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Abstract

We study a multi-player one-round game termed Stackelbetgdrk Pricing Game, in which kader
can set prices for a subset of pricable edges in a graph. The other edges have a fixed cosedBm
the leader’s decision one or mdmlowersoptimize a polynomial-time solvable combinatorial minaaiion
problem and choose a minimum cost solution satisfying threuirements based on the fixed costs and
the leader’s prices. The leader receives as revenue thearotzunt of prices paid by the followers for
pricable edges in their solutions. Our model extends séka@vn pricing problems, including single-
minded and unit-demand pricing, as well as Stackelbergngrifor certain follower problems like shortest
path or minimum spanning tree. Our first main result is a taytlysis of a single-price algorithm for the
single follower game, which provides(& + ¢) log m-approximation for any > 0. This can be extended to
provide a(1 + ¢)(log k + log m)-approximation for the general problem anfbllowers. The latter result is
essentially best possible, as the problem is shown to betbapproximate withirO(log® k + log® m). If
followers have demands, the single-price algorithm presia(1 + £)m?2-approximation, and the problem is
hard to approximate withi@(m*) for some= > 0. Our second main result is a polynomial time algorithm for
revenue maximization in the special case of Stackelbemrtiip vertex cover, which is based on non-trivial
max-flow and LP-duality techniques. Our results can be eddrio provide constant-factor approximations
for any constant number of followers.
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1 Introduction

Algorithmic pricing problems model the task of assigninger@ue maximizing prices to a retailer’s set of prod-
ucts given some estimate of the potential customers’ getes in purely computational [14], as well as strate-
gic [3] settings. Previous work in this area has mostly fecusn settings in which these preferences are rather
restricted, in the sense that products are eittuee complement®, 7, 15, 16] and every customer is interested
in exactly one subset of products pure substitute$l, 8, 10, 14, 15, 16], in which case each customer seeks
to buy only a single product out of some set of alternativexustomer’s real preferences, however, are often
significantly more complicated than that and therefore sosee additional challenges.

The modelling of consumer preferences has received conbigeattention in the context afgorithmic mecha-
nism desigril8] andcombinatorial auction$12]. The established models range from relatively simjidieling
languages to bidders that are represented by oracles afj@ertain types of queries, e.g., revealing the desired
bundle of items given some fixed set of prices. The latter didngl a somewhat problematic assumption in the
theory of pricing algorithms, where we usually assume teetancess to a rather large number of potential cus-
tomers through some sort of sampling procedure and, thedtarested in preferences that allow for a compact
kind of representation.

In this paper we focus on customers that have non-trividiepeaces, yet can be fully described by thgpes
andbudgetsand do not require any kind of oracles. Assume that a compamg @ subset of the links in a
given network. The remaining edges are owned by other coimpamd have fixed publicly known prices and
some customer needs to purchase a path between two termittzdsnetwork. Since she is acting rational, she
is going to buy the shortest path connecting her terminatsy Bhould we set the prices on the pricable edges
in order to maximize the company’s revenue? What if there@lser customer, who needs to purchase, e.g., a
minimum cost spanning tree?

This type of pricing problem, in which preferences are imiglf defined in terms of some optimization problem,
is usually referred to aStackelberg pricing23]. In the standard 2-player form we are giveteader setting

the prices on a subset of the network antblower seeking to purchase a min-cost network satisfying her
requirements. We proceed by formally defining the modeltee$tating our results.

1.1 Modd and Notation

In this paper we consider the following class of multi-plapee-round games. L&t = (V, E) be a multi-
graph. There are two types of players in the game, leaderand one or mordollowers We consider two
classes oédgeandvertex gamesdn which either the edges or the vertices have costs. For afitise paper, we
will consider edge games, but the definitions and resultsddex games follow analogously. In an edge game,
the edge seF is divided into two set¥y = E, U Ey with E, N E; = (). For the set ofixed-priceedgesE;
there is a fixed cost(e) > 0 for each edge € E;. For the set opricable edgesFE), the leader can specify a
price p(e) > 0 for each edge: € E,. We denote the number of pricable edgesiby= |E,|. Each follower
i=1,...,khas aseS; C 2% of feasible subnetworksTheweightw(S) of a subnetworkS < S; is given by
the costs of fixed-price edges and the price of pricable edges

w(S) = Z cle) + Z p(e).

e€SNEy e€SNEy

Therevenuer(S) of the leader from subnetwork is given by the prices of the pricable edges that are included

inS,i.e.,
r(S)= > ple).

ecSNE,



Throughout the paper we assume that for any price fungtiemery follower: can in polynomial time find a
subnetworkS’ (p) of minimum weight. Our interest is to find the pricing functig* for the leader that generates
maximum revenue, i.e.,

k

P =argmaxy r(S](p))-

=1

We denote this maximum revenue #y To guarantee that the revenue is bounded and the optionzatoblem
is non-trivial, we assume that there is at least one feasilid@etwork for each followerthat is composed only
of fixed-price edges. In order to avoid technicalities, weuase w.l.0.g. that among subnetworks of identical
weight the follower always chooses the one with higher raedor the leader. It is not difficult to see that in the
2-player case we also need followers with a large numberasilite subnetworks in order to make the problem
interesting.

Proposition 1 Given followerj and a fixed subnetwork; € S;, we can compute prices with w(S;) =
minges; w(S) maximizingr(S;) or decide that such prices do not exist in polynomial timethie 2-player
game, if|S| = O(poly(m)), revenue maximization can be done in polynomial time.

The proof of Proposition 1 is found in the Appendix. In geheva will refer to the revenue optimization
problem by SAck. Note, that our model extends the previously consideredngrimodels and is essentially
equivalent to pricing with general valuation functions, ralgem that has independently been considered in
[4]. Every general valuation function can be expressedrnmdeof Stackelberg network pricing on graphs (of
potentially exponential size) and our algorithmic resaltply in this setting, as well.

1.2 PreviousWork and New Results

The single-follower shortest path Stackelberg pricingofem (STACK SP) has first been considered by Labbé et
al. [17], who derive a bilevel LP formulation of the problemdaprove NP-hardness. Roch et al. [19] present a
first polynomial time approximation algorithm with a prol@lperformance guarantee, which yields logarithmic
approximation ratios. Bouhtou et al. [5] extend the probkenmultiple (weighted) followers and present
algorithms for a restricted shortest path problem on pelriiks. For an overview of most of the initial work
on Stackelberg network pricing the reader is referred t¢. [R2ifferent line of research has been investigating
the application of Stackelberg pricing to network congestijames in order to obtain low congestion Nash
equilibria for sets of selfish followers [11, 20, 21].

More recently, Cardinal et al. [9] investigated the cormgfing minimum spanning tree {&GCKMST) game,
again obtaining a logarithmic approximation guarantee pmosting APX-hardness. Thesingle-price algo-
rithm, which assigns the same price to all pricable edges, tutt® dne even more widely applicable and yields
similar approximation guarantees for any matroid basedk8taerg game.

The first result of our paper is a generalization of this tesufjeneral Stackelberg games. The previous limi-
tation to matroids stems from the difficulty to determine tlegessarily polynomial number of candidate prices
that can be tested by the algorithm. We develop a novel cteization of the small set dhreshold prices
that need to be tested and obtain a polynomial tithe- ¢) H,,-approximation (wheréd,,, denotes then'th
harmonic number) for arbitrary > 0, which turns out to be perfectly tight for shortest path ali aminimum
spanning tree games. This result is found in Section 2.

We then extend the analysis to multiple followers, in whieBethe approximation ratio becoriést- ¢) (Hj, +
H,,). This can be shown to be essentially best possible by an xippation preserving reduction from single-
minded combinatorial pricing [13]. Extending the problewem further, we also look at the case of multiple
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weightedfollowers, which arises naturally in network settings whelifferent followers come with different
routing demands. It has been conjectured before that naxippation essentially better than the number of
followers is possible in this scenario. We disprove thisjeciure by presenting an alternative analysis of the
single-price algorithm resulting in an approximation aaif (1 + )m?. Additionally, we derive a lower bound
of O(m?®) for the weighted player case. This resolves a previouslyrgpeblem from [5]. The results on
multiple followers are found in Section 3.

The generic reduction from single-minded to Stackelbergimy yields a class of networks in which we can
price the vertices on one side of a bipartite graph and péagien to purchase minimum cost vertex covers for
their sets of edges. This motivates us to return to the clalsSitackelberg setting and consider the 2-player
bipartite vertex cover game {8ckVC). As it turns out, this variation of the game allows polymal-time
algorithms for exact revenue maximization using non-dtiglgorithmic techniques. We first present an upper
bound on the possible revenue in terms of the min-cost vexd@er not using any pricable vertices and the
minimum portion of fixed cost in any possible cover. Usingdted max-flow computations, we then determine
a pricing with total revenue that eventually coincides vaitin upper bound. These results are found in Section 4

The rest of the paper is organized as follows. Sections igiral contain our results on the single-price
algorithm and the bipartite vertex cover game. Some of teefprhave been moved to the Appendix due to
space limitations. Section 5 concludes and presents $éveiguing open problems for further research.

2 A Single-Price Algorithm for a Single Follower

Let us assume that we are faced with a single follower ang lg¢note the cost of a cheapest feasible subnetwork
for the follower not containing any of the pricable edgesdtly, we can comput&, by assigning price-oco to

all pricable edges and simulating the follower on the résgilhetwork. Thesingle-price algorithnproceeds as
follows. Forj = 0, ..., [log co] it assigns pricey; = (1 + )7 to all pricable edges and determines the resulting
revenuer(p;). It then simply returns the pricing that results in maximuswenue. We present a logarithmic
bound on the approximation guarantee of the single-prigerghm.

Theorem 1 Given anye > 0, the single-price algorithm computes &h-+ <) H,,,-approximation with respect
to r*, the revenue of an optimal pricing.

2.1 Analysis

The single-price algorithm has previously been appliedriaraber of different combinatorial pricing problems
[1, 15]. The main issue in analyzing its performance guasrior Stackelberg pricing is to determine the
right set of candidate prices. We first derive a precise dbaraation of these candidates and then argue that
the geometric sequence of prices tested by the algorithmgizod enough approximation. Slightly abusing
notation, we letp refer to both pricep and the assignment of this price to all pricable edges. letlexists a
feasible subnetwork for the follower that uses at lggsticable edges, we let

0; = max{p||S*(p) N Ep| > j}

be the largest price at which such a subnetwork is choseno féasible subnetwork with at leagtpricable
edges exists, we séf = 0. As we shall see, these thresholds are the key to prove Tinebre

We want to derive an alternative characterization of theaslofd;. For eachl < j < m we letc; refer to
the minimum sum of prices of fixed-price edges in any feashlenetwork containing at mogpricable edges,
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formally
cj:min{ Z fe‘SGS : \SﬂEp\ﬁj},

eESﬂEf

andA; = ¢p — ¢;. For ease of notation leky = 0. Consider the point s€0, Ag), (1,A1),...,(m,A,,) on
the plane. ByH we refer to a minimum selection of points spanning the uppavex hull of the point set. It is
a straightforward geometric observation that we can déiirees follows:

Ap—A;
S

Fact 1 Point(j,A;) belongs tdH if and only ifmin; - > maxjcp

We now return to the candidate prices. By definition we hae¢@th> 0, > --- > 6,,. We say that); is true
threshold valuef 0, > 6,4, i.e., if at priced; the subnetwork chosen by the follower contains exagcplyicable
edges. Let; < iy < --- < ig denote the indices, such titgf are true threshold values and for ease of notation
defineiy = 0.

Lemmal 0, is true threshold value if and only i, A ;) belongs toH.

Proof: =" Let 6; be true threshold value, i.e., at priéethe chosen subnetwork contains exagtlgricable
edges. We observe that at any pricthe cheapest subnetwork containjngricable edges has cast+ j - p =
co — Aj + j - p. Thus, at priced; it must be the case thak; — j - 0; > A; —7-6; forall i < j and
Aj—j-0; > A, —k-0;forall j < k. It follows that

Aj—

. AV A — A
min —L——° 29j>maxM

i<j j—1 i<k k—j
and, thus, we have théj, A;) belongs toH.

)

" <" Assume now thatj, A;) belongs to/ and let

Consider anyk < j. ltfollows thatAy —k-p = A; —j-p— (Aj —Ap) + (G —k)p < Aj —j-p,
sincep < (A; —Ay)/(j — k) and, thus, the network chosen at priceannot contain less tharpricable edges.
Analogously, let: > j. Usingp > (Ax—A;)/(k—j) weobtainA,—k-p = Aj—j-p+(Ap—Aj)—(k—j)p <
A; — j - p,and, thus, the subnetwork chosen at pri@®@ntains exactly pricable edges. We conclude tltgtis
a true threshold. 0

J

Figure 1: A geometric interpretation of (true) thresholdles?;.

It is not difficult to see that the pricg defined in the second part of the proof of Lemma 1 is precidady t
threshold valud@;. Letd;, be any true threshold. Since poirtis, A, ), ..., (i¢, A;,) define the convex hull we
can write thatmin,«;, (A;, — Aq)/(ix — 1) = (Ai, — Ay,_,)/ (i — ix—1). We state this important fact again in
the following lemma.



Figure 2: An instance of Stackelberg Shortest Path, on whietanalysis of the approximation guarantee of the
single-price algorithm is tight. Bold edges are pricabkrtex labels of regular edges indicate cost. The instance
yields tightness of the analysis also for Stackelberg MurmSpanning Tree.

. Ag =4
Lemma2 Forall 1 <k < (it holds thatf;, = —*—*=*

I —ik—1

From the fact that point§o, A;,), . . ., (i¢, A;,) define the convex hull we know that;, = A,,, i.e.,A,;, is the
largest of allA-values. On the other hand, eadh) describes the maximum revenue that can be made from a
subnetwork with at most pricable edges and, thud,,,, is clearly an upper bound on the revenue made by an
optimal price assignment.

Fact 2 It holds thatr* < A,,.

By definition of thed;’s it is clear that at any price belogy, the subnetwork chosen by the follower contains no
less than;, pricable edges. Furthermore, for edghthe single-price algorithm tests a candidate price that is a
most a factor1 + <) smaller tharo;, . Letr(p;, ), 7(6;,) denote the revenue that results from assigning price

or ¢;, to all pricable edges, respectively.

Fact 3 For eachd;, there exists a price;, with (1 +¢)7'6;, < p;, < 6;, that is tested by the single-price
algorithm. Especially, it holds that(p;, ) > (1 +¢)~'r(6;,)

Finally, we know that the revenue made by assigning @#jceto all pricable edges i8(0;,) = i - 6;,. Letr
denote the revenue of the single-price solution returnetth&wlgorithm. We have:

m
(I+¢e)-Hp-r = (1+4¢) ZC (1+¢) Z Z iz 1+¢) Z Z
3:1‘] k=1j7=t)_ 1+1‘7 k=1j=tp_1+1
l ik l ik i 0
> Z Z k .zk
k=1j=tp_1+1 k:l]—lk 1+1 J
1 i 0 l
> > (i — k1) ’“Z,k B =NT(A;, —A;,_,), by Lemma 2
k=1 k=1

= Ai[ —AO :AZ’[ ZT‘*.

This concludes the proof of Theorem 1.

2.2 Tightness

The example in Figure 2.1 shows that our analysis of the sipgte algorithm’s approximation guarantee is
tight. The follower wants to buy a path connecting vertigemnd¢. In an optimal solution we set the price of
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edgee; to m/j. Then edges,,..., e, form a shortest path of cost H,,. On the other hand, assume that
all edgesey, . .., e, are assigned the same prigelf p < 1 the leader’s revenue is clearly boundedhy if

p > m the shortest path does not contain any pricable edge atetithenm/(j + 1) < p < m/j for some

1 < j <m— 1. Itis straightforward to argue that at this price a shonpegh froms to ¢t does not contain any
of the pricable edges;1,...,e, and, thus, it contains at mogtpricable edges. It follows that the leader’s
revenue is at most- p < m. Similar argumentation clearly holds if the follower se¢é&purchase a minimum
spanning tree instead of a shortest path.

The best known lower bound for 2-player Stackelberg pricsrfigund in [9], where APX-hardness is shown for
the minimum spanning tree case. To the authors’ best kngelath to now no non-constant inapproximability
results have been proven. We proceed by extending our sesuthultiple followers, in which case previous
results on other combinatorial pricing problems yield is¢yéower bounds.

3 Extension to Multiple Followers

In this section we extend our results on general Stackehmkgork pricing to scenarios with multiple followers.
Recall that each followey is characterized by her own collectidt) of feasible subnetworks ariddenotes the
number of followers. Section 3.1 extends the analysis fromdingle follower case to prove a tight bound
of (1 + ¢)(H, + H,,) on the approximation guarantee of the single-price algorit Section 3.2 presents an
alternative analysis that applies even in the case of weigtailowers and yields approximation guarantees that
do not depend on the number of followers. Section 3.3 de(wear) tight inapproximability results based on
known hardness results for combinatorial pricing.

31 An(1+¢)(Hy+ Hy)-Approximation for Multiple Followers

Let an instance of Stackelberg network pricing with some loeis > 1 of followers be given. We extend the
analysis from Section 2 to obtain a similar bound on the sipgice algorithm’s approximation guarantee.

Theorem 2 The single-price algorithm computes &h+ ¢)(Hy, + H,,)-approximation with respect tg*, the
revenue of an optimal pricing, f@TACK with multiple followers.

The reduction from the multiple to single follower case ie firoof of Theorem 2, which is found in the Ap-
pendix, relies essentially on the fact that we are congidettie single-price algorithm. Thus, the above does
not imply anything about the relation of these two cases irega.

3.2 A (1+e)m2-Approximation for Weighted Followers

We now turn to an even more general variation of Stackelbaring, in which we allow multipleweighted
followers. This model, which has been previously considéng]5], arises naturally in the context of network
pricing games with different demands for each player. Fdygniar each follower; we are given hedemand
d; € R({. Given followers buying subnetworks , . . . , Sk, the leader’s revenue is defined as



@ (b)

Figure 3: Reductions from pricing problems to Stackelbefigimg. (a) Unit-demand reduces to directed
STACKSP. Bold edges are pricable, edge labels indicate cost.|&egiges without labels have cost 0. Vertex
labels indicate source-sink pairs for the followers. (dk-minded pricing reduces to bipartitasA&k VC.
Filled vertices are pricable, vertex labels indicate césir each customer there is one follower, who strives to
cover all incident edges.

It has been conjectured before that in the weighted case proximation guarantee essentially beyafdk -
logm) is possible [19]. We show that an alternative analysis ofsihgle-price algorithm yields ratios that do
not depend on the number of followers. The proof of Theorera3lieen moved to the Appendix due to space
limitations.

Theorem 3 The single-price algorithm computes éh+ ¢)m?-approximation with respect te*, the revenue
of an optimal pricing, forStack with multiple weighted followers.

3.3 Lower Bounds

Hardness of approximation of Stackelberg pricing with iipidt followers follows immediately from known
results about other combinatorial pricing models, whicheh@ceived considerable attention lately. Theorem 4
is based on a reduction from the (weighted) unit-demand-&eypricing problem with uniform budgets, which

is known to be inapproximable withi®(m*) (m denotes the number of products) [6]. In this problem we are
given a universe of products and a collection of (weightegf@mers, each of which buys the cheapest product
out of some set of alternatives with a price not exceedingbidget. The resulting Stackelberg pricing game is
an instance of the so-calleier tarification problem in which each player needs to route her demand along one
out of a number of parallel links connecting her respectivgce and sink pair. One direct fixed price connection
determines her maximum budget for purchasing a pricablke Tiheorem 4 resolves an open problem from [5].
The construction is depicted in Figure 3(a), a formal preaimitted due to space limitations.

Theorem 4 The Stackelberg network pricing problem with multiple viaggl followers is hard to approximate
within O(m?®) for somes > 0, unless NPC (5., BPTIMEQ™’). The same holds for the river tarification
problem.

Theorem 5 is based on a reduction from the single-minded ow@tdsial pricing problem, in which each cus-
tomer is interested in a subset of products and purchasesghible set if the sum of prices does not exceed her
budget. Single-minded pricing is hard to approximate with{log® k +log® m) [13], wherek andm denote the
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numbers of customers and products, respectively. Theorgmss that the single-price algorithm is essentially
best possible for multiple unweighted followers.

Theorem 5 The Stackelberg network pricing problem with multiple uigivied followers is hard to approxi-
mate withinO(log® k +log® m) for somes > 0, unless NRC (5, BPTIME(Z"(S). The same holds for bipartite
Stackelberg Vertex Cover Pricin@tackVC).

The idea for the proof of Theorem 5 is illustrated in Figurie)3{\Ve define an instance off&ckVC in bipartite
graphs. Vertices on one side of the bipartition are pricahrepresent the universe of products, vertices on the
other side encode customers and have fixed prices corraagaiacthe respective budgets. For each customer
we define a follower in the Stackelberg game with edges caimeihe customer vertex and all product vertices
the customer wishes to purchase. Now every follower seekayt@ min-cost vertex cover for her set of edges.

We proceed by taking a closer look at this special type ofk&laerg pricing game and especially focus on the
interesting case of a single follower.

4 Stackelberg Vertex Cover

Stackelberg Vertex Cover Pricing is a vertex game, howedber,approximation results for the single-price
algorithm continue to hold. Note that in general the veriaxet problem is hard, hence we focus on settings, in
which the problem can be solved in polynomial time. In bip@ryraphs the problem can be solved optimally
by using a classic and fundamental max-flow/min-cut arguaiem. If all pricable vertices are in one side
of the partition, then for multiple followers there is evite that the single-price algorithm is essentially best
possible. Our main theorem in this section states that ttiegevith a single follower can be solved exactly.
As a consequence, general bipartites&k VC can be approximated by a factor of 2.

Theorem 6 If for a bipartite graphG = (AU B, E)) we havel], C A, then there is a polynomial time algorithm
computing an optimal price functigs for STACKVC.

We denoten = |V,| and again use the valuegfor 1 < j < n to denote the minimum sum of prices of fixed-
price vertices in any feasible subnetwork containing attnigsicable vertices. Then); = ¢y — ¢; are again
upper bounds on the revenue that can be extracted from anhetivat includes at mogt pricable vertices. We
thus haver™ < A,. Now consider $SACKVC under the condition that the gragh is bipartite, i.e. that the
vertex set can be partitioned intb= A U B with AN B = () and there are no edges withihand B. Thus, for
eache € E, e = (u,v) there isu € A andv € B.

Algorithm 1: Solving StAckVC in bipartite graphs witlV,, C A

1 Construct the flow networks s by adding nodes andt

2 Setp(v) =0forallv eV,

3 Compute a maximum-t-flow ¢ in G4

4 whilethere isv € V,, s.t. increasing(v) yields an augmenting path do
5 L Increasep(v) and¢ along P as much as possible

Suppose all pricable vertices are located in one partitiprc A and consider Algorithm 1. Recall that for a
bipartite graphG the LP-dual can be captured by a maximum flow problem on arstedjulow networkG,



@) (b) (©

Figure 4: Construction to solve bipartita &KV C with pricable vertices in one partition and a single fol&y.
Filled vertices are pricable, vertex labels indicate c¢a}.A graphG; (b) The flow network obtained froré.
Grey parts are source and sink added by the transformatidge EBbels indicate a suboptimak-flow; (c) An
increasing pattP indicated by bold edges and the resulting flow. Every gastarts with a pricable vertex, and
all pricable vertices remain in the optimum cover at all tme

constructed as follows. We add a soukcand a sinkt to G and connect to all verticesv € A with directed
edges(s,v), andt to all verticesv € B with directed edgesv, t). Each such edge gets as capacity the price
of the involved original vertex - i.ep(v) for v € V,, or c(v) if v € V;. Furthermore, we direct all original
edges of the graph fror to B and set their capacity to infinity. It is well-known that thexamum s-¢-flow

in this network equals the cost of a minimum cost vertex caoféhe graphGG. For an example see Figure 4.
An augmenting path id/, is a path traversing only forward edges with slack capacitylzackward edges with
non-zero flow. The optimum vertex cover includes a vettex A if the maximum flow allows no augmenting
path froms to v. We denote by 41 the cover calculated by Algorithm 1.

Now consider a run of the algorithm. When computing the maxinilow onG,; holding allp(v) = 0, we get

a flow of ¢,,. We first note that in the following while-loop we will neveaide a situation, in which there is an
augmentings-t-path starting with a fixed-price vertex. We call such a paftxed path, while an augmenting
s-t-path starting with a pricable vertex is callegrce path.

Lemma 3 Every augmenting path considered in the while-loop of Athgor 1 is a price path.

Proof: We prove the lemma by induction on the while-loop and by @ahttion. Suppose that in the beginning
of the current iteration there is no fixed path. In particuthis is true for the first iteration of the while-loop.
Then, suppose that after we have increased the flow over e jpaih F,, a fixed pathP; is created. Py must
include some of the edges &},. Consider the vertex at which P; hits P,. By following Py from s to w and
P, from w to t there is a fixed path, which must have been present before fasivinereased of,. This is a
contradiction and proves the lemma. O

Note that we may include a vertex € A into the coverC if there is no augmenting path fromto v. In
particular, this means that for a vertexc A N C the following two properties are fulfilled:

1. the flow over edgés, v) equals the capacity and

2. there is no augmenting path frosrover a different vertex’ € A that reaches by decreasing flow over
one of the original edge®, w) for w € B.



As the algorithm always adjusts the price of a verteo equal the current flow ofs, v), we can assume that
there is never any slack capacity on edgge®) for anyv € V,,. Thus, only the violation of property 2 can force
a vertexv € V), to leave the cover. In particular, such an augmenting patst start with a fixed-price vertex.

We call such a path a fixedpath.

Lemma4 Algorithm 1 creates no fixeg-path for any pricable vertex € V,,.

Proof: The proof is similar to the proof of the previous lemma. Siggpm the beginning of an iteration there
is no fixed path, and additionally for a vertexc V,, there is no fixed-path. Then suppose such a p&f?h is
created by increasing flow over a price pdth Note thatP}’ cannot include any edge frofi,, because this
would create a fixed patR; as noted in the previous lemma. Furthermarejust be included irP,, because
otherwiseP}’ would have existed initially. Now we can again use the sargament as before. Create a fixed
path by foIIowingP}’ from s to v and thenP, from v to ¢. This yields fixed path must have existed initially,
which is a contradiction to the assumption. O

As there is no augmenting path fraso any pricable vertex at any time of the algorithm, the feilog lemma
is now obvious.

Lemmab5 Car¢ includes all pricable vertices.

Proof;[of Theorem 6] Finally, we can proceed to argue that the cdatppricing is optimal. Suppose that after
executing Algorithm 1 we increasgv) over ¢(s,v) for any pricable vertex. As we are at the end of the
algorithm, it does not allow us to increase the flow in the samg Thus, the adjustment creates slack capacity
on all the edgegs, v) for anyv € V, and causes every pricable vertex to ledvg,. The new cover must
be the cheapest cover that excludes every pricable vergexit imust beCy and have costy. As we have not
increased the flow, we know that the costCaf; ¢ is alsocy. Note that before starting the while-loop the cover
was(C,, of coste,. As all flow increase in the while-loop was made over pricénpand all the pricable vertices
stay in the cover, the revenue ©f . must becy — ¢, = A,,. This is an upper bound on the optimum revenue,
and hence the price functign 1 derived with the algorithm is optimal. Finally, notice tlatjusting the price
of the pricable vertices in each iteration is not neces3&ig/can start with computing,, and for the remaining
while-loop set all prices te-oo. This will result in the desired flow, which directly genersithe final price
for every vertexv as flow on(s,v). Hence, we can get optimal prices with an adjusted run of tiwedsrd
polynomial time algorithm for maximum flow i& ;. This proves Theorem 6. g

In the next theorem we note that for the general bipartite g&s can get &-approximation for the optimum
revenue. Algorithm 2 can be found in the Appendix togetheh wie proof of the following theorem.

Theorem 7 Algorithm 2 is a2-approximation algorithm for bipartiteSTAck VC, and the analysis of the ratio
is tight.

Note that Algorithm 2 can be used to obtairR/approximation for any number df followers on general
bipartite SACkVC. In contrast, the analysis of the single-price algoritisntight even for one follower in the
case, in which all pricable vertices are in one partitiontéNfarther that a simple reduction from the highway
pricing problem [7] can be used to show that bipartite& VC for at least two followers is NP-hard.
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5 Open problems

In the model of Stackelberg games there are a number of iamptoopen problems that arise from our work.
First, and foremost, we believe that the single-price dlyor is essentially best possible even for the single
follower case and general Stackelberg pricing games. Hemvévwvere is no matching logarithmic lower bound
known for this case. The best lower bound remains APX-haslfrem [9].

In addition, we believe that for the most general case of tei) followers a better bound than? is possible.
It remains an open problem how to tighten the gap betweemthiad and th€)(m*) lower bound we observed.

We have experimented with problems that allow to be solvedymamic programming, like certain classes of
minimum knapsack or vertex cover on trees. It turns out thegd algorithms can be modified to optimally solve
Stackelberg revenue optimization. It would be interestingee, whether a dynamic programming approach can
be used for more general classes of problems.

More generally, extending other fundamental algorithmigfesechnigues to cope with pricing problems is a
major open problem. We have presented how ideas related-tubRty can be used in the case of bipartite
vertex cover. It remains to be shown if these ideas can bestadjuo cope with minimum cut or more general
graph partitioning problems.
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A Appendix

Proposition 1 Given follower; and a fixed subnetwork; € S;, we can compute prices with w(S;) =
minges, w(S) maximizingr(S;) or decide that such prices do not exist in polynomial time thie 2-player
game, if|S| = O(poly(m)), revenue maximization can be done in polynomial time.

Proof: Fix follower j and subnetworls; € S;. We formulate the problem of extracting maximum revenuenfro
S; as the following LP, where variable. defines the price of edgec £,:

max. > 1)
ecS;NE,
s.t. Z Te + Z cle) < Z Te + Z cle) VSeS; 2
BGSjﬂEp GESjﬂEf BGSﬂEp BGSﬂEf
Te >0 (3)

Constraints 2 require thaft; is the cheapest feasible network for followgrformally w(S;) < w(S) for all
feasible networksS' ¢ S;. Clearly the number of these constraints might be expoaleinti. However, by
our assumption we can compute the min-cost subnetwork fogiaen set of prices and, thus, have a poly-time
separation oracle.

Now assume thatS| = O(poly(m)) in the 2-player case. By enumerating &t S and optimizing revenue for
each subnetwork separately, we obtain a poly-time alguorith d

Theorem 2 The single-price algorithm computes én+ ¢)(Hy + H,,)-approximation with respect tg*, the
revenue of an optimal pricing, f@TACK with multiple followers.

Proof: Consider graptG = (V,E), E = Ey U E, with |E,| = m, andk followers defined by collections

S1, ..., S of feasible subnetworks. We transform this instance intmgle follower pricing game as follows.
LetGy, ..., Gy be identical copies off and defing=* = G; U ... U Gy. Furthermore, define a single follower
by

S*:{Slu...USk|SleSlﬁGl,...,SkeSkﬂGk},

i.e., for every follower; in the original instance our new follower seeks to purchasakmetwork fromS; in
copy G; of the original graph. Clearly, the maximum possible revemuthe new instance is an upper bound
on the maximum revenue in the multiple follower case, sineecan always assign the same price to every
copy of a pricable edge it/1, ..., Gy. Furthermore, every pricing returned by the single-prilgg@thm on

G1 U... UGy, translates naturally into a corresponding pricing of ideEttrevenue inG, since again all copies
of an edge fronG are assigned identical prices. Finally, since the numberiodble edges id:; U... U Gy is

k - m, we obtain an approximation ratio Of + ¢) Hy,,, by Theorem 1 as desired. O

Theorem 3 The single-price algorithm computes é&h+ ¢)m?-approximation with respect tg*, the revenue
of an optimal pricing, foISTACK with multiple weighted followers.

Proof: Let again graptG = (V, E), E = E; U E, with |E,| = m, andk followers defined bysi,...,S;
and demandsd;, ..., d; be given and consider the optimal pricipg. For each pricable edge, |ét(e) refer
to the set of followers purchasingunder price assignmenpt: and denote by*(e) = ZjEF(e) d;p*(e) the
corresponding revenue. Clearly; ., r*(e) =r*.
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Fix some pricable edgeand define a corresponding prige= p*(e)/m. By r(p.) we denote the revenue from
assigning pricep. to all pricable edges. Let € F(e) and assume that followerbuys subnetworkS; under
price assignment*. By w*(S;), w.(S;) andc(S;) we refer to the total weight of; under price assignments
p* andp. and the weight due to fixed price edges only, respectivelyoltds that

we(S;) < e(S;) + m% = c(5)) +p"(e) < w(S)).

Let c? denote the cost of a cheapest feasible subnetwork for felgweonsisting only of fixed price edges. It
follows thatw,(S5;) < w*(S;) < cg? and, thus, followey is going to purchase a subnetwork containing at least
one pricable edge under price assignmentesulting in revenue at leadfp. = d;p*(e)/m from this follower.

We conclude that(p.) > r*(e)/m and, thus

m? maxr(p.) > m Z T(pe) > Z r*(e) =r*.

eck,
P eckEy e€kp

Finally, observe that for each prige the single-price algorithm checks some candidate priceisreamaller by
at most a factor of1 + ¢), which finishes the proof. O

Theorem 7 Algorithm 2 is a2-approximation algorithm for bipartiteSTACKVC, and the analysis of the ratio
is tight.

Algorithm 2: A 2-approximation algorithm for \ck VC in bipartite graphs

1 Fixpa(v) =ccforallveV,NnB

2 Fixpp(v) =occforallve V,n A

3 Run Algorithm 1 to determing4 (v) forv € V,N A

4 Run Algorithm 1 to determingp(v) forv € V, N B

5 Returnpy4 or pg, depending on which one yields more revenue

Proof: Note that by setting4(v) = oo for all pricable vertices of3, we increase their price over the prices
in the optimum solution. This obviously allows us to extramire revenue from the vertices ithanp*. The
same argument applies for the verticedSimndp. Hence, the sum of both revenues is an upper boung on
and our algorithm delivers Zrapproximation by preserving the greater of the two.

For a tight example consider a pdth , v2, v3, v4, v5). The first vertexy; is a pricable vertex, then there are two
fixed-price vertices); andwvs of cost 1 and 0, respectivelyy, is pricable vertex, ands; has fixed cost 1. The
optimum prices ar@(v;) = p(vs) = 1. This yields the cove€* = {vy,v3,v4} and generates a revenue of 2.
A solution returned by the algorithm, however, is eggo;) = 1 andp(v2) = oo (or vice versa), and hence
generates only a revenue of 1. d
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