Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 101 (2007)
ECCC

Stackelberg Network Pricing Games
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Abstract

We study a multi-player one-round game termed Stackelbetyvdrk Pricing Game, in which a
leader can set prices for a subset of pricable edges in a graph. The other edges have a fixed cost.
Based on the leader’s decision one or motwersoptimize a polynomial-time solvable combinatorial
minimization problem and choose a minimum cost solutioisgang their requirements based on the
fixed costs and the leader’s prices. The leader receivesvaaue the total amount of prices paid by
the followers for pricable edges in their solutions. Our mlogktends several known pricing problems,
including single-minded and unit-demand pricing, as wsllStackelberg pricing for certain follower
problems like shortest path or minimum spanning tree. Osirtiiain result is a tight analysis of a single-
price algorithm for the single follower game, which proédg1+-¢) log m-approximation for any > 0.
This can be extended to providé B+ ¢)(log k + log m)-approximation for the general problem ahd
followers. The latter result is essentially best possisethe problem is shown to be hard to approximate
within O(log® k + log® m). If followers have demands, the single-price algorithmvdes a(1 + ¢)m?-
approximation, and the problem is hard to approximate with{m®) for somee > 0. Our second
main result is a polynomial time algorithm for revenue magzmtion in the special case of Stackelberg
bipartite vertex cover, which is based on non-trivial maxfland LP-duality techniques. Our results can
be extended to provide constant-factor approximationarfgrconstant number of followers.
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1 Introduction

Algorithmic pricing problems model the task of assigningemue maximizing prices to a retailer’'s set of
products given some estimate of the potential customeegepnces in purely computational [14], as well
as strategic [3] settings. Previous work in this area haglynfaused on settings in which these preferences
are rather restricted, in the sense that products are @timercomplement®, 7, 15, 16] and every customer
is interested in exactly one subset of productpure substitute$l, 8, 10, 14, 15, 16], in which case each
customer seeks to buy only a single product out of some sdteshatives. A customer’s real preferences,
however, are often significantly more complicated than #mak therefore pose some additional challenges.

The modelling of consumer preferences has received caasideattention in the context @llgorithmic
mechanism desigri8] andcombinatorial auctiongl2]. The established models range from relatively sim-
ple bidding languages to bidders that are represented biesrallowing certain types of queries, e.g., reveal-
ing the desired bundle of items given some fixed set of pri¢ée. latter would be a somewhat problematic
assumption in the theory of pricing algorithms, where weallguassume to have access to a rather large num-
ber of potential customers through some sort of samplinggutore and, thus, are interested in preferences
that allow for a compact kind of representation.

In this paper we focus on customers that have non-trividiepeaces, yet can be fully described by their
typesandbudgetsand do not require any kind of oracles. Assume that a companyg a subset of the links
in a given network. The remaining edges are owned by othempeaaias and have fixed publicly known
prices and some customer needs to purchase a path betwetmrvimals in the network. Since she is acting
rational, she is going to buy the shortest path connectingenminals. How should we set the prices on the
pricable edges in order to maximize the company’s revenuéat\/there is another customer, who needs
to purchase, e.g., a minimum cost spanning tree?

This type of pricing problem, in which preferences are imiglf defined in terms of some optimization
problem, is usually referred to &tackelberg pricing23]. In the standard 2-player form we are given a
leadersetting the prices on a subset of the network affidlawer seeking to purchase a min-cost network
satisfying her requirements. We proceed by formally defjrtire model before stating our results.

1.1 Modd and Notation

In this paper we consider the following class of multi-plagee-round games. L&t = (V, E) be a multi-
graph. There are two types of players in the game,leaderand one or moréollowers We consider two
classes oédgeandvertex gamesn which either the edges or the vertices have costs. Fot ofitise paper,
we will consider edge games, but the definitions and resoiitedrtex games follow analogously. In an edge
game, the edge sétf is divided into two set¥ = E, U Ey with E, N E; = (). For the set ofixed-price
edgesk; there is a fixed cost(e) > 0 for each edge € E;. For the set opricable edgesE, the leader can
specify a pricep(e) > 0 for each edge € E,. We denote the number of pricable edgesiby- |E,|. Each
followeri = 1,...,k has a se5; C 2¥ of feasible subnetworks'Theweightw(.S) of a subnetworkS € S;

is given by the costs of fixed-price edges and the price obptecedges,

w(S)= Y cle)+ Y ple)
e€SNEy eeSNE,
The revenuer(S) of the leader from subnetwork is given by the prices of the pricable edges that are

included inS, i.e.,
r(S)= > ple).

ecSNE,



Throughout the paper we assume that for any price fungtiewery followeri can in polynomial time find
a subnetworkS? (p) of minimum weight. Our interest is to find the pricing functip* for the leader that
generates maximum revenue, i.e.,

k
p* =argmaxy (S} (p))-

i=1
We denote this maximum revenue b¥y. To guarantee that the revenue is bounded and the optiorizati
problem is non-trivial, we assume that there is at least easilble subnetwork for each followeérthat
is composed only of fixed-price edges. In order to avoid tiehities, we assume w.l.0.g. that among
subnetworks of identical weight the follower always ch@#ge one with higher revenue for the leader.
It is not difficult to see that in the 2-player case we also niedldwers with a large number of feasible
subnetworks in order to make the problem interesting.

Proposition 1 Given follower; and a fixed subnetwork; € S;, we can compute pricgswith w(S;) =
minges; w(S) maximizingr(S;) or decide that such prices do not exist in polynomial timethi2-player
game, if|S| = O(poly(m)), revenue maximization can be done in polynomial time.

Proof: Fix follower j and subnetworlS; € S;. We formulate the problem of extracting maximum revenue
from S; as the following LP, where variable. defines the price of edgec E,:

max. Z Te (1)
GESjﬂEp
s.t. Z Te + Z cle) < Z Te + Z cle) VSeS; (2)
GESjﬂEp EESjﬂEf GESQEP GESﬂEf
Te >0 3

Constraints 2 require tha; is the cheapest feasible network for followeformally w(S;) < w(S) for all
feasible networkss € S;. Clearly the number of these constraints might be expoaleintim. However,

by our assumption we can compute the min-cost subnetworkrgrgiven set of prices and, thus, have a
poly-time separation oracle.

Now assume thdtS| = O(poly(m)) in the 2-player case. By enumerating &l S and optimizing revenue
for each subnetwork separately, we obtain a poly-time dlgor O

In general we will refer to the revenue optimization problbynStack. Note, that our model extends the
previously considered pricing models and is essentialljvadent to pricing with general valuation functions,
a problem that has independently been considered in [4}yEyeneral valuation function can be expressed
in terms of Stackelberg network pricing on graphs (of patdigtexponential size) and our algorithmic results
apply in this setting, as well.

1.2 PreviousWork and New Results

The single-follower shortest path Stackelberg pricingofgm (STACk SP) has first been considered by Labbé
et al. [17], who derive a bilevel LP formulation of the prammeand prove NP-hardness. Roch et al. [19]
present a first polynomial time approximation algorithmhrdtprovable performance guarantee, which yields
logarithmic approximation ratios. Bouhtou et al. [5] exdethe problem to multiple (weighted) followers



and present algorithms for a restricted shortest path enoldn parallel links. For an overview of most of

the initial work on Stackelberg network pricing the readaraferred to [22]. A different line of research has
been investigating the application of Stackelberg pri¢ongetwork congestion games in order to obtain low
congestion Nash equilibria for sets of selfish followers, [AQ, 21].

More recently, Cardinal et al. [9] initiated the investigat of the corresponding minimum spanning tree
(STACKMST) game, again obtaining a logarithmic approximationrgotee and proving APX-hardness.
Their single-price algorithmwhich assigns the same price to all pricable edges, turntde even more
widely applicable and yields similar approximation gudess for any matroid based Stackelberg game.

The first result of our paper is a generalization of this regulgeneral Stackelberg games. The previous
limitation to matroids stems from the difficulty to deterraithe necessarily polynomial number of candidate
prices that can be tested by the algorithm. We develop a mhaehcterization of the small set thireshold
pricesthat need to be tested and obtain a polynomial tjine <) H,,,-approximation (wheré7,,, denotes the
m’'th harmonic number) for arbitrary > 0, which turns out to be perfectly tight for shortest path a8 a®
minimum spanning tree games. This result is found in Se&ion

We then extend the analysis to multiple followers, in whiese the approximation ratio becom@s+
e)(Hy + H,,). This can be shown to be essentially best possible by an dppation preserving reduction
from single-minded combinatorial pricing [13]. Extenditig problem even further, we also look at the case
of multiple weightedfollowers, which arises naturally in network settings weheifferent followers come
with different routing demands. It has been conjecturediecthat no approximation essentially better than
the number of followers is possible in this scenario. Wemigp this conjecture by presenting an alternative
analysis of the single-price algorithm resulting in an appnation ratio of(1 + ¢)m?. Additionally, we
derive a lower bound oP(m*) for the weighted player case. This resolves a previousiy gpeblem from
[5]. The results on multiple followers are found in Section 3

The generic reduction from single-minded to Stackelbergjmy yields a class of networks in which we can
price the vertices on one side of a bipartite graph and péagien to purchase minimum cost vertex covers for
their sets of edges. This motivates us to return to the dalsSitackelberg setting and consider the 2-player
bipartite vertex cover game (8cKkVC). As it turns out, this variation of the game allows polymal-time
algorithms for exact revenue maximization using non-tialgorithmic techniques. We first present an
upper bound on the possible revenue in terms of the min-a$ex cover not using any pricable vertices
and the minimum portion of fixed cost in any possible coverinysterated max-flow computations, we
then determine a pricing with total revenue that eventuadincides with our upper bound. These results are
found in Section 4

The rest of the paper is organized as follows. Sections 2igtra@l contain our results on the single-price
algorithm and the bipartite vertex cover game. Some of tbefprhave been moved to the appendix due to
space limitations. Section 5 concludes and presents $éwiiguing open problems for further research.

2 A Single-Price Algorithm for a Single Follower

Let us assume that we are faced with a single follower and,ldenote the cost of a cheapest feasible sub-
network for the follower not containing any of the pricabliges. Clearly, we can computg by assigning
price +oc to all pricable edges and simulating the follower on the ltesunetwork. Thesingle-price algo-
rithm proceeds as follows. Fgr= 0,..., [logco] it assigns pricey; = (1 + )’ to all pricable edges and
determines the resulting reventig;). It then simply returns the pricing that results in maximwenue.
We present a logarithmic bound on the approximation guaeaot the single-price algorithm.
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Theorem 1 Given any > 0, the single-price algorithm computes éih+«¢) H,,,-approximation with respect
to r*, the revenue of an optimal pricing.

2.1 Analysis

The single-price algorithm has previously been appliedriaraber of different combinatorial pricing prob-
lems [1, 15]. The main issue in analyzing its performancaantae for Stackelberg pricing is to determine
the right set of candidate prices. We first derive a precisgatterization of these candidates and then ar-
gue that the geometric sequence of prices tested by thathlgds a good enough approximation. Slightly
abusing notation, we letrefer to both pricew and the assignment of this price to all pricable edges. Hethe
exists a feasible subnetwork for the follower that usesastlepricable edges, we let

0; = max{p‘ |S*(p) N E,| > j}

be the largest price at which such a subnetwork is chosem fiéasible subnetwork with at leagpricable
edges exists, we s@f = 0. As we shall see, these thresholds are the key to prove Tinehre

We want to derive an alternative characterization of theeslofd;. For eachl < j < m we letc; refer
to the minimum sum of prices of fixed-price edges in any fdasbbnetwork containing at mogpricable
edges, formally

¢ :min{ 3 fe‘SES SN E,| §j},

e€eSNEy

andA; = ¢y — ¢;. For ease of notation lek, = 0. Consider the point s¢0, Ag), (1,A1),..., (m,A,,) on
the plane. ByH we refer to a minimum selection of points spanning the uppewvex hull of the point set.
It is a straightforward geometric observation that we cdindé+ as follows:

Fact 1 Point (j, A;) belongs ta if and only ifmin;; 25 > max;j, S5

We now return to the candidate prices. By definition we haeg¢th > 0, > --- > 0,,. We say that); is
true threshold valudf 0; > 6,1, i.e., if at priced; the subnetwork chosen by the follower contains exactly
Jj pricable edges. Ley < i; < --- < iy denote the indices, such thif are true threshold values and for
ease of notation defing = 0.

Lemmal 6; is true threshold value if and only i, A ;) belongs toH.

Proof: "=" Let 0, be true threshold value, i.e., at priggthe chosen subnetwork contains exagtlyricable
edges. We observe that at any pridde cheapest subnetwork containjngricable edges has cast+j-p =
co — Aj + j - p. Thus, at pricg; it must be the case thak; — j - 0; > A; —i -0, forall 7 < j and
Aj—j-0; > A, —k-0;forall j < k. It follows that

Aj— A Ap — A
min —2——* 29j>maX7k .
i<j j—1 i<k k—j
and, thus, we have théj, A ;) belongs toH.
" <" Assume now thatj, A;) belongs toH and let
NAVIEWAY
p = min ———.
i<j g —1



Figure 1: A geometric interpretation of (true) thresholdlies6;. The follower seeks to purchase a shortest
path froms to ¢, dashed edges are fixed-cost.

Consider any: < j. ltfollows thatA, —k-p=A; —j-p— (A; — Ag)+ (j — k)p < A; — j - p, since

p < (A; — Ag)/(j — k) and, thus, the network chosen at priceannot contain less thanpricable edges.
Analogously, le > j. Usingp > (Ax—A;)/(k—j) we obtainA,—k-p = A;j—j-p+(Ar—Aj)—(k—j)p <
A; — j - p, and, thus, the subnetwork chosen at pgiantains exactly pricable edges. We conclude that
¢; is a true threshold. O

It is not difficult to see that the price defined in the second part of the proof of Lemma 1 is precidady t
threshold valud;. Letd;, be any true threshold. Since poirtig, A;,), . .., (i¢, A;,) define the convex hull
we can write thainin;«;, (A;, — A;)/(ix — 1) = (A4, — A4, _,)/(ix — ix—1). We state this important fact
again in the following lemma.

. Ay, —A;
Lemma2 Forall 1 <k < /itholds thatd;, = —*—"=L.

U —Tk—1

From the fact that point§o, A, ), . . ., (i¢, A;,) define the convex hull we know that;, = A,,,, i.e.,A;, is

the largest of allA-values. On the other hand, ead) describes the maximum revenue that can be made
from a subnetwork with at mogt pricable edges and, thua,,, is clearly an upper bound on the revenue
made by an optimal price assignment.

Fact 2 It holds thatr* < A,,.

By definition of thed,’s it is clear that at any price belofy, the subnetwork chosen by the follower contains

no less tharn, pricable edges. Furthermore, for e#ghthe single-price algorithm tests a candidate price that
is at most a facto(1 + <) smaller thar9;, . Letr(p;, ), r(6;, ) denote the revenue that results from assigning
pricep;, or#;, to all pricable edges, respectively.

Fact 3 For eachd;, there exists a price;, with (1 4+ ¢)716;, < p;, < 0;, thatis tested by the single-price
algorithm. Especially, it holds that(p;, ) > (1 +¢)~'r(6;,)

Finally, we know that the revenue made by assigning @iceo all pricable edges is(¢;, ) = iy - 0;, . Letr



Figure 2: An instance of Stackelberg Shortest Path, on wthielanalysis of the approximation guarantee of
the single-price algorithm is tight. Bold edges are prieabkrtex labels of regular edges indicate cost. The
instance yields tightness of the analysis also for StaekglMinimum Spanning Tree.

denote the revenue of the single-price solution returnetthé&ylgorithm. We have:

n ¢
(1+¢)-Hp-r = (1+5)Zz 1_|_EZ Z gz 1+EZ Z r(plk)

3:1‘7 k=1j=ip_1+1 k=1j=tp_1+1 J
l ik
Yy
k=1j=tp_1+1 k= 1] =ip_1+1
4
> Z(k—lkl Z i — A ), by Lemma?2
k=1 k=1

= Ai(_AO—AiKZT'

This concludes the proof of Theorem 1.

2.2 Tightness

The example in Figure 2.1 shows that our analysis of the sipgte algorithm’s approximation guarantee
is tight. The follower wants to buy a path connecting vegicandt. In an optimal solution we set the price
of edgee; to m/j. Then edges,, ..., e, form a shortest path of costH,,. On the other hand, assume
that all edgeg., .. ., e,, are assigned the same prigelf p < 1 the leader’s revenue is clearly bounded by
m, if p > m the shortest path does not contain any pricable edge atellthenm/(j + 1) < p < m/j

for somel < j < m — 1. Itis straightforward to argue that at this price a shorpegh froms to ¢t does
not contain any of the pricable edges i, . . . , e,, and, thus, it contains at mogipricable edges. It follows
that the leader’s revenue is at mgstp < m. Similar argumentation clearly holds if the follower seéfs
purchase a minimum spanning tree instead of a shortest path.

The best known lower bound for 2-player Stackelberg priggfgund in [9], where APX-hardness is shown
for the minimum spanning tree case. To the authors’ best letuye, up to now no non-constant inapprox-
imability results have been proven. We proceed by extendlimgesults to multiple followers, in which case
previous results on other combinatorial pricing problenetdystrong lower bounds.

3 Extension to Multiple Followers

In this section we extend our results on general Stackelbetgork pricing to scenarios with multiple fol-
lowers. Recall that each followgris characterized by her own collectidi) of feasible subnetworks arid



denotes the number of followers. Section 3.1 extends thiysiedrom the single follower case to prove a
tight bound of(1 + ¢) (H + H,,) on the approximation guarantee of the single-price algoritSection 3.2
presents an alternative analysis that applies even in Seafaveighted followers and yields approximation
guarantees that do not depend on the number of followersioB86:3 derives (near) tight inapproximability
results based on known hardness results for combinatarcahg.

31 An(1+¢)(Hy+ Hp)-Approximation for Multiple Followers

Let an instance of Stackelberg network pricing with someloeirh > 1 of followers be given. We extend the
analysis from Section 2 to obtain a similar bound on the sipgice algorithm’s approximation guarantee.

Theorem 2 The single-price algorithm computes énh+ ¢)(Hy + H,,)-approximation with respect to*,
the revenue of an optimal pricing, f&@TAck with multiple followers.

Proof: Consider graplG = (V, F), E = Ey U E, with |E,| = m, andk followers defined by collections

Sy,..., S, of feasible subnetworks. We transform this instance intmgle follower pricing game as fol-
lows. LetG1, ..., Gy be identical copies aoff and definegz* = G1 U ... U Gi. Furthermore, define a single
follower by

S*:{Slu...USk|SleSlﬁGl,...,SkeSkﬂGk},

i.e., for every follower; in the original instance our new follower seeks to purchasebmetwork fromS; in
copy G of the original graph. Clearly, the maximum possible reemuthe new instance is an upper bound
on the maximum revenue in the multiple follower case, sineecan always assign the same price to every
copy of a pricable edge it/q, ..., Gg. Furthermore, every pricing returned by the single-prilggi@Ethm

on G1 U ... U Gy translates naturally into a corresponding pricing of ideitrevenue inz, since again

all copies of an edge frortr are assigned identical prices. Finally, since the numbearicable edges in
G1 U...UGy sk -m,we obtain an approximation ratio 6f + ¢) Hy,,, by Theorem 1 as desired. O

The reduction from the multiple to single follower case ie firoof of Theorem 2 relies essentially on the
fact that we are considering the single-price algorithmuslithe above does not imply anything about the
relation of these two cases in general.

3.2 A (1+e)m?-Approximation for Weighted Followers

We now turn to an even more general variation of Stackelbdaing, in which we allow multipleveighted
followers. This model, which has been previously considéng5], arises naturally in the context of network
pricing games with different demands for each player. Fdypfar each follower;j we are given hedemand

d; € R$. Given followers buying subnetworks;, . .., S, the leader’s revenue is defined as
k
dj > ple).
7j=1 ecS;NE,

It has been conjectured before that in the weighted case pmx@mation guarantee essentially beyond
O(k -logm) is possible [19]. We show that an alternative analysis ofthgle-price algorithm yields ratios
that do not depend on the number of followers.



Theorem 3 The single-price algorithm computes éin-¢)m?2-approximation with respect to*, the revenue
of an optimal pricing, forStTAck with multiple weighted followers.

Proof: Let again graplG = (V, E), E = Ey U E, with |E,| = m, andk followers defined bySi, ..., Sy
and demanddy, . .., d; be given and consider the optimal pricipty For each pricable edge, |&te) refer
to the set of followers purchasingunder price assignmept and denote by*(e) = EJEF(E) d;p*(e) the
corresponding revenue. ClearEeeEp r*(e) =r*.

Fix some pricable edge and define a corresponding prige = p*(e)/m. By r(p.) we denote the revenue
from assigning price. to all pricable edges. Let € F'(e) and assume that follower buys subnetwork
S; under price assignmept. By w*(S;), we(S;) andc(S;) we refer to the total weight of; under price
assignmentg* andp,. and the weight due to fixed price edges only, respectivelyoltds that

we(55) < (55 +mP 1D = o)) 4 p(e) < w(5)).

Let c? denote the cost of a cheapest feasible subnetwork for felgwonsisting only of fixed price edges.
It follows thatw,.(S;) < w*(S;) < cg? and, thus, followey is going to purchase a subnetwork containing at
least one pricable edge under price assignmentesulting in revenue at leadfp. = d;p*(e)/m from this
follower. We conclude that(p.) > r*(e)/m and, thus

m?maxr(pe) >m Y r(pe) > > r*(e) =1
echp e€E, e€E,
Finally, observe that for each prige the single-price algorithm checks some candidate prideigtsamnaller
by at most a factor of1 + <), which finishes the proof. O

3.3 Lower Bounds

Hardness of approximation of Stackelberg pricing with iplgtfollowers follows immediately from known
results about other combinatorial pricing models, whictieheeceived considerable attention lately. The-
orem 4 is based on a reduction from the (weighted) unit-den®aovy-free pricing problem with uniform
budgets, which is known to be inapproximable witlddi°) (m denotes the number of products) [6]. In
this problem we are given a universe of products and a caledf (weighted) customers, each of which
buys the cheapest product out of some set of alternativésangrice not exceeding her budget. The result-
ing Stackelberg pricing game is an instance of the so-caed tarification problem in which each player
needs to route her demand along one out of a number of pdmakslconnecting her respective source and
sink pair. One direct fixed price connection determines haximum budget for purchasing a pricable link.
Theorem 4 resolves an open problem from [5]. The constnugsialepicted in Figure 3(a), a formal proof is
omitted due to space limitations.

Theorem 4 The Stackelberg network pricing problem with multiple viaggl followers is hard to approx-
imate withinO(m®) for somee > 0, unless NPC ;. BPTIMEQ™). The same holds for the river
tarification problem.

Theorem 5 is based on a reduction from the single-minded tw@tdrial pricing problem, in which each
customer is interested in a subset of products and purchiaseshole set if the sum of prices does not
exceed her budget. Single-minded pricing is hard to appraté withinO(log® k£ + log® m) [13], wherek
andm denote the numbers of customers and products, respectiiegorem 5 shows that the single-price
algorithm is essentially best possible for multiple unvnégl followers.

8



(@) (b)

Figure 3: Reductions from pricing problems to Stackelbetgimpg. (a) Unit-demand reduces to directed
STACKSP. Bold edges are pricable, edge labels indicate cost. |[&egdges without labels have cost 0.
Vertex labels indicate source-sink pairs for the followe(b) Single-minded pricing reduces to bipartite
STACKVC. Filled vertices are pricable, vertex labels indicatetcéor each customer there is one follower,
who strives to cover all incident edges.

Theorem 5 The Stackelberg network pricing problem with multiple uighted followers is hard to approx-
imate withinO(log® k + log® m) for somee > 0, unless NPC ;. BPTIMEQ"’). The same holds for
bipartite Stackelberg Vertex Cover Pricin§1ackVC).

The idea for the proof of Theorem 5 is illustrated in Figur)3(We define an instance off&ckVC in
bipartite graphs. Vertices on one side of the bipartitiom @ticable and represent the universe of products,
vertices on the other side encode customers and have fixegsmorresponding to the respective budgets.
For each customer we define a follower in the Stackelberg geitheedges connecting the customer vertex
and all product vertices the customer wishes to purchase.éNery follower seeks to buy a min-cost vertex
cover for her set of edges.

We proceed by taking a closer look at this special type ofketaerg pricing game and especially focus on
the interesting case of a single follower.

4 Stackelberg Vertex Cover

Stackelberg Vertex Cover Pricing is a vertex game, howdkerapproximation results for the single-price

algorithm continue to hold. Note that in general the vertaxet problem is hard, hence we focus on settings,
in which the problem can be solved in polynomial time. In bip@ graphs the problem can be solved

optimally by using a classic and fundamental max-flow/mib-&rgumentation. If all pricable vertices are

in one side of the partition, then for multiple followers tlds evidence that the single-price algorithm is
essentially best possible. Our main theorem in this sedtiates that the setting with a single follower can
be solved exactly. As a consequence, general bipartdeSV C can be approximated by a factor of 2.

Theorem 6 If for a bipartite graphG = (A U B, E) we haveV,, C A, then there is a polynomial time
algorithm computing an optimal price functigri for STACKVC.

We denoten = |V,| and again use the valueg for 1 < j < n to denote the minimum sum of prices of
fixed-price vertices in any feasible subnetwork contairahgnost; pricable vertices. Thenm); = ¢y — ¢;
are again upper bounds on the revenue that can be extrastecfnetwork that includes at mggspricable

9
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Figure 4: Construction to solve bipartiter &k VC with pricable vertices in one partition and a single fol-
lower. Filled vertices are pricable, vertex labels indécebst. (a) A grapld-; (b) The flow network obtained
from G. Grey parts are source and sink added by the transformakaige labels indicate a suboptimal
s-t-flow; (c) An increasing patt® indicated by bold edges and the resulting flow. Every gastarts with a
pricable vertex, and all pricable vertices remain in theroptn cover at all times.

vertices. We thus have' < A,,. Now consider $ACKVC under the condition that the graghis bipartite,
i.e. that the vertex set can be partitioned ihte= A U B with AN B = () and there are no edges withih
andB. Thus, for eacle € F, e = (u,v) there isu € A andv € B.

Algorithm 1: Solving StAckVC in bipartite graphs witl,, C A

1 Construct the flow networks s by adding nodes andt

2 Setp(v) =0forallv eV,

3 Compute a maximum-t-flow ¢ in G4

4 whilethere isv € V}, s.t. increasing(v) yields an augmenting path do
5 L Increasep(v) and¢ along P as much as possible

Suppose all pricable vertices are located in one partitipa A and consider Algorithm 1. Recall that for a
bipartite graphG the LP-dual can be captured by a maximum flow problem on arssdjiflow networkG,
constructed as follows. We add a souscnd a sink to G and connect to all verticesv € A with directed
edgeq(s, v), andt to all verticesv € B with directed edgeév, t). Each such edge gets as capacity the price
of the involved original vertex - i.ep(v) for v € V,, or ¢(v) if v € V. Furthermore, we direct all original
edges of the graph from to B and set their capacity to infinity. It is well-known that theximums-¢-flow

in this network equals the cost of a minimum cost vertex covéne graph’. For an example see Figure 4.
An augmenting path id-; is a path traversing only forward edges with slack capacity lsackward edges
with non-zero flow. The optimum vertex cover includes a vertec A if the maximum flow allows no
augmenting path from to v. We denote by 41 the cover calculated by Algorithm 1.

Now consider a run of the algorithm. When computing the maxinflow on G, holding all p(v) = 0,
we get a flow ofc,,. We first note that in the following while-loop we will neverde a situation, in which
there is an augmenting-path starting with a fixed-price vertex. We call such a pafitved path, while an
augmentings-t-path starting with a pricable vertex is callegéce path.

Lemma 3 Every augmenting path considered in the while-loop of Athgor 1 is a price path.
Proof: We prove the lemma by induction on the while-loop and by aahttion. Suppose that in the
beginning of the current iteration there is no fixed path. amtipular, this is true for the first iteration of

the while-loop. Then, suppose that after we have incredseéidw over a price patl?,, a fixed pathP; is
created.Py must include some of the edgesf. Consider the vertexw at which P hits P,. By following
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P; from s to w and P, from w to ¢ there is a fixed path, which must have been present before flasv w
increased orP,. This is a contradiction and proves the lemma. O

Note that we may include a vertexc A into the coverC if there is no augmenting path fromto v. In
particular, this means that for a vertexc A N C the following two properties are fulfilled:

1. the flow over edgés, v) equals the capacity and

2. there is no augmenting path frosrover a different vertex’ € A that reache® by decreasing flow
over one of the original edgés, w) for w € B.

As the algorithm always adjusts the price of a vertég equal the current flow ofs, v), we can assume that
there is never any slack capacity on edges) for anyv € V,,. Thus, only the violation of property 2 can
force a vertexw € V,, to leave the cover. In particular, such an augmenting patt start with a fixed-price
vertex. We call such a path a fixeepath.

Lemma4 Algorithm 1 creates no fixeg-path for any pricable vertex € V,,.

Proof: The proof is similar to the proof of the previous lemma. Siggpim the beginning of an iteration there
is no fixed path, and additionally for a vertexc V,, there is no fixed-path. Then suppose such a p&fyh

is created by increasing flow over a price p#&th Note thatP}’ cannot include any edge fro},, because
this would create a fixed patR; as noted in the previous lemma. Furthermarenust be included irP,,
because othenNisB}) would have existed initially. Now we can again use the sargaraent as before.
Create a fixed path by followin@’}’ from s to v and thenP, from v to ¢. This yields fixed path must have
existed initially, which is a contradiction to the assuropti d

As there is no augmenting path fromto any pricable vertex at any time of the algorithm, the feilny
lemma is now obvious.

Lemmab5 Car¢ includes all pricable vertices.

Proof of Theorem 6.Finally, we can proceed to argue that the computed pricirapisnal. Suppose that
after executing Algorithm 1 we increagév) over ¢(s, v) for any pricable vertex. As we are at the end of
the algorithm, it does not allow us to increase the flow in #i®e way. Thus, the adjustment creates slack
capacity on all the edgegs, v) for anyv € V,, and causes every pricable vertex to le@ve,. The new
cover must be the cheapest cover that excludes every ivablex, i.e. it must b€, and have costy.

As we have not increased the flow, we know that the costf; is alsocy. Note that before starting the
while-loop the cover was,, of costc,,. As all flow increase in the while-loop was made over pricénpat
and all the pricable vertices stay in the cover, the reveffide;g; must becy — ¢, = A,,. This is an upper
bound on the optimum revenue, and hence the price fungtigia; derived with the algorithm is optimal.
Finally, notice that adjusting the price of the pricabletiesss in each iteration is not necessary. We can start
with computingC,, and for the remaining while-loop set all prices+@o. This will result in the desired
flow, which directly generates the final price for every venteas flow on(s, v). Hence, we can get optimal
prices with an adjusted run of the standard polynomial titgerghm for maximum flow inGG,4. This proves
Theorem 6. O

Algorithm 2 is a very natural extension of Algorithm 1 to these of pricable vertices being located on both
sides of the bipartition. Theorem 7 states that the algoritichieves &-approximation in this situation.
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Algorithm 2: A 2-approximation algorithm for \ckVC in bipartite graphs

Fixpa(v) =occforallve V,NB

Fix pp(v) =ocoforallv e V,n A

Run Algorithm 1 to determing4 (v) forv € V,N A

Run Algorithm 1 to determingg(v) forv € V, N B

Returnp4 or pp, depending on which one yields more revenue

a b~ W N -

Theorem 7 Algorithm 2 is a2-approximation algorithm for bipartiteSTACKVC, and the analysis of the
ratio is tight.

Proof: Note that by setting 4 (v) = oo for all pricable vertices oB, we increase their price over the prices
in the optimum solution. This obviously allows us to extramire revenue from the vertices ithanp™.

The same argument applies for the vertice®iandpg. Hence, the sum of both revenues is an upper bound
onr*, and our algorithm delivers Zzapproximation by preserving the greater of the two.

For a tight example consider a pdth , vo, v, v4, v5). The first vertexv; is a pricable vertex, then there are
two fixed-price vertices, andwvs of cost 1 and 0, respectively, is pricable vertex, and; has fixed cost 1.
The optimum prices arg(v1) = p(vs) = 1. This yields the cove€* = {v1,v3,v4} and generates a revenue
of 2. A solution returned by the algorithm, however, is eagu1) = 1 andp(v2) = oo (or vice versa), and
hence generates only a revenue of 1. O

Note that Algorithm 2 can be used to obtaiR/aapproximation for any number @f followers on general
bipartite SAckVC. In contrast, the analysis of the single-price algoriilriight even for one follower in the
case, in which all pricable vertices are in one partitiontéNfarther that a simple reduction from the highway
pricing problem [7] can be used to show that bipartite&< VC for at least two followers is NP-hard.

5 Open problems

In the model of Stackelberg games there are a number of iamtaspen problems that arise from our work.
First, and foremost, we believe that the single-price dligor is essentially best possible even for the single
follower case and general Stackelberg pricing games. Hexvthere is no matching logarithmic lower bound
known for this case. The best lower bound remains APX-haslfrem [9]. In addition, we believe that for
the most general case of weighted followers a better bouanah i is possible. It remains an open problem
how to tighten the gap between this bound and(te:*) lower bound we observed.

We have experimented with problems that allow to be solvedhioamic programming, like certain classes of
minimum knapsack or vertex cover on trees. It turns out thege algorithms can be modified to optimally
solve Stackelberg revenue optimization. It would be irgting to see, whether a dynamic programming
approach can be used for more general classes of problems.

More generally, extending other fundamental algorithrmrigtetechniques to cope with pricing problems is a
major open problem. We have presented how ideas related-ttulkty can be used in the case of bipartite
vertex cover. It remains to be shown if these ideas can betadjtio cope with minimum cut or more general
graph partitioning problems.
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