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Abstract

We give a self-contained exposition of selected results in additive combinatorics
over the group GF (2)n = {0, 1}n. In particular, we prove the celebrated theorems
known as the Balog-Szemeredi-Gowers theorem (’94 and ’98) and the Freiman-Ruzsa
theorem (’73 and ’99), leading to the remarkable result by Samorodnitsky (’07) that
linear transformations are efficiently testable.

No new result is proved here. However, we strip down the available proofs to
the bare minimum needed to derive the efficient testability of linear transformations
over {0, 1}n, thus hoping to provide a computer science-friendly introduction to the
marvelous field of additive combinatorics.

1 Introduction

Additive combinatorics is a fascinating area of mathematics that has recently found several
applications in computer science, for example in the areas of extractors [BIW], property
testing [Sam], PCP’s [ST], hardness amplification [Vio, VW], and pseudorandomness [BV].
A growing number of beautiful expositions of additive combinatorics is available, including
the book by Tao and Vu [TV] and the notes by Green [Gre]. However, these expositions
are somewhat targeted to mathematicians, and their breadth may be disorienting to the
uninitiated. On the other hand, in these notes we aim to provide a computer science-
friendly introduction to additive combinatorics. We hope to achieve this by giving a self-
contained exposition of selected results in additive combinatorics, stripped-down to the bare
minimum needed to obtain the following remarkable result by Samorodnitsky [Sam] that
linear transformations are efficiently testable.
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Theorem 1.1 ([Sam]; Testing linear transformations). Let f : {0, 1}n → {0, 1}n be any
function, and let ‘+’ denote bit-wise XOR. If Prx,x′∈{0,1}n [f(x)+ f(x′) = f(x+x′)] ≥ ε, then
there is an n×n matrix M such that Prx∈{0,1}n [f(x) = Mx] ≥ ε′, where ε′ depends on ε only.

The same machinery that goes in the proof of Theorem 1.1 constitutes the core of the
proof of the “Inverse theorem for the Gowers U3 norm” [GT1, Sam] which in turn can be
used to obtain correlation bounds for quadratic polynomials [Vio, VW] and pseudorandom
generators for cubic polynomials [BV].

To introduce the subject and motivate the following sections, let us now informally see
how the property-testing result in Theorem 1.1 follows from some results in additive combi-
natorics, which will be presented along the way.

Proof idea for Theorem 1.1 We are interested in the additive combinatorics of the graph
A of the function f :

A := {(x, f(x)) : x ∈ {0, 1}n} ⊆ {0, 1}2n.

The approach to prove the theorem is to show that A is approximately a linear space. This
approach is motivated by the observation that if A′ was exactly a linear space, then f must
be a linear transformation, because in this case (x, f(x))+(x′, f(x′)) = (x+x′, f(x)+f(x′)) ∈
A′ ⊆ A = {(x, f(x)) : x ∈ {0, 1}n}, and so f(x) + f(x′) must equal f(x + x′).

We start by noting that our assumption can be written as

Pr
a,a′∈A

[a + a′ ∈ A] ≥ ε. (1)

Here we apply our first result in additive combinatorics, namely the Balog-Szemeredi-
Gowers (BSG) theorem [BS, Gow]. This theorem states that if a set A satisfies (1) then
it contains a large subset that is nearly closed under addition. More formally, defining
2S := {a + a′ : a, a′ ∈ S}, the BSG theorem says that there is a set A′ ⊆ A of large size
|A′| ≈ |A| such that

|2A′| ≈ |A′|. (2)

(From Equation (2) we cannot in general conclude that |2A| ≈ |A|, which motivates consid-
ering the subset A′ ⊆ A.)

At this point we apply our second result in additive combinatorics, namely Ruzsa’s the-
orem [Ruz], which is a finite-field analogue of an older theorem by Freiman [Fre]. This
theorem says that if a set A′ satisfies (2) then it is approximately a linear space. Specifically,
denoting by span(A′) the vector space spanned by elements of A′, Ruzsa’s theorem states
that

|span(A′)| ≈ |A′|. (3)

In other words, Ruzsa’s theorem says that if linear combinations of length 2 (i.e. 2A′) do not
buy much size, then neither do linear combinations of arbitrary length (i.e. span(A′)).

Finally, even though A′ may not be a linear space, from (3) one can still draw the
conclusion that f is close to a linear transformation, thus concluding the proof of the theorem.

�
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Before discussing how this exposition is organized, we stress that it focuses on additive
combinatorics over the group GF (2)n = {0, 1}n. This choice is motivated by the importance
of this group to computer science, and the fact that the proofs of the relevant results in
additive combinatorics appear to be cleanest over {0, 1}n: More work is needed to switch
between ‘+’ and ‘−’ (see, e.g., [TV]). We also would like to mention that, recently, Green
and Tao have given a new direct proof of the combination of the BSG and Ruzsa theorems
over {0, 1}n [GT3], using Fourier analysis. Going back to the proof of Theorem 1.1, their
result goes directly from (1) to (3).

Organization. After some preliminaries in Section 2, we prove the BSG theorem in Section
3. In Section 4 we prove Ruzsa’s theorem. In Section 5 we conclude the proof of the testability
of linear transformations (Theorem 1.1). Our presentation of the BSG theorem in Section 3
follows one by Sudakov, Szemeredi, and Vu [SSV], which relies on a graph-theoretic lemma
regarding certain paths in dense graphs. In Section 6 we also present the proof of the
optimality of the path length of this lemma, due to Kostochka and Sudakov [KS].

2 Preliminaries

In this work we are concerned with subsets of the group GF (2)n = {0, 1}n, whose operation
is the component-wise addition (a.k.a. bit-wise XOR) denoted by ‘+′. Throughout these
notes, A denotes a subset of {0, 1}n. For an integer l and a set A ⊆ {0, 1}n we denote by
lA the set of all sums of length l with elements in A, i.e. lA := {

∑

i≤l ai : ai ∈ A}. We
also write A + A for 2A, A + A + A for 3A, and so on. We generalize this notation to allow
summands from different sets, as in A + B; finally, we denote by span(A) the span of the
elements of A, i.e. span(A) =

⋃

l lA.
We will use several times the following basic counting argument, whose proof is straight-

forward.

Proposition 2.1 (Double counting). Let f : D → S be a function. Suppose that for every
s ∈ S there are t distinct di ∈ D such that f(di) = s. Then |S| ≤ |D|/t.

3 The Balog-Szemeredi-Gowers (BSG) theorem

In this section we prove the Balog-Szemeredi-Gowers (BSG) theorem, which is stated next.

Theorem 3.1 ([BS, Gow]). Suppose that Pra,a′∈A[a + a′ ∈ A] ≥ ε, where A ⊆ {0, 1}n. Then
there is A′ ⊆ A, |A′| ≥ (ε/3) · |A|, such that |2A′| ≤ (6/ε)8 · |A|.

One way to think of the BSG theorem is the following. For a subset E of the cartesian
product A × A, let us denote its set of sums by

∑

E := {a + b : (a, b) ∈ E}. Then the BSG
theorem says that from a dense E ⊆ A×A such that |∑E| is small, we can obtain a dense
A′ ⊆ A such that |

∑

(A′ × A′)| = |2A′| is small.
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The proof that we present of the above Theorem 3.1 follows one by Sudakov, Szemeredi,
and Vu [SSV]. It relies on the following graph-theoretical statement, which does not use any
property of addition and only relies on the density of the graph.

Lemma 3.2 ([SSV]). Let G = (A, E) be an undirected graph with |A| = N nodes, |E| = ε·N2

edges, and no self-loops. Then there is a set A′ ⊆ A, |A′| ≥ ε ·N such that for every a, b ∈ A′

there are at least (ε/2)8 ·N3 paths of length 4 in G from a to b, i.e. there are at least (ε/2)8 ·N3

choices of triples (c1, c2, c3) such that {(a, c1), (c1, c2), (c2, c3), (c3, b)} ⊆ E.

Proof of Theorem 3.1 assuming Lemma 3.2 Define E to be the set of edges {a, b 6= a}
such that a + b ∈ A. By assumption, |E| ≥ (ε/3) · |A|2 (the factor 1/3 grossly accounts
for the translation between the hypothesis, which talks about pairs, and Lemma 3.2, which
talks about edges). Now let A′ be the subset of A given by Lemma 3.2. Consider any two
a, b ∈ A′. By Lemma 3.2 there are ε′ · |A|3 paths (a, c1, c2, c3, b) with edges in E, where
ε′ = (ε/6)8. By definition of E, the sum of two consecutive nodes in any path lies in A.
Thus, considering the function f(x, x′, x′′, x′′′) := x + x′ + x′′ + x′′′, we have that, for every
a + b ∈ 2A′,

f(x := a + c1, x
′ := c1 + c2, x

′′ := c2 + c3, x
′′′ := c3 + b)

= (a + c1) + (c1 + c2) + (c2 + c3) + (c3 + b) = a + b,

for at least ε′ · |A|3 inputs (x, x′, x′′, x′′′) ∈ A4. Note that we are using that distinct triples
(c1, c2, c3) give rise to distinct inputs (x, x′, x′′, x′′′), which is immediate to see after we recall
that a and b are fixed. By double counting (Proposition 2.1) we obtain

|2A′| ≤ |A|4/(ε′ · |A|3),

concluding the proof. �

Proof of Lemma 3.2 The idea is to exhibit a set A′ ⊆ A such that every a ∈ A′ shares
many (Ω(N)) neighbors with most ((1− 0.1) fraction) nodes in A′. From this we have that,
for every two nodes a, b ∈ A′, most ((1 − 0.2) fraction) nodes c2 in A′ share many (Ω(N))
neighbors c1 with a and also share many neighbors c3 with b, which gives the result.

For a node v ∈ G let us denote by N(v) ⊆ A the neighborhood of v. A′ will be a subset
of N(v′) for some v′ given by a probabilistic argument. For this argument, let V ∈ G be a
random node in G, and call a pair {u, w 6= u} bad if |N(u) ∩ N(w)| ≤ ε3 · N .

We are interested in the number of bad pairs inside N(V ). Let B{u,w} be the 0/1 indicator
variable which is 1 when {u, w} is a bad pair in N(V ), i.e. such that {u, w} ⊆ N(V ). For
every bad pair {u, w} (not necessarily such that {u, w} ⊆ N(V )) we see that {u, w} ⊆ N(V )
when V is a common neighbor of u and w, which by the definition of bad pair happens with
probability at most ε3. Consequently, by linearity of expectation, we have

EV ∈A[number of bad pairs in N(V )] ≤ ε3 ·
(

N

2

)

≤ ε3 · N2/2. (4)

4



Let us now denote by S(V ) the set of nodes u ∈ N(V ) that form a bad pair with at least
ε2 · N other nodes w ∈ N(V ). Since there are always |S(V )| · ε2 · N/2 bad pairs in N(V ),
where the factor 1/2 comes from the fact that each bad pair {u, w} is counted once for u
and another time for w, Equation (4) implies that

EV ∈A[|S(V )|] ≤ (ε3 · N2/2)/(ε2 · N/2) = ε · N. (5)

Therefore, using the fact that E[|N(V )|] = 2 · ε · N because the graph has ε · N2 edges and
no self-loops, we have

EV ∈A[|N(V ) − S(V )|] = E[|N(V )|] − E[|S(V )|] ≥ 2 · ε · N − ε · N = ε · N.

We now fix a v′ = V that maximizes the above expectation and let A′ := N(v̄) − S(v̄) be
the corresponding set with |A′| ≥ ε · N .

To see that A′ satisfies the conclusion of the lemma, consider any a, b ∈ A′. Since we
removed the nodes in S(v̄), i.e. those that form a bad pair with at least ε2 · N other nodes
w ∈ N(v̄), both a and b form a good pair with all but ε2 ·N nodes of A′. So there are at least
|A′| − 2 · ε2 · N ≥ ε ·N − 2 · ε2 · N ≥ ε2 · N nodes c2 ∈ A′ that form a good pair with both a
and b, where the last inequality holds if we assume that ε ≤ 1/3. For every such c2 we have,
by definition of good pair, ε3 · N choices for c1 and as many for c3 such that (a, c1, c2, c3, b)
is a path in G. In total, we have at least (ε3 · N)(ε2 · N)(ε3 · N) = ε8 · N such paths in G.
This proves the theorem except for the assumption that ε ≤ 1/3. If ε > 1/3 the same proofs
works replacing ε with ε/2, which is at most 1/3 because any undirected graph trivially has
at most N2/2 ≥ ε · N2 edges. �

4 Ruzsa’s theorem

In this section we prove Ruzsa’s theorem, which is stated next.

Theorem 4.1 ([Ruz]; The span of A does not expand if 2A does not). Suppose that |2A| ≤
c · |A|, where A ⊆ {0, 1}n. Then |span(A)| ≤ c′ · |A|, where c′ depends on c only.

The core of the proof of Theorem 4.1 is the following lemma.

Lemma 4.2 (4A does not expand if 2A does not). |4A| ≤ 16 · (|2A|/|A|)4 · |2A|.

Proof of Theorem 4.1 assuming Lemma 4.2 We start with the following covering
claim: There is a set X ⊆ 3A whose size depends only on c such that for every b ∈ 3A we
have

|(X + A) ∩ (b + A)| ≥ 1. (?)

To prove the covering claim, initialize X to the empty set, and as long as there is some
b ∈ 3A violating (?), add b to X. The resulting X satisfies the intersection requirement by
construction. To verify the bound on the size of X, note that at each iteration the set X +A
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grows in size by |A|, but X +A ⊆ 4A always, and so at the end of the process |X| is at most
|4A|/|A|, a quantity which, by Lemma 4.2 and our assumption that |2A| ≤ c · |A|, depends
only on c.

Now we show by induction that, for every ` ≥ 3, `A ⊆ (` − 2)X + 2A. This will
conclude the proof as the size of X depends only on c. Specifically we obtain that span(A) ⊆
span(X) + 2A, and so |span(A)| ≤ |span(X)| · |2A| ≤ 2|X| · c · |A|.

For the base case ` = 3 of the induction, take any x ∈ 3A. By (?), X + A intersects
b + A, and therefore b ∈ X + 2A.

For the inductive step, write `A = (` − 1)A + A ⊆ (` − 3)X + 2A + A ⊆ (` − 2)X + 2A,
where we apply the inductive hypothesis and then the base case. �

Proof of Lemma 4.2 We start with the following covering claim, whose statement and
proof are very similar to those of the covering claim in the proof of Theorem 4.1 from the
current lemma. There is a set X ⊆ A of size |X| ≤ 2 · |2A|/|A| such that for every b ∈ A we
have

|(X + A) ∩ (b + A)| ≥ |A|/2.

As a consequence of the covering claim, we have that for every b ∈ A there are at least
|A|/2 triples (a0 ∈ A, a1 ∈ A, x ∈ X) such that b = x+a0 +a1; This is because each element
y ∈ (X +A)∩ (b+A) gives rise to, say, one such triple with a1 := b+y (this last requirement
makes all the triples distinct).

Now we use the above consequence to prove the lemma. Fix an arbitrary z = b0 + b1 ∈
2A. By the above, there are at least |A|/2 triples (a0 ∈ A, a1 ∈ A, x ∈ X) such that
z = b0 + a0 + a1 + x. Since b0 + a0 ∈ 2A, there are at least |A|/2 triples (c ∈ 2A, a1 ∈
A, x ∈ X) such that z = c + a1 + x. By repeating the argument for another arbitrary
z′ = b′0 + b′1, we obtain that for any two arbitrary z, z′ ∈ 2A there are at least (|A|/2)2

sixtuples (c ∈ 2A, c′ ∈ 2A, a1 ∈ A, a′
1 ∈ A, x ∈ X, x′ ∈ X) such that

{

z = c + a1 + x,
z′ = c′ + a′

1 + x′.

Note that, in any solution to the above system, a1 and a′
1 are uniquely determined once

c, x, c′, x′ are (recall that z and z′ are fixed). Consequently, the map that takes a solution
(c ∈ 2A, c′ ∈ 2A, a1 ∈ A, a′

1 ∈ A, x ∈ X, x′ ∈ X) to the quintuple (c ∈ 2A, c′ ∈ 2A, a1 + a′
1 ∈

2A, x ∈ X, x′ ∈ X) is one-to-one (i.e., injective). Moreover, such a quintuple sums up to z+z′.
Therefore, similarly to the proof of Theorem 3.1, we have a function f(x, x′, x′′, x′′′, x′′′′) :=
x + x′ + x′′ + x′′′ + x′′′′ such that for every element z + z′ ∈ 4A there are at least (|A|/2)2

distinct inputs y such that f(y) = z. By Proposition 2.1 we have

|4A| ≤ |2A|3 · |X|2 · 4/|A|2 ≤ 16 · (|2A|/|A|)4 · |2A|,

where we are using the fact, established at the beginning of this proof, that |X| ≤ 2·|2A|/|A|.
�
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Remark 4.3 (On the loss in parameters). We remark that one can eliminate the factor 16
in Lemma 4.2 by applying the lemma to the set A×A× . . .×A, see e.g. [TV, Corollary 2.18].
Turning back to the main result of this section, i.e. Theorem 4.1, we note that the current
best upper bound on c′ is obtained by Green and Tao [GT2] who prove c′ ≤ 22·c modulo lower
order factors. It can be verified that c′ ≤ 22·c is the best possible, and in particular that
c′ in general must be exponential in c. However, if one is willing to settle for the span of
a large subset A′ of A, rather than all of A, in the same spirit as the BSG theorem, then
it is conjectured that c′ can be made polynomial in c; cf. the supplement “The polynomial
Freiman-Ruzsa conjecture” to [Gre].

5 Obtaining a linear transformation

In this section we conclude the proof of the property testing result in Theorem 1.1. The
last component of the proof is the following linear-algebraic fact that states that if the span
of (a large subset of) {(x, f(x))} does not grow much, then f is approximately a linear
transformation.

Lemma 5.1. Let f : {0, 1}n → {0, 1} be a function, and A ⊆ {(x, f(x))} ⊆ {0, 1}2·n.
Suppose that

ε · 2n ≤ |A| ≤ |span(A)| ≤ 2n/ε.

Then there is a linear transformation (i.e., an n × n matrix M) such that

Pr
x∈{0,1}n

[f(x) = Mx] ≥ (ε/2)2.

Proof. We start by finding an affine transformation Tx+u, then we observe how this implies
a linear transformation. Let v1, v2, . . . , va be basis vectors for span(A). By definition, every
vector (x, f(x)) ∈ A is a linear combination of the vi’s, i.e. for every (x, f(x)) ∈ A there
exists w ∈ {0, 1}a such that

x

f(x)

=

| | |
| | |
v1 v2 . . . va

| | |
| | |
| | |

· w.

Let us now add to our collection new vectors va+1, va+2, . . . , vk so that the projection onto
the first n coordinates of span({v1, . . . , vk}) is all of {0, 1}n. Since each new vector multiplies
the size of the span by 2, and the first a vectors by assumption span a set of size at least
ε · 2n, we have k − a ≤ log(1/ε). Also note that a ≤ n + log(1/ε) by assumption, hence k ≤
n+2 log(1/ε). Let Vk be the resulting matrix of the vi’s. By performing Gaussian elimination,
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we can find an invertible transformation that turns Vk into the following canonical form:

I 0

T U

,

where I is the identity n × n matrix, T is also n × n, and T is n × (k − n). This is
possible because the projection of the vectors v1, . . . , vk onto the first n coordinates spans
{0, 1}n. Since this transformation is invertible, we still have the property that for every
vector (x, f(x)) ∈ A there exists w ∈ {0, 1}k such that

x

f(x)

=

I 0

T U

· w.

This means that the first n coordinates of w must equal x. Consequently, every value f(x)
equals Tx + Uz for some z ∈ {0, 1}k−n. Therefore, by an averaging argument, there exists a
fixed u = Uz so that

Pr
x∈{0,1}n

[f(x) = Tx + u] ≥ 2−(k−n) ≥ ε2.

This gives us an affine transformation, and in what follows we show how in fact one can
get a linear transformation, i.e. get rid of the ‘u’ above, with only a slight loss in probability.
We claim that

there is an i ≤ n such that Pr
x∈{0,1}n

[f(x) = Tx + u|xi = 1] ≥ ε2/2. (?)

Such a claim lets us construct a linear transformation M by summing u to the i-th column
of T , concluding the proof of the lemma (the extra factor of 1/2 in the conclusion of the
lemma accounts for the probability that xi = 1).

It remains to prove (?). For this, let Y be the distribution on {0, 1}n that is obtained by
selecting a random i ≤ n, setting to 1 the i-th bit, and choosing uniformly at random for
the other bits. The statistical distance between Y and the uniform distribution on {0, 1}n

tends to 0 with n, as can be verified by realizing that the distance is maximized by the
set of strings of weight at most n/2, and using Stirling’s approximation for the binomial
coefficients. Therefore,

Pr
x∈Y

[f(x) = Tx + u] ≥ ε2/2,

and the claim follows by fixing the selection, in the definition of Y , of the bit to be set to 1.
�
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We can now paste everything together to quickly conclude the proof of the Theorem 1.1
about testability of linear transformations.

Proof of Theorem 1.1 The proof is a straightforward composition of Theorems 3.1 and
4.1 and of Lemma 5.1. �

We remark that the dependence of ε′ on ε in Theorem 1.1 is exponential, and this is due
to the analgous loss in Ruzsa’s theorem, see Remark 4.3.

6 Optimality of the graph-theoretic lemma in the BSG

theorem

In this section we discuss the optimality of the path length in the graph-theoretic Lemma
3.2 that is the core of the proof of the BSG theorem. Recall that the lemma establishes
that every dense graph contains a large subset such that every two nodes in the subset
are connected by many paths of length 4. It is natural to ask if the path length can be
reduced from 4, and one can quickly see that it cannot be set to 3, because the graph could
be bipartite, and any large set would have two nodes on the same side which cannot be
connected by a path of odd length 3. We now state and prove a result by Kostochka and
Sudakov that also rules out path length 2. Thus, path length 4 is optimal in Lemma 3.2.

Theorem 6.1 ([KS]). For every ε > 0 there is a graph on N vertices with N2/3 edges such
that in every set of ε · N nodes there are two nodes with less than ε · N common neighbors.

Proof of Theorem 6.1.
Let n := log2 N , and identify the set of N nodes with the binary strings of length n. Let
∆(u, v) denote the absolute Hamming distance between nodes u and v, i.e. the number of
positions i such that ui 6= vi, and connect two nodes u and v if and only if ∆(u, v) ≤ n/2.
Crudely, this graph has at least N2/3 edges; we now show that it also has the desired
property, if N is sufficiently large. The main idea is that any set of ε ·N nodes must contain
two nodes at Hamming distance at least n−O(

√
n), but such two nodes have less than ε ·N

common neighbors.
We now present the formal proof, starting with the next claim that gives us two distant

nodes.

Claim 6.2. Let S be any set of ε ·N nodes. Then S contains two nodes at Hamming distance
at least n − d · √n, where d is a constant that depends on ε only.

Claim 6.2 follows from the isoperimetric fact that, among sets of the same cardinality, a
Hamming ball has the smallest diameter. The following different proof was communicated
to us by B. Sudakov, and relies on the following standard concentration bound (see, e.g.,
[DP, Theorem 5.18]).
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Fact 6.3. Let f : {0, 1}n → < be a 1-Lipschitz function, i.e. a function such that |f(x) −
f(y)| ≤ 1 if x and y differ in at most one coordinate. Then, for every t ≥ 0, we have

Pr
X∈{0,1}n

[
∣

∣

∣
f(X) − EY [f(Y )]

∣

∣

∣
> t

]

≤ αt2/n,

for an absolute constant α < 1.

Proof of Claim 6.2 First, let us note that if ε > 1/2 then the claim is easily proved with
maximal Hamming distance n, that is we can find two nodes u and v such that ∆(u, v) ≥ n.
This is because we can pair off each node with its complement at distance n, and a set S of
size |S| ≥ ε · N > N/2 must take both nodes from some pair. To handle the case ε ≤ 1/2,
we apply the argument to the set S ′ of nodes that are “close” to some node in S, which by
a concentration bound has measure bigger than 1/2.

For x ∈ {0, 1}n, let f(x) denote the minimum Hamming distance of x from a node in
S. Note that with probability ε a random node x falls in S, in which case f(x) = 0 and
certainly |f(x) − EY [f(Y )]| ≥ EY [f(Y )]/2 =: t. Since f is a 1-Lipschitz function, by Fact
6.3, we have

ε ≤ αt2/n,

from which we conclude that E[f ] ≤ c · √n for a constant c = c(ε). By choosing a larger
constant c′ = c′(ε) and applying the same Fact 6.3, we obtain that the probability that
f(X) ≥ c′ · √n is strictly smaller than 1/2. Therefore, the set S ′ of nodes at Hamming
distance at most c′ · √n from S has measure bigger than 1/2. By the above argument, S ′

contains two nodes at distance n. Since each of these nodes is at distance at most c′ · √n
from some node in S, the set S contains two nodes at distance at least n − 2 · c′ · √n. �

Now that we have these two nodes at distance n − 2 · c′ · √n, we conclude the proof
by showing that the number of their common neighbors is less than ε · N . Without loss of
generality, let these two nodes, which we denote by u1 and u2, respectively consist of the
all-zero vector and of the vector which is 0 exactly in the first k := 2 · c′ · √n coordinates.
Let us now see what nodes are common neighbors of u1 and u2. Let X ∈ {0, 1}n be a node,
and let P = P (X) be its number of 1’s in the first k coordinates, and Q = Q(X) in the
other n − k. The node X is a common neighbor to u1 and u2 precisely when P + Q ≤ n/2
and P + (n − k − Q) ≤ n/2. By combining the inequalities, we obtain that

n/2 − k + P ≤ Q ≤ n/2 − P, (?)

i.e., for a given P , if X is a neighbor of both u1 and u2 then Q has to lie in a set of 2 ·P − k
integers.

The intuition for the rest of the proof is as follows. A typical P is within O(
√

k) of k/2,
and by (?) such a P constricts Q to lie in a set of 2 · P − k = O(

√
k) integers. As is well

known, by Stirling’s approximation the probability that Q is equal any particular integer is
O(1/

√
n − k) (which is achieved for the integer (n− k)/2). Since k = O(

√
n) and n is large,

we have O(1/
√

n − k) = o(1/
√

k), and so by a union bound Q falls in the set of O(
√

k)
integers with probability tending to 0, and this proves the theorem.
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More formally, let d = d(ε) be a sufficiently large constant to be determined later. Let
us choose a random node X, and let P = P (X) and Q = Q(X) respectively denote the
Hamming weight of its first k and last n − k bits. We have:

Pr
P,Q

[(?)] ≤ Pr
Q

[

(?)
∣

∣

∣
|P − k/2| ≤ d ·

√
k
]

+ Pr
P

[

|P − k/2| > d ·
√

k
]

≤ 2 · d ·
√

k · Pr
Q

[Q = (n − k)/2] + ε/2

≤ O(d ·
√

k/
√

n − k) + ε/2

< ε.

Above, to bound the term PrQ

[

(?)
∣

∣

∣
|P − k/2| ≤ d ·

√
k
]

we use a union bound and the

fact that PrQ [Q = (n − k)/2] ≥ PrQ [Q = (n − k)/2 + r] for any r ∈ <. To bound the term

PrP

[

|P − k/2| > d ·
√

k
]

we apply Fact 6.3, choosing d = d(ε) to be sufficiently large. Later,

we use Stirling’s approximation to bound PrQ [Q = (n − k)/2]. Finally, the last inequality
holds for sufficiently large n recalling that k = 2 · c′ · √n.
End of the proof of Theorem 6.1.
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