
On the Advantage over Random for Maximum Acyclic Subgraph

Moses Charikar∗ Konstantin Makarychev† Yury Makarychev‡

Abstract

In this paper we present a new approximation algo-
rithm for theMAX ACYCLIC SUBGRAPH problem. Given
an instance where the maximum acyclic subgraph contains
1/2+ δ fraction of all edges, our algorithm finds an acyclic
subgraph with1/2 + Ω(δ/ logn) fraction of all edges.

1 Introduction

The focus of this paper is the MAX ACYCLIC SUB-
GRAPH problem which is the following:

Definition 1.1. Given a directed graphG = (V, E), find
the largest subset of edges which are acyclic. Equivalently,
find an ordering of the vertices so as to maximize the num-
ber of edges going forward.

A simple randomized algorithm achieves a factor 1/2 for
this problem: Simply pick a random ordering of the ver-
tices. In fact, one can achieve factor 1/2 by an even simpler
algorithm: Pick an arbitrary ordering of the verticesπ and
its reverseπR. One of them has at least1/2 fraction of the
edges in the forward direction. Improving the1/2 approx-
imation for MAX ACYCLIC SUBGRAPH is a long standing
open problem. The motivating question for our work was
whether it is possible to beat this 1/2 approximation.

In fact, algorithms very slightly better than 1/2 are
known: Berger and Shor [4] showed how to get1/2 +
Ω(1/

√
dmax), wheredmax is the maximum vertex degree

in the graph. Later Hassin and Rubinstein [9] proposed an-
other algorithm with the same approximation guarantee, but

∗Department of Computer Science, Princeton University, Princeton, NJ
08540. Email: moses@cs.princeton.edu. Supported by NSF ITR grant
CCR-0205594, NSF CAREER award CCR-0237113, MSPA-MCS award
0528414, and an Alfred P. Sloan Fellowship.

†IBM T.J. Watson Research Center, Yorktown Heights, NY 10598.
Email: konstantin@us.ibm.com. This work was done while theauthor was
at the Department of Computer Science, Princeton University. Supported
by an IBM Graduate fellowship and Gordon Wu fellowship.

‡Microsoft Research, One Microsoft Way, Redmond, WA 98052.
Email: yurym@microsoft.com. This work was done while the author was
at the Department of Computer Science, Princeton University. Supported
by a Gordon Wu fellowship.

better running time in certain cases. Note that these algo-
rithms achieve such a guarantee for any graph: the guaran-
tee does not depend on the value of the optimal solution.

Let us measure the objective as a fraction of the number
of edges. If the optimal valueOPT is 1−ε, for a very small
ε, we could use the best known approximation algorithm for
the complementary problem (MIN FEEDBACK ARC SET)
to beat the random algorithm. Using theO(log n log log n)
algorithm of Seymour [20], for instances whereOPT =
1 − ε andε = O(1/(log n log log n)), we can indeed beat
1/2 for MAX ACYCLIC SUBGRAPH. This yields an ap-
proximation ratio of1/2 + Ω(1/(log n log log n)) for the
problem.

To summarize, we can beat random for instances where
OPT is very close to 1. For instances whereOPT is
smaller, we do not know of any techniques which perform
better than random. (As mentioned, there are algorithms
which have the guarantee1/2 + Ω(1/

√
dmax).)

Recently, a related question of approximating the advan-
tage over random has been studied for several basic opti-
mization problems (see [3, 5, 6, 7, 10, 11, 12, 13]). These
studies give a fresh perspective on these optimization prob-
lems and motivated the development of new techniques to
extract information from mathematical programming relax-
ations for them.

Definition 1.2. Let G = (V, E) be a directed graph onn
vertices; and letπ : {1, . . . , n} → V be a linear arrange-
ment of its vertices. Then theadvantage or gain1 over ran-
domof the arrangementπ is equal to the fraction of edges
going forward minus the fraction of edges going backward.
We denote the gain over random bygain(G, π).

If a linear arrangement has value1/2 + δ for MAX

ACYCLIC SUBGRAPH, then the gain of this arrangement
is 2δ. The question of beating random for MAX ACYCLIC

SUBGRAPH can be phrased thus: Given an instance with
optimal gainδ, can we guarantee that we produce a solution
with gainf(δ)?

Note that the usual notion of approximation only focuses
on instances where the optimal gainδ is close to 1 (undoubt-

1This concept has been referred to in the literature as bothadvantage
over randomandgain. We will use both terms interchangeably.

1

Electronic Colloquium on Computational Complexity, Report No. 104 (2007)

ISSN 1433-8092

edly a very interesting question). We ask what guarantee is
possible as a function ofδ for all values ofδ ∈ (0, 1).

Such guarantees were developed for MAX CUT by
Charikar and Wirth [6]: Given a MAX CUT instance, for
which the optimal solution has gainδ, we can find a cut with
gainΩ(δ/ log(1/δ)) andΩ(δ/ logn); the former approxi-
mation guarantee is optimal (if the Unique Games Conjec-
ture is true) as was shown by Khot and O’Donnell [15].

There are some parallels between MAX CUT and MAX

ACYCLIC SUBGRAPH, since a random assignment achieves
factor 1/2 for both problems. For MAX CUT, this was in-
deed the best known until the seminal work of Goemans and
Williamson [8] using semidefinite programming (SDP). In
a sequence of later papers, our understanding of the MAX
CUT SDP has vastly improved. Arguably, MAX ACYCLIC

SUBGRAPH is a more complex problem than MAX CUT.
Linear programming (LP) relaxations for the problem have
been studied intensively in the mathematical programming
community (it is sometimes referred to as the linear order-
ing problem). For more information we refer the reader to
the papers of Newman [16] and Newman and Vempala [18].
However the best known approximation for the problem still
remains1/2. Newman [17] recently studied an SDP relax-
ation for the problem and gave some evidence to suggest
that the SDP might be useful in beating the1/2 approxi-
mation (in particular, the SDP does well on the known gap
instances for the LP).

In this work, we give anO(log n) approximation for the
advantage over random for MAX ACYCLIC SUBGRAPH. In
other words, given an instance whereOPT = 1/2 + δ, we
find a solution of value1/2+Ω(δ/ logn). Prior to our work,
no non-trivial guarantees were known even for instances
where OPT was close to 1, say1−1/ logn. In contrast, our
algorithm gives a non-trivial guarantee even for OPT close
to 1/2. As a byproduct, we obtain a1/2 + Ω(1/ logn)
approximation for MAX ACYCLIC SUBGRAPH — very
slightly better than the1/2+Ω(1/(logn log log n)) alluded
to earlier that comes from Seymour’s algorithm [20]. Note
that the known hardness results for MAX ACYCLIC SUB-
GRAPH [14, 19] imply that the advantage over random ver-
sion has a constant factor hardness.

Vertex ordering problems like MAX ACYCLIC SUB-
GRAPH seem more complex than the constraint satisfaction
problems that have been recently explored with the lens
of approximating the advantage over random. It is some-
what surprising therefore that we obtain results for MAX

ACYCLIC SUBGRAPH that match the corresponding guar-
antee for MAX CUT. Despite the similarity in the state-
ment of the result, the techniques are quite different. The
log n in MAX CUT comes from the tail of the Gaussian
distribution, while thelog n in our result comes from the
number of different distance scales in a linear arrangement.
Roughly speaking, our results show how ordering informa-

tion from one distance scale in the optimum solution can be
exploited algorithmically. Extending these ideas furtherto
exploiting information from multiple distance scales simul-
taneously is a promising avenue for obtaining a constant
better than 1/2 approximation for MAX ACYCLIC SUB-
GRAPH. This would be an exciting result indeed.

Our Results. Our main result is as follows.

Theorem 1.3. There exists a randomized polynomial time
algorithm that given a directed graphG finds a linear ar-
rangementπ of its vertices with gain over random at least
Ω(δ/ log n), whereδ is the maximum possible gain.

We show a connection between the advantage over ran-
dom and the cut norm of the adjacency matrix of the graph
G. In Section 2, we present a simple algorithm that finds
a linear arrangement with advantage over random propor-
tional to the cut norm of the adjacency matrix of the graph.
Then, in Section 3, we prove using Fourier analysis tech-
niques that the cut norm of the adjacency matrix is within a
log n factor of the optimal gain. We also give an example
that shows that our analysis is tight.

2 Approximation Algorithm

It will be convenient for us to express different quantities
in terms of the adjacency matrixWG of the directed graph
G. For unweighted graphs, we defineWG as follows:

WG(u, v) =











1, if (u, v) ∈ E;

−1, if (v, u) ∈ E;

0, otherwise.

If both (u, v) ∈ E and(v, u) ∈ E thenWG(u, v) = 0. For
weighted graphs,

WG(u, v) = weight((u, v)) − weight((v, u)),

whereweight((u, v)) = 0 if (u, v) /∈ E. Below|E| denotes
the total weight of all edges.

The gain over random is equal to

gain(G, π) =
1

|E|
∑

i<j

WG(πi, πj).

In other words the gain is equal to the sum of the elements
in the upper triangle of the matrixWG, in which rows and
columns are arranged according toπ, divided by the number
of edges.

Let us now describe our approach to solving the problem.
First partition the vertices of the graph into three setsA, B
andC in a special way. Then randomly permute vertices in
each of these sets. Finally, with probability a half output all

2

vertices in the orderA, B, C and with probability a half in
the orderC, A, B.

It is easy to see that all edges fromA to B go forward;
and all edges fromB to A go backward. On the other hand,
all other edges go backward or forward with probability ex-
actly a half. Hence, the expected gain is equal to

1

|E|
∑

u∈A; v∈B

WG(u, v). (1)

We just showed that the maximum gain is greater than or
equal to (1). It turns out that the converse is also true up to
anO(log n) factor. That is, there always exist disjoint sets
A andB for which

1

|E|
∑

u∈A; v∈B

WG(u, v) ≥ gain(G, π)

O(log n)
,

whereπ is the optimal permutation of the vertices. This
statement is the main technical component of the proof and
we prove it in the next section.

2.1 Combinatorial Interpretation of Proof

As a prelude to the technical analysis in Section 3, we
give a simplified overview. The goal of the analysis is to
show that if there is an orderingπ with gain δ, then there
are subsetsA andB of such that placing all vertices ofA
before vertices ofB gives gain at leastδ/ logn. (In fact, the
setsA andB we construct in our analysis are not disjoint,
but this is easy to fix.)

Define the length of an edge to be the distance between
its end points in the orderingπ. We can group edges geo-
metrically by length intoO(log n) groups. If the gain of the
orderingπ is δ, at least one of these groups must have gain
δ/ logn.

We construct the setsA andB by random sampling the
positions in the orderingπ. The selection probabilities vary
periodically with position. Roughly speaking, if we have
periodP , this targets the group of edges with edge lengths
Θ(P). Since one of the groups has gainδ/ log n, the sam-
pling process targeted towards that group will generate sets
A and B such that the corresponding ordering has gain
δ/ logn.

In our proof later, this sampling is incorporated into a
certain bilinear form (3) we analyze. This expression in-
volves termsxk(r) and yk(r) (defined later) that corre-
sponds to selecting setsA andB randomly where the se-
lection probabilities vary periodically with position in the
orderingπ. For appropriate choice of the period our analy-
sis shows that the bilinear form constructed must have value
at leastδ/ log n.

This is a somewhat simplistic explanation that ignores
several issues. In fact, edges could have both positive and

negative contributions to the bilinear form constructed (pos-
itive contributions come from edges going fromA to B,
negative contributions come from edges going fromB to
A). Our intuitive explanation focussed on the contribution
from one group of edges, but we need to ensure that the
potential negative contributions of the other groups do not
overwhelm this. The Fourier machinery we use allows us to
properly account for positive and negative contributions.

Now, we do not actually know the optimal orderingπ,
so we do not really perform this sampling in our algorithm
to obtain setsA andB. Instead, we focus on a quantity
called the cut norm which we define in the next section.
Our existential proof is merely an analysis tool that allows
us to prove that the cut norm of the adjacency matrix is large
if the gain ofsomeordering is large. The actual algorithm
uses Alon and Naor’s SDP based approximation for the cut
norm. This yields setsA andB from which we obtain an
ordering of the vertices.

2.2 Efficient Implementation

We now show how to efficiently find setsA andB that
maximize (1) within a constant factor and thus obtain an
O(log n) approximation for the maximum gain problem.
As alluded to before, this problem is closely related to the
problem of finding the cut norm of the matrixWG, which
can be approximately solved using the algorithm proposed
by Alon and Naor [2].

Definition 2.1. The cut norm of a matrixW (u, v) is equal
to

‖W‖C = max
A,B⊂V

∣

∣

∣

∣

∣

∣

∑

u∈A; v∈B

W (u, v)

∣

∣

∣

∣

∣

∣

.

Note that for skew-symmetric matrices
∑

u∈A; v∈B

W (u, v) = −
∑

u∈A; v∈B

W (v, u);

and therefore

‖W‖C = max
A,B⊂V

∑

u∈A; v∈B

W (u, v).

In this definition it is not required that the setsA andB
are disjoint. However, given arbitrary setsA andB, we can
always find disjoint setsA′ andB′ such that

∑

u∈A′;v∈B′

W (u, v) ≥ 1

4
·
∑

u∈A; v∈B

W (u, v). (2)

In order to do so, we simply partition the vertices of the
graphG into two random setsX andY . Then setA′ =
A ∩ X ; B′ = B ∩ Y .

3

Lemma 2.2. For every skew-symmetric matrixG, the sets
A′ andB′ (as described above) are disjoint and satisfy the
following equality:

E





∑

u∈A′,v∈B′

W (u, v)



 =
1

4

∑

u∈A,v∈B

W (u, v).

Proof. The setsA′ andB′ are disjoint, since the setsX and
Y are disjoint. Now, for every distinct verticesu ∈ A and
v ∈ B, the probability thatu ∈ A′ andv ∈ B′ equals1/4.
(Note, that the diagonal entries ofW are equal to zero.)

We now state the result of Alon and Naor [2].

Theorem 2.3(Alon and Naor [2]). There exists a random-
ized polynomial time algorithm that given a matrixW (u, v)
finds two subsets of indicesA andB such that

∣

∣

∣

∣

∣

∣

∑

u∈A; v∈B

W (u, v)

∣

∣

∣

∣

∣

∣

≥ αAN · ‖W‖C,

whereαAN ≈ 0.56.

Applying Lemma 2.2, we get the following corollary.

Corollary 2.4. There exists a randomized polynomial time
algorithm that given a skew-symmetric matrixW (u, v)
finds two disjoint subsetsA andB such that

∑

u∈A; v∈B

W (u, v) ≥ αAN

4
· ‖W‖C .

This Corollary implies that the algorithm described in
the beginning of the section finds a linear arrangement with
gainαAN/4 · ‖WG‖C/|E|. Thus, we proved:

Lemma 2.5. There exists a randomized polynomial time
algorithm that given a directed graphG with adjacency
matrix WG(u, v) finds a linear arrangement of the vertices
with gain

αAN

4
· ‖WG‖C

|E| .

3 Cut Norm of Skew-Symmetric Matrices

In this section we will prove that for every linear arrange-
mentπ (particularly, for the optimal linear arrangement)

‖WG‖C ≥ Ω

(

gain(G, π)|E|
log n

)

,

which will conclude the proof of Theorem 1.3. Fix an arbi-
trary linear arrangementπ and denote

wkl = W (πk, πl).

Remark 3.1. In this paper, we use the discrete Fouriersine
transform, which is an analog of the discrete Fourier trans-
form, but is less well known. For this reason, we briefly
describe it and prove the inversion formula in the Appendix.

Theorem 3.1. LetW be ann × n skew-symmetric matrix.
Define

S+ = S+(W) =
∑

1≤k<l≤n

wkl.

Then

‖W‖C ≥ Ω

(|S+|
log n

)

.

Remark 3.2. Recall, thatgain(G, π) = S+(WG)/|E|,
where the columns and rows inWG are ordered according
to the permutationπ.

We need several lemmas.

Lemma 3.2. Let Ŝt be the discrete Fourier sine transform
of a sequenceS1, . . . , Sn−1, defined as follows

Ŝt =

n−1
∑

k=1

sin
(πkt

n

)

Sk.

Then

max
t

|Ŝt| ≥
π

2 logn + O(1)

n−1
∑

k=1

Sk.

Proof. The inverse Fourier sine transform is given by

Sk =
2

n

n−1
∑

t=1

sin
(πkt

n

)

Ŝt.

Hence,

n−1
∑

k=1

Sk =
2

n

n−1
∑

k=1

n−1
∑

t=1

sin
(πkt

n

)

Ŝt

=
2

n

n−1
∑

t=1

(

n−1
∑

k=1

sin
(πkt

n

)

)

Ŝt.

Note that2

n−1
∑

k=1

sin
πkt

n
=

1

2

(1 − (−1)t) sin(πt
n)

1 − cos(πt
n)

=
1 − (−1)t

2 tan(πt
2n)

.

Then
n−1
∑

k=1

Sk ≤ 2

n

n−1
∑

t=1

∣

∣

∣

∣

1 − (−1)t

2 tan(πt
2n)

∣

∣

∣

∣

|Ŝt|

≤ 2

n







n−1
∑

t=1
t is odd

2n

πt






max

t
|Ŝt|

=
2

π
(log n + O(1)) max

t
|Ŝt|,

2See Corollary 5.2 in the Appendix for more details.

4

here we used thattan x > x for x ∈ (0, π/2). Therefore,

max
t

|Ŝt| ≥
π

2 logn + O(1)

n−1
∑

k=1

Sk.

Lemma 3.3. Let W be ann × n skew-symmetric matrix.
Define

Sk =

n−k
∑

j=1

wj,j+k

for 1 ≤ k ≤ n − 1. And letŜt be the discrete Fourier sine
transform ofSk. Then

max
−1≤xk,yl≤1

n
∑

k=1

n
∑

l=1

wklxkyl ≥ max
t

|Ŝt|.

Proof. Let t0 = argmaxt |Ŝt|. For everyk, l from 1 to n
andr from 0 to n − 1 define

xk(r) = sin
(π(k + r)t0

n

)

;

yl(r) = − cos
(

π
(k + r)t0

n

)

.

Find the average value of the bilinear form

n
∑

k=1

n
∑

k=1

wklxk(r)yl(r) (3)

overr from 0 to n − 1. Write

1

n

n−1
∑

r=0

(

n
∑

k=1

n
∑

l=1

wklxk(r)yl(r)

)

=

=
1

n

n
∑

k=1

n
∑

l=1

(

n−1
∑

r=0

xk(r)yl(r)

)

wkl.

Observe, that

n−1
∑

r=0

xk(r)yl(r) =

= −
n−1
∑

r=0

sin
(π(k + r)t0

n

)

cos
(π(l + r)t0

n

)

= −1

2

n−1
∑

r=0

sin
(π(k − l)t0

n

)

+ sin
(π(k + l + 2r)t0

n

)

=
n

2
· sin π(l − k)t0

n
.

Hence,

1

n

n−1
∑

r=0

(

n
∑

k=1

n
∑

l=1

wklxk(r)yl(r)
)

=

=
1

2

n
∑

k=1

n
∑

l=1

sin
(π(l − k)t0

n

)

wkl

=
∑

1≤k<l≤n

sin
(π(l − k)t0

n

)

wkl

=

n−1
∑

j=1

sin
(πjt0

n

)

Sj = Ŝt0 .

here we used that the matrixW is skew-symmetric. We got
that the average value of bilinear form(3) is Ŝt0 , therefore,
there existsr for which the absolute value of (3) is at least
|Ŝt0 |. Since the bilinear form is an odd function as a func-
tion of x (wheny is fixed), the maximum of (3) is at least
|Ŝt0 |.

Corollary 3.4. LetW , Sk andŜt be as in Lemma 3.3. Then

max
xk,yl∈{−1,1}

n
∑

k=1

n
∑

l=1

wklxkyl ≥ max
t

|Ŝt|.

Proof. The maximum of the bilinear form is attained at a
vertex of the cube.

The following observation is due to Alon and Naor [2].
We prove it here for completeness.

Lemma 3.5(Alon and Naor [2]).

‖W‖C ≥ 1

4
max

xk,yl∈{−1,1}

n
∑

k=1

n
∑

l=1

wklxkyl.

Proof. Fix xk andyl for which the maximum of the bilinear
form is attained. Define setsI+ = {k : xk = 1}, I− =
{k : xk = −1}, J+ = {l : yl = 1} andJ− = {l : yl = 1}.
Now notice that

n
∑

k=1

n
∑

l=1

wklxkyl =
∑

k∈I+

l∈J+

wkl +
∑

k∈I−

l∈J−

wkl

−
∑

k∈I+

l∈J−

wkl −
∑

k∈I−

l∈J+

wkl.

Each of the terms on the right hand side does not exceed the
cut norm‖W‖C in absolute value. Hence

n
∑

k=1

n
∑

l=1

wklxkyl ≤ 4‖W‖C.

5

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1.Let

Sk =
n−k
∑

j=1

wj,j+k

for 1 ≤ k ≤ n − 1. Then

S+ =
n−1
∑

k=1

Sk.

By Lemma 3.2 and Corollary 3.4,

max
xk,yl∈{−1,1}

n
∑

k=1

n
∑

l=1

wklxkyl ≥
π

2 log n + O(1)

n−1
∑

k=1

Sk.

Now by Lemma 3.5,

‖W‖C ≥ π

8 logn + O(1)

n−1
∑

k=1

Sk =
π S+

8 log n + O(1)
.

4 Lower bound

We will now prove that the bound in Theorem 3.1 is es-
sentially tight.

Theorem 4.1.For everyn > 1, there exists a nonzeron×n
skew-symmetric matrixW such that

‖W‖C ≤ O(|S+|/ log n), (4)

whereS+ = S+(W) is defined in Theorem 3.1.

Proof. Consider the matrixW defined by

wkl =

n
∑

t=1

sin
π(l − k)t

n + 1
.

Clearly, the matrixW is skew-symmetric. Let us compute
S+ (see Lemma 5.3 in the Appendix for details).

S+ =
∑

1≤k<l≤n

wkl =
∑

1≤k<l≤n

n
∑

t=1

sin
π(l − k)t

n + 1

=
n
∑

t=1

n−1
∑

k=0

(n − k) sin
πkt

n + 1

=
1

2

n
∑

t=1

n + (−1)t

tan(πt
2(n+1))

.

Replace1/ tanx with 1/x + O(1),

S+ ≥ 1

2

n
∑

t=1

(

2n2

πt
+ O(n)

)

=
n2

π
(log n + O(1)).

We are now going to estimate‖W‖C . Pick setsI andJ that

maximize
∣

∣

∣

∑

k∈I; l∈J wkl

∣

∣

∣. We have

‖W‖C =
∣

∣

∣

∑

k∈I; l∈J

wkl

∣

∣

∣

=
∣

∣

∣

∑

k∈I; l∈J

n
∑

t=1

sin
(π(k − l)t

n + 1

)∣

∣

∣

=
∣

∣

∣

∑

k∈I; l∈J

n
∑

t=1

sin
(πkt

n + 1

)

cos
(πlt

n + 1

)

− cos
(πkt

n + 1

)

sin
(πlt

n + 1

)∣

∣

∣

≤
∣

∣

∣

∑

k∈I; l∈J

n
∑

t=1

sin
(πkt

n + 1

)

cos
(πlt

n + 1

)∣

∣

∣

+
∣

∣

∣

∑

k∈I; l∈J

n
∑

t=1

cos
(πkt

n + 1

)

sin
(πlt

n + 1

)∣

∣

∣.

Estimate the first term. Letxk be the indicator of the setI:
xk = 1 if k ∈ I, xk = 0 otherwise. Letyk be the indicator
of the setJ . Then the first term equals

TI ≡
n
∑

t=1

n
∑

k=1

n
∑

l=1

sin
(πkt

n + 1

)

cos
(πlt

n + 1

)

xkyl

=

n
∑

t=1

(

n
∑

k=1

sin
(πkt

n + 1

)

xk

)(

n
∑

l=1

cos

(

πlt

n + 1

)

yl

)

=

n
∑

t=1

x̂tŷt,

wherex̂t is the Fouriersinetransform ofxt

x̂t =

n
∑

k=1

sin
(πkt

n + 1

)

xk, 1 ≤ t ≤ n;

and ŷt is the discrete Fouriercosinetransform ofyk (ex-
tended byy0 = yn+1 = 0)

ŷt =

n
∑

k=1

cos
(πkt

n + 1

)

yk, 0 ≤ t ≤ n + 1.

By the Cauchy–Schwartz inequality and Bessel’s inequality,
we have

|TI | =
∣

∣

∣

n
∑

t=1

x̂tŷt

∣

∣

∣
≤

√

√

√

√

n
∑

t=1

x̂2
t

n
∑

t=1

ŷ2
t

≤ n + 1

2

√

√

√

√

n
∑

k=1

x2
k

n
∑

l=1

y2
l ≤ n2

2
+ O(n).

6

Similarly, the second term is at mostn2/2 + O(n). Hence

‖W‖C =
∣

∣

∣

∑

k∈I; l∈J

wkl

∣

∣

∣ ≤ n2 + O(n) ≤ πS+

log n
(1 + o(1)).

This finishes the proof.

We presented a matrixW with real entries for which
bound (4) holds. This matrix corresponds to a directed
graph with weighted edges. However, it can be transformed
to a matrix with entries−1, 0 and1, which corresponds to
an unweighted directed graph.

Corollary 4.2. There exists a matrix̃W with entries−1, 0
and1 that satisfies bound (4).

Proof. Let W be the matrix from Theorem 4.1. By scaling,
we may assume that the largest entry inW equals1 in ab-
solute value. LetN = 4n4. We construct the matrix̃W
by replacing each entrywij of W with an N × N block
matrixRij that has the following properties. First, each en-
try of Rij is either−1, 0 or 1. Second, for every two sets
A, B ⊂ {1, . . . , N},

1

N2

∣

∣

∣

∣

∣

∣

∑

k∈A, l∈B

Rij
kl − wij |A||B|

∣

∣

∣

∣

∣

∣

<
2√
N

=
1

n2
. (5)

We prove that such matrixRij exists using the probabilistic
method (see Alon and Berger [1] for a similar argument).
Let every entry ofRij be equal tosgn(wij) with probability
|wij | and equal to0 with probability1−|wij |. Then, by the
Chernoff bound, for fixed setsA, B ⊂ {1, . . . , N}, we have

Pr





∣

∣

∣

∣

∣

∣

∑

k∈A, l∈B

Rij
kl − wij |A||B|

∣

∣

∣

∣

∣

∣

>
2N2

√
N





< 2 exp
(

−2 · (2N3/2)2/N2
)

≤ 2e−8N .

Since there are22N distinct pairs of setsA and B, and
22N · 2e−8N < 1, there exists a matrixRij that satisfies in-
equality (5) for all setsA andB simultaneously. (To ensure
that the matrixW̃ is skew-symmetric, we use this argument
to find matricesRij for i < j; we letRji = −(Rij)T .)

We verify that the matrixW̃ satisfies bound (4). Let us
estimate the cut norm‖W̃‖C . Let A andB be the sets of
indices such that

‖W̃‖C =

∣

∣

∣

∣

∣

∣

∑

k∈A, l∈B

w̃kl

∣

∣

∣

∣

∣

∣

.

Denote the restriction ofA to the set of row indices of sub-
matricesRi∗ by Ai; denote the restriction ofB to the set of

column indices of submatricesR∗j by Bj . Then

‖W̃‖C =

∣

∣

∣

∣

∣

∣

∣

∣

∑

1≤i≤n
1≤j≤n

∑

k∈Ai

l∈Bj

Rij
kl

∣

∣

∣

∣

∣

∣

∣

∣

≤ N2

∣

∣

∣

∣

∣

∣

∣

∣

∑

1≤i≤n
1≤j≤n

wij
|Ai|
N

|Bj |
N

∣

∣

∣

∣

∣

∣

∣

∣

+ N2
∑

1≤i≤n
1≤j≤n

1

n2

≤ N2 (‖W‖C + 1) ≤ 2N2‖W‖C .

Here, first, we used that,0 ≤ |Ai|/N ≤ 1 and 0 ≤
|Bj |/N ≤ 1, so

∑

ij wij · |Ai|/N · |Bj |/N does not ex-
ceed the cut norm; second, we used that at least one entry
in W equals to 1 in absolute value, so‖W‖C ≥ 1. On
the other hand, we can estimateS+(W̃) as follows (assume
without loss of generality thatS+(W) ≥ 0)

|S+(W̃)| =
∑

1≤i<j≤n

∑

k,l

Rij
kl

≥
∑

1≤i<j≤n

N2(wij − 1/n2)

≥ N2(S+(W) − 1/2)

≥ N2 S+(W)(1 − o(1)).

Here we used thatS+(W) = Ω(log n)‖W‖C =
Ω(log n) = ω(1). Combining the bounds for‖W̃‖C and
|S+(W̃)| with bound (4), we get

‖W̃‖C ≤ O(S+(W̃)/ logn).

This concludes the proof.

References

[1] N. Alon and E. Berger. The Grothendieck constant
of random and pseudo-random graphs. Discrete Op-
timization, to appear.

[2] N. Alon and A. Naor. Approximating the Cut-Norm
via Grothendieck’s Inequality. Proceedings of the
thirty sixth Annual ACM Symposium on Theory of
Computing, pp. 72–80, 2004.

[3] G. Andersson, L. Engebretsen, and J. Håstad. A
New Way of Using Semidefinite Programming with
Applications to Linear Equations modp. Journal of
Algorithms, vol. 39, pp. 162–204, 2001.

[4] B. Berger and P. Shor. Approximation algorithms
for the maximum acyclic subgraph problem. Pro-
ceedings of the first Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pp. 236–243, 1990.

7

[5] M. Charikar, K. Makarychev, and Y. Makarychev.
Near-Optimal Algorithms for Maximum Constraint
Satisfaction Problems. Proceedings of the eigh-
teenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 62–68, 2007.

[6] M. Charikar and A. Wirth. Maximizing quadratic
programs: extending Grothendieck’s inequality.
Proceedings of the forty fifth Annual IEEE Sympo-
sium on Foundations of Computer Science, pp. 54–
60, 2004.

[7] L. Engebretsen and V. Guruswami. Is constraint sat-
isfaction over two variables always easy? Random
Struct. Algorithms, vol. 25, no. 2, pp. 150–178,
2004.

[8] M. Goemans and D. Williamson. Improved approx-
imation algorithms for maximum cut and satisfiabil-
ity problems using semidefinite programming. Jour-
nal of the ACM, vol. 42, no. 6, pp. 1115–1145, Nov.
1995.

[9] R. Hassin and S. Rubinstein. Approximations for
the maximum acyclic subgraph problem. Source In-
formation Processing Letters, vol. 51, issue 3, pp.
133–140, 1994.

[10] G. Hast. Approximating MAX kCSP - Outperform-
ing a random assignment with almost a linear fac-
tor. Proceedings of the thirty second International
Colloquium on Automata, Languages and Program-
ming, pp. 956–968, 2005.

[11] G. Hast. Beating a Random Assignment. APPROX
2005, pp. 134–145.

[12] J. Håstad. Every 2-CSP allows nontrivial approx-
imation. Proceedings of the thirty-seventh An-
nual ACM Symposium on Theory of Computing,
pp. 740–746, 2005.

[13] J. Håstad and V. Srinivasan. On the advantage over
a random assignment. Random structures and Algo-
rithms, vol. 25:2, pp. 117–149, 2004.

[14] V. Kann. On the Approximability of NP-complete
Optimization Problems. Ph. D. thesis, Dept. of Nu-
merical Analysis and Computing Science, Royal In-
stitute of Technology, Stockholm, 1992.

[15] S. Khot and R. O’Donnell. SDP gaps and UGC-
hardness for MaxCutGain. Proceedings of the47th

Annual IEEE Symposium on Foundations of Com-
puter Science, pp. 217–226, 2006.

[16] A. Newman. The Maximum Acyclic Subgraph
Problem and Degree-3 Graphs. Proceedings of AP-
PROX 2001, pp. 147–158.

[17] A. Newman. Cuts and Orderings: On Semidefinite
Relaxations for the Linear Ordering Problem. Pro-
ceedings of APPROX 2004, pp. 195–206.

[18] A. Newman and S. Vempala. Fences Are Futile: On
Relaxations for the Linear Ordering Problem. Pro-
ceedings of the8th Conference on Integer Program-
ming and Combinatorial Optimization, pp. 333–
347, 2001.

[19] C. H. Papadimitriou and M. Yannakakis. Optimiza-
tion, Approximation, and Complexity Classes. J.
Comput. System Sci. 43, pp. 425–440, 1991.

[20] P. D. Seymour. Packing directed circuits fraction-
ally. Combinatorica (15), pp. 281–288, 1995.

5 Appendix

In the Appendix, we remind the reader the definition of
the discrete Fourier sine transform and prove the inversion
formula. Then we verify two equalities (Corollary 5.2 and
Lemma 5.3) that we used in the paper.

Let f be a function from{1, . . . , n − 1} to R. Then its
discrete Fourier sine transform is defined as

f̂(t) =

n−1
∑

k=1

sin
(πkt

n

)

f(k).

The inversion formula is given by

f(k) =
2

n

n−1
∑

t=1

sin
(πkt

n

)

f̂(t).

To prove this formula we need to verify that the functions

k 7→ sin(πkt/n)

form an orthonormal basis, i.e.

2

n

n−1
∑

k=1

sin
(πks

n

)

sin
(πkt

n

)

=

{

1, if s = t;

0, if s 6= t.
(6)

We use the following simple lemma.

Lemma 5.1. For everyn > 1 and0 < t < n,

n−1
∑

k=0

e
πkti

n =

{

1 + i cot πt
2n , t is odd;

0, t is even.

8

Proof. We have

n−1
∑

k=0

e
πkti

n =

n−1
∑

k=0

(

e
πti
n

)k

=
1 − eπti

1 − e
πti
n

.

If t is even, theneπti = 1 and we are done. Otherwise,

1 − eπti

1 − e
πti
n

=
2

1 − e
πti
n

=
2(1 − e−

πti
n)

2(1 − Re(e
πti
n))

(7)

= 1 + i
sin πt

n

1 − cos πt
n

= 1 + i cot
πt

2n
.

Corollary 5.2. For everyn > 1 and0 < t < n,

n−1
∑

k=0

sin
πkt

n
=

{

cot πt
2n , t is odd;

0, t is even.

n−1
∑

k=0

cos
πkt

n
=

{

1, t is odd;

0, t is even.

Proof of expression (6):

2

n

n−1
∑

k=1

sin
(πks

n

)

sin
(πkt

n

)

=
2

n

n−1
∑

k=0

sin
(πks

n

)

sin
(πkt

n

)

=
1

n

n−1
∑

k=0

cos
π(s − t)k

n
− 1

n

n−1
∑

k=0

cos
π(s + t)k

n
.

If s 6= t, then the sums above are equal by Corollary 5.2.
Hence the whole expression is equal to zero. Ifs = t, then

2

n

n−1
∑

k=1

sin
(πks

n

)

sin
(πkt

n

)

= 1 − 1

n

n−1
∑

k=0

cos
2π · kt

n
= 1.

This finishes the proof of the inversion formula.

Lemma 5.3. For everyn > 1 and1 ≤ t ≤ n,

n−1
∑

k=0

(n − k) sin
πkt

n + 1
=

n + (−1)t

2 tan πt
2(n+1)

.

Proof. We have

n−1
∑

k=0

(n − k) sin
πkt

n + 1
=

= Im

(

n−1
∑

k=0

(n − k) e
πkti
n+1

)

= Im

(

n−1
∑

l=0

l
∑

k=0

e
πkti
n+1

)

= Im

(

n−1
∑

l=0

1 − e
πt(l+1)i

n+1

1 − e
πti
n+1

)

= Im

(

n −∑n
l=1 e

πtli
n+1

1 − e
πti
n+1

)

= Im







n + 1

1 − e
πti
n+1

− 1 − eπti

(

1 − e
πti
n+1

)2






.

Similarly to (7), we get

Im

(

n + 1

1 − e
πti
n+1

)

=
n + 1

2 tan πt
2(n+1)

;

and

Im
1 − eπti

(

1 − e
πti
n+1

)2 =
Im((1 + (−1)t+1)(1 − e−

πti
n+1)2)

(

1 − e
πti
n+1

)2 (

1 − e−
πti
n+1

)2

=
2(1 + (−1)t+1)(1 − cos πt

n+1) sin πt
n+1

(2 − 2 cos πt
n+1)2

=
(1 + (−1)t+1) sin πt

n+1

2(1 − cos πt
n+1)

=
1 + (−1)t+1

2 tan πt
2(n+1)

.

9

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

