Electronic Colloguium on Computational Complexity, Report No. 106 (2007)

On Parameterized Approximability

Yijia Chen' Martin Grohé Magdalena Griibér

Abstract. Combining classical approximability questions with paedenized complexity, we intro-
duce a theory oparameterized approximabilityThe main intention of this theory is to deal with the
efficient approximation of small cost solutions for optiatisn problems.

Key words. Fixed-parameter tractability, approximation algorithmardness of approximation.

1 Introduction

Fixed-parameter tractability and approximability are wammplementary approaches to dealing with
intractability: Approximability relaxes the goal of findjrexact or optimal solutions, but usually in-
sists on polynomial time algorithms, whereas fixed-paramteactable (fpt) algorithms are exact, but
may have a super-polynomial running time that is controtlgé parameter associated with the prob-
lem instances in such a way that for small parameter valuesutiming time can still be considered
efficient. Obviously, the two approaches can be combinedghwis what we do in this paper. Op-
timisation problems are often parameterized by the cost@fsblution that is to be found. That is,
together with an instance we are given a paramietemd the goal is to find a solution of size at
leastk (for maximisation problems) or at mokt(for minimisation problems). For smai, an fpt
algorithm with a running time lik@(2%- n) can be quite efficient. For some problems, for example
minimum vertex cover, such an algorithm exists, but for matimer problems it does not, under plau-
sible complexity theoretic assumptions. For such probjeras we at least find small solutions that
approximately have the desired c&8tA slightly different, but closely related question can bkeal
starting from approximability: Suppose we have a probleat ih hard to approximate. Can we at
least approximate it efficiently for instances for which timum is small? The classical theory of
inapproximability does not seem to help answering this tpiesbecause usually the hardness proofs
require fairly large solutions.

Let us illustrate this with an example: The maximum cliquelgem is known to be hard to
approximate — unless ZPP NP not approximable with ratio'~¢ for any& > 0 [16] — and, most
likely, not fixed-parameter tractable — the problem i§l}Aomplete [10], and unless the exponential
time hypothesis fails, it is not even solvable in timfé&) [6, 7]. Here, and in the followingg denotes
the size of the desired clique andhe number of vertices of the input graph. Now we ask: Is there
an fpt algorithm that, given a grapli and ak € N, finds a clique of siz&/2 in ¢ provided¥

*A preliminary version of this paper appeared in Breceedings of the Second International Workshop on Patenized
and Exact Computation (IWPEC '08jolume 4169 of Lecture Notes in Computer Science, 109-2Q06

TBASICS, Department of Computer Science, Shanghai Jiadtmigersity, Shanghai 200030, China.
yijia.chen@s. sjtu.edu.cn

Institut fir Informatik, Humboldt-Universitat, Untered Linden 6, 10099 Berlin, Germany.
grohe@ nf ormat i k. hu- berlin. de

8|nstitut fur Informatik, Humboldt-Universitat, Untered Linden 6, 10099 Berlin, Germany.
grueber @ nf or mat i k. hu- berl i n. de, phone: 00493020933088, fax: 00493020933081

ISSN 1433-8092

has a clique of size at leakt (If ¢ does not have a clique of siZe the algorithm may still find
a clique of size at leadt/2, or it may reject the input.) We would call such an algoritamfpt
approximation algorithm with approximation ratid for the clique problem. If no such algorithm
exists, we may still ask if there is an algorithm that findsigu# of sizev/k or even logk, provided
the input graph¢ has a clique of sizé&. As a matter of fact, it would be interesting to have an
fpt approximation algorithm with approximation ratgmfor any functionp on the positive integers
such thak/p(Kk) is unbounded (for technical reasons, we also requit@be computable ankl/ p(k)

to be nondecreasing). If such an algorithm existed, themiw@mum clique problem would bipt
approximable It is an open problem whether the clique problem is fpt agpipnable; unfortunately the
strong known inapproximability results for the clique peat do not shed any light on this question.
Note that when we go beyond a constant approximation rati@xpeess the ratio as a function of
the cost of the solution rather than the size of the instaasdt is usually done in the theory of
approximation algorithms. This is reasonable because limpatameterized setting we are mainly
interested in solutions that are very small compared toiteedf the instance.

Our main contribution is a framework for studying such gioest. We define fpt approximability
for maximisation and minimisation problems and show thatrmtions are fairly robust. We also
consider a decision version of the fpt approximability peoi that we callfpt cost approximability
where instead of computing a solution of cost approximakelgn algorithm only has to decide if
such a solution exists. We observe that a few known resudlisl ypt approximation algorithms:
Oum and Seymour [18] showed that the problem of finding a elidacomposition of minimum
width is fpt approximable. Based on results due to Seymaody, [Rven et al. [13] showed that the
directed feedback vertex set problem is fpt approximablenlit follows from a result due to Reed et
al. [19] that the linear programming dual of the feedbackereset problem, the vertex disjoint cycle
problem, is fpt cost approximable. This is interesting lseathe standard parameterization of this
maximisation problem is \\|-hard.

The classes of the fundamental W-hierarchy of parametegpenplexity theory are defined as
closures of so called weighted satisfiability problems uffipiereductions. We prove that for all levels
of the W-hierarchy, natural optimisation versions of théirieg weighted satisfiability problems are
not fpt approximable, not even fpt cost approximable, unthe corresponding level of the hierarchy
collapses to FPT, the class of fixed-parameter tractabldgmres. Furthermore, we prove that the short
halting problem, which is known to be \A]-complete for single tape machines an{Atomplete in
general, is not fpt cost approximable unles@W- FPT.

As a final result, we show that every parameterized probleNHrs both equivalent to the stan-
dard parameterization of an optimisation problem thattisfjproximable and equivalent to the stan-
dard parameterization of an optimisation problem that isfpibcost approximable; in other words:
every parameterized complexity class above FPT that centaiproblem in NP contains problems
that are approximable and problems that are inapproximable

Independently, Cai and Huang [4] and Downey, Fellows and it [12] introduced similar
frameworks of parameterized approximability.

2 Preliminaries

N denotes the natural numbers (positive integeRs}he real numbers, an~; the real numbers
greater than or equal to 1. We recall a few basic definitionspatimisation problems and parameter-
ized complexity. For further background, we refer the read¢2] and [11, 15].

2.1 Optimisation Problems

In this paper we consider NP-optimisation probletsver a finite alphabeX consisting of triples
(solp, cosb,goaly) where

1. sob is a function that associates to any input instaxieeX* the set of feasible solutions af
such that the relatiof(x,y) | x € Z* andy € solp(x)} is polynomially balanced and decidable
in polynomial time;

2. cosp is the measure function and is defined on the c{@sgy) | x € Z*, andy € solp(x)}; the
values of cogt are positive natural numbers and gpis polynomial time computable;

3. goah € {max min}

The objective of an optimisation proble@is to find an optimal solutioa for a given instance, that
is a solutionz with cosb(x,z) = opty(X) := goal{cosb(X,y) | y € solb(x)}. If Ois clear from the
context, we omit the subscript and just write opt, sol, cost goal.

2.2 Parameterized Problems

We represent decision problems over a finite alphakset set€) C >* of strings. Let us briefly recall
the basic definitions of parameterized problems that wenedd:

1. A parameterizatiorof Z* is a polynomial time computable mappirg 2* — N.

2. A parameterized decision probleisia pair(Q, k) consisting of a se) C >* and a parameteri-
zationk of ¥*.

3. An algorithmA with input alphabet is anfpt algorithm with respect ta if there is a com-
putable functionf : N — N such that for every instancec Z* the running time ofA on this
inputx is at mostf (k(x)) - [x|°M.

4. A parameterized decision problé@,) is fixed-parameter tractabliéthere is an fpt algorithm
with respect t that decide®). FPT denotes the class of all fixed-parameter tractableideci
problems. In parameterized complexity theory the analdgumlynomial time reductions are
fpt reductions

5. A parameterized decision proble@, k) belongs to the class XP if there is a computable func-
tion f : N — N and an algorithm that decidesx Q for a givenx € Z* in at mostO(|x|(¥X))
steps.

An important class of parameterized problems is the classeifhted satisfiability problems.
We look at weighted satisfiability problems for proposiabformulas and circuits: A formula is
k-satisfiable if there exists a satisfying assignment thit eeactlyk many variables to RUE (this
assignment has weighj. A circuit y is k-satisfiable if there is a possibility of setting exadtlynany
input nodes to RUE and getting the value RUE at the output nodey(is satisfied by an input tuple
of weightk). We are interested in special classes of propositionahtidas, ; ¢ and4; 4, defined

inductively fort > 0,d > 1 as follows:

Mog = {AA...AAc|ce[d],Ay,..., A literals},
Dog = {A1V...VAc|ce[d],Aq,... A literals},
Mi1d = {/\d | I finite and nonemptyy € Ay q for alli e 1},

i€l
Diy1d = {\/y. | I finite and nonemptyy € M g foralli e 1}.
i€l
For a clasg™ of propositional formulas or Boolean circuits, the paragnieed weighted satisfiability
problem forl is

p-WSAT(IN)
Input: yerl andkeN.
Parameter: k
Problem: Decide whethey is k-satisfiable.

The problemsp-WSAT ('t 4) with t,d > 1 are used to define the classestMéf the W-hierarchy.
A parameterized problerfQ, k) belongs to the class W if there is ad > 1 such thatQ, k) is fpt
reducible top-WSAT (It 4). In the same way, the weighted satisfiability problpsdv SAT(CIRC) for
the class CIRC of all Boolean circuits defines the paranmgdrcomplexity class W[P]. It holds

FPTC W[1] CW[2] C--- CW[P] C XP

where FPT is known to be strictly contained in XP and all othelusions are believed to be strict as
well.

3 Parameterized Approximability

Definition 1. Let O be an NP-optimisation problem over the alphabgeand letp : N — R~ be a
computable function. LeA be an algorithm that expects inpuisk) € Z* x N.

1. A is aparameterized approximation algorithfor O with approximation ratiop if for every
input (x,k) € £* x N with sol(x) # 0 that satisfies

{opt(x) >k if goal = max, (*)

opt(x) <k if goal = min,

A computes & € sol(x) such that

cos(x,y) > k. if goal = max
K
cos(x,y) < k-p(k) if goal=min.
For inputs(x, k) € Z* x N not satisfying conditionx), the output ofA can be arbitrary.

2. A is anfpt approximation algorithnfor O with approximation ratiop if it is a parameterized
approximation algorithm fo© with approximation ratigp and an fpt algorithm with respect to

the parameterizatiofx, k) — k of its input space (that is, the running timevfis f (k) - [x|°(%)
for some computable functiofy).

A is aconstant fpt approximation algorithior O if there is a constart > 1 such thatA is an
fpt approximation algorithm fo© with approximation ratik — c (the constant function with
valuec).

3. The problenO is fpt approximable with approximation ratio if there is an fpt approximation
algorithm for O with approximation ratigp. The problemO is fpt approximableif it is fpt
approximable with approximation ratmfor some computable functign: N — R4 such that

p(k)

L is unbounded and nondecreasing Oifs a maximisation problem,
k- p(K) is nondecreasing D is a minimisation problem.

O is constant fpt approximablié there is a constant fpt approximation algorithm €or

Remark 2. Since it is decidable by an fpt algorithm whether an outpistan element of s¢x) that
satisfies {x), we can assume that an fpt approximation algorithm alwt (s, even if the input does
not satisfy €)) either outputs & € sol(x) that satisfiesxx) or outputs a default value, say “reject”.
Let us call an fpt approximation algorithm that has this grtypnormalised

Remark 3. We have decided to let the approximation ragibe a function of the parametkerbecause
this is what we are interested in here. One could easily exties definition to approximation ratios
p depending on the input size as well, or even to arbitrarytfans p : 2* x N — R. A technical
condition that should be imposed then is thdie computable by an fpt algorithm with respect to the
parameterizatiortx, k) — k.

Remark 4. We assume nondecreasing behaviouk (k) andk- p(k) in the definition of fpt ap-
proximable as we expect that the nedtés to the optimum the more difficult it should be to find an
approximate solution for an inpx, k).

Furthermore, we demand unboundedness for maximisatidigms because K/ p (k) was bounded
then a parameterized approximation algorithm would onlyelta output a constant size solution. For
maximisation problems — in contrast to minimisation profse- this would be no useful approxima-
tion algorithm in most cases and almost all maximisatiorbjgnms would be fpt approximable.

An alternative approach to parameterized approximahilityld be to parameterize optimisation
problems by the optimum, with the goal of designing efficigpproximation algorithms for instances
with a small optimum. Interestingly, for minimisation ptetns, this yields exactly the same notion
of parameterized approximability, as the following prapoa shows.

Proposition 5. Let O be anNP-minimisation problem over the alphabEf and letp : N — R4 be
a computable function such that g(k) is nondecreasing. Then the following two statements are
equivalent:

1. O has an fpt approximation algorithm with approximatiaiio p.

2. There exists a computable function g and an algorithrthat on input xc ¥* computes a
solution ye sol(x) such thatcost(x,y) < opt(x) - p(opt(x)) in time gopt(x)) - [x|°Y).

Proof. To prove the implicatior{1) = (2), let A be a normalised (see Remark 2) fpt approximation
algorithm forO with approximation ratig. Let f be a nondecreasing computable function such that
the running time ofA on input(x, k) is bounded byf (k) - |x|°). LetB be the algorithm that simulates

A on inputs(x,1),(x,2),... until A does not reject for the first time for some ingutk) and then
outputs the outpuy of A on input(x,k). SinceA only rejects for inputgx,i) with i < opt(x), we
know thatk — 1 < opt(x) and hencé < opt(x). Thus the running time dB is bounded by

opt(x

Zﬁ f(i) O,

———
=g(opt(x))

Furthermore, byxx) we have
costx,y) < k-p(k) < opt(x) - p(opt(x)).

To prove the implicatiori2) = (1), let B be an algorithm that satisfies (2), andddte a constant such
that the running time oB is actually bounded byg(opt(x)) - |x|°. Without loss of generality we may
assume thag is nondecreasing. Let be the algorithm that on inpyk, k) simulatesB for g(k) - [x|°
steps and outputs the outpuof B if B stops ing(k) - |x| steps and rejects otherwise. Cleadlyis an
fpt algorithm. Furthermore, if ofx) < k thenB stops ing(k) - || steps and its outpytsatisfies

cos(x,y) < opt(x) - p(opt(x)) < k- p(K).
O

For maximisation problems, our definition of fpt approxifoatalgorithm does not coincide with
the analogue of Proposition 5(2). Yet we do have an analoftreamplication(1) = (2) of Propo-
sition 5 for maximisation problems:

Proposition 6. Let O be arNP-maximisation problem over the alphal¥etand letp : N — R~1 be a
computable function such that (k) is nondecreasing and unbounded.

Suppose that O has an fpt approximation algorithm with apipnation ratiop. Then there exists
a computable function g and an algorithBnthat on input x Z* computes a solution g sol(x) such

thatcostx,y) > 5280 in time gopt(x)) - [x/°®).

Proof. Let A be a normalised fpt approximation algorithm fomith approximation ratigp. Let f be
a nondecreasing function such that the running timé& oh input(x, k) is bounded byf (k) - [x|°(,
Let B be the algorithm that simulatés on inputs(x, 1), (x,2), ... until A rejects for the first time for
some inputx,k+ 1) and then outputs the outpubf A on input(x, k). SinceA only rejects for inputs
(x,i) with i > opt(x), we know thak + 1 > opt(x) and hencé > opt(x). Furthermore, byxx) and as
k/p (k) is nondecreasing and unbounded we have

k - opt(x)
p(k) ~ p(opt(x))”
Because ok/p(k) being nondecreasing and unbounded an@dx®pt k/p(k) we also know thak is
bounded byh(opt(x)) for some computable functidm Thus the running time dB is bounded by

h(opt(x))

Zl f(i)-|x|°W.

———
=g(opt(x))

opt(x) > costx,y) >

The problem with the converse direction is best illustrdtadNP-optimisation problems where
the optimal value is always large (say, of ordef|x|) for every instancex). Then an algorithm
B as in Proposition 6 trivially exists even fgr= 1, because all NP-optimisation problems can be
solved exactly in exponential time. But this does not seehetp much for finding a solution of size
approximatelyk for a given, small value dfin time f (k) - x|~ (1) for some computable functiof

However, for maximisation problems with certain “self-uetility” properties the existence of
the two versions of approximation algorithms neverthelasiacides. The basic idea is as follows:
Suppose that we can efficiently transform an instangka problem to a smaller instangesuch that
all solutions ofx’ are also solutions of and the optimum value of decreases not too much. Then
we can repeatedly apply this reduction until we reach amnt& where the size of the optimal value
is bounded in terms of the paramekeon this instance the two notions of approximability codei

The following definition will make this precise:

Definition 7. Let O be an NP-maximisation problem and N. O is well-behaved for parameterized
approximation (with constant g the following holds:

() Given an instance # ¢ for O it is possible to construct a new instanc¢dor O in time polyno-
mial in [x| such thaiX'| < |x| and opfx) > opt(x') > opt(x) — ¢ (assuming here that the empty
string € is a possible input for every maximisation problem and thta) := 0).

(i) For every instance it holds that a valid solution for the constructed instarcis also a valid
solution forx, i.e. so[X) C sol(x).

Example 8. MAX-CLIQUE and MAX-DIRECTED-VERTEX-DISJOINT-CYCLES are well-behaved.

Proposition 9. Let O be arlNP-maximisation problem over the alphat®that is well-behaved for
parameterized approximation with constant ¢, anddetN — R, be a computable function such
that k/p (k) is nondecreasing and unbounded.

Suppose that there exists a computable function g and amitdgoB that given an input x **
computes a solutiong sol(x) such thatcos(x,y) > _OP_ i time gopt(x)) - [x°Y. Then O has an

T ! p(opt(x))
fpt approximation algorithm with approximation ratpn

Proof. Let B be an algorithm as in the assumption, andddie a constant such that the running
time of B is actually bounded bg(opt(x)) - [x|9. Without loss of generality we may assume thas
nondecreasing. Lét: N — N be a function such thdt(k) —k > cfor all k € N, so let us just choose
h(k) :=k-+c.

Then define an algorithm on inputs(x,k) € =* x N as follows: Simulate for g(h(k)) - |x|¢
steps. IfB stops then output the outpytof B. B may stop although < h(k) < opt(x). Then it

K h(k f . : :
holds 5 < p(é(&)) < p(oopp(t?))()) < cos(x,y). Otherwise we hava(k) > opt(x). For inputs(x,k) with

k < opt(x) it then holds thatwkk) < P(OOth(t?l)) < cost(x,y) (and for inputs withk > opt(x) the output
may be arbitrary). I8 does not stop, it holds thatk) < opt(x). Then we can use the well-behaved
property ofO to construct an instande(, k) for O and start the next iteration with simulatifigyon

(¥ ,k) for g(h(k)) - |¥'|? steps. As|X| < |x|, the number of iterations unti\ terminates is at most
Ix|. Furthermoreh(k) < opt(x) implies k < opt(X') for every iteration step, so it is guaranteed that

for inputs withk < opt(x) a solutiony with cos{x,y) > k) is computed. The running time for each

iteration is bounded bg(h(k)) - |x|°V). ThereforeA has a running time of (k) - |x|°) for some
computable functiorf. O

3.1 Cost Approximability

Sometimes, instead of computing an optimal solution of amogation problen®, it can be sufficient
to just compute the cost of an optimal solution (cake@luation problenin [2]). This is equivalent
to solving thestandard decision problemssociated witld: Given an instance and a natural number
k, decide whether

{opt(x) >k if Ois a maximisation problem,

opt(x) <k if Ois a minimisation problem.

If we parameterize the standard decision problem by thetinpmberk, we obtain thestandard
parameterizatiorof O:

Input: xex*, keN.
Parameter: Kk
Problem: Decide whether opx) > k (if goal = max) or
opt(x) <k (if goal = min).

To simplify the notation, for the rest of this section we ardpsider maximisation problemaill
definitions and results can easily be adapted to minimisgioblems.

What if we only want to compute the cost of the optimal solitapproximately, say, with ratio
p? On the level of the decision problem, this means that wevadlie algorithm that is supposed to
decide if optx) > kto err if k is close to the optimum. The following definition makes thisgise:

Definition 10. Let O be an NP-maximisation problem over the alphabetnd letp : N — R>1 be a
computable function.

Then a decision algorithm is aparameterized cost approximation algoritiior O with approx-
imation ratiop if it satisfies the following conditions for all inputg, k) € * x N with sol(x) # 0 (for
x with sol(x) = 0 the algorithmA can be assumed to reject for ki N):

opt(x)
p(opt(x))

o If k> opt(x), thenA rejects(x, k).

o If k< , thenA acceptgx, k).

The notions of aript cost approximation algorithrand aconstant fpt cost approximation algorithm
and of a problem beinfconstant) fpt cost approximabéee defined accordingly.

A parameterized cost approximation algorithm may be thowo§tas deciding a parameterized
problem that approximates the standard parameterizafian optimisation problem. This is made
precise in the following simple proposition:

Proposition 11. Let O be anNP-maximisation problem over the alphal®tand letp : N — R4
be a computable function such thatd(k) is nondecreasing and unbounded. Then the following two
statements are equivalent:

1. O has an fpt cost approximation algorithm with approxiiatratio p.

2. There exists a parameterized problé@i, k') € FPTwith Q C Z* x Nand withk’: Z* x N — N
defined by’ (x,k) := k that approximately decides the standard parameteringti@s, ko) of O
with approximation ratigo: Given input(x,k) € Z* x N, if (x,k) € Qo then(x, |k/p(K)|) € Q/
and if (x, k) ¢ Qo then(x,k) ¢ Q'.

Mike Fellows (in a recent Dagstuhl Seminar) proposed a taxgnof hard parameterized prob-
lems which is based on their approximability. In his ternhagy, the standard parameterization of an
optimisation problem igoodif it is fixed-parameter tractable; it lsadif it is not good, but constant
fpt cost approximable; it iggly if it is not bad, but fpt cost approximable; otherwise, ihideous

The following two propositions show that the notion of fptpamximability is strictly stronger
than that of fpt cost approximability:

Proposition 12. Let O be arlNP-maximisation problem over the alphatistand letp : N — R4 be
a computable function such thatg(k) is nondecreasing and unbounded.

Suppose that O is fpt approximable with approximation ratioThen O is fpt cost approximable
with approximation ratigo.

Proof. Choose an algorithr® according to Proposition 6, and lebe a constant such that the running
time of B is bounded byg(opt(x)) - |x|° for some nondecreasing computable functipriet A be the
following algorithm: On input(x,k) € ¥* x N, it simulatesB for g(k) - |x|° steps. IfB halts and
produces an outpyte sol(x), thenA accepts ik < costx,y) and rejects otherwise. B does not halt
in g(k) - |x|° steps, therk < opt(x), andA accepts. O

Proposition 13. Assume thalNPn co-NP=# P. Then there exists adP-optimisation problem that is
fpt cost approximable but not fpt approximable.

Proof. Let Q be a problem defined over an alphakewith Q € NPNco-NP butQ ¢ P. AsQ € NP
there is a polynomially balanced relati® that is decidable in polynomial time such tl@t= {x €
¥ 13y (xYy) € Ry}, soy “witnesses”x € Q. Analogously, af) € co-NP, there is a polynomially
balanced and polynomial time decidable relatidnsuch thaty is a witness fox ¢ Q if (X,y) € R.
We consider the following NP-optimisation problebn

Input: xe Z*.

Solutions: ywherey is a witness fox € Q or forx ¢ Q.
Cost: 1.
Goal: min.

Since the cost of any solution is O, is trivially fpt cost approximable. Now assunthas an fpt
approximation algorithm. Then given any inpux € *, A(x,1) outputs a witness fax € Q or for
x ¢ Qin polynomial time and therefore decid€s O

Considering cost approximability we obtain a full analogfi®roposition 5 also for maximisation
problems:

Proposition 14. Let O be anNP-maximisation problem over the alphald®tand letp : N — R4
be a computable function such thatd(k) is nondecreasing and unbounded. Then the following two
statements are equivalent:

1. O has an fpt cost approximation algorithm with approximatratio p.

2. There exists a computable function g and an algoritBrthat on input x€ Z* computes an

¢ € N such thatopt(x) > ¢ > % in time gopt(x)) - [x|°.

Proof. The implication(1) = (2) is proved analogously to Proposition 6, and the backwardidap
tion is proved similarly to Proposition 12. O

3.2 Examples

Example 15. We first look at the problem Mi-CLIQUE-WIDTH of computing a decomposition of
minimum clique-width for a given graph. Clique-width [8]asgraph parameter that is defined by a
composition mechanism for vertex-labelled graphs and areagshe complexity of a graph according
to the difficulty of decomposing the graph into a kind of tstricture. A decomposition of clique-
width k is also calleck-expression and given theexpression, many hard graph problems are solvable
in polynomial time for graphs of bounded clique-width. Belk et al. [14] recently proved that
deciding whether the clique-width & is at mostk is NP-hard and that the minimisation problem
MIN-CLIQUE-WIDTH cannot be absolutely approximated in polynomial time wfes NP.

Oum and Seymour [18] defined the notion of rank-width to itigese clique-width and showed
that rwd¥) < cwd(¥) < 2Wd#)+1 _ 1 for the clique-width cw@¢) and the rank-width rw@?) of
a given simple, undirected and finite gragh In [17], Oum presents two algorithms to compute
rank-decompositions approximately: For a gréph- (V,E) andk € N the algorithms either output a
rank-decomposition of width at mo$tk) with f (k) = 3k+ 1 or f(k) = 24k, respectively, or confirm
that the rank-width is larger thanwhere the running time of these algorithms for fixeis O(|V|*)
for the first one an@®(|V |?) for the second. Returning to clique-width there therefoiistalgorithms
that either output af2!* (K — 1)-expression or confirm that the clique-width is larger tkamd that
have the above running times for fixkd

As both algorithms fulfil the properties of parameterizegragimation algorithms with approx-
imation ratiop defined byp (k) := (217 — 1) /k, we get that MN-CLIQUE-WIDTH is fpt approx-
imable.

Example 16. One of the major open problems in parameterized complexiiyhiether the following
problem is fixed-parameter tractable.

p-DIRECTED-FEEDBACK-VERTEX-SET
Input: A directed grapl¢ = (V,E) andk € N.
Parameter: Kk
Problem: Decide whether there is a s81C V with |§ < k such
that¥ \ Sis acyclic.

Although still far from settling it, we note that the corresling optimisation problem Mi-DIRECTED-
FEEDBACK-VERTEX-SET is at least fpt approximable.

It is well-known that MN-DIRECTED-FEEDBACK-VERTEX-SET can be described by the follow-
ing integer linear program for a given directed gr&pk- (V,E), wherex, is a variable for each vertex
vevV:

Minimise ¥ Xy
veV

subjectto Y x,>1 forevery cycleCin¥, ()
veC

xv € {0,1} for every vertew € V.

We denote the minimum size of a feedback vertex set in a élegtaph¥ by 7(¢) and the
size of afractional feedback vertex séky)vey With 0 < x, < 1 for everyv eV by 1%(¥), where
(1) without the integrality constraints can be solved inypomial time (see e.g. [13]). Clearly
we haver*(¢) < 1(¢) and Seymour [20] proved that the integrality gap of the feelbvertex set
problem can be at mo§)(log t* - log log 7*). This proof can be modified to obtain a polynomial time
approximation algorithm for Mi-DIRECTED-FEEDBACK-V ERTEX-SET with an approximation ratio

10

of O(log 7* - log log t*) [13]. Using Proposition 5 we conclude thatimDIRECTED-FEEDBACK-
VERTEX-SET is fpt approximable.

Example 17. The linear programming dual of M-DIRECTED-FEEDBACK-VERTEX-SET is the
optimisation problem Mx-DIRECTED-VERTEX-DISJOINT-CYCLES, whose standard parameteriza-
tion is the following problem:

p-DIRECTED-VERTEX-DISJOINT-CYCLES
Input: A directed grapl¥ andk € N.
Parameter: k
Problem: Decide whether there akevertex-disjoint cycles it¥.

It is implicit in [21] that p-DIRECTED-VERTEX-DISJOINT-CYCLES is W[1]-hard. For the maxi-
mum numbew (¥) of vertex-disjoint cycles and for the minimum siz&?) (7*(¢)) of a (fractional)
feedback vertex set in a given directed gragfit holds thatv(¢) < 1%(¢) < 1(¢). Furthermore,
there is an upper bound @f¥), in terms ofv(¥) only as Reed et al. [19] proved the existence of a
computable functiorf : NU {0} — N, such that

() < f(v(¥)))

for any directed grapl. (The functionf constructed in [19] is very large, a multiply iterated expo-
nential, where the number of iterations is also a multiptyated exponential; the best known lower
bound isf(x) > O(x-log x) for anyx € N, a result attributed to Alon in [19].)

Together with the above inequalities, we can derive a venpka fpt cost approximation algorithm
for MAX-DIRECTED-VERTEX-DISJOINT-CYCLES: Let f be the function with property (2). Without
loss of generality, we can assurhes increasing and time-constructible. Nowilet N — N be defined
by 1£(n) :=min{i € N| f(i) > n}. Theni¢ is nondecreasing and unboundedn) is computable in
time polynomial inn andi;(f(k)) < k for everyk € N. Therefore we conclude

1 (v(@)) <t ([T(F)]) < 11(T1(#)) < 1:(F(v(9))) < V().

Thus the algorithm that given an inp(#7, k) computest*(%¢) in time polynomial in the size o/
and accepts ik < 1£([1*(¥)]) and rejects otherwise is an fpt cost approximation algarithith
approximation ratigp wherep (k) = k/1 (k).

4 Inapproximability Results

Under assumptions from parameterized complexity thedwy, following theorem states the non-
approximability of weighted satisfiability optimisatiorrgblems for the above defined classes of
propositional formulas:

Theorem 18. MIN-WSAT (It q) witht > 2 and d> 1is not fpt cost approximable unle¥gt] = FPT,
where the optimisation probleM IN-WSAT (Tt 4) is defined as follows:

Input: A propositional formular € 'y 4.
Solutions: All satisfying assignments for

Cost: max{1,weight of a satisfying assignmeént

Goal: min.

11

Proof. Lett > 2 andd > 1. The main idea is as follows: we assume the existence of tatofi
approximation algorithm for Mi-WSAT ('t ¢) and show that we can then solve every instancp-of
WSAT (It q) exactly by constructing (in polynomial time) a new formathat is eithek*-satisfiable
or not satisfiable at all and-satisfiable if and only if the original formulakssatisfiable (for a number
k* € N dependent ok). Sincep-WSAT ('t q) is W[t]-hard this would imply that W] = FPT.

Let (a,k) be an instance gi-WSAT (It q) with a € T't g andk € N. To decide ifa is k-satisfiable
with a given parameterized approximation algorithm fonMA/ SAT (I) we have to assure that the
new formulafB* is still contained in the clads; 4. Therefore, as a first step we use an idea appearing
in [15] (proof of lemma 7.6.) to create a propositional fofen8 € I't 4 having the following properties

() B isk*-satisfiable withk* := 2k — 1 if and only if a is k-satisfiable,

(ii) if tis even, then the new formufais positive 3 contains no negation symbols) and negative
otherwise (3 is in negation normal form and a negation symbol is in frongwdry variable).

Let X1, ..., Xy be the variables of the formula. For event we have to express a negative litered,
with 1 < 7 < n positively (the case for odtdworks similarly). To do this we fix an arbitrary order
of the variables ird and introduce new variable§ ; andY; ; ; for 1 < i,i’ <nand 1< j < kwhich
indicate the following:

X j. the jth variable set to RUEis X;,
Yiiv.j: the jth variable set to RUE is X; and the(j + 1)th is X;.

Then we can replaceX, with a formula saying thaX; is either strictly before the first or after the last
variable set to RUE, or strictly between two successive variables setrof:

V Xav V Xxv o/ Vo Y

(<i<n 1<i</ 1<j<(k—1) I<i<l<i'<n

Additionally we have to add a positive formula iy assuring the desired behaviour of the new
variablesX; j andY; i ; for 1 < i,i” <nand 1< j < k but we omit the details here. As a result we get
a positive formulg3 € I'y 4 that isk*-satisfiable if and only itr is k-satisfiable.

Now letZ,...,Z, be the variables of the above constructed fornfiilan the second step we
want to create a propositional formy that has the property of being eithie-satisfiable or not
satisfiable at all and for which holds:

B* isk*-satisfiable < Bisk*-satisfiable < a isk-satisfiable.

We usek* copies of the variableg,,...,Zy and arrange them ik* columnsZ;,...,Zy1,...,
Zix,..., Zn- i t0 express the exactly*-satisfiability of the original formulg3 as having exactly
one variable in each column and at most one in each row settET

B = N V

1< j<k* 1<i<n*

A /\ /\ —|Zi’j vV _‘Zi/,j

1<j<k 1<i<i'<n*

A /\ /\ —ZijV Ly
1<i<n* 1<j<j/<k*

A B

12

B with Z; replaced by Vi< Zij, if tis even
wheref’ := _ T L

B with Z; replaced by A< —Zij, if t is odd
As the first three parts g8* are inl'21 and B’ € 't g, it holds thatB* € I't 4. Given the existence
of an fpt cost approximation algorith for MIN-WSAT ('t 4) with approximation ratiqp where
p:N—R-;is computable anl- p(k) is nondecreasing we could decide exact|gffis k*-satisfiable
or not as eitheA on input(x, [k* - p(k*)]) accepts or it rejects. Therefore we could also decide if
is k-satisfiable and this is only possible if W= FPT. O

Similarly as above we define the problemNMWSAT(CIRC) to be

Input: A Boolean circuit?’.

Solutions: All satisfying input tuples.
Cost: max{1,weight of a satisfying input tuple
Goal: min.

and using the same proof-ideas as before we get:
Theorem 19. MIN-WSAT(CIRC) is not fpt cost approximable unle¥¢[P] = FPT.

The standard parameterization oiMWSAT (It 4) and that of MN-WSAT(CIRC) is to decide
for an input(y,k) if y is at mostk-satisfiable. This parameterized problem is fpt equivaterthe
classical parameterized weighted satisfiability problétegiding if a given propositional formula or
Boolean circuity is exactlyk-satisfiable.

For the maximisation variants MK-WSAT ('t) and MAX-WSAT(CIRC) of weighted satisfi-
ability, which have the same instances as the correspomdingnisation problems, but the goal is
to find satisfying assignments of maximum weight, the inagpnability is much easier to estab-
lish. First consider the standard parameterization ofethpreblems (“at least-satisfiability”). As
opposed to the minimisation problems, these are not fptvatpnt to the parameterized weighted
satisfiability problem of deciding exaktsatisfiability. Furthermore, setting= 1 an existing fpt cost
approximation algorithm for one of these maximisation vagggl satisfiability problems could decide
the satisfiability of a given input in polynomial time: If aptfcost approximation algorithm accepts
the input(y,1) theny is satisfiable. Otherwisgis not satisfiable at all or satisfiable and the fpt cost
approximation algorithm nevertheless rejects as falszitieg answers are possible if the parameter
value is close to the optimum. In the second case it holdsopt(y)/p(opt(y)). But ask/p(k) is
unbounded, there exists a constant ¢ wjtp(c) > 1 and because of the nondecreasing behaviour of
k/p(k) we have opty) < c. Then we can check for all values at masf y is c-satisfiable in time
polynomial in the size of the input and this implies that wa destinguish satisfiable inputs from un-
satisfiable ones in polynomial time. ThereforeaM+WSAT (I 4) and Max-WSAT(CIRC) are not
fpt cost approximable unless=PNP.

We now look at the following two versions M-SHORT-NTM-HALT and MIN-SHORT-NSTM-
HALT of optimising halting problems:

Input: A nondeterministic Turing machinl.

Solutions: All accepting runs oM on the empty string.
Cost: The number of steps in such an accepting run.
Goal: min.

13

Input: A nondeterministic single-tape Turing machise

Solutions: All accepting runs oM on the empty string.
Cost: The number of steps in such an accepting run.
Goal: min.

The corresponding parameterized problggdfSHORT-NTM-HALT and p-SHORT-NSTM-HALT are

to decide for a given nondeterministic (single-tape) TgimmachineM and a given parametére N
whetherM accepts the empty string in at mdssteps, and it was shown in [3], respectively [5] that
the single-tape version is complete fofAVand the other one complete for[2y.

Theorem 20. MIN-SHORT-NTM-HALT is not fpt cost approximable unle¥g[2] = FPT.

Proof. Without loss of generality the following proof only considelTuring machines that are either
accepting or not halting at all. If a Turing machiwewould halt and reject we can always define a new
Turing machine with the same behaviourMsexcept that this new Turing machine starts an endless
computation when reaching a rejecting state. Concerniegtbblem MN-SHORT-NTM-HALT this
causes no different result.

Assume there exists an fpt cost approximation algorithrfor MIN-SHORT-NTM-HALT with
approximation ratigp wherep : N — R~ is computable and- p(k) is nondecreasing. We will show
that using this parameterized approximation algorithm ae solve the problenp-SHORT-NTM-
HALT exactly.

Given a Turing machin®l and an integek € N as input, we define a new Turing machivié that
simulatesMl on the empty string for at moktsteps. If no accepting state f is reached afteék many
steps theM’ starts an endless computation. We can consiicin fixed-parameter tractable time
and it holds that the Turing machiid is accepting the empty string in at mdssteps if and only if
the Turing machiné’ is accepting the empty string in at massteps. Furthermoréyl’ either halts
after at mosk steps or it does not halt at all.

Therefore the parameterized approximation algorithron input (M, [k- p(k)]) can solve the
problemp-SHORT-NTM-HALT for (M, k) exactly, but having the exact solution f@vl’, k) directly
gives us the solution fofM, k). As p-SHORT-NTM-HALT is W[2]-complete, it follows that such a
parameterized approximation algorithincan only exist if the classes FPT and2Nare fpt equiva-
lent. O

Using the same proof-ideas as in the preceding theorem libw/iiog can be shown:
Theorem 21. MIN-SHORT-NSTM-HALT is not fpt cost approximable unle¥g[1] = FPT.

Recall the definition of the standard parameterization objtimisation problem from page 8.
The previous results show that each level of the W-hieraotimfains natural complete problems that
are not fpt cost approximable. Our final result shows thaical approximable and inapproximable
problems of any given complexity can be constructed (as &miy is in NP, because we are dealing
with NP-optimisation problems).

Theorem 22. Let (Q, k) be a parameterized problem notk#PT such that Q= NP.

(1) (Q,k) is fpt equivalent to the standard parameterization oNfroptimisation problem that is
fpt approximable with approximation ratio 2.

(2) (Q,k) is fpt equivalent to the standard parameterization oNfroptimisation problem that is
not fpt cost approximable.

14

Proof. Let Q be defined over the alphakBtwith empty stringe). SinceQ € NP there is a polyno-
mially balanced and polynomial-time decidable relatidsuch thalQ = {x € Z* | Jy: (x,y) € R}, so
yis a witness fox € Q. To prove (1), we define the NP-optimisation problénto be

Input: xe Z*.
Solutions: (y,i) wherey = € andi = k(x) or, if x€ Q,
y is a witness fox € Q andi = k(x) + 1.
Cost: cost(x,y,i) =1.
Goal: max.

It is easy to see thdQ, k) is fpt equivalent to the standard parameteriza(i@a, ko) of O and the
algorithmA that outputg e, k (x)) for every inputx € X* is a constant fpt approximation algorithm for
O with approximation ratio 2.

To prove (2), we define the NP-optimisation problénto be

Input: xe Z*.
Solutions: (y,i) if x € Qwherey is a witness fox € Q
andi = k(x).
Cost: costx,y,i) =1.
Goal: min.

Again, it is easy to see, th@Q, k) is fpt equivalent to the standard parameterizatiQg, ko) of O.
Assume there exists an fpt cost approximation algorithifior O with approximation ratiqp where
p:N— R is computable and- p(k) is nondecreasing. For a givere Z* we could then decide the
parameterized probleii®, k) in fpt time, as eitheA on input(x, [k (X) - p(K(X))]) accepts and € Q
or it rejects otherwise. As this is contradictif@, k) ¢ FPT, the NP-optimisation problef is not
fpt cost approximable. O

5 Further Research

Next to finding additional natural examples for problemshwekisting fpt approximation algorithms,

the main open problem at the moment is to specify the paraineteapproximability properties of

basic problems like MN-DOMINATING -SET or the Max-CLIQUE problem already mentioned as an
introductory example. Non-approximability results in ttlassical framework were proved for the
CLIQUE problem using the PCP-theorem [1, 9], so it might be necgdsanbtain a parameterized

version of the PCP-theorem to solve these questions.

References

[1] S. Arora and S. Safra. Probabilistic checking of prodsew characterization of NRlournal
of the ACM 45(1):70-122, 1998.

[2] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. MattikSpaccamela, and M. Protasi.
Complexity and ApproximatiorSpringer, Berlin Heidelberg, 2003.

[3] L. Cai, J. Chen, R. G. Downey, and M. R. Fellows. On the paterized complexity of short
computation and factorizatiomrchive for Mathematical Logic36:321-337, 1997.

15

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]
[12]

[13]

[14]

[15]
[16]

[17]

[18]

L. Cai and X. Huang. Fixed-parameter approximation: €aptual framework and approx-
imability results. In H. L. Bodlaender and M. A. Langstonjteds, Parameterized and Exact
Computation, Second International Workshop, IWPEC 2006ime 4169 of_ecture Notes in
Computer Scienggages 96—108, Berlin Heidelberg, 2006. Springer.

M. Cesati and M. D. lanni. Computation models for paragneed complexity.Mathematical
Logic Quarterly 43:179-202, 1997.

J. Chen, B. Chor, M. R. Fellows, X. Huang, D. Juedes, I.jKand G. Xia. Tight lower bounds
for certain parameterized NP-hard problems.Phceedings of the 19th IEEE Conference on
Computational Complexitypages 150-160, 2004.

J. Chen, X. Huang, I. Kanj, and G. Xia. Linear fpt reduosoand computational lower bounds.
In Proceedings of the 36th ACM Symposium on Theory of Comp@hgQC 2004pages 212—
221, 2004.

B. Courcelle, J. Engelfriet, and G. Rozenberg. Confest- handle-rewriting hypergraph gram-
mars. In H. Ehrig, H.-J. Kreowski, and G. Rozenberg, edit@sph-Grammars and their
Application to Computer Science, Fourth International Yé&brop volume 532 ofLecture Notes
in Computer Scienggages 253—-268, 1991.

I. Dinur. The pcp theorem by gap amplification. Pnoceedings of the 38th ACM Sympaosium on
Theory of Computing, STOC 20Q8ages 241-250, 2006.

R. G. Downey and M. R. Fellows. Fixed-parameter traititgkand completeness II: On com-
pleteness for W]. Journal of Theoretical Computer Sciendg1:109-131, 1995.

R. G. Downey and M. R. Fellowg?arameterized Complexitypringer, New York, 1999.

R. G. Downey, M. R. Fellows, and C. McCartin. Paramedi approximation algorithms. In
H. L. Bodlaender and M. A. Langston, editoRgarameterized and Exact Computation, Second
International Workshop, IWPEC 2006&olume 4169 ofLecture Notes in Computer Science
pages 121-129, Berlin Heidelberg, 2006. Springer.

G. Even, J. S. Naor, B. Schieber, and M. Sudan. Approttimgaminimum feedback sets and
multicuts in directed graphgAlgorithmicg 20(2):151-174, 1998.

M. R. Fellows, F. A. Rosamond, U. Rotics, and S. Szeiddique-width minimization is NP-
hard. InProceedings of the 38th ACM Symposium on Theory of Comp&IigC 2006pages
354-362, 2006.

J. Flum and M. GroheParameterized Complexity Theorgpringer, Berlin Heidelberg, 2006.

J. Hastad. Clique is hard to approximate withfri¢. Electronic Colloquium on Computational
Complexity Report TR97-038, 1997.

S. Oum. Approximating rank-width and clique-width gkily. In D. Kratsch, editor31th Inter-
national Workshop on Graph-Theoretic Concepts in Compltéence, WG 200%olume 3787
of Lecture Notes in Computer Sciengages 49-58, Berlin Heidelberg, 2005. Springer.

S. Oum and P. Seymour. Approximating clique-width amghich-width. Journal of Combina-
torial Theory, Series B96(4):514-528, 2006.

16

[19] B. Reed, N. Robertson, P. Seymour, and R. Thomas. Radkiacted circuits Combinatorica
16(4):535-554, 1996.

[20] P. Seymour. Packing directed circuits fractionalBombinatorica 15(2):281-288, 1995.

[21] A. Slivkins. Parameterized tractability of edge-dist paths on directed acyclic graphs. In
G. D. Battista and U. Zwick, editor®roceedings of the 11th Annual European Symposium on
Algorithms, ESA '03volume 2832 of_ecture Notes in Computer Scienpages 482-493, 2003.

17

ECCC ISSN 1433-809
http://eccc.hpi-web.de/

