A Note on Set Cover Inapproximability Independent of Universe Size

Jelani Nelson*
MIT CSAIL
minilek@mit.edu

September 21, 2007

Abstract

In the set cover problem we are given a collection of \(m \) sets whose union covers \(\{1, \ldots, n\} \) and must find a minimum-sized subcollection whose union still covers \(\{n\} \). We investigate the approximability of set cover by an approximation ratio that depends only on \(m \) and observe that, for any constant \(c < 1/2 \), set cover cannot be approximated to within \(O(2^{\log^{1-1/(\log \log m)} m}) \) unless SAT can be decided in slightly subexponential time. We conjecture that polynomial time \(m^{1-\epsilon} \)-approximation is impossible for any \(\epsilon > 0 \) unless SAT can be decided in subexponential time.

1 Introduction

Set cover is one of the oldest known NP-complete problems, being listed as one of Karp’s “original 21 NP-complete problems” [6]. In the set cover problem we are given a collection of \(m \) sets whose union covers \(\{n\} = \{1, \ldots, n\} \) and must find a subcollection of minimum size still covering \(\{n\} \). Its approximability in terms of \(n \) is well-understood. It is known that a simple greedy algorithm [5, 12] and a randomized rounding scheme of an LP relaxation [7, 13] both achieve an approximation ratio of \((1 - o(1)) \ln n\). On the negative side, it is known that set cover cannot be approximated to within \(c \ln n \) for some constant \(c < 1 \) unless \(P = NP \) [11], or to within better than \((1 - o(1)) \ln n \) unless \(NP \subseteq \text{TIME}(n^{O(\log \log n)}) \) [4].

This work makes a first attempt at understanding the (in)approximability of set cover to within an approximation ratio that only depends on \(m \), independent of \(n \). The only known result concerning approximability of set cover in terms of \(m \) that the author could find is a result of [2], which gives a non-trivial improvement over \(O(m) \)-approximation only when the VC-dimension of the set system is sufficiently smaller than \(\lg m - \lg \lg m \).\(^1\) The original hardness proof for set cover by Lund and Yannakakis [1, 8] gives a reduction where \(n \) and \(m \) are polynomially related, as do subsequent proofs. Such results thus imply \(\Omega(m) \)-hardness of approximation for set cover. The question then becomes whether polynomial-time \(O(m) \)-approximation is possible regardless of the relationship between \(m \) and \(n \). An instance with \(m = O(n) \) can be solved exactly in polynomial time by brute force since set cover can be solved in time \(O(n \cdot 2^{O(m)}) \), but what about \(m \) slightly superlogarithmic? By combining the proof of Lund and Yannakakis [8] with a result of Dinur and Safra [3], we observe that set cover cannot be approximated to within \(2^{\log^{1-\delta_c(m)} m} \) in polynomial time for any constant \(c < 1/2 \) unless SAT can be decided in time \(2^{O(2^{\log^{1-\delta_c(m)} n})} \), where \(\delta_c(n) = 1/(\log \log n)^c \).

\(^*\)Supported by an NDSEG fellowship.

\(^1\)The abstract of [2] has a slight bug; the VC-dimension “d” they mention actually refers to the VC-dimension of the dual set system.
2 A Motivating Example

Here we give an example of why one may want an approximation algorithm for set cover whose approximation ratio depends only on \(m \). Consider the following taxonomy labeling problem introduced by Rabani, Schulman, and Swamy \([10]\). In this problem there is some finite alphabet \(\Sigma \) and a tree with \(n \) nodes. Each node is labeled with a string in \((\Sigma \cup \{0, 1\})^m \), and we must replace all occurrences of \(\ast^n \) in all labels with elements of \(\Sigma \) so as to minimize the maximum Hamming distance of labels of adjacent nodes. The authors show a reduction from taxonomy labeling to what they call the multicut packing problem on trees. In the multicut packing problem on trees we are given a tree on \(n \) nodes and a set of \(m \) multicut instances \(M_i = \{(s_1, t_1), \ldots, (s_{m_i}, t_{m_i})\} \). For each \(i \) we must output a multicut, i.e. a set of edges whose removal disconnects \(s_i \) from \(t_i \) for all \(i \), and the objective is to minimize the maximum number of times any edge is used in a multicut. Rabani, Schulman, and Swamy obtain a \(O(\log^2 m) \)-approximation for multicut packing on trees, independent of \(n \).

Now one may observe that multicut packing on trees is actually a special case of the following generalization of set cover. We are given \(N \) collections \(C_i = \{S_1^i, \ldots, S_{m_i}^i\} \) of subsets of \([n]\). We must choose a subcollection \(C_i' \) from each \(C_i \) so that \(\bigcup_{i \in I} S = [n] \), and the objective is to minimize \(\max_i |C_i'| \). In the case of multicut packing on trees, for each edge \(e \) we have a collection \(C_e \). The universe to be covered consists of all commodities in all multicut instances. Each \(m_e \) equals \(m \), the number of multicut instances, and \(S_e^i \) is the set of commodities \((s, t) \in M_i\) such that \(e \) is on the unique path from \(s \) to \(t \), i.e. the removal of edge \(e \) cuts \((s, t)\) (recall the graph is a tree). As the approximation ratio for multicut packing on trees obtained in \([10]\) is \(O(\log^2 m) \), one may wonder whether such a result could be extended to all instances of this generalized set cover problem. Our observation implies that such a result is impossible unless SAT has subexponential time algorithms since \(O(2^{\log^{1-\epsilon} n}) \)-approximation is hard even when \(N = 1 \) (the usual set cover problem).

3 The Main Observation

\textbf{Definition 1.} LabelCover\((c, s)\) is the promise problem where we are given a bipartite graph that is both left-regular and right-regular with bipartition \(V = V_1 \cup V_2 \ (|V| = n) \), edge set \(E \), label set \([L] = \{1, \ldots, L\} \), and a set of functions \(f_e : [L] \rightarrow [L] \) indexed by edge (there is exactly one such function per edge in \(E \)). A labeling is a function \(\ell : V \rightarrow [L] \), and an edge \(e = (v_1, v_2) \) is said to be satisfied by \(\ell \) if \(\ell(v_2) = f_e(\ell(v_1)) \). In the promise problem we are given an instance where either a labeling exists satisfying at least \(c|E| \) edges, or no labeling satisfies more than \(s|E| \) edges. We must decide which case holds.

\textbf{Theorem 2} \([3]\). For any constant \(c < 1/2 \) deciding LabelCover\((1, 2^{-\log^{1-\epsilon} n})\) with a polynomial-size alphabet is \(NP \)-hard, where \(\delta_c(n) = 1/(\log \log n)^c \).

The work of \([3]\) actually defines LabelCover differently. In their definition one must assign a \(c \)-set of labels \(\ell(v) \) to each vertex \(v \in V \) so as to satisfy all edges. In this scenario an edge \(e = (v_1, v_2) \), where \(v_1 \in V_1 \), is said to be satisfied when for each label \(\ell_2 \in \ell(v_2) \) there is a label \(\ell_1 \in \ell(v_1) \) such that \(f_e(\ell_1) = \ell_2 \). The goal is then to minimize the \(l_p \) norm of the vector \(\langle |\ell(v)| \rangle_{v \in V} \). The work of \([3]\) shows that polynomial-time \(2^{\log^{1-\epsilon} n} \)-approximation is \(NP \)-hard for any \(1 \leq p \leq \infty \), which implies Theorem 2 by using a known relationship \([1]\) between the version of LabelCover defined in \([3]\) with \(p = 1 \) to the version of LabelCover in Definition 1.

\textbf{Theorem 3} \([1, 8]\). Suppose it is \(NP \)-hard to decide LabelCover\((1, \epsilon)\) with a label set of size \(L = O(f(n)) \). Then for any \(\ell \) such that \(2/\ell^2 < \epsilon \), set cover has no polynomial-time \(O(\ell) \)-approximation unless \(SAT \) can be decided in time \((n f(n)2^f)^O(1) \).

\textbf{Proof.} For any \(\ell \) satisfying \(2/\ell^2 < \epsilon \), the work of \([1, 8]\) reduces a LabelCover\((1, \epsilon)\) instance \(\mathcal{I} \) with \(n \) vertices, \(m \) edges, and label size \(L \) to a set cover instance \(\mathcal{S} \) with universe size \(O(mL2^{2\ell}) \) and collection size \(nL \) such that approximating \(\mathcal{S} \) to within \(O(\ell) \) in time polynomial in \(|\mathcal{S}| \) allows one to decide \(\mathcal{I} \) in time polynomial in \(|\mathcal{S}| \). Furthermore, the reduction takes time polynomial in \(|\mathcal{S}| \). \(\Box \)
Corollary 4. Set cover has no polynomial-time $2^{\log^{1-\delta_c(m)} m}$-approximation unless SAT can be decided in time $2^{O(2^{\log^{1-\delta_c(n)} n})}$.

Proof. Combine Theorems 2 and 3 with $\ell = 2^{-\log^{1-\delta_c(m)} m}$.

4 Conclusion

In the above discussion, to get better hardness for set cover in terms of m we showed $\Omega(\log n)$-hardness of approximation for set cover while decreasing m as a function of n. While this may be the right approach for reaching the limits of hardness in terms of m, such an approach may not be necessary to get more immediate improvements. For example, one may imagine being able to show $\Omega(\sqrt[4]{\log n})$-hardness for set cover with a reduction where $m = O(\log^2 n)$, which would imply $\Omega(m^{1/4})$-hardness of approximation.

We conclude with the following conjecture:

Conjecture 5. Set cover cannot be approximated to within $m^{1-\epsilon}$ in polynomial time for any constant $\epsilon > 0$ unless SAT has subexponential time algorithms.

Note that this conjecture cannot be proven by reduction from LabelCover since there is a constant $c > 0$ such that LabelCover$(1, f(n))$ is not NP-hard for any $f(n) \leq c/\sqrt{n}$: David Peleg gives a randomized $O(\sqrt{n})$ approximation algorithm for LabelCover in [9] which he states can be derandomized. Approaching $m^{1-\epsilon}$-hardness would require a different kind of reduction.

Acknowledgments

I thank Erik Demaine for bringing [2] to my attention, Venkatesan Guruswami for bringing [1] to my attention, and Hervé Brönnimann, Swastik Kopparty, Yuval Rabani, Prasad Raghavendra, Madhu Sudan, and David Woodruff for useful comments and discussion.

References

