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On the Advantage over Random for Maximum Acyclic Subgraph
Moses Charikar Konstantin Makarychev Yury Makarychev
Abstract better running time in certain cases. Note that these algo-

rithms achieve such a guarantee for any graph: the guaran-
In this paper we present a new approximation algo- tee does not depend on the value of the optimal solution.
rithm for theMAX AcycLIC SUBGRAPH problem. Given Let us measure the objective as a fraction of the number
an instance where the maximum acyclic subgraph containsof edges. If the optimal valu@ PT is 1 —¢, for a very small
1/2 + ¢ fraction of all edges, our algorithm finds an acyclic ¢, we could use the best known approximation algorithm for
subgraph withl /2 + €2(§/ logn) fraction of all edges. the complementary problem (M FEEDBACK ARC SET)
to beat the random algorithm. Using tt&log n log log n)
algorithm of Seymour [20], for instances whetePT =
1 Introduction 1 — e ande = O(1/(lognloglogn)), we can indeed beat
1/2 for MAX AcycLIC SUBGRAPH. This yields an ap-
proximation ratio ofl/2 + (1/(lognloglogn)) for the
problem.
To summarize, we can beat random for instances where
Definition 1.1. Given a directed grapl; = (V, E), find ~ OPT is very close to 1. For instances whet&T is
the largest subset of edges which are acyclic. Equivalently smaller, we do not know of any techniques which perform
find an ordering of the vertices so as to maximize the num-better than random. (As mentioned, there are algorithms
ber of edges going forward. which have the guarantég2 + Q(1/v/dmaa).)
Recently, a related question of approximating the advan-
A simple randomized algorithm achieves a factor 1/2 for tage over random has been studied for several basic opti-
this problem: Simply pick a random ordering of the ver- mization problems (see [3, 5, 6, 7, 10, 11, 12, 13]). These
tices. In fact, one can achieve factor 1/2 by an even simplerstudies give a fresh perspective on these optimization-prob

The focus of this paper is the Ak AcycLiCc Sus-
GRAPH problem which is the following:

algorithm: Pick an arbitrary ordering of the verticeand  |ems and motivated the development of new techniques to
its reverser*. One of them has at leasf2 fraction of the  extract information from mathematical programming relax-
edges in the forward direction. Improving thé2 approx- ations for them.

imation for MAX ACYCLIC SUBGRAPH is a long standing
open problem. The motivating question for our work was Definition 1.2. LetG = (V, E) be a directed graph on

whether it is possible to beat this 1/2 approximation. vertices; and letr : {1,...,n} — V be alinear arrange-
In fact, algorithms very slightly better than 1/2 are ment of its vertices. Then tlaelvantage or gatnover ran-
known: Berger and Shor [4] showed how to det + domof the arrangement is equal to the fraction of edges

Q(1/vdmaz), Whered,, ... is the maximum vertex degree going forward minus the fraction of edges going backward.
in the graph. Later Hassin and Rubinstein [9] proposed an-We denote the gain over randomguin(G, 7).
other algorithm with the same approximation guarantee, but

If a linear arrangement has valug2 + § for MAX
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edly a very interesting question). We ask what guarantee istion from one distance scale in the optimum solution can be
possible as a function @ffor all values ofé € (0, 1). exploited algorithmically. Extending these ideas furtteer
Such guarantees were developed for MAX CUT by exploiting information from multiple distance scales slmu
Charikar and Wirth [6]: Given a MAX CUT instance, for taneously is a promising avenue for obtaining a constant
which the optimal solution has gadnwe can find a cutwith ~ better than 1/2 approximation for Ax AcycLiCc SuB-
gainQ(5/ log(1/6)) and2(6/ logn); the former approxi- ~ GRAPH. This would be an exciting result indeed.
mation guarantee is optimal (if the Unique Games Conjec-
ture is true) as was shown by Khot and O’'Donnell [15].
There are some parallels between MAX CUT and)M Theorem 1.3. There exists a randomized polynomial time
AcYCLIC SUBGRAPH, since a random assignment achieves algorithm that given a directed grapf¥ finds a linear ar-
factor 1/2 for both problems. For MAX CUT, this was in- rangementr of its vertices with gain over random at least
deed the best known until the seminal work of Goemans and€2(d/ log n), whered is the maximum possible gain.
Williamson [8] using semidefinite programming (SDP). In
a sequence of later papers, our understanding of the MA

Our Results. Our main result is as follows.

x We show a connection between the advantage over ran-
CUT SDP has vastly improved. Arguably,M AcYCLIC dom and the cut norm of the adjacency matrix of the graph

SUBGRAPH is a more complex problem than MAX CUT. G._ In Section 2, we pre_sent a simple algorithm that finds
Linear programming (LP) relaxations for the problem have a linear arrangement with advgntage over random propor-
been studied intensively in the mathematical programming fional to the cut norm of the adjacency matrix of the graph.
community (it is sometimes referred to as the linear order- 1 €N, in Section 3, we prove using Fourier analysis tech-
ing problem). For more information we refer the reader to Nidues that the cut norm of the adjacency matrix is within a
the papers of Newman [16] and Newman and Vempala [18]. log n factor of the optimal gain. We also give an example
However the best known approximation for the problem still that shows that our analysis is tight.
remainsl/2. Newman [17] recently studied an SDP relax-
ation for the problem and gave some evidence to sugges Approximation Algorithm
that the SDP might be useful in beating thé2 approxi-
mation (in particular, the SDP does well on the known gap it will be convenient for us to express different quantities
instances for the LP). in terms of the adjacency matri¥; of the directed graph

In this work, we give arO(log n) approximation forthe  G. For unweighted graphs, we defifi&; as follows:
advantage over random forAX ACYCLIC SUBGRAPH. In
other words, given an instance whé?&T = 1/2 + ¢, we 1, if (u,v) € E;
find a solution of valué /2+(d/ logn). Prior to our work, We(u,v) =< —1, if (v,u) € E;
no non-trivial guarantees were known even for instances
where OPT was close to 1, say- 1/ logn. In contrast, our

algorithm gives a non-trivial guarantee even for OPT close
. If both E and E thenW, =0.F
to 1/2. As a byproduct, we obtain &/2 + Q(1/logn) oth (u,v) € Band(v, u) € enWe (u, v) or

0, otherwise

LT eighted graphs,

approximation for M\x ACYCLIC SUBGRAPH — very Welg grap
slightly better than theé/2+Q(1/(logn loglogn)) alluded We (u, v) = weight((u, v)) — weight((v, w)),
to earlier that comes from Seymour’s algorithm [20]. Note
that the known hardness results formk AcycLiC SuB- whereweight ((u, v)) = 0if (u,v) ¢ E. Below|E| denotes
GRAPH[14, 19] imply that the advantage over random ver- the total weight of all edges.
sion has a constant factor hardness. The gain over random is equal to

Vertex ordering problems like WX AcycLiC SuB- .
GRAPHseem more complex than the constraint satisfaction gain(G, ) = i Z We (i, 7).

problems that have been recently explored with the lens
of approximating the advantage over random. It is some-
what surprising therefore that we obtain results foaM In other words the gain is equal to the sum of the elements
AcYcLIC SUBGRAPH that match the corresponding guar- in the upper triangle of the matri¥/¢, in which rows and
antee for MAX CUT. Despite the similarity in the state- columns are arranged accordingitalivided by the number
ment of the result, the techniques are quite different. The of edges.

logn in MAX CUT comes from the tail of the Gaussian Let us now describe our approach to solving the problem.
distribution, while thelogn in our result comes from the  First partition the vertices of the graph into three sét3
number of different distance scales in a linear arrangementandcC in a special way. Then randomly permute vertices in
Roughly speaking, our results show how ordering informa- each of these sets. Finally, with probability a half outdut a

1<j



vertices in the orded, B, C and with probability a halfin ~ negative contributions to the bilinear form constructeak{p
the orderC, A, B. itive contributions come from edges going framto B
It is easy to see that all edges frafnto B go forward; negative contributions come from edges going frého
and all edges fron®3 to A go backward. On the other hand, A). Our intuitive explanation focussed on the contribution
all other edges go backward or forward with probability ex- from one group of edges, but we need to ensure that the

actly a half. Hence, the expected gain is equal to potential negative contributions of the other groups do not
overwhelm this. The Fourier machinery we use allows us to
Z Wa(u,v) (1) properly account for positive and negative contributions.
ueA B Now, we do not actually know the optimal ordering

so we do not really perform this sampling in our algorithm
We just showed that the maximum gain is greater than ortg obtain setsd and B. Instead, we focus on a quantity
equal to (1). It turns out that the converse is also true up tocgjled the cut norm which we define in the next section.
anO(log n) factor. That is, there always exist disjoint sets our existential proof is merely an analysis tool that allows

A andB for which us to prove that the cut norm of the adjacency matrix is large
galn(G ) if the gain ofsomeordering is large. The z.;\ctuz_sil algorithm
Z Wa(u,v) > m, uses Alon and Naor’s SDP based approximation for the cut
ueA vEB & norm. This yields setsl and B from which we obtain an

wherer is the optimal permutation of the vertices. This ordering of the vertices.

statement is the main technical component of the proof and

we prove it in the next section. 2.2 Efficient Implementation

We now show how to efficiently find set$ and B that
maximize (1) within a constant factor and thus obtain an
O(logn) approximation for the maximum gain problem.
As alluded to before, this problem is closely related to the
problem of finding the cut norm of the matri¥X, which
can be approximately solved using the algorithm proposed
by Alon and Naor [2].

2.1 Combinatorial Interpretation of Proof

As a prelude to the technical analysis in Section 3, we
give a simplified overview. The goal of the analysis is to
show that if there is an ordering with gaind, then there
are subsetsl and B of such that placing all vertices of
before vertices oB gives gain at least/ log n. (In fact, the
setsA and B we construct in our analysis are not disjoint, Definition 2.1. The cut norm of a matri¥ (u, v) is equal

but this is easy to fix.) to

Define the length of an edge to be the distance between
its end points in the ordering. We can group edges geo- IWie = An%ax Z W (u,v)
metrically by length intaD(log n) groups. If the gain of the u€A;vEB
g;oll(e)zg?rlgw is 4, at least one of these groups must have gain Note that for skew-symmetric matrices

We construct the setd and B by random sampling the Z W (u, v) Z W (0, )

positions in the ordering. The selection probabilities vary
periodically with position. Roughly speaking, if we have
period P, this targets the group of edges with edge lengths and therefore
O(P). Since one of the groups has gaiflog n, the sam-

uc€A;veEB uEA;veEB

pling process targeted towards that group will generate set [Wlle = ARx, Z W(u,v)
A and B such that the corresponding ordering has gain Vuekiven
5/ logn.

In this definition it is not required that the setsand B
are disjoint. However, given arbitrary setsand B, we can
always find disjoint setgl’ and B’ such that

In our proof later, this sampling is incorporated into a
certain bilinear form (3) we analyze. This expression in-
volves termsz(r) and yi(r) (defined later) that corre-
sponds to selecting sets and B randomly where the se-
lection probabilities vary periodically with position ime Z W (u,v) >
orderingrw. For appropriate choice of the period our analy- -
sis shows that the bilinear form constructed must have value
at leasty/ log n. In order to do so, we simply partition the vertices of the

This is a somewhat simplistic explanation that ignores graphG into two random setsX andY. Then setd’ =
several issues. In fact, edges could have both positive andA N X; B’ = BNY.

Y W), (2

ucA’;veB’ u€A;veEB

»JklP—‘



Lemma 2.2. For every skew-symmetric matnix, the sets
A’ and B’ (as described above) are disjoint and satisfy the
following equality:

Z W (u,v)

uc A’ ,veB’

E

1
=1 Z W (u,v).

u€EAvEB

Proof. The setsA’ andB’ are disjoint, since the sef§ and
Y are disjoint. Now, for every distinct verticese A and
v € B, the probability that: € A’ andv € B’ equalsl /4.
(Note, that the diagonal entriesdf are equal to zero.)

We now state the result of Alon and Naor [2].

Theorem 2.3(Alon and Naor [2]) There exists a random-
ized polynomial time algorithm that given a mathix(u, v)
finds two subsets of indicesand B such that

Z W(u,v) > QAN - ||W||07
u€A;veEB

wherea sy ~ 0.56.

Applying Lemma 2.2, we get the following corollary.

Corollary 2.4. There exists a randomized polynomial time
algorithm that given a skew-symmetric matfiX (u, v)
finds two disjoint subsetdé and B such that

Z W (u,v)

u€EA;veEB

>

Wlle-

This Corollary implies that the algorithm described in

the beginning of the section finds a linear arrangement with

gainaan/4- |[Welle/|E|. Thus, we proved:

Lemma 2.5. There exists a randomized polynomial time
algorithm that given a directed grapt¥ with adjacency
matrix We (u, v) finds a linear arrangement of the vertices
with gain
aan  [Wallo
4 |E|

3 Cut Norm of Skew-Symmetric Matrices

In this section we will prove that for every linear arrange-
mentr (particularly, for the optimal linear arrangement)

gain(G, m)|E|
logn ’

which will conclude the proof of Theorem 1.3. Fix an arbi-

trary linear arrangementand denote

Welc > Q <

= W(Trk,ﬂ'l).

Wk

Remark 3.1. In this paper, we use the discrete Fourgne

transform, which is an analog of the discrete Fourier trans-
form, but is less well known. For this reason, we briefly
describe it and prove the inversion formula in the Appendix.

Theorem 3.1. LetW be ann x n skew-symmetric matrix.

Define
S+ = S+ Z Wi -
1<k<i<n
Then o+
wie =2 ().
ogn

Remark 3.2. Recall, thatgain(G, ) St(Wea)/|E],
where the columns and rows W are ordered according
to the permutationr.

We need several lemmas.

Lemma 3.2. Let S, be the discrete Fourier sine transform
of a sequencéy, ..., S,_1, defined as follows

n—1

S’t = Z sin(W:t)Sk
k=1
Then

m?X|St|_ 210gn+0 ZSk

Proof. The inverse Fourier sine transform is given by

n—1
2 . Tkt
Sk:Egsm( - )St
Hence,
n—1 2n 1n—1
Sso= 2% S a(™)s,
k=1 k=1 t=1
n—1 /n—1
2 . (wkt)) A
= - Zsm — )| S
s <k—1 "
Note that
S wkt (1= (=1)")sin(Z) 11— (—1)
T2 T—cos(Z)  2tan(Zl)
1 COS an n
Then
n—1 2 —
S, < =
S« 25|06
k=1 —1
2 [ X2 o )
< = -
~n ; Tt m?X|St|
tis odd

2 .
— (logn + O(1)) max [ S|,
o

2See Corollary 5.2 in the Appendix for more details.



here we used thatn z > z for z € (0,7/2). Therefore,

mtaX|St|_ 2logn—|—0 ZSk
O

Lemma 3.3. Let W be ann x n skew-symmetric matrix.
Define

n—k
Sk =Y wjjx
j=1

for1 < k < n — 1. And letS, be the discrete Fourier sine
transform ofS;,. Then

n n

max g g Wi TRy, > max | Sy
*1S1k-,y1§1k 1 =1 t

Proof. Let ty = argmax, |S;|. For everyk, [ from 1 ton
andr from0 ton — 1 define

xp(r) = sin(iw(kzr)to);
ylr) = —cos(w@).

Find the average value of the bilinear form

D" wwk(r)u(r) 3)

k=1k=1

overr from0ton — 1. Write

Observe, that
n—1
Z z(r)y(r) =
k-f-?“to 7T(l+7°)t0
— Z sm( ) Os(i’n )

n Sin(w(k +1+ 2r)t0)

n

Hence,
1 n—1 n n
=S (Y wnryul) =
n
r=0 k=1I1=1
1 e 1 — k)t
=52y sin (M
k=1 1=1

Z sin(iw(l ;Lk)to ) Wi

1<k<I<n

n—1 7T]t
. . 0
= Zsm( " )S = 5.
Jj=1
here we used that the matfiX is skew-symmetric. We got
that the average value of bilinear for(®) is S, , therefore,
there exists- for which the absolute value of (3) is at least
|St,|. Since the bilinear form is an odd function as a func-
tion of z (wheny is fixed), the maximum of (3) is at least
|Sto|' O

Corollary 3.4. LetW, S andS; be asin Lemma 3.3. Then

n n
Z Z WEITEY! Z InélJX |St|

k=11=1

max
zr,y1€{—1,1}

Proof. The maximum of the bilinear form is attained at a
vertex of the cube. O

The following observation is due to Alon and Naor [2].
We prove it here for completeness.

Lemma 3.5(Alon and Naor [2])

oy ax Z Z WrITRYL-

k=11=1

Wlc > -

Proof. Fix x; andy; for which the maximum of the bilinear
form is attained. Define sets™ = {k:x, =1}, [~ =
{k:zg=-1},Jt ={l:y=1}andJ” ={l:y, = 1}.
Now notice that

Zzwklffkyl = Z Wiy + Z Wki

k=11=1 kel™ kel™
leJt leJ™
- E Wkl — E Wk -
kel™ kel™
leJ™ leJt

Each of the terms on the right hand side does not exceed the
cut norm||W ||¢ in absolute value. Hence

Z Zwklxkyl < A4[Wlc.

k=11=1



Now we are ready to prove Theorem 3.1. We are now going to estimaf@V || . Pick setd and.J that

Proof of Theorem 3.1Let maximize’ZkeI; 1es Wit |- We have

n—k
oS Wie-| 5
j=1

kel;led
forl <k <n-—1.Then - ‘%;GJEQH( o )’
+: .
Tt -], 3 () ()

kel;led t=1
By Lemma 3.2 and Corollary 3.4,

( wkt )

— cos

n n-l n+1
—_— S

mk,y?elé{u—(l,l} Z Zwkzka - 2logn +0(1 Z ke

n(75)
Sin
n+1
e <| > Zm( mht

mlt ’
0OS
Now by Lemma 3.5, kel;le] t=1 ) (n+1)

kt . It
. _ o s \z Zc%(” )1n(n’f+1)\.
” ”C_m; k—m- kel;le t=1

Estimate the first term. Let; be the indicator of the sdt
x, = 1if k € I, x, = 0 otherwise. Lety, be the indicator
of the set/. Then the first term equals

O

4 Lower bound

o wkt wlt
We will now prove that the bound in Theorem 3.1 is es- 17 = 200 sm(n T 1) Cos(n n 1)Ikyl
sentially tight.

Theorem 4.1. For everyn > 1, there exists a nonzerox n => <Z sm( Wktl)xk> (Z cos < Wlt1> yz)
skew-symmetric matri¥” such that t=1 \k=1 nt I= T
[Wlle < O(|S*|/logn), 4 = @i,

whereS* = St (W) is defined in Theorem 3.1.

Proof. Consider the matri%V’ defined by wherez; is the Fouriesinetransform ofxz;

wkt
1<t<
Wi = ZSIH n+1 . ZC,: lem(n—i—l) ks n;
Clearly, the matriXV" is skew-symmetric. Let us compute andy, is the discrete Fouriezosinetransform ofy;, (ex-
ST (see Lemma 5.3 in the Appendix for details). tended byyo = yni1 = 0)
o= = = kt
S Z Wkl = Z ZSIH gt:Zcos( il )yk, 0<t<n+1.
1§k<l§n 1<k<i<n t=1 p n+1
L mkt . . . .
= Z Z ) sin T By the Cauchy—Schwartz inequality and Bessel's inequality
t=1k=0 we have
1 n
~ 9 Z )
t=1 (n-l—l) |TI| —

Replacel / tanz with 1/2 + O(1),




Similarly, the second term is at mast/2 + O(n). Hence

S | <0t +0(m) < T(14o1)

kel;leJ

Wlec =

This finishes the proof. O

We presented a matrik/ with real entries for which
bound (4) holds.

to a matrix with entries-1, 0 and1, which corresponds to
an unweighted directed graph.

Corollary 4.2. There exists a matri¥/’ with entries—1, 0
and1 that satisfies bound (4).

Proof. Let W be the matrix from Theorem 4.1. By scaling,
we may assume that the largest entrylihequalsl in ab-
solute value. LeftV = 4n*. We construct the matrixi’

by replacing each entry;; of W with an N x N block
matrix R¥ that has the following properties. First, each en-
try of R¥ is either—1, 0 or 1. Second, for every two sets
A Bc{l,...,N},

1 . 9 1
R lj o -
s| X - wslAlBl < o= = o

keA,leB

(5)

We prove that such matriR® exists using the probabilistic
method (see Alon and Berger [1] for a similar argument).
Let every entry of?" be equal tagn(w; ;) with probability
|w;;| and equal t@ with probabilityl — |w;,;|. Then, by the
Chernoff bound, for fixed set4, B C {1,..., N}, we have

Pe(| X RE -l > 20
r Kl — Wij T~
kCA,lEB VN

< 2exp (—2 : (2N3/2)2/N2) < 2¢78N

Since there ar@2" distinct pairs of setsd and B, and
22N . 278N < 1, there exists a matriR" that satisfies in-
equality (5) for all setsA and B simultaneously. (To ensure
that the matri¥V is skew-symmetric, we use this argument
to find matricesR¥ fori < j; we let R7* = —(R%)T.)

We verify that the matri¥ satisfies bound (4). Let us
estimate the cut noriiv||c. Let A and B be the sets of
indices such that

IWlle =

> w.

k€A, lEB

Denote the restriction ofl to the set of row indices of sub-
matricesR™ by A;; denote the restriction db to the set of

This matrix corresponds to a directed
graph with weighted edges. However, it can be transformed

column indices of submatricg®*/ by B;. Then

Wle=1]> > Rj

1<i<n ke A;
1<j<n leB;
|A4] |B;| 1
- : "N N n?2
1<i<n 1<i<n
1<j<n 1<j<n

< N2 ([W]¢+1) <2N?|W|c.

Here, first, we used that) < |4;|/N < 1 and0 <
|Bj|/N < 1,503, wi; - |A;|/N - |Bj|/N does not ex-
ceed the cut norm; second, we used that at least one entry
in W equals to 1 in absolute value, §6V|c > 1. On

the other hand, we can estimateé (W) as follows (assume
without loss of generality tha§ ™ (1) > 0)

W= > > R

1<i<j<n k,l
> N(wy —1/n?)
1<i<j<n
N2(St (W
N2SH(

|SH(W

Y]

)—1/2)
W)(1 - o(1)).
Here we used thatS*(W) Qlogn)||W ||

Q(logn) = w(1). Combining the bounds folf|c and
|ST(W)| with bound (4), we get

(AVARLYS

IWe < O(S*(W)/logn).

This concludes the proof.
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Proof. We have

mkti ( Tti )k 1 — eﬂ'ti

e n = en = —
1 _ mti

k=0 k=0 e

If ¢ is even, ther™ = 1 and we are done. Otherwise,

1—e™ 2 21—e ) @)
l—e%  1—e%  2(1—Re(e™))
=143 sin%t =1+4+icot —
1 — cos &t 2

Corollary 5.2. Foreveryn > 1 and0 < t < n,

Lkt {cot rt tisodd;
sin — = .
o 0, tis even.
Nkt {1, tis odd;
cos — = .
P n 0, tiseven.

Proof of expression (6):

2 el . smks\ . /mkt 2 . /7kt
— E sm(—) sm( ) = — sm( ) ( )
n n n n
k=1 k=0
n—1 n—1
- t t
= — E COS ——— S —_ = E COb S +

n—1

If s # t, then the sums above are equaI by Corollary 5.2.

Hence the whole expression is equal to zera. H ¢, then
2m -kt

n—1 n—1
2 ks wkt 1 .
2 Z i (TR Y qin (™Y = _ 2 Z
nklsm( n )sm( n ) n o8 n

This finishes the proof of the inversion formula. O

Lemma 5.3. Foreveryn > 1 and1 <t <mn,

n—1

Z(n—k)sin mht _ nt (= 1)t
= n+1 2tan (n+1)

Proof. We have

n—1

kt
Z(n — k) sin nﬂ+ 1=

=1Im (nl(n —k)en )
k=0
n—1

1 wt(l+1)i Z
—e nfl n— en
— E _ o Lil=1
- Im Tti - Tti

—0 1 —entl 1 —ent

n+1 1 —e™
Tti 4\ 2

1—entI (1 _ewzr{jl)

(ZZ ")

l

Similarly to (7), we get

( n+1 ) n+1
Im ti 7
1 — ent1 2 tan

(n+1)
and
1—erti Im((1 4 (—1)1)(1 — e~ #51)2)
Im i \ 2 = i\ 2 i \ 2
(1—6%) (1—e;+11) (1—6_7?+11)
_ 2(1 + (—1)t+1)(1 COS n_-l—l) Sln n_-l—l

(2 — 2cos 22

n+l
(g1
2(1 — cos 7:&1) ~ 2tan Iy +1)
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