 1

Throughout this manuscript, “log” refers to the logarithorbase 2

Finally, we recall the Fourier transform ov&§. Consider the vector space of
functions{0, 1}" — R, equipped with the inner product

1
(o) € = > 190,

xe{0,1}"



ForS ¢ [nl], defineys : {0, 1}" — {1, +1} by ys(x) €' (~1)Zs*. Then{ys}scpy
is an orthonormal basis for the inner product space in quests a result, every
function f : {0, 1})" — R has a unigue representation of the form

1= > f(S)xsM.
Scn]
wheref(S) d:ef<f,)(g>. The realsf(S) are called théourier cogficients of f The
following fact is immediate from the definition df(S):

Proposition 2.1. Let f: {0,1}" — R be given. Then

maxf(S)< 5 3 1.

Selnl xe{0,1}n

2.2 Matrix Analysis

We draw freely on basic notions from matrix analysis. Fomegke, we assume
familiarity with the singular value decomposition; pogitisemidefinite matrices;
matrix similarity; matrix trace and its properties; the Kezker product and its
spectral properties; the relation between singular valhms eigenvalues; and
eigenvalue computation for matrices of simple form. An drce reference on
the subject is [7]. The review below is limited to notatiorddhe more substantial
results.

The symbolR™" refers to the family of alin x n matrices with real entries.
The (, j)th entry of a matrixA is denoted by;. We frequently use “generic-entry”
notation to specify a matrix succinctly: we write= [F(i, j)]i,j to mean that that
the (, j)th entry ofA is given by the expressioR(i, j). In most matrices that arise
in this work, the exact ordering of the columns (and rows)rnslévant. In such
cases we describe a matrix by the notatibii [j)]ici, jej, Wwherel andJ are some
index sets.

Let A€ R™". We use the following standard notation:

def

def
Al = max{lAiil}, Al =
A 1ax (A 1Al %_)Am

We denote the singular values Afby o1(A) > 02(A) > ... > ominmn(A) > 0.



Recall that the spectral norm, trace norm, and Frobenius wdA are given by

AL = _max JIAX] = o (A),
xeR", [|X|=1
Al =" ai(A),

1Al = > A2 = > oiar.

Recall that every matriA € R™" has a singular value decompositidn=

UzVT, whereU andV are both orthogonal matrices alids diagonal with entries

T1(A), 2(A), ..., Fminmn(A). For A B € R™" we write (A By €' 3, A;Bj.

A useful consequence of the singular value decomposition is
(A, B) < IAIIBIl: (A,BeR™M) (2.1)

We will need the following well-known bound on the trace noofra matrix
product, which we state with a proof for the reader’s corseoe.

Proposition 2.2 (Trace norm of the product). ||AB|ls < ||Allr |IBll¢.

Proof. Write the singular value decompositigkB = UZV'. Let uy, Up,... and
v1, 02, ... stand for the columns df andV, respectively. By definition||AB|x is
the sum of the diagonal entries bfWe have:

IABIz = > (UTABV); = > (ul A)(Bu) < ) IATuil B
< D IATWIZ > IBuili2 = IUTAlle BV = A (1Bl 0

2.3 Quantum Communication

This section reviews the bounded-error model of quantumnconication. We
include this review mainly for completeness; our proofy &lely on a standard
lower-bound technique for such protocols and on no otheecispf quantum
communication.

There are several equivalent ways to describe a quantum oaioation pro-
tocol. Our description closely follows Razborov [18]. Lé&tand B be complex
finite-dimensional Hilbert spaces. Létbe a Hilbert space of dimension®hose
orthonormal basis we denote [y, |1). Consider the tensor produgt ® C ® B,
which is itself a Hilbert space with an inner product inhedifrom A, 8, andC.
Thestateof a quantum system is a unit vectorfiwC®%8B, and conversely any such
unit vector corresponds to a distinct quantum state. Thatqoasystem starts in a
given state and traverses a sequence of states, each ddtaimethe previous one



via a unitary transformation chosen according to the patdeormally, aquantum
communication protocds a finite sequence of unitary transformations

Ui®lg, la®Uz Us®lg, 1la®Us ..., Ux1®lg, |la®Uy,

where: 14 and lg are the identity transformations il and B, respectively;
U1, Us,...,Ux_1 are unitary transformations ifl ® C; andUy, Uy, ..., Uy are
unitary transformations i ® 8. The cost of the protocol is the length of this
sequence, namelyk20n Alice’s inputx € X and Bob’s inputy € Y (whereX, Y
are given finite sets), the computation proceeds as follows.

1. The guantum system starts out in an initial staigal(X, y).

2. Through successive applications of the above unitanstoamations, the
system reaches the state

Final(x 5) %" (I2® UadUac1® lg) - (1a ® Up)(U1 ® I 5) Initial(x, p).

3. Letv denote the projection dfinal(x, y) onto A @ span(l)) ® B. The output
of the protocol is 1 with probabilityv, vy, and 0 with probability 1 (v, v).

All that remains is to specify how the initial statgtial(x,y) € A®CQ B is
constructed fronx, y. It is here that the model with prior entanglemerttetis from
the model without prior entanglement.

In the model without prior entanglemenfl and 8 have orthonormal bases
{Ixw) : xe X, we W}and{ly,w) : y € Y, w € W}, respectively, wherdV is a
finite set corresponding to the private workspace of eacheparties. The initial
state is the pure state

Initial(x, y) = |x, 0)|0) |y, O),

where 0 W is a certain fixed element. In the model with prior entangletne
the spacesA and8 have orthonormal basé¢ls, w,€) : xe X, w € W, e € E} and
{ly,w,e) 1y €Y, we W eec E}, respectively, wher®/ is as before an#t is a finite
set corresponding to the prior entanglement. The initetiesis now the entangled
state

Initial(x, y) = D" 1%.0,€) [0} 1y, 0, €).
ecE

1
VIE|
Apart from finite size, no assumptions are made aduwir E. In particular, the
model with prior entanglement allows for an unlimited syppl entangled qubits.
This mirrors the unlimited supply of shared random bits ed¢lassical public-coin
randomized model.



Let f : XxY — {0,1} be a given function. A quantum protocBlis said to
computef with errore if

PriP(x.y) # f(x y)l <e  forallxy,

where the random variabl®(x,y) € {0,1} is the output of the protocol on
input (X, y). Let Q.(f) denote the least cost of a quantum protocol without prior
entanglement that computésvith errore. DefineQ}(f) analogously for protocols
with prior entanglement. The precise choice of a constan{(0, 1) afectsQ.(f)
andQ}(f) by at most a constant factor, and thus the settirgl/3 entails no loss
of generality.

LetD:{0,1,...,n} — {0,1} be a predicate. We associate widithe function
f :{0,1}" x {0, 1}" — {0, 1} defined by

fxy) £ D(xA ).

We let Q.(D) et Qc(f) and Q(D) et Q:(f). More generally, by computin®

in the quantum model we mean computing the associated &im€tiAs one last
convention, by the communication complexity of a Booleartrimd = [FijJiei, je
is meant the communication complexity of the associatedtionf : | x J —
{0, 1}, given by

f(,]) =Fij.

2.4 The Discrepancy Method

The discrepancy method is an intuitive and elegant teclenfqu proving lower
bounds on quantum communication. A starting point in oucuBsion is the
following fact.

Theorem 2.3 (Razborov [18, Thm. 5.5], Linial & Shraibman [15 Lem. 10]).
Let XY be finite sets. Let P be a quantum protocol (with or withoubrpr
entanglement) with cost C qubits and input sets X anthgn

[E[P(x y)]]x’y = AB

for some real matrices A with ||Allr < 2° VIX] and ||B|lr < 2° V|Y].

Theorem 2.3 states that the matrix of acceptance probasilfE[P(x, y)]]x,, of
every low-cost protocoP has some nontrivial factorization. This transition from
guantum protocols to matrix factorization is a standardnegue and has been
applied by various authors in various contexts [6, 9, 13, 18je now state the
discrepancy method as adapted to the quantum model by Razf@]. This

is not to be confused with theaultidimensional discrepancy methalso due to
Razborov [18], which we will have no occasion to use or déscri
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Theorem 2.4 (Discrepancy method, Razborov [18, Sec. 5.2hpplicit). Let XY
be finite sets and f X x Y — {0, 1} a given function. Let k= [Ky,]xex 4ev be any
real matrix with||K||; = 1. Then for eacke > O,

490 5 400 5 KM —2¢
BIIKIVIXITY]

where M%E' [(—1)“(“)]

xeX,yeY’

Proof. Let P be a quantum protocol with prior entanglement that comptiteih
errore and cosC. Put

IT el [E[P(X’y)]]xex,er'

Then we can writeM = (J — 2I1) + 2E, whereJ is the all-ones matrix an& is
some matrix with|E||l. < €. As a result,

(K, J = 2IT) = (K, M) — 2(K, E)
> (K, M) — 2¢[[K]l1
= (K, M) - 2¢. 2.2)

On the other hand, Theorem 2.3 guarantees the existencetrides# andB with
AB =TT and||Allr |Bllr < 4% VIX[]Y]. Therefore,

(K, J =20 < |IK]| |3 - 21l by (2.1)
<IIKIl (VIXITYI + 2[s) sincellJlls = IXI[Y]
<IIKIl (VIXI1YI+ 2|IAlE IBllE) by Prop. 2.2
<Kl (2-4° + 1) ViIXT V1. (2.3)
The theorem follows by comparing (2.2) and (2.3). ]

Remark2.5. A quick glance at the proof reveals that Theorem 2.4 is valith w

M = [f(X, y)]x,- In fact, this choice ofM would slightly simplify the proof of
this theorem as well as its primary use in the paper, Theordm Nevertheless,
we prefer the definition oM as a sign matrix because, as we shall see shortly,
this makes it possible to view the above proof in termafelation and relate
Theorem 2.4 to the classical discrepancy method.

We now reinterpret Theorem 2.4 and its proof infiatient terminology, which
will clarify it and show that it is simply an extension of th&assical discrepancy
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method to the quantum model. LEt X x Y — {0, 1} be a given function whose
communication complexity we wish to estimate. The undagytommunication
model is irrelevant at this point. Suppose we can find a fondti: X xY — {0, 1}
and a distribution on X x Y that satisfy the following two properties:

1. Correlation of f and h. The functionsf andh are well correlated under.

E [(-1)fCcdshta)] > ¢, (2.4)
(xy)~u

wheree > 0 is a given constant.

2. Hardness ofh. No low-cost protocoP in the given model of communication
can computda to a substantial advantage ungeFormally, if P is a protocol
in the given model with cost bits, then

E [(_1)h(X,y) E [(_1)P(>sy)” < 20€)y, (2.5)
(Xy)~u

wherey = o(1). The inner expectation in (2.5) is over the internal operatio
of the protocol on the fixed inpuk(y).

If the above two conditions hold, we claim that any protoodhie given model that
computesf with error at most/3 on each input must have ca3tlog £ ). Indeed,
let P be a protocol withPr[P(x,y) # f(x,y)] < €/3 for all x,y. Then standard
manipulations reveal:

(24) €

> —_

(KyE)Nﬂ [(_1)h(Ky) E [(_1)P(Ky)]] > (KyE)Nﬂ [(_1)f(x,y)+h(x,y)] _9.

€
3
In view of (2.5), this shows tha® must have cos® (log €).

We call the described lower-bound technique diserepancy methodollow-
ing the terminology of Razborov [18]. Some authors, inahgdKushilevitz and
Nisan [14], restrict the term “discrepancy method” to theecavhenf = h and
the communication takes place in the classical randomizedie This restriction
apparently reflects the fact that the method originatederctassical setting, before
the need to study quantum models arose. Our broad usage tefthés meant to
highlight the fundamental mathematical technique in qaestwhich is clearly
independent of the communication model.

Indeed, the communication model enters the picture onlyha groof of
(2.5). It is here that the analysis must exploit the partidties of the model.
To place an upper bound on the advantage updier the quantum model with
entanglement, as we see from (2.3), one considers the tyugtiv|X||Y|, where

11



K = [h(x, y)u(x, y)lx,- In the classical randomized model, the quantity to estimate

happens to be
D23 ux y)h(x )

xeS yeT

max

ScX,
TCY

which is actually known as théiscrepancy of h under.

2

2.5 Approximation by Polynomials

Let f : {0, 1}" — R be given. As we saw in Section 2.1, any such functidras an
exactrepresentation as a linear combinationygf whereS c [n]. A fundamental
guestion to ask is how closelfy can beapproximatedoy a linear combination of
functionsys with |S| small.

Definition 2.6 (Approximate degree of functions).Let f : {0, 1}" — R ande > 0.
Thee-approximate degredeg. (f) of f is the minimum integed € {0, 1, ..., n} for
which there exist® € span({ys}si<d) With
Jmax 1f(¥) — () < e

We will be primarily interested in the approximate degreBoblean functions.
As a first observation, deff) = deg(-f) for all such functions and at > 0.
Second, the exact choice of constart (0,1/2) afects deg(f) only by a multi-
plicative constant. This fact is well-known and followsritdasic approximation
theory. It is therefore standard practice to work with ge(f) by default. Finally,
the approximate degree does not change much as one switcimesHe {0, 1}
representation of Boolean functions to thd, +1} representation. More precisely,
fix f :{0,1)" — {0, 1} and definef*(x) = (-1)'®. Then

deg.(f*) = deg ,(f) foralle > O, (2.6)

as one can verify from the equatidn = 1 — 2f.

We will take a special interest symmetricBoolean functions, i.e., functions
f : {0,1)" — {0,1} whose value is uniquely determined by + --- + Xn.
Equivalently, a Boolean functiof is symmetric if and only if

f(X1, X2, .., Xn) = F(Xo(2)s Xor(2)s - - - » Xor(n))

for all inputsx € {0, 1}" and all permutations- : [n] — [n]. Note that there is a
one-to-one correspondence between predicates and syimBedtean functions.
Namely, one associates a predicBtavith the symmetric function

F0) L'Dxg + -+ + Xn).
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Asymptotically tight estimates of th?approximate degree are available for every
symmetric Boolean function (Paturi 1992). These estimatesin terms of the
quantitiesto(f) and#1(f), defined next.

Definition 2.7. LetD : {0, 1,...,n} — {0, 1}. Define

to(D) €1{0,1,...,[n/2]},
t1(D) € {0,1,...,[n/21}

to be the smallest integers such tBes constant in the rangé{(D), n—¢1(D)]. For
a symmetric functiorf : {0, 1}" — {0, 1}, definefy(f) = £o(D) andf1(f) = ¢1(D),
whereD is the predicate for whicli(x) = D(X1 + - - - + Xp).

See Section 1 for a pictorial illustration of this definitiokiVe are now ready to
state Paturi’s fundamental theorem.

Theorem 2.8 (Paturi [17]). Let f: {0, 1}" — {0, 1} be a symmetric function. Then

degy3(f) = © (Vn(Go(T) + 2(1))).

3 The Approximation/Orthogonality Principle

This section marks the beginning of our proof. Here we carsitie notions
of approximationand orthogonality in Euclidean space and establish a certain
equivalence between them. We will later reinterpret thésiiten terms of protocols
rather than points in Euclidean space.

Let X be a finite set. Consid&X, the linear space of all function$ — R. For
¢ € RX, let

def
lolle = maxip(X)I.
xeX
Then R%, || - |l) is a real normed linear space.

Definition 3.1 (Best error). For f : X — R and® C RX, let

% def .
e(f.o) = ¢€g‘];g®llf — Plleo-
In words,e*(f, @) is the best error in an approximation bby a linear combination
of functions in®. Since span®) has finite dimension, a best approximationfto
out of span) always exists [20, Thm. I.1], justifying our use of “min”dtead of
“inf” in the above definition.
We now introduce a closely related quantigy( f, @), that measures how well

f correlates with a real function that is orthogonal to alibof
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Definition 3.2 (Modulus of orthogonality). Let X be a finite setf : X —» R, and
® c RX. Themodulus of orthogonalitgf f with respect tab is:

y(f,0) & mwax{z f(x)g.//(x)} : (3.2)

XeX

where the maximum is taken over @l: X — R such that},.x [¢(x)| < 1 and
Yex ¢y (X) = 0 for all ¢ € ©.

The maximization in (3.1) is over a nonempty compact set ¢batainsy = 0.
Also, the use of “max” instead of “sup” is legitimate beca(8€l) maximizes a
continuous function over a compact set. To summarize, theéuioe of orthogo-
nality is a well-defined nonnegative real number for evencfion f : X — R.

A key result, which we now prove, is that the best error andrttaslulus
of orthogonality are always equal. We call this #hpproximatiopOrthogonality
Principle.

Theorem 3.3 (ApproximatioryOrthogonality Principle). Let X be a finite set,
® cRX,and f: X - R. Then

€ (f, ) = y*(f, D).

Proof. The theorem holds trivially when spab) = {0}. In the contrary case,
let ¢1, ..., ¢k be a basis for spa®). Our first observation is that*(f, ®) is the
optimum of the following linear program in the variables, . . ., ax:

minimize: €
subject to:

<€ for eachx € X,

k
(0 - ) aigi(¥)
i=1

ai €R for eachi,

e>0.

14



Standard manipulations reveal the dual:

maximize: )" Axf(X)

XeX

subject to:

DB <,

XeX

Zﬁx¢i(x) =0  foreach,

xeX

Bx €R for eachx € X.

Both programs are clearly feasible and thus have the sanedipiimum. We have
already observed that the optimum of first prograng*id, ®). Sincegq, ..., ¢
form a basis for spady), the optimum of the second program is by definition
v*(f, D). m]

A useful consequence of the Approximati@nthogonality Principle for our
purposes is the following result.

Corollary 3.3.1. Fix € > 0. Let f : {0,1}' — R be given with ¢ deg(f) > 1.
Then there is a function : {0, 1}' — R such that:

W(S)=0 for |S| < d,
> w@I=1,

ze{0,1}t

> u@t@ > e

ze{0, 1)t

Proof. SetX = {0,1})' and® = {ys : |S| < d} c RX. Since deg(f) = d, we
immediately have that*(f, ®) > e. But theny*(f,®) > e by the Approxima-
tion/Orthogonality Principle (Theorem 3.3). Clearly, we canetgkto be any
function for which the maximum is achieved in (3.1). O

4 Pattern Matrices

We now turn to the second ingredient of our proof, a certainilfaof real matrices
that we callpattern matricesOur goal here is to explicitly calculate their spectral
norm. As we shall see later, this provides a convenient meagenerate hard
communication problems.
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Let t andn be positive integers with | n. Split [n] into t contiguous blocks,
each withn/t elements:

[n] ={1,2,...,?}u{?+1,...,?}u---u{@+1,...,n}.

Let V(n,t) denote the family of subsets C [n] that have exactly one element in
each of these blocks (in particuldy/| = t). Clearly,|'V(n,t)] = (n/t). For a bit
string x € {0, 1}" and a seV € V(n, t), define theprojection of x onto \by

def
Xy = (Xigs Xips - -0 %) € {0, 1),

wherei; < iz < --- < i are the elements &f.

Definition 4.1 (Pattern matrix). For¢ : {0,1}! — R, the @, t, ¢)-pattern matrixis
the real matrixA given by

A= [¢(X|V ® w)]xe{o,l}n,(v,w)eq/(n,t)x{o,l}t :
In words, A is the matrix of size 2by 2(n/t)! whose rows are indexed by strings

x € {0, 1}", whose columns are indexed by paisy) € V(n, t)x{0, 1}!, and whose
entries are given by vu) = ¢(Xlv @ w).

The logic behind the term “pattern matrix” is as follows: asai arises from
repetitions of a pattern in the same way thaarises from applications af to
various subsets of the variables.

Our approach to analyzing the singular values of a pattermxma will be to
represent it as the sum of simpler matrices and analyze thsteaid. For this to
work, we should be able to reconstruct the singular values fodbm those of the
simpler matrices. Just when this can be done is the subjéioe dbllowing lemma.

Lemma 4.2 (Singular values of a matrix sum).Let A B be real matrices with
AB" = 0 and A'B = 0. Then the nonzero singular values of+AB, counting
multiplicities, arec1(A), . . ., oranka(A), o1(B), . . ., oranka(B).

Proof. The claim is trivial whenA = 0 or B = 0, so assume otherwise. Since
the singular values oA + B are precisely the square roots of the eigenvalues of
(A + B)(A+ B)T, it suffices to compute the spectrum of the latter matrix. Now,

(A+B)(A+B)" = AAT + BB" + AB" + BAT
N—— N——
=0 =0
= AA" + BB (4.1)
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Fix spectral decompositions

rankA rankB
AAT = Z ai(A)?ud, BB = Z O'j(B)ZvjvJT.
i=1 j=1
Then
rankA rankB rankA rankB
DD ailA o (B, vp)? = <Z aiMuy, a,-<B)2v,-v,T>
i=1  j=1 i=1 j=1
= (AAT,BB")
= trace@A'BB")
= trace@-0-B")
= 0. 4.2)

Sinceoi(A) oj(B) > 0 for all i, j, it follows from (4.2) that(u;, vj) = O for all i, j.
Put diferently, the vectorsly, ..., Uanka, U1, - - -, Uranks form an orthonormal set.
Recalling (4.1), we conclude that the spectral decompwsitf (A + B)(A+ B)" is

rankA rankB
Z O'i(A)ZUiU;r + Z O'j(B)Zvjv-jr,
i=1 =1
and thus the nonzero eigenvalues Afy( B)(A + B)T are as claimed. O
We are ready to analyze the spectral norm of a pattern matrix.

Theorem 4.3 (Singular values of a pattern matrix). Let ¢ : {0,1}! — R be
given. Let A be thén, t, ¢)-pattern matrix. Then the nonzero singular values of A
counting multiplicities, are:

S:gio{\/ﬁ(?)t : |$(S)I(%)|SV2, repeated(?)ISI times}.
A= (3 g‘g?qX{@(sn(%)'s”z}.

Proof. For eachS C [t], let As be the , t, ys)-pattern matrix. Thus,

A= d(S)As. (4.3)

ScIt

In particular,

17



Fix arbitraryS, T C [tjwith S # T. Then

AsAT = Z Z xs(Xv & w) xtylv © w)
|VeV(nt) we{0,1}t

Xy

=| D, xstWxTlh) ) xs() xr(w)

| Vev(n.t) we{0,1}t

Xy

=0
= 0. (4.4)

Similarly,
AZAT = | xs(w) xT(w’) Z xs(Xv) xT(Xlv-)

xe{0,1}" Lv’w)’(v/’w/)
=0

= 0. (4.5)

By (4.3)—(4.5) and Lemma 4.2, the nonzero singular values afe the union of
the nonzero singular values of @l{S)As, counting multiplicities. Therefore, the
proof will be complete once we show that the only nonzerowdamyalue ofALAs
is 2(n/t)1S!, with multiplicity (n/t)!S!.

We proceed to analyze the spectrumﬁ@ng. It is convenient to write this
matrix as the Kronecker product

AlAs = Dxs@hs@)uw © | D xs(iv) xs(xiv)
XE{O,l}n AV

The first matrix in this factorization has rank 1 and entsdswhich means that its
only nonzero singular value i$ @ith multiplicity 1. The other matrix, call iV, is
permutation-similar to

J

2n
J

whereJ is the all-ones square matrix of order/()""'S|. This means that the only
nonzero singular value ofl is 2"(n/t)!S! with multiplicity (n/t)!Sl. It follows from
elementary properties of the Kronecker product that thetspm ongAS is as
desired. m|
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5 The Pattern Matrix Method

The previous two sections studied the spectrum of pattetricaa and the relation-
ship between approximation and orthogonality. Having érachthese notions in
their pure and basic form, we now apply our findings to commation complex-
ity. Specifically, we establish theattern matrix methodor communication lower
bounds, which gives strong lower bounds for every pattertringenerated by
a Boolean function with high approximate degree. The theone are about to
prove is the main result of this paper, stated in the Intridnas Theorem 1.2.

Theorem 5.1 (The Pattern Matrix Method). Let F be thegn, t, f)-pattern matrix,
where f: {0,1}' — {0, 1} is given. Put = deg 5(f). Then

1
Qus(F) > Q}s(F) > Zdlog(?)—z.

Proof. Define f* : {0,1)' — {-1,+1} by f*(2) = (-1)'@. Then (2.6) shows that
deg,3(f*) = d. By Corollary 3.3.1, there is a functian: {0, 1}' — R such that:

¥(S)=0 for|S| < d, (5.1)
> w@l=1, (5.2)
ze{0,1)t

i 2
D, vAT@ >3 (5.3)
ze{0,1}t

Let M be the (,t, f*)-pattern matrix. LetK be the ,t,2-"(n/t)"'y)-pattern
matrix. Immediate consequences of (5.2) and (5.3) are:

2
IKllL =1, (K, M) > 3 (5.4)
Our last task is to calculati||. By (5.2) and Proposition 2.1,
N 1
< = .
maxi(S) < (5.5)
Theorem 4.3 yields, in view of (5.1) and (5.5):
t\d/2 t\~1/2
K] < (ﬁ) (2”+t (?)) . (5.6)

The desired lower bounds on quantum communication nowviotlmectly from
(5.4) and (5.6) by the Discrepancy Method (Theorem 2.4). O
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6 Optimal Lower Bounds for Every Symmetric Function

As an illustrative application of the pattern matrix methege now give a short
and elementary proof of Razborov’s optimal lower boundsef@ry predicatd :
{0,1,...,n} — {0,1} (Theorem 1.1).

As a first step, we show that a pattern matrix occurs as a subnett
[D(x A yl)]x,, the communication matrix oD. This will immediately put the
pattern matrix machinery at our disposal.

Lemma 6.1. Let D : {0,1,...,n} — {0,1} be a given predicate. Let F be the

(2Ln/41, | n/4], f)-pattern matrix, where (&) def D(|2). Then F is a submatrix of

[D(|X A yl)]xe{o,l}n,ye{o,l}n' 6.1)
Proof. Putm def Ln/4]. By definition,
F= [D(| Xv & w D]xe{o,l}zm, (Vaw)eV(2mm)x(0,1m"
We will define one-to-one maps
a: {0,1)°™ > {0, 1",
B V(@mm) x{0,1}" - {0,1}"
such that
| Xv @ w | = |a(X)ABNw) | for all x, V, w. (6.2)

Obviously, this will mean thaf is a submatrix of (6.1).
As usual, let juxtaposition of bit strings stand for theimcatenation, e.g.,
(0,1)(1,0,1) = (0,1,1, 0, 1). With this convention, define by
def _
G,’(Xl, X2’ ) X2m) =e (Xl’ _'Xla X2a _'XZ’ ey sza _'sz) On 4m'

Defineg by

BV.w) T iz wr) (o w2) - Ylims wm) O,

whereii < i» < --- < iy are the elements & andy : Z x Z — {0, 1}* is given by

(1,0,0,0) ifaisodd,bis even,
def ](0,1,0,0) if aisodd,bis odd,

b
v@.b) (0,0,1,0) ifaisevenbiseven,
(0,0,0,1) ifaisevenbisodd.
It is now straightforward to verify (6.2). ]
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Using the previous lemma, we can now easily solve the probiemall
predicatesD : {0,1,...,n} — {0,1} that change value reasonably close to O
Extension to the general case will require an additionad.ste

Theorem 6.2. Let D : {0,1,...,n} — {0,1}. Suppose that @) # D(¢ - 1) for
some’ < £n. Then

Qi/5(D) > Q(Vnt).

Proof. It suffices to show tha®; /5(D

) > Q(Vnf). Definef : {0, 1)!"4 — (0,1}
by f(2) = D(|Z). Thenép(f) > £ sincel <

in. As aresult,
degys(f) > Q(Vne)

by Paturi’s lower bound (Theorem 2.8). Now Theorem 5.1 iegthat
Qi/5(F) > Q(Vne),

whereF is the (2n/4], | n/4], f)-pattern matrix. But Lemma 6.1 states tlais
a submatrix of the communication matrix Bf namely, D(Ix A y[)]x,- It follows

thatQ; (D) > Q(Vn). O

We have proved the desired lower bounds for all predidatdst change value
close to 0 What remains is to extend the result to arbitrary predicatdsch is
going to be a simple if tedious exercise in shifting and pagdi We note that
Razborov’s proof concludes in a similar way (see [18], beigig of Section 5).

Theorem 6.3. Let D : {0,1,...,n} — {0,1}. Suppose that @) # D(¢ - 1) for
some’ > £n. Then

Qi/3(D) > c(n - ) (6.3)
for some absolute constantcO.

Proof. Consider the communication problem of computiddx A y|) when the
lastk bits in x andy are fixed to 11n other words, the new problem is to compute
Dk(IX Ay']), wherex', y’ € {0, 1}" % and the predicatBy : {0,1,...,n—k} — {0,1}
is given by

Dk(i) = D(k +i).

Since the new problem is a restricted version of the origiwvalhave

Q1 /5(D) > Q1 ,5(Dk) for all k. (6.4)
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We complete the proof by placing a lower bound@pg(Dk) for somek.

Puta &' 1. The quantity

o & f—{i-(n—f)J
1-a
is an integer between 1 arfd(because > an). The equalityky = ¢ occurs if
and only if| 1%~ (n—¢)| = 0, in which case the claimed conclusion (6.3) holds
trivially for c suitably small, such as = «/(1 — @). Thus, we can assume that
1< ko < ¢ -1, inwhich caseDy, (£ — Ko) # Dy, (¢ — ko — 1) and¢ — ko < a(n — ko).
Therefore, Theorem 6.2 is applicableq, and yields:

Q1,3(Dky) > C V(- ko) (¢ - ko), (6.5)

whereC > 0 is an absolute constant. Calculations reveal:

i.(n_[)

n-— =
ko 1-«a

, é’—ko:h%“a-(n—é’)J. (6.6)

The theorem is now immediate from (6.4)—(6.6). O
Together, Theorems 6.2 and 6.3 give the main result of ticisose

Theorem 1.1(Restated from p. 1)Let D: {0,1,...,n} — {0,1}. Then

Qua(D) > Qj4(D) > Q(vnto(D) + 2(D)).

Proof. If £o(D) # 0, set¢ &' ¢4(D) and note thaD(¢) # D(¢ — 1) by definition.
One of Theorems 6.2 and 6.3 must be applicable, and ther@?;gD) >

min{Q(vnf), Q(n- 6)}. Sincet < n/2, this simplifies to
Qi/5(D) > @ (Vnto(D)). (6.7)
If £1(D) # O, set¢ LU ¢1(D) + 1 > n/2 and note thaD(¢) # D(¢ — 1) as
before. By Theorem 6.3,

Q1/3(D) > Q (¢1(D)) . (6.8)
The theorem follows from (6.7) and (6.8). O
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7 Additional Results

As we have already stated, the concept of a pattern matginaties in the author’s
earlier article [22], where a somewhatfdrent family of matrices is introduced
and its spectral norm studied. As a result of that study, westrocted the firsaC®
circuit with discrepancy 20) ang thereby separated:® from depth-2 majority
circuits [22, Thms. 1.1-1.3]. The spectral norm calculatio that work is not
exact; only a suitable upper bound is obtained. This maipison the other hand,
derives an exact, closed-form expression for the singalaies of a pattern matrix.
As a consequence, we are able to considerably improve thks@s[22].

Namely, we improve the discrepancy upper boundA6P from 2-20") 1o
2-90") with corresponding circuit implications. This is currgnthe best upper
bound on the discrepancy of a function4g°. It matches the result of Buhrman et
al. [4] who, independently and simultaneously with the atghwork [22], proved
a 2790 upper bound with dferent techniques and for afiirent function. In
addition, we strengthen thBegregDiscrepancy Theorenrom [22], needed to
arrive at the discrepancy result and independently intieges

7.1 Background and Definitions

We start with a few definitions. Throughout this section, ill e convenient to
view Boolean functions as mappings irtel, +1}, as opposed to the usual range
{0, 1}. Fix finite setsX,Y and letf : X xY — {-1,+1} be given. Letl be a
probability distribution ovelX x Y. Thediscrepancyof f underA is defined by

DDAy xy)

xeS yeT

. def
disq(f) = max
SCX,
TcY

Define .
disc(f) ¥ min {discy(f)).

We identify a functionf : X x Y — {-1, +1} with its communication matri¥ =
[f(X y)lxy- In particular, we follow the conventions dig&) = disc,(f) and
discF) = disc(f).

The above definition of discrepancy is not convenient to waitk, and we
will use the following well-known matrix-analytic refornhation; cf. Kushilevitz

& Nisan [14, Example 3.29]. For matrice’s = [Ay,] and B = [By,], recall that

AoB % [Ax, Bx,] is their Hadamard product.

Proposition 7.1. Let X Y be finite sets, f Xx Y — {-1,+1}. Then
disc(f) < /IXY] min|K o Fl
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def - . . .
where FE [ (X, y)]xex, yev and the minimum is over matrices K whose entries are
nonnegative and sum to

Proof. Fix K and define a distribution on X x Y by A(X, y) = Ky,. Then
i = T . .
disc(f) = max|1§ (K o F) 1| < max{|i1s|| - K o F - 117

= |IK o FlI VIX|[Y]. a]

For a functionf : {0,1}" — {-1, +1}, its threshold degreeleg(f) is the least
degree of a multivariate polynomialx, ..., X,) with

p(x)f(x) >0  forallxe{0,1}".

The following well-known result follows from Gordan’s Traposition Theorem
[21, Sec. 7.8]; for a detailed proof, see [22].

Theorem 7.2 (Criterion for high threshold degree). Let f : {0,1}" — {-1, +1}
be given. Theneg(f) > d if and only if there is a distributiop over{0, 1}" with

XINE#[f(x) xs(X] =0 whenevelS| < d.

7.2 New Results
We are prepared to state the first improvement on [22].

Theorem 7.3 (DegrefDiscrepancy Theorem; cf. Sherstov [22, Thm. 1.2])Let
F be the(n, t, f)-pattern matrix, where f {0, 1}! — {-1, +1} hasdeg(f) = d. Then

discF) < (%)d/z.

Proof. By Theorem 7.2, there is a probability distributiprover {0, 1}* such that
E,.[f(2) xs(@] = 0 for|S| < d. Putting¢(2) = 1(2)f(2), we obtain:

#(S)=0 for|S| < d. (7.1)

Furthermore, Proposition 2.1 reveals that
maxi(s)| < = (7.2)
Sct] o) < 2t '
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In view (7.1) and (7.2), Theorem 4.3 implies that

-1/2
1A < (E)d/z on+t (E)t ,
n t

whereA is the @, t, 27"(n/t)"'¢)-pattern matrix. ButA = K o F, whereK is the
(n,t,27"(n/t)"'u)-pattern matrix. Since the entries Kfare nonnegative and sum
to 1, Proposition 7.1 implies that

t

t d/2
discF) < IA] 2n+t($)<(ﬁ) . o

Theorem 7.3 states that pattern matrices generated byidoacwith high
threshold degree have low discrepancy. A well-known furmcth AC® with high
threshold degree is thdinsky-Papert functiongiven by

def m 4n?
[S]
MPR) = \/ A X
i=1 j=1
(This is the same function we used in [22].) We have:

Theorem 7.4 (Minsky-Papert [16]). The functionMP on 4m® variables has
deg(MP)=m.

As an application of our strengthened DegbBdscrepancy Theorem, we obtain
an improved upper bound on the discrepancpof.

Theorem 7.5 (Discrepancy ofAC®3; cf. Sherstov [22, Thm. 1.3]). There is an
(explicitly given) ANPORNOT circuit f: {0, 1}" x {0, 1}" — {-1, +1} of depth3
and size2n such that

discy(f) < 274"

for an explicitly given distributiont.
Proof. Putn = 16m° and define

m 4m?
def
f0y) S\ A (@i VxiD)Awie V=% ) AWs Y% 2) Aija V=X, j2)).
i=1 j=1

It is straightforward to verify that the (8, 4m®, MP)-pattern matrix is a submatrix
of [f(X y)]x,. The discrepancy result now follows by Theorems 7.3 and 7.4.
To specify the corresponding distribution explicitly, iifEces to specify the
distributiony on {0, 1}4m3 with E,.,[MP(2) xs(2)] = 0 for|S| < m. This is because
onceyu is known, the distribution over the entries Bf = [ f(X, y)] can be easily
reconstructed from the proof of Theorem 7.3. The author lhaa@y constructed
just such a distributiop in earlier work [22, Thm. 4.2]. m|
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This discrepancy upper bound has the following circuit icgtions.

Theorem 7.6 (cf. Sherstov [22, Thm. 1.3]).There is an (explicitly given)
ANDORNOT circuit f: {0,1}" x {0,1}" — {-1, +1} of depth3 and size2n such
that any majority vote of threshold gates that computes o)

Proof. Identical to the proof given in [22]. m|

As a final remark, we note that our improved Degiascrepancy Theorem can
be used to strengthen the results of Chattopadhyay [5], wtemeéed the author’s
original work [22] to the multi-party model. However, thecessary manipulations
would not dfer much technical novelty, and we omit them.
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