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Abstract

In the set cover problem we are given a collection of m sets whose union covers [n] = {1, . . . , n} and
must find a minimum-sized subcollection whose union still covers [n]. We investigate the approximability
of set cover by an approximation ratio that depends only on m and observe that, for any constant c < 1/2,

set cover cannot be approximated to within O(2log1−1/(log log m)c
m) unless SAT can be decided in slightly

subexponential time. The main ingredients in the observation are the Ω(log n) hardness of approximation
proof of Lund and Yannakakis and a hardness result for label cover due to Dinur and Safra.

1 Introduction

Set cover is one of the oldest known NP-complete problems, being listed as one of Karp’s “original 21 NP-
complete problems” [7]. In the set cover problem we are given a collection of m sets whose union covers
[n] = {1, . . . , n} and must find a subcollection of minimum size still covering [n]. Its approximability in
terms of n is well-understood. It is known that a simple greedy algorithm [6, 12] and a randomized rounding
scheme of an LP relaxation [8, 13] both achieve an approximation ratio of (1 − o(1)) lnn. On the negative
side, it is known that set cover cannot be approximated to within c lnn for some constant c < 1 unless
P= NP [11], or to within better than (1 − o(1)) lnn unless NP⊆TIME(nO(log log n)) [4].

This work makes a first attempt at understanding the (in)approximability of set cover to within an
approximation ratio that only depends on m, independent of n. The only known result concerning approx-
imability of set cover in terms of m that the author could find is the upper bound of [2], which gives a
non-trivial improvement over O(m)-approximation only when the VC-dimension of the set system is suf-
ficiently smaller than lg m − lg lg m.1 The original hardness proof for set cover by Lund and Yannakakis
[1, 9] gives a reduction where n and m are polynomially related, as do subsequent proofs. Such results thus
imply Ω(log m)-hardness of approximation for set cover. The question then becomes whether polynomial-
time O(log m)-approximation is possible regardless of the relationship between m and n. An instance with
m = O(log n) can be solved exactly in polynomial time by brute force since set cover can be solved in time
O(poly(n) · 2O(m)), but what about m slightly superlogarithmic? By combining the proof of Lund and Yan-
nakakis [9] with a result of Dinur and Safra [3], we observe that set cover cannot be approximated to within

2log1−δc(m) m in polynomial time for any constant c < 1/2 unless SAT can be decided in time 2O(2log1−δc(n) n),
where δc(n) = 1/(log log n)c.

∗Supported by an NDSEG fellowship.
1The abstract of [2] has a slight bug; the VC-dimension “d” they mention actually refers to the VC-dimension of the dual

set system.
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2 A Motivating Example

Here we give an example of why one may want an approximation algorithm for set cover whose approximation
ratio depends only on m. Consider the following taxonomy labeling problem introduced by Rabani, Schulman,
and Swamy [10]. In this problem there is some finite alphabet Σ and a tree with n nodes. Each node is labeled
with a string in (Σ∪{0, 1}∗)m, and we must replace all occurrences of “*” in all labels with elements of Σ so as
to minimize the maximum Hamming distance of labels of adjacent nodes. The authors show a reduction from
taxonomy labeling to what they call the multicut packing problem on trees. In the multicut packing problem
on trees we are given a tree on n nodes and a set of m multicut instances Mi = {(si

1, t
i
1), . . . , (s

i
ri

, tiri
)}. For

each i we must output a multicut, i.e. a set of edges whose removal disconnects si from ti for all i, and the
objective is to minimize the maximum number of times any edge is used in a multicut. Rabani, Schulman,
and Swamy obtain a O(log2 m)-approximation for multicut packing on trees, independent of n.

Now one may observe that multicut packing on trees is actually a special case of the following gener-
alization of set cover. We are given N collections Ci = {Si

1, . . . , S
i
mi

} of subsets of [n]. We must choose
a subcollection C′

i from each Ci so that
⋃

i

⋃
S∈C′

i
S = [n], and the objective is to minimize maxi |C′

i|. In

the case of multicut packing on trees, for each edge e we have a collection Ce. The universe to be covered
consists of all commodities in all multicut instances. Each mi equals m, the number of multicut instances,
and Se

i is the set of commodities (s, t) ∈ Mi such that e is on the unique path from s to t, i.e. the removal
of edge e cuts (s, t) (recall the graph is a tree). As the approximation ratio for multicut packing on trees
obtained in [10] is O(log2 m), one may wonder whether such a result could be extended to all instances of
this generalized set cover problem. Our observation implies that such a result is impossible unless SAT has

subexponential time algorithms since O(2log1−δc(m) m)-approximation is hard even when N = 1 (the usual
set cover problem).

3 The Main Observation

Definition 1. LabelCover(c, s) is the promise problem where we are given a bipartite graph that is both
left-regular and right-regular with bipartition V = V1 ∪ V2 (|V | = n), edge set E, label set [L] = {1, . . . , L},
and a set of functions fe : [L] → [L] indexed by edge (there is exactly one such function per edge in E). A
labelling is a function ` : V → [L], and an edge e = (v1, v2) is said to be satisfied by ` if `(v2) = fe(`(v1)).
In the promise problem we are given an instance where either a labelling exists satisfying at least c|E| edges,
or no labelling satisfies more than s|E| edges. We must decide which case holds.

Theorem 2 ([3]). For any constant c < 1/2 deciding LabelCover(1, 2− log1−δc(n) n) with a polynomial-size
alphabet is NP-hard, where δc(n) = 1/(log log n)c.

The work of [3] actually defines LabelCover differently. In their definition one must assign a set of labels
`(v) to each vertex v ∈ V so as to satisfy all edges. In this scenario an edge e = (v1, v2), where vi ∈ Vi,
is said to be satisfied when for each label `2 ∈ `(v2) there is a label `1 ∈ `(v1) such that fe(`1) = `2. The
goal is then to minimize the lp norm of the vector (|l(v)|)v∈V . The work of [3] shows that polynomial-time

2log1−δc(n) n-approximation is NP-hard for any 1 ≤ p ≤ ∞, which implies Theorem 2 by using a known
relationship [1] between the version of LabelCover defined in [3] with p = 1 to the version of LabelCover in
Definition 1.

Theorem 3 ([1, 9]). Suppose it is NP-hard to decide LabelCover(1, ε) with a label set of size L = O(f(n)).
Then for any ` such that 2/`2 < ε, set cover has no polynomial-time O(`)-approximation unless SAT can be
decided in time (nf(n)2`)O(1).

Proof. For any ` satisfying 2/`2 < ε, the work of [1, 9] reduces a LabelCover(1, ε) instance I with n vertices,
m edges, and label size L to a set cover instance S with universe size O(mL222`) and collection size nL such
that approximating S to within O(`) in time polynomial in |S| allows one to decide I in time polynomial in
|S|. Furthermore, the reduction takes time polynomial in |S|.
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Corollary 4. Set cover has no polynomial-time 2log1−δc(m) m-approximation unless SAT can be decided in

time 2O(2log1−δc(n) n).

Proof. Combine Theorems 2 and 3 with ` = 2− log1−δc(m) m.

4 Conclusion

In the above discussion, to get better hardness for set cover in terms of m we showed Ω(log n)-hardness of
approximation for set cover while decreasing m as a function of n. While this may be the right approach for
reaching the limits of hardness in terms of m, such an approach may not be necessary to get more immediate
improvements. For example, one may imagine being able to show Ω(

√
log n)-hardness for set cover with a

reduction where m = O(log2 n), which would imply Ω(m1/4)-hardness of approximation.
One might not expect to show hardness of approximation for set cover beyond Ω(

√
m)-hardness2 due to

an observation of Anupam Gupta and Danny Segev [5]. If m < lnn one can solve set cover in polynomial
time by brute force. When m > ln2 n the greedy O(log n)-approximation algorithm also provides an O(

√
m)

approximation. Thus, it suffices to give an O(m/ log n)-approximation algorithm for lnn < m < ln2 n to
obtain an O(

√
m)-approximation algorithm for all m. The algorithm is as follows, where the universe is

{1, . . . , n} and the collection of sets is C = {S1, . . . , Sm}.

1. Partition the Sj arbitrarily into lnn groups each of size at most m/ lnn. Let Ui be the union of all Sj

in group i.

2. Solve a new set cover instance with C′ = {U1, . . . , Ulnn} optimally in polynomial time by brute force
(note the optimal solution for C′ is at least as cheap as that for C).

3. Return the subcollection of C corresponding to the solution found in step 3. That is, if Ui is picked in
step 3 then include all Sj in group i in the returned subcollection.

It would be interesting to pursue whether polynomial hardness is achievable, or perhaps whether one
can find a relationship in the reverse direction (between LabelCover approximability and set cover approx-
imability in terms of m) to show that improving the hardness presented here would require improving upon
current hardness results for LabelCover.
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