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Abstract

The matrix cuts of Lovasz and Schrijver are methods fortéghng linear relaxations of zero-one
programs by the addition of new linear inequalities. We addithe question of how many new inequal-
ities are necessary to approximate certain combinatoriddlems with strong guarantees, and to solve
certain instances of Boolean satisfiability.

We show that relaxations of linear programs, obtained blytéiging via any subexponential-size
semidefinite Lovasz-Schrijver derivation tree, canngiragimate max«-SAT to a factor better than
1+ i’i_l maxk-XOR to a factor better than-2 €, nor vertex cover to a factor better thaf6s

We prove exponential size lower bounds for tree-like Lav8shrijver proofs of unsatisfiability for
several prominent unsatisfiable CNFs, including randonNE@ormulas, random systems of linear
equations, and the Tseitin graph formulas. Furthermoreynoee that tree-like LS cannot polynomi-
ally simulate tree-like cutting planes, and that tree-lil& cannot polynomially simulate unrestricted
resolution.

All of our size lower bounds for derivation trees are basedrugonnections between the size and
height of the derivation tree (itank). The primary method is a tree-size/rank trade-off for sz
Schrijver refutations: Small tree size implies small raBkrprisingly, this does not hold for derivations
of arbitrary linear inequalities. We show that ford-8nd LS, there are examples with polynomial-size
tree-like derivations, but requiring linear rank.

1 Introduction

The method of semidefinite relaxations has emerged as a fudweol for approximatingN P-complete
problems. Central among these techniques are the liftpanj@ct methods of Lovasz and Schrijver [23]
for tightening a linear relaxation of a zero-one prograngrpnoblem. For several optimization problems, a
small number of applications of the semidefinite Lovashfpeer operator transforms a simple linear pro-
gramming relaxation into a tighter linear program thatdyedipproximates the zero-one program and yields
a state-of-the-art approximation algorithm. For examepie round of the semidefinite tightening, starting
from the natural linear programming formulation of the ipdadent set problem gives the Lovasz Theta
functions [22], one round starting from the natural lineewggamming formulation of the max cut prob-
lem gives the famous Goemans-Williamson relaxation foraygmating the maximum cut in a graph [15],
and three rounds gives the breakthrough Arora Rao Vazigdaation for approximating the sparsest cut
problem [6] (for a discussion of these algorithms in the eahbf Lovasz-Schrijver tightenings of linear
relaxations, see [26] ). When used for solving the Boolegisfsbility problem, one round of semidefinite
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tightening followed by a linear programming test for fedgioefficiently solves satisfiability for CNFs such
as the propositional pigeonhole principle, which are knesrequire exponential runtimes when processed
by resolution based solvers [17, 20]. Given the power ofdsavSchrijver tightening, it is natural to ask
what it cannotdo.

The Lovasz-Schrijver operators proceed by iterativelgliagl new inequalities to the linear relaxation of

a zero-one program, and each new inequality satisfies all@®se solutions to the original program. In

this article, we prove lower bounds for the number of ineijeal that must be added in order to approxi-
mate combinatorial optimization problems and to solveaierinstances of the Boolean satisfiability prob-
lem. These are unconditional negative results for an inapbrnodel of computation that includes the best
known approximation algorithms for several fundamentabf@ms and an approach to solving satisfiability
instances that can be exponentially more efficient tharutsn-based solvers.

Most prior results studying the limitations of Lovasz-8pter tightened linear relaxations have focused on
“rank”, that is, the number of rounds of tightening that mibstapplied in order to obtain some approxi-
mation guarantee. If the intermediate inequalities aranged as the nodes of a tree, with the parents of
an inequality being the previous inequalities from whiclsiterived, then the rank of an inequality is the
minimum height of a derivation tree for that inequality. Wady thesizeof the derivation trees needed to
provide good approximations to combinatorial optimizatiyoblems and to solve instances of the Boolean
satisfiability problem (hence the term “tree-size”). By &aeodory’s theorem we can bound the branching
factor of a derivation tree a(§(n2), wheren is the number of variables, and thus lower bounds for tree-si
imply lower bounds for rank vieank = Q(log(treesiz¢/logn). In this way, lower bounds for tree-size are
stronger than lower bounds for rank.

1.1 Tightening linear relaxations, an approach to approxination and solving Boolean sat-
isfiability

The linear relaxation of a zero-one program is simply thé floim optimizing an objective function over the
zero-one points of a polytope to optimizing over all points@olytope. Atighteningof a linear relaxation

is the addition of new linear inequalities that are satisfig@ll zero-one points of the polytope. Lovasz and
Schrijver introduced several methods for tightening Imedaxations, among them then-commutative
(LSy), linear (LS) andsemidefinite (L) operators [23]. (Definition 2.9 defines these precisely.)

Sometimes by optimizing over all points of a polytope (or®péits tightenings) we can obtain a decent
approximation to the zero-one optimization problem. iAiegrality gapfor a polytope is a measure of the
guality of such an approximation: For simplicity, we comsiadnly objective functions that take strictly
positive values on non-trivial instances. For a minimizafproblem, the integrality gap of a polytope is the
ratio of the minimum of the objective function over the zeme points of the polytope to the minimum of
the objective function over the entire polytope. For maxzation problems, it is the ratio of the maximum
of the objective function over the entire polytope to the immaxn of the objective function over the zero-one
points of the polytope. In both cases, the integrality gegtt ieast one, and the closer the integrality gap is
to one, the better the approximation guarantee.

The Lovasz-Schrijver operators can be viewed as a way toavepthe integrality gap of a zero-one pro-
gramming problem. When using these methods, the hope ibyhatiding derived inequalities, fractional
solutions that are poor approximations to the zero-onerapti will be eliminated, and the integrality gap
of the polytope will become closer to one.



Relaxation and tightening methods can also be used toyc#rét propositional formulas are unsatisfiable.
In this framework, a formula in conjunctive normal form iartslated into a system of linear inequalities in
a standard way (ekV —yV ztranslates intoc4+ 1—y+z > 1). Derived inequalities are added via one of the
Lovasz-Schrijver methods. If linear programming revehés the tightened polytope is empty, that proves
that the input CNF is unsatisfiable.

1.2 Summary of results

The first result of the paper is a general tree-size/ranketfidor LSy, LS and LS. refutations. In par-
ticular, Theorem 3.10 demonstrates that for any,LUSS or LS, refutation of a system of inequalities
rank(l) < 34/nInSr (1), whereSr (1) denotes the minimum tree-size of a refutatiorl .ofr his implies that

Sr(1) > 22(ranki)/en) e show that the trade-off of Theorem 3.10 is asymptoidight (up to a loga-
rithmic factor) for the non-commutative (kpand linear (LS) Lovasz-Schrijver operators (Theoren238.1
For the semidefinite operator (LLy we do not know whether or not Theorem 3.10 is asymptotidajht.

Theorem 3.10 allows us to quickly deduce tree-size lowentsdrom known rank lower bounds for L.S
refutations of several well-known “sparse and expandingtems: Random 3-CNFs, random systems of
linear equations, and the Tseitin principles on a conslagtee expander. These results are presented in
Section 4.

The trade-off of Theorem 3.10 does not hold for derivaticinsrbitrary linear inequalities. For LgSand LS,
such an extension of Theorem 3.10 fails outright: Theoreld 8emonstrates sets of inequalitieand a
target inequalitya’ X > b so thata™ X > b has polynomial tree-size lgSlerivations from but all derivations
of a" X > b from | require linear LS rank. At the heart of this is an interestibgervation: The deduction
theorem in Lg and LS can require a linear increase in rank. Whether or eottis a rank tree-size trade-off
for arbitrary derivations in LS is still open, as is the question of whether or not the dedndtheorem for
LS, requires an increase in rank.

Despite our lack of a general tree-size/rank trade-off &ivétions of arbitrary linear inequalities, we prove
integrality gaps for LS tightenings of small tree-size by using ad-hoc modificatiofthe technique. For
several combinatorial optimization problems, we show thate are instances for which every polytope
that is obtained by applying an LSightening of sub-exponential tree-size has a large iatégrgap: For
maxk-SAT, the integrality gap is &+ ilel for maxk-LIN have integrality gap 2- €, and for vertex cover,
the integrality gap is /6. These results are presented in Section 5.

In Section 6, we address how well LS$tacks up as a propositional proof system. In particularskv
that tree-like LS refutations require an exponential increase in size to lsitadree-like Gomory-Chvatal
cutting planes refutations, Theorem 6.10, and that tieel5, refutations require an exponential increase
in size to simulate DAG-like resolution refutations, Ther6.27. In the language of propositional proof
complexity [12], we show that LS does notp-simulate tree-like cutting planes nor doespisimulate
DAG-like resolution.

LA refutationis a derivation that shows a zero-one program has no feasihitons.



1.3 Comparisons with previous work

The technique of applying a partial assignment to reduceathle of a tree-like Lovasz-Schrijver derivation
is inspired by a line of work due to Grigoriev and his coaush@t6, 18, 17, 19] and a paper by Kojevnikov
and Itsykson [21] that prove lower bounds on the tree-siZdsSq refutations by proving lower bounds
on the tree-sizes dftatic positivstellensatz refutationgStatic positivstellensaz refutations can efficiently
simulate tree-like L$ derivations, so L$ tree-size bounds follow immediately from these size boynéls
technique frequently used in those analyses is to show e @ small static positivstellensatz refutation,
one can construct a small assignment to the variables thlatavise all monomials of large multilinear
degree to vanish, yet static positivstellensatz refutatiof the restricted system of inequalities still require
large multilinear degree. Grigoriev et al used this techeitp show that static positivstellensatz refutations
of a system of inequalities known as thiactional knapsackequire exponential size [17]. Kojevnikov and
Itsykson used a variant of it to show an exponential size fdwseind for static positivstellensatz refutations
of the Tseitin principle [21].

In this paper, we apply partial assignments that eliminditpaghs in an LS derivation that lift on many
different variables, thereby creating low-rank derivasidhat contradict known rank bourdsThis tech-
nique is somewhat easier to apply than one based upon tie ®iattivstellensatz, simply because there
are many more rank lower bounds known for,Lthan there are multilinear degree bounds known for static
positivstellensatz refutatiofs

Our results focus on the Lovasz-Schrijver systems, amdigdite reasoning about the (apparently) more
complicated and powerful static positivstellensatz systeor example, our size lower bound for tree-like
LS, refutations of the Tseitin principle is self-contained lnrat it follows only from a simple rank lower
bound for LS refutations of the Tseitin principle and a general tre@/sank trade-off for LS refutations.
Our tree-size lower bounds for refuting random 3-CNFs andaen systems of linear equations are new, as
are our separations of tree-like cutting planes and uncesdrresolution from tree-like LS

To the best of our knowledge, all integrality gaps shownieafbr Lovasz-Schrijver tightenings of linear
relaxations applied only to tightenings of low rank, so asuits for tree-size-based integrality gaps are new.
However, this work on integrality gaps falls squarely witlihe philosophy delineated by Arora, Bollobas
and Lovasz [5]. Hardness of approximation results baset BCP technology are wanting in three ways.
First, such results are conditional upon complexity theoronjectures such &= NP or NP # ZPPor
some such thing. Second, because of the heavy use of retkttiat increase input size by polynomial
factors, PCP results do not rule out the possibility of glighubexponential time approximation algorithms
that run in time 2° (with £ < 1). Third, for many problems, there is a nagging gap betweewk PCP based
hardness of approximation results and the best known ajpation algorithms. By considering a concrete
approach, Lovasz-Schrijver tightenings, we estahlishonditionallimits to approximation possible with
current algorithmic techniques. Furthermore, the bourelsitain are of the form®" wheren s the input
size, so we rule out the possibility of weakly sub-exporaralgorithms (of a particular form).

The proof technique that we employ explicitly uses pretaxisrank bounds. In particular, our tree-size-

based integrality gaps for maxSAT and maxk-LIN directly extend the rank-based integrality gaps shown
in [9], and our our tree-size-based integrality gap for eertover extends the rank-based integrality gap
shown in [24]. Our refutation tree-size bounds for Tsetingiples and random linear equations extend the

2The distinction between paths that lift on many differenialles and paths that lift many times upon a small set ofitzes
is addressed in Subsection 3.2.
30ne advantage of working with static positivstellensativdéions is closure under certain local reductions, sees8ction 6.1.
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rank bounds of [9] and our refutation tree-size bounds fodoan 3-CNFs extend the rank bounds of [2].
The separation of tree-like GC cutting planes from tree-liks, builds upon a rank bound for the counting
mod two principles that is implicit in the work of Grigoriel ] and Kojevnikov and Itsykson [21], and
the separation of DAG-like resolution from tree-like L®egins with an extension of the b $ank bound
for the GT, principles proved in [9]. The asymptotic optimality of Tlem 3.10 for L$ and LS, and
the “deduction requires an increase in rank” result fop B8d LS, uses th€@(n) rank bound proved for
refutations of the propositional pigeonhole principle byg@riev Hirsch and Pasechnik [17].

1.4 Outline

The rest of the paper is organized as follows. In Section 2resgmt some elementary background material,
and define the Lovasz-Schrijver proof systems (also knasvmatrix-cut proof systems), and prove some
basic properties of these systems. In Section 3 we provadkesize/rank tradeoff for LGS LS and LS
refutations, and prove that such a tradeoff is false foy &8 LS derivations of arbitrary linear inequalities.
In Section 4, we combine the tree-size/rank tradeoff wiikteig rank bounds to obtain new tree-size bounds
for refutations of sparse, exanding formulas. In Sectiowé&prove the integrality gaps for subexponential
tree-size LS tightenings of max«SAT, maxk-LIN, and vertex cover. In Section 6, we show that tree-like
LS, cannot polynomially simulate tree-like Gomory-Chvatatiitig Planes proofs, nor can it polynomially
simulate unrestricted resolution. We end our journey irtiSe@ with discussion and open problems.

2 Background

A literal is a propositional variable or its negation. ddauseis a disjunction of literals. ACNF is a
conjunction of clauses, specified as a set of clausds-CAFis a CNF whose clauses are each of width at
mostk. When processed by zero-one programming methods, clatsesm@verted into inequalities in the
usual way, egX; V =Xz V Xz is converted toX; + (1 — Xz) + X3 > 1. Notice that the 01 solutions to the
inequality are exactly the satisfying assignments to thasg. Variables are written with upper case letters,
ie. X1,...Xn, wWhereas points i are written with lower case letters, eg.,...x, € R. Vectors of variables
are written simply aX and elements ak" are written a.

A restriction p is a map from a set of variables {6, 1,+}. For a polynomialf (X), the restriction of fX)
by p, f(X) [p is is defined by substituting 1 for eadwith p(X;) = 1, and substituting 0 for eack with
P(Xi) = 0. The restriction of a polynomial inequalityf (X) > g(X)) [, is defined to bef (X) [,> g(X) .

We make heavy use of the affine Farkas lemma as a kind of “ceemass theorem” for linear programming.

Lemma 2.1. (Affine Farkas Lemma) Let+ {a' X > b; | i = 1,...,m} be a system of inequalities so that
for all x satisfying each inequality in 1,’x < b. Then there existay,...,am, eacha; > 0, such that
d—c'™X=3M,ai(b—a X).

2.1 Expansion basics

Many of the tree-size lower bounds obtained in Section 4 aexti® 5 depend upon expansion in the
constraints of the problems.



Definition 2.2. Let gV1,V,) be the number of edgés;,v2) with i € Vi. The edge-expansion of a graph
G=(V,E)is
eSV\9

min ————~2.
oiiyz |19

Definition 2.3. A bipartite graph from V to U is aifr, c)-expander if, for all subsets X V where|X| <,
we havd (X) > ¢|X|. The expansion of a setXV, X)), is the valudl' (X)|/|X|.

Definition 2.4. Let G be a bipartite graph from V to U. THmundaryof a set XC V, dX, is defined as
oX={ueU : [F(uynX|=1}. Gis an(r,c)-boundary expander if for all subsetsXV where|X| <,
we haveoX| > c|X|. The boundary expansion of a setXV is the valugoX|/|X|.

The following fact relates bipartite expansion with bourydaexpansion.

Fact 2.5. If G is a bipartite graph from V to U where V has maximal degreend if G is an(r, c)-expander,
then G is a(r,2c — d)-boundary expander.

2.2 Matrix-cut proof systems

Our results prove a connection between tree-size, a cotlwds inherently syntactic, and rank, a concept
that is more often studied from a dual perspective that cibariaes the points that survive all possible cuts
(via “protection matrices”). To bridge these perspectiwge must use two equivalent formulations of the
Lovasz-Schrijver systems, and the requisite notatioratadle both.

When manipulating the Lovasz-Schrijver systems syrtallyi we reason about points Rf', but when we
take the dual perspective of protection matrices, we reabout points irR"*1. Don't blame us! These
perspectives and methods of notation are standard. Fortixed, elements oR" are indexed by1,...n}
and elements a&"** are indexed by0,...n}.

Definition 2.6. A coneis a subset ofR"! that is closed under addition and multiplication by positiv
scalars. Apolyhedral conés the set of solutions to a family of homogenized linear uadities, {x € R"** |
Ax> 0}. Afaceof polyhedral congx € R™?! | Ax> 0} is a set of the forn{x € R™*1 | Ax > 0, A’x = 0}
where Aand A’ partition the rows of A.

Letl={a'X > by |i=1,...,m} be a system of linear inequalities in the variables.X X,. Definethe
polytope ofl as R = {x € R" | Vi € [m], &' x > by}. Definethe homogenized cone bhs K = {x € R"1|
Vi € [m], a'x— bixp > 0}.

Definition 2.7. For SC R™1, let Sfy—1= {X€R" | (1,X1,...%,) € S}. For each ic [n], € € {0,1}, let
{X = ¢} denote either the sdik € R" | x; = €}, or the set{x € R"! | x; = €}, as context dictates.

Definition 2.8. Let xe [0,1]". Supgx) are those indices/coordinates i such thatsxequal to 0 or 1. Ex)
are the other indices-those indices j such thaisxot integral. Of coursén] = Supgix) U E(X).

There are several cutting planes proof systems defined b&dzoand Schrijver, collectively referred to as
matrix cuts [23]. In these proof systems, we begin with a fopgP defined by the linear relaxation of the
Zero-one programming problem.

Definition 2.9. Given a polytope R [0,1]" defined by AX > b fori =1,2,... . m:
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(1) Aninequality d-c"X > 0is called an N-cut for P if
n
J:l

wherea.J,B.J>Oand)\,eRfor|_1 m,j=1...,n.

(2) An N-cut is called an hcut if Equation 1 holds when we viewX( as distinct from XX; for all
1<i< j<n. (Forthis reason, btcuts are callechon-commutative cutp

(3) Aninequality d- c"X is called an N-cut if

n
d—c'X = ZLZO(IJ @XXWZZBH —al X)(1- X))+ ZA,-<X,-2—X;)+Z<gk+hIX)2
=1

whereq; j,B3ij >0,AjeRfori=1,....m, j=1,...,nand eacr(ngrhIX) is an affine function.

For each of the above cuts, we say that the inequality-ay; is a hypothesis of a lifting on the literad; if
ajj > 0 and that isa hypothesis of a lifting on the literal-1X; if 3;; > 0.

Definition 2.10. A Lovasz-Schrijver (LS) derivation of'& > b from a set of linear inequalities | is a
sequence of inequalities g. .,gq such that each;gs either an inequality from I, or follows from previous
inequalities by an N-cut as defined above, and such that thkifiaquality is & X > b. Similarly, a Lg
derivation uses pcuts and LS uses N -cuts.

Aneliminationof a point x€ R" from | is a derivation from | of an inequality’& > d such that Ex < d. A
refutation ofl is a derivation of0 > 1 from |.

An LS (LS, LS,) tighteningof a polytope Pis a set of inequalities{chX >dj | j € J} so that each
cJ-TX > d; is a formula in some derivation from the hypotheses I. (Note that it is possible faio have
multiple sinks.)

Definition 2.11. Let» be one of the proof systems LSgloBLS, . Letl" be ans -derivation from |, viewed
as a directed acyclic graph. The derivatibnis tree-like if each inequality in the derivation, other théne
initial inequalities, is used at most once. In a tree-likgidation the underlying graph, excluding the leaf
nodes, is a forest. The inequalitieslirare represented with all coefficients in binary notation.eHize of

I" is the size of the underlying directed acyclic graph; thekrafl is the depth of the underlying directed
acyclic graph. For a set of boolean inequalities |, thesize of | is the minimal size over all refutations of

I. Ther -tree-size of | is the minimal size over all tree-likerefutations of I. Ther -rank of | is the minimal
rank over all» -refutations of I.

A few technical points. First, it is entirely possible thainmge nodes of the derivation-DAG are labeled
with the same inequality. For DAG-like derivations, we mag@ame this is not the case, but for tree-
like derivations, it is a common situation. Second, we defire-size to be the number of nodes in the
derivation tree, not the sum of the bit-sizes needed to septecach inequality of the derivation (the bit-size
of the derivation). This is because the tree-size tradeaffl lower bounds that we prove apply regardless
of the sizes of the coefficients. On the other hand, the uppandis that we make use of are easily seen to
create derivations that are of polynomial bit-size. Thindpur definition of the Lovasz-Schrijver systems,
we can derive a new inequality from any number of previouguadities in one step. However, in light of
Caratheodory’s theorem, we may assume without loss of glityethat the fan-in in is at most +n+ 1.
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Definition 2.12. Let | be a system of inequalities over the variablgs. XX, that includes0 < X; < 1 for
alli € [n]. Define L§(1) to be the set of all linear inequalities with §8erivations from | of rank at mostr,
LS (1) to be the set of all linear inequalities with LS derivationanfi | of rank at most r, and L'S) to be
the set of all linear inequalities with LSderivations from | of rank at most r.

The following simple fact is repeatedly used in this artidtdholds simply because the equalities that define
No-cuts (N-cuts,N. -cuts) are preserved under substituting 0 or 1 for a variable

Lemma 2.13. Letl be an LG (LS, LS) derivation of ¢ X > d from hypotheses |. Letbe a restriction to
the variables of XI" [y isan LS (LS, LS ) derivation of(cTX > d) [p from the hypotheses]}.

Corollary 2.14. Letl be an Lg (LS, LS) elimination of we R" from hypotheses I. Lt be a restriction
to the variables of X such that for alld [n], p(Xi) € {0,1} = w; = p(X;). Let w be the vector indexed by
variables from[n] \ dom(p) that agrees with w ofn] \ dom(p). I [, is an LY (LS, LS) elimination of W
from the hypothesesy}.

2.3 Protection matrices and protection vectors

When analyzing the rank needed to refute systems of inggsaéind to eliminate points from systems of
inequalities, a dual perpective (introduced by Lovasz Soldrijver [23]) has often been used [5, 9, 2, 27,
25, 24].

Definition 2.15. Let ye R™1 be given, and let K R™! be a cone. ALSy protection matrix fory with
respect tK is a matrix Ye R(MD*(1) sych that:

1. Yo =diag(Y) =YTe =y,
2. Foralli=0,...n,YecKandY(ep—g) € K.
3. Ifx, =0thenYe=0,and if X =ygthenYe=y.

If Y is also symmetric, then Y is said to bel#protection matrixIf Y is also positive semidefinite, then 'Y
is said to be arLS, protection matrix If Y is an LG (LS, LS protection matrix for y with respect "1
(ie. if it is protection matrix for y with respect to some cdfie R™1) then we simply say that Y is and-S
(LS, LS) protection matrix for y.

Definition 2.16. Let K C R™? be a cone. Define{K) to be set of y= R™?! such that there exists an b.S
protection matrix for y with respect to K, defingl) to be set of y= R"* such that there exists an LS
protection matrix for y with respect to K, and defing (K) to be set of y¢ R"* such that there exists an
LS, protection matrix for y with respect to K.

The setd\p(K), N(K) andN, (K) are easily seen to be cones, and therefore the construetivbeciterated.
Definition 2.17. Let K C R™ be a cone. Inductively defing)K) = K and N, (K) = No(N§(K)). Define
N"(K) and N_(K) similarly.

The connection between thd,, N and N operators, which work on cones i1, and the syntactic
definition of the LY, LS and LS. deduction systems is summarized in the following fundaaghtorem
of Lovasz and Schrijver.



Theorem 2.18.[23] Let | be a set of inequalities ifiXy, ... X,} that includes the inequalitied < X; < 1 for
alli € [n], and let K C R™! be the polyhedral cone given by the homogenization afdP= NG (K1) Txo=1
PLs) =N'(Ki) %=1, and Rg, (1) = NL(Ki) [x=1

Corollary 2.19. Let | be a set of inequalities ifiXs, ... X,} that includes the inequalitie® < X; < 1 for alll
i € [n], and let K C R"! be the polyhedral cone given by the homogenization of |. €ragists a rank< r
LS refutation of | if and only if every point of KK ) satisfiesD > Xy, if and only if N (K|) [x,=1 is empty.

There exists a LS elimination ofR" from | of rank at most r if and only |()1<) ¢ N'(K,). The analogous
statements relate lgSvith Ny, and LS with N, .

A contrapositive reading of the definition shows thatyar R"*! and a protection matriX for y, for any
coneQwithy € Q, if y ¢ N (Q) then there exists sonies [n] with eitherYe  QorY(ep—e&) € Q. That s,
if y fails to make it into the next round of LStightening, it is because column ¥ffails to belong taQ. By
a variant of Theorem 2.18, we are able to make analogous fainthe syntactic formulation df, cuts.

Definition 2.20. Let xe R" be given, and let Y be an p$rotection matrix for()l(). Foreachi=0,...n,

let y be the bottom n entries of themnl dimensional column vector ¥ eo that Ye= (3) Fori € E(x),

let PV 1(Y) denote the vector yx and let PV, (Y) denote the vectaix—y')/(1—x). For i € Supgx), let
PVio(Y) =PV 1(Y) = x. These&n vectors are collectively known as theotection vectors fox fromY .

Lemma 2.21. (proof in Appendix) Letd= {a] X > by,...al X > by} be a system of inequalities. Lt > d
be an inequality obtained by one one round of U®-and-project from I, that is:

d—c'X — leom aXXmLZlZBu —al X)(1- X)) + ZlAj(ij—Xj)JrZ(gkﬂLhIX)z
=

with eacha; j, B ; > 0. Let xe R" be given such that'« < d. If Y is an LS protection matrix for(i),
then there exists and [m] and a j< [n] so that either:

1. g X > by is used as the hypothesis for a lifting inference gnxX+ 0, and § PV; 1(Y) < b;.

2. g X > by is used as the hypothesis for a lifting inferencelonX;, x; # 1, and a{PVj,o(Y) < by.
The proof of Lemma 2.21 is immediate from the usual proof oédiiem 2.18. The following lemma is
immediate from the definitions:

Lemma 2.22. Let xe R" be given, and let Y be an p$rotection matrix for(i) . Foralli e E(x),e€{0,1},
(PV(Y)ie)i =¢. Foralli € Supgx), all € € {0,1}, (PV(Y)ig)i = X.

3 Tree-size versus rank

The proof of the tree-size/rank trade-off is based upontcocting a partial assignment that kills all paths
that lift on a large number of variables - this should theratza low rank refutation of the system. However,
it is not clear what happens to paths that repeatedly lift emall number of variables. The distinction is
between rank and what we duhriable rank



We show that rank and variable rank are equal in SubsectiyraBd we use this to prove the tree-size/rank
trade-off in Subsection 3.3. First, we need some propedtid®w the Lovasz-Schrijver operators behave
on the faces of a polyhedral cone.

3.1 Lovasz-Schrijver operators and projections

The following lemma and its consequences are crucial fordhalts of this paper.

Lemma 3.1. (Lemma 3.6 of [13]) If F is a face of a polyhedral cone K, thegifN = No(K) N F, N(F) =
N(K)NF and N, (F) = N, (K)NF.

Proof. We present the argument for thig operator; the other cases are analogous.

Lety € No(KNF) be given. By definition, there is an kProtection matrix fory with respect tdK NF. This
is clearly also an L&protection matrix fory with respect td<. Thereforey € No(K) and thug/ € No(K)NF.

For the other direction, choose a system of homogenizedialgigsA so thatk = {y € R | Ay> 0}; let
Aq,...An denote the rows oA. Choosel C [m] so thatF = {y € K | Ajy = 0}. Lety € No(K) NF be given.
There is an L§ protection matrixy for y with respect tK. Leti € {0,...n} andj € J be given. Becausé
is an LS protection matrix fory with respect taK, Yg € K andY (eg — ) € K. ThereforeAj(Yg) > 0 and
Aj(Yey—Yeq) > 0. However, becaus¢ey =y F, A;Ye =0, and thereforé\;(—Yg) > 0. Because we also
have thatA;(Ye) > 0, Aj(Yg) = 0. Becausg € J was arbitrary, botfvyg €« KNF andYe)—Ye € KNF.
ThusY is an LS protection matrix foly with respect tdK NF, and thereforgy € No(KNF). O

Lemma 3.2. Let | be system of inequalities over the variablgs. X X,, such that | include® < X <1
for each ic [n]. For every ic [n], and every inequality'eX > d, if there is a derivation ofc" X > d) [x—o
from | [x—o of rank r, then there ig > 0 and a derivation of EX +€X; > d of rank at most r. Similarly,
if there is a derivation ofc™ X > d) Ix—1 from | [x_1 of rank r, then there i€ > 0 and a derivation of
c"X +¢&(1—X) > d of rank at most r.

Proof. We present the case of = O for the LS system, the case ¥f = 1 and the LG and LS, sys-
tems are entirely analogous. Lkti € [n], andc™X > d be given as in the statement of the Lemma.
Suppose that there is a rankderivation of (c"X > d) [x—o from | [x—o. As a consequence, we have
that there is a rank< r derivation ofc™ X > d from | U {X; = 0}, and therefore, by Theorem 2.18, for all
x € (N"(Kj N {X = 0})) Ix=1, C"x > d. On the other hand:

(NT(Kin{X =0})) Ixg=1 = (N"(K)N{X =0}) [x=1= (N"(Ki) [x=1) N {X =0}
= PgyN{X =0} =P.g)N{X <0}

Therefore, by the affine Farkas lemma, Lemma 2.1, there exist.an, with eacha; >0, € > 0, and
inequalitiesa] —bj > 0, each derivable frorhwithin rankr, so that:3™ ; aj(a] —bj) +&(—X) =cTX —d,
and thusy™ ; a;j(a] —bj) = c"X+¢eX; —d. Thereforec X +€X —d can be derived in LS rank r from .

O

Corollary 3.3. Let | be system of inequalities over variables X< [n]. For every ic [n], if there is a
refutation of I[x—o of rank r, then there i€ > 0 and a derivation of X> € of rank at most r. Similarly, if
there is a refutation of [x—1 of rank r, then there is > 0 and a derivation of 1—X;) > € of rank at most .
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Proof. Suppose that there is a refutationlofx.—o of rank at most. That is, there is a derivation of 8 1
from 1 [x—o of rank at most. By Lemma 3.2, there exises> 0 so that there is a rank at mastlerivation
of aX > 1 from|. If a> 0, we multiply by ¥a and haveX; > 1/a > 0. If a= 0, there is a derivation of
0> 1 froml - we addX; > O to this to obtainX; > 1. The case fol [x—1 is analogous.

O

Definition 3.4. Let yc R"? be given with y = 1. and let KC R"! be a cone. LetY be a bELS, LS)
protection matrix for y with respect to K. Y is said to sigpport extending for all i € [n], for all j € [n],
yj=1=(Ye)j=yi,andy =0= (Yeq); =0.

The designation “support extending” was chosen becaugedbtlowing lemma:

Lemma 3.5. Let xe R" be given and let | be a set of inequalities that inclu@esX; < 1foralli € [n]. IfY
is a support-extending protection matrix fét) with respect to the cone Kthen for each & [n], € € {0,1},

Suppx) U {i} € SupPVie(Y)).

Proof. Fori € SupXx), PVio(Y) = PM1(Y) = X, so the claim holds. Now considérE E(x). For each
e € {0,1}, Lemma 2.22 guarantees that SupgPVi¢(Y)). Now, letj € Supply) be given.

(Vo)) = S = {

o
o

x

O:Xj ifXjZO
1=x ifx=1

[

|

1-x —

-
x

0=x; ifxj=0
l:Xj ifXj:l

Puav) = S - {

X |x%|o

Thus, Supfx) C SuppgPVi¢(Y)). We actually get that the protection vectors also agreexatithe support
of x, but we do not need that in any arguments of this paper. O

Lemma 3.6. Let K C R"* be a polyhedral cone that satisfies the inequalifies X; < Xo for all i € [n].
Forally € K with yop = 1, y € No(K) (N(K), N (K)) if and only if there exists a support extending (S,
LS, ) protection matrix for y with respect to K.

Proof. We present the proof for LgSoperator; the other cases are identical. Clearly, if suchogeption
matrix exists, thery € No(K). Now suppose thag € No(K). LetF ={ze K |Vie[n], (yi=1=27=
%), (Yi=0= 7z = 0)}, this is a face oK because satisfies the inequalities © X; < Xo. Of course,
y € No(K)NF, and by Lemma 3.1No(K) NF = Ng(KNF), soy € No(KNF). Therefore, there exists
an LS protection matrixY for y with respect toKk NF. By definition, Y is also a protection matrix for
y with respect toK. Furthermore, becauséis a protection matrix fol with respect taK NF, for each
i € [n], Yga € KNF. Of course, membership i guarantees that for alle [n] for all j € [n], if yj = 1 then
(Ye); =(Y&)o=yYi, and ify; =0, then(Yg); = 0. O
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3.2 Variable rank

Variable rank measures how many distinct variables musifteel lupon along some path in a derivation.
More precisely: Let be a set of linear inequalities over the variabtgs . ., X,, and letl” be a tree-like LS
derivation froml. Label the edges of the tree by the literal that is beingdifb@ in that inference. Let
be a path from an axiom to the final inequality. TWegiable rank ofrtis the number of distinct variables
that appear as lift-variables in the edgegwfThevariable rankof I is the maximum variable rank of any
path from an axiom to the final inequality ih For any inequalityc” X > d, thevariable rank of ¢ X > d
with respect to |, vranKcT X > d), is defined to be the minimal variable rank of any derivatibe'X > d.

If there is no such derivation, then the variable rank is @efito beco. The variable rank of, vrank(l),

is defined to be vrar(® > 1). The variable rank of a vectore [0, 1]" with respect td, vranK (x), is the
minimum variable rank with respect taf an inequalityc” X > d such that™x < d.

It turns out that rank equals variable rank. This is whatvedlais to prove a tree-size/rank trade-off in
Theorem 3.10 instead of tree-size/variable rank tradeddfé strategy for the proof of Theorem 3.10 is to
apply restrictions that kill all paths of high variable raplossibly leaving some high rank but low variable
rank branches.

Theorem 3.7. Let | be a set of inequalities, then for 4, S and LS, for any x, vrank(x) = rank (x).

Proof. Let x € [0,1]". Clearly vrank(x) < ranK (x). We will prove the other direction by induction on
rank (x). We will show that for any, if x has rankr, then any elimination ok must have a path that lifts
on at least distinct variables fronE(x). (Recall thatE(x) are those indices/coordinatesofhat take on
nonintegral values.) Far= 0 the proof is trivial.

For the inductive step, let be a vector such that rahf) > r + 1. By Lemma 3.6, there is a support
extending protection matrix for )1( with respect td\', (P ). LetI” be a minimum variable rank elimination

of x that is frugal in the sense thatsatisfies every inequality df except for the final inequality. Let the
final inference of be'

d—c'X = leohj aIXXJ—I_ZlZBIJ —a X)(1- X))+ Zl)‘i(sz_xj)+z(gk+hlx)2
i=

By Lemma 2.21, there exists [m] andj € [n] so that eitheg] X > b; is the hypothesis of aX; lifting and
a' PVyj(Y) < by, ora’ X > by is the hypothesis of an-1 X; liting and a P\ j (Y) < b.

Suppose that the lifting is oX; (the case of 1- X; is exactly the same). We now want to argue thist not
in Supp(x). Supposg € Suppx). ThenPVp j(Y) = PV j(Y) = x. But this implies thag| x < b; soT is not
frugal, as we could have removed this last inference. Thescam assume thatis not in Supgx). Now
lety =PV, 1(Y). Becaus¢ is a protection matrix fo(i) with respect ta\!, (K), y = PV; 1(Y) € NL(K)).
Thereforey has rankr and by the induction hypothesis, this implies that this\dgion ofa] X > by must
have some long path that lifts on at leastriables fronE (y). Consider this long path plus the edge labelled
X; from a,-TX > b to c"X > d. We want to show that this path lifts ant 1 distinct variables fronk(x).
First, letSbe the set of distinct variables fronk (y) that label the long path in the derivationafX > b;.
BecauseY is support extending, by Lemma 3.5, thesariables are also i&(x). Now consider the extra
variableX; labelling the edge froma’ X > by to cTX > d. We have argued above thgis in E(x) but not in
E(y) and therefore; is distinct fromS. Thus altogether we havet 1 distinct variables fronk (x) that are
mentioned along this long path, completing the inductiep st O
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3.3 A trade-off for rank and tree-size

Before we prove the tree-size/rank trade-off, we need a fementary lemmas.

Lemma 3.8. (proof in Appendix) Leg > 0 be given. From the inequality; % € there is a rank one LS
derivation of X> 1, and from the inequalityt — X; > € there is a rank one Lgderivation of—X; > 0.

Lemma 3.9. (proof in Appendix) For all systems of in equalities 1, allsitove integers r, and al¢, d > 0:
If there is a rank< r — 1 derivation from | of X> ¢ and a rank< r derivation from | of1 —X; > 9, then
there is a rank< r refutation of I. If there is a ranki r — 1 derivation from | ofL — X; > € and a rank<r
derivation from | of X> 9, then there is a rank r refutation of |.

Theorem 3.10. For any set of inequalities | with n@/1 solution, in each of the systemsg, -8S, and LS,

rank(l) <3,/ninSr(l).

The high-level strategy for the proof of Theorem 3.10 is v&@mgilar to that used by Clegg, Edmonds and
Impagliazzo, showing a relationship between degree aedaizhe polynomial calculus [11], and that used
by Ben-Sasson and Wigderson showing a size/width tradsofesolution [8]. The primary difference is
in how refutations of [x—_g andl [x—; are combined into a refutation bf To convert a refutation df [x—g
into a derivation ofX > 0, rather than dragging along a side formula, as in [8], tle®fof Theorem 3.10
uses Lemma 3.2.

Proof. (of Theorem 3.10) Let be a minimum tree-size refutation lofand letS= |I"|. Setd = \/2nIn S; (1),
anda= (1—d/2n)~. LetF be the set of paths ifi of variable rankat leastd. Call such paths “long”. We
show by induction om andb that if |F| < a° then rankl) < d + b. Observe that the claim trivially holds
whend > n, because every refutation that uses at nmo&riables has rank at most so we may assume
thatd < n. In the base casd, = 0 and there are no paths nof variable rank more thad, and thus by
Theorem 3.7, ranfk) < d. In the induction step, suppose th&t < a°. Because there ara8terals making
at leastd|F | appearances in th&| many long paths, there is a literdl (hereX is X or 1— X; for some

i € [n]) that appears in at Iea%]F\ of the long paths. Setting = 1, [x—; is a refutation ofl [x_1 with
at most(1— 2)|F| < a®* many long paths. By the induction hypothesis, fdnk_;) < d-+b— 1. By
Lemma 3.2, there is > 0 and a derivation of & X > ¢ from | of rank at mostl +b— 1. On the other hand,
[ Ix—o is a refutation with at mogF | < a® many long paths and in— 1 many variables. By induction on
the number of variables, raflk[x—o) < d+b. By Lemma 3.2, there i > 0 and a derivation oX > & from

| of rank at mosti+b. Therefore by Lemma 3.9, rafly < d-+b. This concludes the proof that|F| < a®,
then rankl) < d+b.

BecauseF | < |I'| < a°%(9, we have that rar(k) < log,(S) +d so that:
rank(l) < d+10g,(S :d+log(%)(8)
= d+|og(1+w(id)8:d+(InS)Iog(1+T{d)(e)
= d+(nS)(In(1+(d/(2n—d))))"*

Because & d < n, we have that & d/(2n—d) < 1, so we may apply the bound(tb+x) > x—x?/2 > x/2

with x=d/(2n—d). Therefore:
rank(l) d+(InS)(d/2(2n—d))*

d+(InS)(2-2n/d)

= 3v2nInS

<
<
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Corollary 3.11. For the LS, LS and LS systems, we have that for any set of inequalities | in n véemb
with no0/1 solution, $ (1) > e("ankn)?/on,

3.4 Asymptotic tightness for LS and LS

Up to logarithmic factors, the trade-off for rank and tréeeds asymptotically tight for L&and LS refuta-
tions. This follows from well-known bounds for the propdasital pigeonhole principle: On the one hand,
it is shown in [17] that LS refutations d*HPI+! require LS rankQ(n), but on the other hand, there are
tree-like LS refutations ofPHPI+1 of sizen®?) (this seems to be a folklore result).

Theorem 3.12. For each nc N, there is is a CNF F on N= ©(n?) many variables such that rafik) =

Q <\/(N/IogN)-InST(F)>.

The propositional pigeonhole principle has a,L&futation of rank one [17], so that example does not show
the trade-off to be asymptotically tight for LS Determining whether or not the trade-off is asymptoticall
tight for LS, is an interesting open question.

3.5 No trade-off for arbitrary derivations in LS ¢ and LS, and the cost of deduction

Theorem 3.10 shows that for LS or L Sefutations strong enough rank lower bounds automatically imply
tree-size lower bounds. But what about derivations of eahytinequalities? Somewhat counter-intuitively,
a similar trade-off does not apply for LS or g 8erivations of arbitrary inequalities, nor for the eliniioa

of points from a polytope. Itis an interesting open problerdetermine whether or not such a tree-size/rank
tradeoff for arbitrary derivations holds for LS

A natural approach for transforming results abut refutegioto results about derivations would be to use
some form of deductionDeductionis the logical principle that says: If there is a refutatidn{ws,... Yn}

in some logical system , then there is am derivation of—y, from the hypothese§ys, ... Un_1}. Many
systems of propositional logic enjoy an efficient versiorire deduction theorem, in which passing from
refutations to derivations does not increase the size (mesather parameter) very much. In the context
of the Lovasz-Schrijver systems, deduction means tramsfig a refutation offa’X > by | i € [m]} into a
derivation ofa] X < by, — € from the hypothese&a’ X > by | i € [m— 1]} for somee > 0.

One hypothetical approach to obtain a tree-size/rank {offdr arbitrary derivations would proceed as
follows: If we know that derivingal X < by, from the hypothese$a X > by | i € [m— 1]} requires high
rank, then “by deduction” refutinga’ X > by | i € [m]} requires high rank and thus large tree-size, therefore
derivingal X < by, from the hypothese&a X > by | i € [m— 1]} requires large tree-size. Unfortunately, the
hypothetical use of the deduction theorem is fallacious:L/Sp and LS systems, deduction can blow up the
rank.

Theorem 3.13. For sufficiently large n, there exists a system of inequeitiover the variable$Xy, ... X}
and an inequality &X < b such that:

1. Any LS derivation of & < b from | requires rankQ(n).
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2. Foranye >0, 1U{a"X > b+¢} has a rank one L&refutation.

3. There is a tree-like L&derivation of d X < b from | of polynomial size.

Proof. Let | be the following system of inequalities: For eackll < j < n, there isX; +X; < 1. Let
a'X < b be the inequalityzi”:lxi < 1. We show that derivin@TX < b from | requires rank2(n). This

is just a reduction from the well-known rank lower bound f@& tefutations oPHP,_; [17]. Letr be the
minimum rank derivation of ' ;X <1 from|. In then to n— 1 pigeonhole principle, there are clauses
Xij+ X j <1 (foralli,i’ € [n] with i #i’, and allj € [n—1]), andz'j‘;ixi,j > 1 (for alli € [n]). In rankr

we can deriv& [, X; ; < 1 for eachj € [n—1]. Summing up over al] givesz’j‘;} SiL1Xij<n—1. Onthe
other hand, there is a rank zero derivatiory@f, z?;}m > n from the inequalities oPHP]_;. Thus we
have a rank refutation ofPHP_;. Because the LS rank &HPF._; is Q(n), it follows thatr = Q(n).

Next we want to show that for arg; the system U{S[.; X > 1+ €} has a rank one Lsrefutation: By
multiplying X; 4+ X; < 1 by X; and multilinearizing, we geX; + X;X; < X;, equivalentlyX;X; < 0. Do this for
alli # J, thus obtainingX;X; < 0 for alli # j. By multiplying z’j‘:lxj > (14 ¢€) by X; and multilinearizing,
we gety ;. XjX > €X. However, adding this with the previously derivégX; < 0 inequalities, and scaling,
we get 0> X, for alli = 1,...n. Thus we have 0> 5 ; X; > (1+¢), which yields 0> 1 after scaling.
Finally, it is not hard to show by induction dkthat there is a polynomial tree-size ¢ 8erivation of
sk X < 1froml. O

We do not yet know whether or not there is a “rank efficient @¢ida theorem” for LS. Theorem 3.13 does
not apply because it relies upon a rank lower bound the pitipaal pigeonhole principle, anBiH P! has
rank one LS refutations [17]. Finally, known bounds for the pigeonhptinciple show that for Lgand
LS, there is no tree-size/rank trade-off for eliminatiohpaints.

Theorem 3.14. For sufficiently large re N, there exists a set of inequalitiggdver X, ..., X, and a point
x € [0,1]" such that there is a polynomial size tree-likeyld®rivation of x from |, but any LS elimination
of X requires rank2(n).

Proof. As in the proof of Theorem 3.13, lebe the following system of inequalities: Foreack 1< j <n,
there isx; +x; < 1. By the argument of the proof of Theorem 3.13, all derivagiof 5! ;x <1 from |
require rankro = Q(n). Therefore, by the affine Farkas Lemma, Lemma 2.1, for allrg there exists
ze N'(R) such thats ;z > 1. Letx be such a point belonging %~V (R ). On the other hand, there
is a tree-like LS derivation of ", x; < 1 from | of sizen®Y). Upon derivingy! ;% < 1, the pointx is
eliminated. O

4 Tree-size bounds based on expanding constraints

The tree-size/rank trade-off of Theorem 3.10 and Corolaudl allows us to quickly deduce tree-size
bounds from previously known rank bounds for L&futations of prominent “sparse and expanding” un-
satisfiable formulas. Specifically, we derive exponentiea¢ tsize lower bounds for the Tseitin principles,
random 3CNF formulas, and random mod 2 linear equations.

In this section, leF be a set of mod-2 equations ovevariables. That is, each equationfris of the form
YiesXi=a (mod 2, whereSC [n] anda € {0,1}. Notice that each such equation can be represented by
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the conjunction of #-1 clauses, each of which can be represented as a linear iitgqé denote byP-
the polytope bounded by these inequalities and by the inidiggad < X; < 1.

Let Gg be the bipartite graph from the getto the set of variables where each equation is connectectto th
variables it contains.

Definition 4.1. For x € {0,1,1/2}", we say an equation € F is fixed with respect to x if x sets all the
variables set of f to 0/1 and f is satisfied by x. Let(§ be the subgraph of &induced by the set of
variables Ex) (those variables that are not integral valued) and the setasffixed equations.

Definition 4.2. Random linear equations ovés: There are2(}) linear, mod-2 equations over n variables

that contain exactly k different variables; Imn'ﬁ’” be the probability distribution induced by choosing m of
these equations uniformly and independenBandomk-CNFs There are2(})) clauses over n variables

that contain exactly k different variables; IQI;#” be the probability distribution induced by choosing m of
these clauses uniformly and independently.

Definition 4.3. The Tseitin formula for an odd-sized graph-GV, E) has variables xfor all edges e E.
For each ve V there is one equation expressing that the sum of all edgédeint with v is 0ddy ¢ yce Xe =
1 mod2.

The following theorem proven by [9] gives a rank lower bound hod 2 equations as a function of the
expansion.

Theorem 4.4.[9] Let € > 0 and let we %Z”. If Gk (w) is an(r,c)-boundary expander, then it has L &nk
atleast (c—2).

The following results from [9] yield linear rank bounds fostances of Tseitin, 3-CNF, and 3-LIN formulas.

Fact 4.5. For any constanb, €, k, there existst > 0 such that the following holds: Let F MAkr’]”. Then G
is almost always arion,k— 1 — €) boundary expander. Likewise forzGvhere C~ « Akr’]”.

Theorem 4.6.[9]
1. The Tseitin tautology on a graph H has.L&nk at least(c— 2)n/2 where c is the edge-expansion of
H;
2. Let k> 5. There exists ¢ such that for all constadts> ¢, F ~ MA",;” requires LS rank Q(n) with
high probability;
3. Let k> 5. There exists c such that for all constafis- ¢, C ~ cX'n” requires LS rank Q(n) with high

probability.

As a consequence of Theorem 4.6 combined with Theorem 3.4@etvexponential tree-size bounds for
these formulas.

Theorem 4.7. 1. Let G be an odd-size graph on n nodes with edge-expansiachctsat c> 4, and
maximum degreA. All LS, refutations of Rgg) require tree-siz&@2("4),

k,n

2. Let k> 5. There exists ¢ such that for all constads> c, for F ~ ar "', with probability 1 — o(1),

all LS, refutations of P require tree-siz@2(".
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3. Letk> 5. There exists ¢ such that for all constadts- c, for C~ NAK,;”, with probability 1 —o(1), all
LS, refutations of R require tree-siz@2(".

The above proofs rely on the fact that fo> 5, the boundary expansion is greater than 2. In a subsequent
paper, Alekhnovich, Arora and Tourlakis prove linear rankraindom 3-CNFs [2].

Lemma 4.8. [2] For a CNF ¢, let G, be the bipartite graph between clauses and variables in kwthere
is an edge between each clause and the variables that it icsntdf G, is a (dn,2 — €) expander, then

(1,1/2,...1/2) € N°V*(SAT()).

By a well-known application of Markov’s inequality, the frability that a random 3-CNFs with at leasPb
clauses is unsatisfiable is-10(1) asn — . Furthermore, there exists a constargo that the probability
that a random 3-CNF oAn clauses is gkn/A?,4/3) exapnder is - o(1) asn — o (cf. [7], although a
slightly different definition of expansion is used therehu$ we have:

Theorem 4.9. There exists a constait> 0 such that ifg is randomAn clause3-CNF on n variables with
A > 5.2, then with probabilityl — o(1) as n— oo, @is unsatisfiable and all LSrefutations okprequire rank
at leastBn/A2.

An immediate application of Corollary 3.11 extends this to:

Theorem 4.10. There exist constants a constant- 0 such that ifg is randomAn clause3-CNF on n
variables, withA > 5.2, then with probabilityl — o(1) as n— o, @is unsatisfiable and all LSrefutations
of @ require tree-size at leag@™/2?,

5 Tree-size based integrality gaps

In this section, we will prove integrality gaps for smalldrike LS, derivations. Suppose we want to get an
integrality gap ofg for sizestree-like LS, derivations for some optimization probleffa Our goal will be
the following. Given an arbitrary polytop@ obtained by a size LS, tightening of the original polytope
P, we want to exhibit a (nonintegral) pointsuch that: (i) is in P’; and (ii) the value of objective function
(what we are trying to maximize) anis off from the optimal integral solution by a factor gf

In this section, we establish tree-size based ir8egrality gaps for three combinatorial problems: Max-
SAT, maxk-LIN, and vertex cover. As discussed in Subsection 3.5, wechalways use Theorem 3.10
directly to obtain tree-size based integrality gaps. Niogless, we prove integrality gaps for sub-exponential
tree-size LS and LSrelaxations by using variants of the method. For rke&AT and maxk-LIN, the
method for establishing a rank-based integrality gap &gtaatablishes a rank bound for refuting the system
stating “all constraints are satisfied” and we will apply ®hem 3.10 in that manner. For vertex cover, on
the other hand, we apply a random restriction to the deametp that after applying the restriction, all high
variable rank paths are killed, but, on the other hand, thgicted vertex cover instance still requires high
variable rank to eliminate all points with a poor integralijap.

5.1 Max-k-SAT and Max-k-LIN

The problem MAXk-SAT (MAX-k-LIN) is the following: Given a set ok-clauses (mod-2 equations),
determine the maximum number of clauses (equations) thdieaatisfied simultaneously. It is known that
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it cannot be well-approximated in polynomial timePAt NP. Here we show inapproximation results (that
are unconditional) for a restricted class of approximattgorithms that involve L$-relaxations of a linear
program.

Given a set ok-mod-2 equation$ = {fy,..., fm} over variablesXy,...,X,, add a new set of variables
Y1,...,Ym. Foreachfi: 3o, X;=a (mod 2, let f/ be the equatioN; + ;X =a+1 (mod 2. LetF’

be the set off/’s. If Y; is 1, thenf/ is satisfied if and only iff; is satisfied. Hence we want to optimize the
linear functiony ™, Y; subject to the constraints'.

Call this linear progrankr. In the same way, we can obtain a maximization probleg)corresponding to

a set ofk clause<C. analagous manner. Arround LS, relaxation ofLg (or any linear program) is a linear
program with the same optimization function but with anyiiddal constraints that can be generated in
depthr from the original constraints using LS Similarly, a sizes tree-like LS. relaxation ofLg (or any
linear program) is a linear program with the same optimizafiunction, but withs additional constraints
that are derived from the original ones via a tree-like Lioof.

Theorem 5.1. Let k> 5. For any constant > 0, there are constanta, 3 > 0 such that if F~ MA";]” then
the integrality gap of any size<s 2°" tree-like LS relaxation of L is at least2 — € with high probability.
Similarly, for any k> 5 and anye > 0, there existd\, 3 > 0 such that if C~ NA";]”, then the integrality gap

of any size s< 2P"-round relaxation of k is at Ieastﬂfi—l with high probability.

Proof. We will obtain size based integrality gaps via a reductiothitree-size lower bounds proven in the
previous section for 3-CNF and 3-LIN refutations.

We present the proof fdtg; an analgous argument works fiog. GivenF ~ ,‘MAkll]n, we want to show that

there is no derivation of Y; < m (wherem is the number of mod 2 equations) via a polynomial-size tree
derivation from the original equatios. Consider a new constraigt= 3", Y; > m. The set of constraints
F’Ug is unsatisfiable witlF ~ MA";]”. In fact, for A > (8 — 4¢ + €2) /€2, a Chernoff bound and a union
bound show that with high probability, no boolean assigrinsatisfies more than a/{2 — €) fraction of

F”’s equations.

First, we show that the unsatisfiable system of inequalfies {g} requires large tree size refutations. We
do this by applying the tree-size/rank trade-off of Theof®d0 For the rank bound, we will show that the
the assignmert where allY;’s are set to 1 and al;’s are set to 1/2 survives f&(n) many rounds of L$
lift-and-project. This assignment clearly satisfies adiqnalities inF’ U {g}. Now, when we consider the
equations restricted to the nonintegral values, it is justdariginal equations df. With probability 1—o(1)
overF ~ MA";]”, the associated grapbe is an(an,2+ 8)-boundary expander for soneed > 0 that depend
onA. Letp = ad. Hence by Theorem 4.4, the rank9 (z) = Q(n), and therefore rar(e U {g}) = Q(n).

By Theorem 3.10, we can conclude that the extended syBterg requires tree-size2" to refute in LS.

Now, we show that that the above superpolynomial tree-seszled to refutd’ U {g} implies the same
tree-size lower bound for deriving" ; Y; < m— ¢ for all € > 0: Suppose that we can deriyg';yi <m—¢
from the original equationE’ for somee > 0 using tree-siz&, can derive the empty polytope froRiUg
by summingy ™, yi < m— g with g, to yield 0> €. ThusS= 2",

O

18



5.2 LS+ Integrality Gap for Vertex Cover

Given a 3XOR instancE over{Xj,...Xn} with m= An equations, we define the FGLSS graph as fol-
lows. Gg hasN = dmvertices, one for each equationfand for each assignment to the three variables that
satisfies the equation. We think of each vertex as beingl&bbly a partial assignment to three variables.
Two verticesu andv are connected if and only if the partial assignments thadllalandv are inconsistent.
The optimal integral solution fdf is equal to the largest independent seBin Note thatN /4 is the largest
possible independent set@i, where we choose exactly one node from each 4-clique.

The vertex cover and independent set problem&ers encoded in the usual way, with a variabig, for
each nod€C, n) of Gg, whereC corresponds to a 3XOR equationknandn is a satisfying assignment for
C. Its polytopes is denotedC(G ).

The following lemma was proven in [24].

Lemma 5.2. Let F be a(k,1.95)-expanding 3XOR instance such that any two equations of Festtanost
one variable, and let & be the corresponding FGLSS graph. The p@Bt4,...,3/4) is in the polytope
generated aftei%1 rounds of LS lift-and-project applied to VQGE ).

The following lemma, also proven in [24], shows that thersiastances of 3XOR satisfying the hypotheses
of Lemma 5.2.

Lemma 5.3. For every c< 2, € > 0, there existi,A > 0 such that for every & N there is a 3XOR instance
F of mod 2 equations on n variables with=mAn equations such that: (i) No more thdt/2 + €)m of
equations of F are simultaneously satisfiable; (i) Any twoaions of F share at most one variable; and
(ii) F is (an,c)-expanding.

The above lemmas combine to give the following lower bound.

Theorem 5.4. [24] For everye > 0 there exists £> 0 such that for infinitely many n, there exists a graph
G with n vertices such that the ratio between the minimumexezover of size G and the optimum solution
produced by any rankso LS, tightening of VGG) is at least7/6 — €.

Proof. Lete > 0 be given. Apply Lemma 5.3 and takeA > 0, t sufficiently large (to demonstrate that the
theorem holds for arbitrary large graphs), and a 3XOR im&&moverX, ... X with m= At many equations
so thatGr is (at, 1.95) edge expanding, at mogt/2+ €)m equations of are simultaneously satisfiable,
and no two equations & share more than one variable.

Note that for any 3XOR instande, a minimum size vertex cover @r consists of all nodes, less some

independent set of maximum size, and an independent g8t ithat containang nodes corresponds to

a an assignment that satisfisg equations ofF. Therefore, the minimum vertex cover size B¢ is

>4m—m(1/2+¢€). On the other hand, by Lemma 5.2, the al43point remains afte%‘ rounds of
gt;A

LS, lift-and-project fromVC(Gg). Thus, the integrality gap fd¥,_* (VC(Gg)) is at Ieast% =

7_ ¢ at—4

53> %— €. The number of vertices iGr is 4At, soc, < 2470 suffices for the Theorem statement.]

We will improve Lemma 5.2 by proving a/8 — € integrality gap not only for small rank LStightenings
of vertex cover but also for small tree L Sightenings of vertex cover. The basic idea is to apply aoand
restriction p = px U py, with px to the X variables of the 3XOR instance apg to theY variables of
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the independent set instance, so that: (i) The indepenéemosastraints folGe become the independent
set constraints o6g |, after applyingpy, ie. VC(GF) [poy=VC(GF fpx)' (ii) F [y retains the expansion
properties needed to apply Lemma 5.2. (iii) In an,L&erivation fromV C(Gg ), any path that lifts of2(n)
variables will have some lifting-literal falsified gy, with probability at least - 2=,

Regarding the issue of relating tpg andpy assignments: Given a partial assignmpptto the X’s, we
simply definepy via:
1 if nis asub-assignment gk
ov(Yen) = 0 if n is inconsistent wittpx
Yen otherwise

It is immediate upon inspection that for apy that does not falsify any equation Bf with py defined as
above VC(Gg) [p,=VC(GF fpx) (up to renaming variable¥: ,, in which px andn are consistent, byix
sets at most two variables GJ).

We now take an alternative view to point (iii), in which we l&ge the goal of “falsifying some literal of a
long path” with the goal of satisfying a 3-DNR the X variables We construct the 3-DNF on a literal-by-
literal basis: For a negative literal literaHlYc , let (O be the 3-DNF stating thap satisfiem”, that is,

let x;, xj, % denote the variables of equati@ and sety; , to bexi”(i) A xT(j) A xﬂ(k). For a positive literal
Y, let (pan be the 3-DNF statinggx satisfiesC by satisfying some)’ # n”, that is, letx;, x;, X denote
the variables of equatid@, let 31, B2, B3 the three assignments that sati€fput are not), and setpg_n to be

V3P0 Ax?' ) AP For a pathrtin an LS, derivation, letg, denote the 3-DNF obtained by taking
the disjunction ofg’ , for eachYc , that is used positively in some lift af, and ofg , for eachYc, that is
used negatively in some lift af. We clearly have that: Iy [, = 1 thenpy falsifies some lift-literal ofrt

We are now faced with the task of constructing a restriciiahéX variables that will preserve the expansion
properties of the 3XOR instance, but will satisfy the 3-DigFwith overwhelming probability whem is

a long a path. This was solved by Misha Alekhnovich in his ysial of Regk) refutations of random
3XORinstances [1]. We now revisit the definitions and resultsldf dnd show why they may be applied.
The primary difference between our restriction and thatlpfg that we focus on the preservationeafge
expansionas opposed tboundary expansionAll that is needed about these closure operators is thgit the
guarantee expansion after their application, and that timeber of equations eliminated is bounded by a
constant times the number of variables set. The correctriege random restriction lemma of [1] does
require that the initial system of equations have congtatet-boundary expansion. This applies in our use
because by Fact 2.5,an) edge expander is gn 2n —d) boundary expander, and we apply the restriction
lemma to an(an,1.98) edge expander with 3 variables per equation.

Definition 5.5. (after [3, 1]) Let Ac {0,1}™" be an(r,n) edge expander, l&i € (0,1) be given, and let
J C [n] be given. Define the relatian§ on subsets dim| as:

11512 <= [12] < (r/2) A |Nall2)\ (U, AUI)| < 8onlla @

icly

Define thed expansion closure af, eclf\(\]), via the following iterative procedure: Initially let+ 0. So
long as there exists, Iso that -5 1, let I; be the lexicographically first such set, replace | byl and
remove all rows in4 from the matrix A. Set eﬁ\]) to be the value of | after this process stops. When the
matrix A is clear from the context, we drop the subscript. the®-cleanup ofA after removingJ, CL?(A),

be the matrix that results by removing all rows of%d) and all columns of I Uieedﬁ(J)A@ from A.
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Lemma5.6.[3, 1] Let Ac {0,1}™", 5 € (0,1), and JC [n] be given. If CB(A) is non-empty, then G(A)
isan(r/2,86-n) edge expander.

Lemma 5.7. (after [3, 1], proof of in Appendix) Let & {0,1}™" be an(r,n)-edge expander, l& < (0,1)

be given, and let L [n] be given. IfJ]| < * >” , thenjecR(J)| < |J|m

Lemma 5.8. [1] Let A € {0,1}™" be an(r,n) edge expander, and letd [n] be given. For all  C [m], if
Na(lp) € J then b C ecla(J).

Lemma 5.9. (folklore, cf. [1]) Let Ax= b be a system of equations so that A iSaf}) boundary expander
with 3 > 0. For every IC [m] with [I| <r, Aixx = by is satisfiable.

Definition 5.10. Fix 8,y € (0,1). Let A€ {0,1}™" be an(r,3)-boundary expander, and letd{0,1}™ be
given. Leto (A,r,[3,0,y) be the distribution on partial assignments to the variabtgs .. X, generated by
the following experiment: Uniformly select a subset=S{Xy, ... X,} of sizerﬁ(lT*B)V. Let | = ecR(S). Let
S=SU{X;|diel, A; =1}. The restrictionp is a uniformly selected assignment to the variables of S
that satisfies &X = by.

ri3( l rp(1-d)y

< I, so that by Lemma 5.7}| = |ecR(S)| < ‘180|5) <

2(r]l(16_)§;/ < 2%(16 3 =yr/2 <r/2. Therefore, by Lemma 5.9, the system of equatiné= B, is satisfiable.

Below is the random restriction lemma of [1]. We defer the migéin of “normal form” until after the
statement.

In the above definition, take note th&| <

Definition 5.11. Let F be a DNF, and let S be a set of variables. If every term dbfitains a variable from
S, then we say thatiS a cover of~. Thecovering number oF, c(F ), is the minimum cardinality of a cover
of F.

Lemma 5.12. [1] Let A € {0,1}™" be an(r,3)-boundary expander such that each column of A contains
at most d ones. Letb {0,1}™ be arbitrary. There exists & 0 (dependent upon only dh y and 8, and
decreasing i) such that for any k-DNF F so that F is in normal form:

_ ak
Procs (arpay [F [p# 1] < 279/

The notion of normal form used in [1] depends upon anothenitiefn of “closure”.

Definition 5.13. (after [4, 1]) Let A< {0,1}™" and JC [n] be given. Define thelosure ofJ, cla(J), via
the following iterative procedure: Initially let4+ 0. So long as there exists $0 thatda(l1) C JUI, let |1
be the lexicographically first such set, replace | hylh and remove all rows in;Ifrom the matrix A. Set
cla(J) to be the value of | after this process stops. When the matisxckear from the context, and we drop
the subscript. Lett be a term. We definé& ko be clVargt)). We say that t isocally consistenif the
formula tA [Ag ) X = by y)] is satisfiable. A DNF F is said to be iormal formif every term t€ F is locally
consistent.

Lemma 5.14. Let F be an instance of 3XOR, written as AXb, where A is ar(r,n) edge expander with
r >2andn > 15. Letmta set of literals over the variablefrc, | (C,n) € V(Gg)}. The formulagy is in
normal form.
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Proof. Lett be a term ofg. By definition,t is of the formx*/ Ax?(xj) A X% whereC is an equation
of F, whose variables ang, xj, andxc, andn is an assignment to these three variables satisfZin@y
Definition 5.13, we clearly have that equati@Gnbelongs tocla(t) = cla(vars(C)). However, the closure
process cannot proceed past the second step, becausedtexpdgsion oA guarantees all other equations
C’ contain at least one variable notwarsC), so thatN(C') Z vars(t) Uvarg(C) = vargC). Therefore,
cla(t) = {C}. Becausa is assignment tdx;, x;, X} that satisfie€, we have that = X" A x?(xj> AxI%
and the equatio@ can be simultaneously satisfied. O

We now address how to bound the maximum number of equationkith each variable can occur.

Lemma 5.15. (after [1]) Let g,a,A > 0 and ne N be given. Let F be a system of=mAn many 3XOR
equations that satisfies: (i) No more théty/2 -+ €)m of the equations of F are simultaneously satisfiable;
(if) No two equations of F share more than one variable; @i)s (an,1.99) edge-expanding.

There is a 3XOR instance’ fn the X variables satisfying: (i) No more than(&/2 + €) fraction of the
equations of Fare simultaneously satisfiable; (ii) No two equations 6fsRare more than one variable;
(i) F " is (an/2,1.98) edge-expanding; (iv) No variable appears in more tﬁggu@ equations. (v) Fhas
at mostAn many equations.

Proof. LetAbe equation/variable incidence matrix for DefineJ to be the set of3f5; columns of the largest
199

hamming weight im, by Lemma 5.7eclZ®(J)| < 200J| < 200(.001r) < r/5 = an/5. Therefore, CB(A)

has at leastin — an/5 many rows, and at least— 3on/5 many columns. Furthermore, by Lemma 5.6,

CL3(A) is an(an/2, 32 199) edge expander, which implies that it is @m/2,1.98) edge expander.

199

By Lemma 5.9, we may choose an assignneit the variables oecl;”(J) that satisfies every equation
199

of eclZ®(J). LetF’ = F [,. F" is non-empty becaude is unsatisfiable, anB’ is not falsified because any

199
falsified equation would belong &cl®(J). The equation/variable incidence matrixffis a submatrix of
CLS(A), and as such is afmn/2,1.98) edge expander. Furthermore, as restrictioR afio two equations of
F’ share more than one variable, and at mao&t/2 + €) fraction of the equations d¥’ are simultaneously
satisfiable.

Finally, every variable oF’ can appear in at most 3000 equationg-af If more than35, of the variables
occurred in more thad?% equations, the total number of variable occurrences wouddegt3%% . .40 —
3An, but this cannot happen since every equation one dhihequations contains three variables. [

Lemma5.16. Let F be a 3XOR instance over the X variables such that evegridble appears in at most
d equations of F. Lattbe a set of literals in the Y variables, such that each litesalver a distinct variable.

Then ¢@r) > %.

Proof. Each term ofgy has the formx!*/ /\x?(xj) A X% where some equatio@ of F is in the variable
Xi,Xj, Xk andn is one of the four assignments to those three variables #isfiesC. Because eack
variable can belong to at modtmany equation, eack variable can belong to at mosd 4erms of@,. Thus

cln) > 5. 0
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Theorem 5.17. For all € > 0, there existd\,c > 0 so that for sufficiently large n, there exists F, a system
of at mostAn many 3XOR equations ov€X, ... X,}, such that any tree-like LStightening VQGg) with
integrality gap< % — € has size at lea2®".

Proof. Choosegg,y > 0 so thateg+Yy/2 = 3. Apply Lemma 5.3, and choogga > 0, and then, taking
sufficiently large to show that the claim holds for arbitiatarge instances, I’ be a system af\n many
3XOR equations om variables such tha®g is an(an,1.99) edge expander, no two equationsFdfshare
more than one variable, and at masi(1/2+ €y) equations of’ are simultaneously satisfiable.

Apply Lemma 5.15 to obtaifr so that: (i) No more than é1/2+ ¢g) fraction of the equations df are
simultaneously satisfiable (ii) No two equationsFosShare more than one variable (ii) is (an/2,1.98)
edge-expanding (iv) No variable appears in more tﬁ%ﬁé equations. (v) The number of equationdHns
at mostAn. Setd = 3%% setd = 132 and leta be the parameter of Lemma 5.12 wlh= 132, y as defined

previously, and3 equal to the boundary expansion@ (and thugf3 > 0.96).

For eaclhp in the support ob (A, (a/2)n,3,d,y), as per Definition 5.10, let the poinf be defined by:

1 ifpy(Yen)=1
wWep =14 0 ifpy(Ycy) =0
3/4 otherwise

For eachp, if py(Yc,) = 1 thenp(Yc,y) =0 for alln #n/, so X(C.n)eV(GF)qu < 3m. On the other
hand, each such satisfies at mosf(a/2)n/2 < ym/2 many equations df, so the minimum size vertex
cover inGg, has size at least] — &) m—ym/2. Therefore, the integrality gap of eaul is at least

(3—€0)m—ym/2 i
3m - 3 G

—¢&.

SetR= %‘ . Assume for sake of contradiction that there is a tree-lige tightening ofV C(Gg) with

integrality at mos% — £ and tree-size at moSt= /2R/4d*** _ 1 Call this forest of derivations. Choose
a restrictionp according to the distributiom (A, (a/2)n,3,9,y).

Let 11 be a path in the derivatioh from a formula to one of its ancestors that contains at |Bastany
distinct variables as lift variables. By Lemma 5.3p4,is in normal form, and by Lemma 5.16(¢y) > %.

Therefore, we may apply Lemma 5.1r,[@r [p# 1] < 27”4 There are at mos§? = 2R/44*"" _1
such paths iff', so by the union bound, there existp & the support ofo (A, (a/2)n,3,8,y), so thatpy
falsifies a literal on every path of of variable rank> R.

Because the integrality gap of is at least 76 — € and the tightenindg has integrality gap at mosy8— &,
we may choose an inequalitf X > d that is derived i such that that"wP < d. Because every path in
I" of variable rank at lead® has one of its lifting literals falsified, there is a variabdank < R derivation of
(cTY >d) Ip, from VC(GE) py=VC(Gr|,). Because™w < d andwP agrees withpy on the variables
set bypy, wP also falsifies(cY > d) |,,. So the variable rank needed to eliminafefromVC(Gr) [, is

<R= %‘. Thus by Theorem 3.7 can be eliminated fronw C(Gg) [, with rank < %‘. Let
u be the all 34's vector indexed by the variables WC(Gr) [o,. Because/C(Gg) [p,=VC(Gr|,), the
elimination ofw® from VC(Gg) [, with rank < %" can be transformed into a elimination wfrom
VC(Gg,) with rank < %’. However, by Lemma 5.6; [, is an(an/4,1.95) expander. Furthermore,
any two of its equations share at most one variable. So by Lem@\u requires rank at Ieaéf‘/j)T”_A' to
eliminate fromVC(Gg, ). Contradiction.
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We have shown that any tree-like LSightening ofVC(Gg) with integrality at most% — € has tree-size

(o/4)n—4

o 5= Rt /o) oo,

6 Separations between proof systems

In this section, we compare the tree-like LBroof system for proving CNFs unsatisfiable with other meth-
ods for proving CNFs unsatisfiable- the method of Gomoryatdlvcuts, and resolution. We show that
tree-like LS. refutations can require an exponential increase in sizertolate these systems.

6.1 TreelLS; cannot p-simulate tree GC cutting planes

Another method of solving zero-one programs by adding nesgualities to the linear program is the
Gomory-Chvatal cutting plang&C) method.

Definition 6.1. Let g be a real vector of dimension n and let x be a vector of n booleaiables. The rules
of GC cutting planes are as follows: (1) (Linear combinaspfrom ix— by >0,...,alx— by > 0, derive
sk (MaTx—Aiby) > 0, where); are positive rational constants; (2) (Rounding) Frofxa- A > 0 derive
a'x— [A] > 0, provided that the coordinates of a are integers. Withosslof generality, we can assume
that a rounding operation is always applied after every agtion of rule (1), and thus we can merge (1)
and (2) into a single rule, called a Chvatal-Gomory (GC) cAtGC cutting planes refutation for a system
of inequalities, f= fq,... fy, is @ sequence of linear inequalitieg,g..,gq, such that each;gs either an
inequality from f, or an axiom (¥ 0 or 1— x> 0), or follows from previous inequalities by a GC cut, and
the final inequality gis 0 > 1. The size of a refutation is the sum of the sizes ofjalivbere the coefficients
are written in binary notation.

In this subsection, we show that tree-like L8annotp-simulate tree-like GC cutting planes. This is done
by establishing a tree-size lower bound for L&futations of certain counting modulo two principles. The
counting principles that we use are a more complicated mersi the ordinary count two principle stating
that there can be no partition of a universe of sime-2 into pieces of size exactly two, defined below.

Definition 6.2. For each ne N, Counl§n+l is the CNF consisting of the following clauses over the \daa
{% | ee (P 1)} For each ve [2n+ 1], Ve X For each ef € (2%Y) with en f # 0, <xe v =y

Unfortunately, the rank bounds for tI(iEDumZz”+1 principles are of the forn@(n), but the number of vari-
ables is9(n?), so we cannot directly apply the tree-size rank trade—oﬂidmnlﬁ”+1 to obtain superpolyno-
mial tree-size lower bounds. Instead we will consider a ngoraplicated version of the count two principle,
that we will call T — Count and our plan is as follows. We will begin with the well-knowseitin prin-
ciple on a sparse grafh; it is good for us because it is similar in proof complexitythe mod 2 counting
principle, but it has only linearly many variables.

Linear rank bounds for LScan be proven for the Tseitin principle on a sparse expamaghdyy observing
that this principle has linear degree bounds in the strostgic positivestellensatz proof system, which
imply linear rank bounds for LS We then use a reduction from Tseitin to the count two priledimm [10],
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which shows that from a low degree static positivestellensefutation ofTg — Count, we can obtain a low
degree static positivestellensatz refutation of the rspiinciple. Thus it follows thallg — Countrequires
linear rank in LS. Now using our rank-treesize tradeoff for LSit follows that T — Count requires
exponential-size tree-like LSproofs. Finally, it is not hard to show th@g — Count has polynomial-size
tree-like GC cutting planes proofs, thus establishing tres-like LS. cannot polynomially simulate GC
cutting planes. We formalize this argument below.

Definition 6.3. Let {fy,..., f} be a system of polynomials ovRr A static positivestellensatz refutation
of {f1,..., fm} is a set of polynomial$gs,...,gm} and {hy,...,h/} such thaty"; figi =1+ z!:1 h?. The
degree of the refutation is the maximum degree of agyof h?.

Definition 6.4. The Tseitin principle on a graph & (V, E) is specified as follows. The underlying variables
are X, for all e € E. For each vertex v there is a corresponding constraint #pegcifies that the mod 2 sum
of all variables x, where e ranges over all edges incident with v, is 1. We wdt#p the constraints by a
set of inequalities if we are interested in L Broofs, or by a set of polynomial equations if we are intedst
in static positivestellensatz proofs. (In either case heasnstraint is specified witB°® inequalities or
polynomial equations, where d is the degree of the graph.)

Theorem 6.5. [21] For all n sufficiently large, there is &-regular graph, G, on2n—+ 1 vertices such that
any static positivestellensatz refutation of the Tseitingiple on G, requires degre€(n).

There is a natural reduction from the the Tseitin princiglehte count two principle [10]: Start with an
instance of the Tseitin principle ondaregular graphG = (V,E) with 2n+ 1 vertices. Let the underlying
variables of the Tseitin principle bg for all edges € E. The associated count two principle will be defined
on a universd&) as follows. The underlying elementsfwill consist of one element corresponding to each
vertexi in V, and two elements corresponding to each eelge(i, j) in E. We will denote the element
corresponding to vertexby (i) and the elements corresponding to the eelg€(i, j) by (i, j,1) and(i, j, 2).

The idea behind the reduction is as follows. Suppose thed th@n assignment to the Tseitin variables so as
to satisfy all of the underlying mod 2 equations. Then we déifine an associated matchingldnConsider

a nodei in G and ther labelled edgesi, j1), (i, j2),-..., (i, jr) leading out ofi, wherej; < j» < ... < ;.
Suppose that the values of these edgesam@®, ...,a;, & € {0,1}. Then for each, 1 <1 <r, we take the
firstg elements irJ from (i, j;, ) and group them with the firg2 — &) elements itJ from (j,i,*). This
gives us 2-partitions so far. Note that the number of remaining, onged elements associated with node
iis(2—a)+(2—ag)+...+(2—a )+ 1, which is congruent to 0 mod 2 sin¢e; + ...+ a )mod2 = 1.

We then group these remaining, ungrouped elements asseidth i, two at a time, in accordance with
the following ordering. Ungrouped elements fr@imji, «) are first, followed by ungrouped elements from
(i, j2,%) and so on, and lastly the elemefj. It should be intuitively clear that if we started with an
assignment satisfying all of the mod 2 Tseitin constraittien the associated matching described above
will be a partition ofU into groups of size 2.

Given a graphs, the formulaTg — Count denotes the mod 2 counting principle defined over the urdvers
U as given by the reduction just described. Witghas degreel, the degree of the polynomial equations
expressinglg — Count will be d, and the number of variables is at mostn2- dn+ n(g) (See [10] for a
formal description offlg — Count) [10] prove the following theorem, which shows that theaboeduction
can be formalized with low degree static positivestellensafutations. This is not too surprising since the
reduction itself, as well as the underlying reasoning betire correctness of the reduction, is all local.
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Theorem 6.6. [10] Let G be a graph of degree d. If there is no degree (daxl) static positivestellensatz
refutation of the Tseitin principle, then there is no degrestatic positivestellensatz refuatation of F
Count.

The theorem below shows that degree lower bounds for stafiitiyestellensatz refutations implies rank
lower bounds for LS.

Theorem 6.7. [21] Let G be a degree d graph. If there is no degi&e+ 3d static positivestellensatz
refutation of § — Count, then there is no rank r LSefutation of T — Count.

From Theorems 6.5, 6.7, 6.6 we see that rank 6— Countis Q(n), and becaus& G— CounthasO(n)
many variables, we may apply Theorem 3.10 to conclude:

Corollary 6.8. For all n sufficiently large, there is a graph{®n 2n+ 1 vertices and degree 6 such that any
tree-like LS refutation of & — Count requires siz8(".

On the other hand, it is not hard to show that— Counthas GC cutting planes refutations of polynomial
size.

Lemma 6.9. Let G, be a family of graphs o@n+ 1 vertices, with constant degree d. Then-TCount has
polynomial-size tree-like GC cutting planes refutations.

Proof. There is a standard cutting planes derivatiory f, xe < 1 using the inequalitiege +Xx; < 1. It has
rank®(n) and tree-size polynomial im Summing over all of these givgsee([zm]) 2%e = Yvepnt1 YesvXe <
2

2n+1. Apply a single GC cut to this and we hasemon 1 Y esvXe < 2n. On the other hand, summing
over all of the inequalitie§ 5y Xe > 1 yieldS Y yeoni 1 YesvXe > 2n+ 1. O

Theorem 6.10. Tree-like LS does not polynomially simulate GC cutting planes.

6.2 Tree LS, cannot p-simulate DAG-like resolution

It is known that unrestricted (DAG-like) LgSp-simulates resolution, but that simulation constructsasay
Schrijver derivations that are are also DAG-like. In thist&mn we show that this is necessary: Tree-like
LS, cannotp-simulate DAG-like resolution. The family of CNFs that weoghto be hard for tree-like LS

is the ‘GT, principle”. It is one of the canonical examples for showihgtta system canngi-simulate
DAG-like resolution, and it says that in any total order onngtdi set, there exists a minimal element.

Definition 6.11. For n > 1, the CNF GT is a CNF on the variables;X, for i, j € n, i # j. The clauses of
GT, include:

Foreachl<i< j<n, XV Xji.
Foreachl<i< j<n, = Xij V=X

For each jj,k, =X j V=XV Xk

P w0 dpoE

For each i,V X;,i.
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Let E= {(i,]) € [n]? | i # j}, so we can think of the variables agindexed byu,v) € E. The CNF GT
is translated into a system of linear inequalities in thealsuanner.

It was shown by Buresh-Oppenheim et al thap k&utions ofGT, have rankQ(n) [9]. Our tree-size lower
bound is modeled after the basic ingredients of their argiime

6.3 Protection matrices forGT,

The first thing we do is strengthen the rank bound of [9] to gppILS, , not just LS. As in that work, the
rank bound is based upon protecting vectors that corresfmosatcalledscaled partial orders

Definition 6.12. A partial order < on [n] is said to be t-scaled if there is a partition [of into sets A, ... A
such that< is a total ordering within each Abut elements from different’# are incomparable. For each
u € A, we say that Ais the class ofi with respect to<. We say thak is at least-scaledif < is t'-scaled
for some t > t, and that< is at mostt-scaledif < is t’-scaled for somée K t.

We say thati, j) and(l,k) are equivalent with respect te, written (i, j) = (I,k), if i < jand | <k, or if
j <iand k=<1, or if there exist rs such that &£ s, i,l € A, and jk € As. We say thati, j) and(l,k) are
opposing with respect te, written (i, j) L (1,k), ifi < jand k<1, orif j <iand | <k, or if there exist Is
suchthatr#£s, il € A, and jke As.

For a partial order <, let x* € RE be defined by:
1 ifi <]
xg.j) =< 0 if j<i
3 ifiand jare incomparable with respect te

Fori, j € [n] such that i and j incomparable with respect+g let <(1) denote the scaled partial order that
refines=< by placing every element from the class of i before everyesiewf the class of j. If k j, then
<0D=< andif j<i, then<(:)=<g, where<g denotes the reversal ef.

Here is an easy fact about assignments from scaled parieisor

Lemma 6.13.Let < be a scaled partial order om|. For all (i, j) = (I,k), x(jj) = X(T.k). Forall (i, j) L (I,k),
X2 =1-x7.

(i.§) (1K)

Here are some easy facts about scaled partial orders:

Definition 6.14. Let R denote least polytope containifg™ | < is at least s-scaled.

Lemma 6.15. (cf. [9]) When s> 3, Ps C Pgr..

Definition 6.16. Let < be a scaled partial order ofn]. Define the matrix ¥ € RIOVEX{O}VE gg follows:

Yoo =1,and forall(i,j) € E, Y jj0 = Yo j) = Xi.j)- For (i, )),(I.k) € E:
X i) if (i,) = (I,k)
Y(fj)7(|,k) = ) 0-< if (l, j) 1 (l,k)

X0 X1k otherwise
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The following two lemmas are proved in the Appendix.

Lemma 6.17. Let < be a scaled partial order, letx x~, and let Y=Y=. For each(i, j) €cE, if0<x; ;) <1
then PV, j1(Y) =x="" and P\j j o(Y) = x*"", otherwise PY j o(Y) = PV;; j1(Y) = X.

Lemma 6.18. For all at least(s+ 1)-scaled partial orders<, the matrix Y* is an LS. protection matrix for
X~ with respect to R

Lemma 6.19. Let se€ N+ 3 be given. For every i s, if < is an at least s-scaled partial order dn|, then
rank®™ (x¥) > s— 3.

Proof. We show by induction ors € N+ 3 thatPs C N_S[3(PGTH). For s = 3, this is a consequence of
Lemma 6.15, which tells uB; C PsT,. Assume that the claim holds fer Letn > s+ 1 be given, and let
< be an at leasfs+ 1)-scaled partial order. Consider the matyix: By Lemma 6.18, this is a protection
matrix for x= with respect tdPs. However, by the induction hypothesig; C Ni‘3(PGTn), soY ™ is also a
protection matrix fox™ with respect tdNS3(Pgr,). Thereforex™ € NS ?(Pgt,). Because< was an arbitary
at least(s+ 1)-scaled partial ordeRs; 1 € N3 2(Pgt,). O

Corollary 6.20. For alln > 3, the LS rank of G is at least n— 3.

Because there aré — nvariables inG T, and the rank bound is only— 3, the lower bound obtained from the
tree-size/rank trade-off is a trivial constant bound. Tee-size bound for LSrefutations ofGT, requires
more work than that, but the machinery developed to provel@oy 6.20 is used.

6.4 A measure of rank that corresponds to scaled partial ordes

An obvious approach to proving a tree-size lower bound for k&utations ofGT, would be to apply a
random restriction to the refutation and eliminate all pathhigh variable rank. A natural choice for such a
restriction is to randomly choos®C [n| of sizen/2 and place a random total order on those elements, thus
creating an(n/2+ 1)-scaled partial ordex. The restricted refutation T, eliminatesx™, yet we would
hope that the restriction kills all paths of high variablekalt turns out that this is not the case. Suppose
that the lift-variables of a path ad§ », X1 3,X14,...: This path will not be killed unless 1 is placed into the
setS, and that happens with probability exactly on@1

The idea behind the random restriction approach can begeadvdt suffices to kill the scaled partial order
generated by a path. The path of the example actually geseia scaled partial order2L3,4.. ., and this
can be killed by simply placing somje< i wherei < j, and this happens with overwhelming probability. A
notationally cumbersome issue that arises is that we aredealing with the scaled partial order generated
by a path, which depends not just the set of literals liftedrygut on the order in which the literals are
lifted upon.

Definition 6.21. Let n be given. All refutations and inequalities in whatdols are over the variables of
GT.

Letl be an LS derivation of ¢ X > d. Let< be a scaled partial order ofm]. Letrtbe a path i from an
inequality to one of its ancestors (the ancestor is not resrdy a hypothesis of the derivation).

The partial order ofrt extending=<, <™, is either a scaled partial order o], or a special null value
corresponding to “inconsistency”. It is defined recursivels follows: Ifrthas lengthO (eg. 1t begins and
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ends at the same inequality), thef'=<. Otherwise, let ¥y (or 1—X,,) be the lifting variable for the
inference of the first step i, and letty be the remainder oft If v < u, then we say thatt and < are
inconsistent Otherwise, <™= (<)),

We make a simple observation that follows by induction:

Lemma 6.22. LetT be an LS derivation of ¢ X > d. Let< be a scaled partial order ofn]. Letmtbe a
path inl” from an inequality to one of its ancestors.<fand tare consistent, ther™ refines<.

Definition 6.23. Let < be a scaled partial order om|. For any single-step LSderivation: A lift on X,
or 1— X,y is said tohave cost 0 with respect te if u < v, alift on X, or 12X, is said to benconsistent
with respect to< if v < u, otherwise, a lift on ¥y or 1 — X, is said tohave cost 1 with respect te.

Lettbe a path in from an inequality to one of its ancestors such thds consistent with<. Thecost
of Tt with respect to<, cost, (), is defined recursively as follows: if has lengthO, then cost (1) = 0.
Otherwise, let | be the lifting literal for the inference titfirst step int, chose wv € [n] so that |= X, or
| = 1—Xyu, and letrp be the remainder aft. cost, (1) = cost,(I) + cost. uy (Th).

The following lemma is the analog of a rank lower bound, arah&hin particular that any derivation &fT,
requires a path of high cost.

Lemma 6.24. Let ne N be given, and lek be an s-scaled partial order ojm|. Letl" be an elimination of
x~ from GT,. Lett be such that every branch bfeither is inconsistent witk, or has cost at most t with
respect to<. We have thatst < 2.

Proof. We induct on the size df. The induction hypothesis is: “For evefyof size at most, for all

st € N, if I that is an elimination of ar™ from GT, where< is ans-scaled partial order and every branch
of I either is inconsistent witk, or has cost at mostwith respect to<, then there exists:* which refines

<, such that<* is at leass—t scaled ano~" ¢ Pet,.” Lemma 6.24 then follows from Lemma 6.15, because
that guarantees that* is at most 2-scaled and thas-t < 2.

For the base cas#,| = 1, sol" consists of a single inequali’ X > b from GT, such thatax= < b. It
immediately follows thax™ ¢ Pst,, moreover, because is s-scaled, for alt > 0, < is at leas{s—t)-scaled.

Let Se N be given and assume that the lemma holds for all eliminatidresze at mosS. Letse N be
given, and let< be ans-scaled partial order om|. Letl" be an elimination ok = x= from GT, such that
the size ofl” is S+ 1, and lett be an upper bound on the cost of every branch imith respect to<. Let
dTX > ¢ be the final inequality of, and consider its derivation:

c—d™X Ziza,, a1XXJ+ZlZB|J —a' X)(1- X))+ le,-(xf—xj)JrZ(gkth{x)z
J:

with eacha; j, Bi ; > 0.

LetY =Y=, as per Definition 6.16. By Lemma 2.21, there exist$ anm| and a(u,v) € E such that:

1. a' X > by is used as the hypothesis for a lifting inferencexap, anda’ PViuw),1(Y) < by andxyy # 0.

2. al X > by is used as the hypothesis for a lifting inference on X, anda/ PV, o(Y) < b and
Xuv 7 1.
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Suppose that Case 1 holds; the analysis under Case 2 isiahgéiné same. Lel * be the sub-derivation
of a' X > bj. The size of * is at mostS, so the induction hypothesis appliesita

If xyy = 1, thenPV,) 1(Y) = X, so that" is an elimination ok = x=. Notice that in this situation we have
thatu < v, so that<(“¥Y)=<. Every path in* from a’ X > by to one of its ancestors that is consistent with
respect to< is the suffix of a path i from d™X > ¢ to one of its ancestors that is consistent withand
therefore has cost at maswith respect to<. Therefore, by the induction hypothesis, there<isrefining

< such that<* is at leass—t scaled andk=" ¢ Pe,-

Now consider the case wheq, # 1. Because Case 1 guarantees fat# 0, we have thax,, = 1/2, so

thatu andv are incomparable with respect+a Sety = PV{yy) 1(Y) = x<"". Note that<“V) is s— 1 scaled
and that it refines<. Furthermoreu andv are in different components ef, so that the lift uporX, has cost
one with respect tex. Every path in™* from a] X > bj to one of its ancestors that is consistent with respect
<V js the suffix of a path iff fromd" X > c to one of its ancestors that is consistent withso every path

in [* that is consistent with respect td“¥) has cost at most— 1 with respect to<(“V). Therefore, by the
induction hypothesis, there is* refining <(“¥) such that<* is at leasts— 1) — (t — 1) = s—t scaled and
x=" ¢ PsT,. By the transitivity of refinementz* also refines<. O

The following lemma is the random restriction lemma. It skdhat for any subexponential-sized prdof
there exists a restriction that is not too large and suchathatlevant paths i under the restriction have
low cost.

Lemma 6.25. There exists ¢ 0 so that for all n> 6, if I' is a refutation of G and the size of is at most
22, then there exists a partial ordex on [n] that is at least fi4 scaled, and such that all paths ihthat
are consistent with respect to have cost at most/d — 3 with respect to<.

Proof. We generate< at random as follows: Randomly gener&t& [n] by placingi € [n] intoV with with
independent probability /2. Select a total order for the elementsvotiniformly at random. Alii € [n]\V
are incomparable with the elements\oind with each other.

We reckon the cost of paths with respect to “the degenerat@lparder” <p, that satisfies for ak,y € [n],
X 4p Y. This suffices to prove the lemma, because the costwith respect to< can only exceed the cost
of Ttwith respect to the degenerate partial order.

Let tbe a path i such that the cost af with respect to the degenerate partial order exceg¢éls- 3. Let
A1, ... A be the classes 6fy, and note that < n/2+ 3. Leta = |Aj|. List out the elements & according
t0 <m Ui1,...Uis. FOr eachj =1,...|a/2], the probability that< placesa; »; beforea; »j_ is clearly%.
For distinct j’s, these events are independent. Therefore the prolyathiit for all j = 1,... |&/2/, that

< and <y do not disagree on the relative orderapg; 1 anda; »j is at most(7/8)l3/2/. Because the sets
A, ... A are disjoint, the probability that for all=1,...t, < and < do not disagree on the relative order
of anya; oj_1 andaj oj with j € {1,... [&/2|} is at mos{t_,(7/8)la/2.

Let ny be the number afi € [n] such thau appears in a clash of < with |Aj| = 2. Letn=3 be the number

of u € [n] such thau appears in a clash of <, with |A;| > 3. We immediately have tha}_; (%) /2]

(Z)@/2ne+2r3ns B

At mostt — 1 elements ofn] can appear in singleton classes, and therefore atrgast 3 items appear in
classes of size two or more. Thus,+ n-3 > n/2— 3. It follows that: (%)(1/2)n2+(2/3)n23 < (%) (1/2)(n/2-3)
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Because the event that; and < are consistent implies that for al=1,...t, < and<y do not disagree on
the relative order of ang »j—1 anda; »; with j € {1,...[&/2]}, the probability thattis consistent with

respect to< is at most({) 1/2(0/2-3) " choosec > 0 s0 that({) (1/2)(0/2=3) _ o—enfor all n > 6.

Let T be a refutation o5 T, such that the size df is at most;2°". Choose< by the distribution described
above. By the union bound, the probability that there exasgsthrtin I that has cost (n/4) — 3 with
respect to the degenerate partial order and is also camisistth respect to< is at most Y4. Because
the expected size d¥| is n/2, the probability thatV| > (3/4)n is at most 23 by Markov’s inequality.
Therefore, there exists which is at leash/4 scaled such that for attin I', if the cost ofrtwith respect to
the empty partial order (n/4) — 3, thenttis inconsistent with respect te.

O

Theorem 6.26. There exists ¢ 0 so that for all ne N, every tree-like LS refutation of GF, has size at
least2°".

Proof. Suppose for the sake of contradiction that there is an tSutation of GT, of size < 2°". By
Lemma 6.25, there is partial order on [n] such that< is at leasin/4 scaled, and all paths in that are
consistent with< have cost at most/4 — 3 with respect td". However, by Lemma 6.24, we must have that
3=(n/4)—((n/4) —3) < 2, which is false. O

It is well-known that theG T, principle possesses unrestricted resolution refutatidrsize O(n®). Thefore
we have as a corollary to Theorem 6.26:

Theorem 6.27. Tree-like LS refutations cannot p-simulate DAG-like resolution.

Because DAG-like LS canp-simulate DAG-like resolution, we have:

Corollary 6.28. Tree-like LS refutations cannot p-simulate DAG-like L futations.

7 Discussion

Our results bound the size of the derivation tree needed $qrtightening of linear relaxations to obtain
strong integrality gaps or to refute an unsatisfiable CNFther way to measure the size of an,L&eriva-
tion is to arrange the formulas as directed acyclic graphrivBgons in this model are called “DAG-like”
or simply “unrestricted”. The most urgent, burning questieft open by this paper is to prove size lower
bounds for LS derivations in thddAG-like model.

At present, only one bound on DAG-like refutation size iswndor LSy [14], and no non-trivial bounds
are known for any DAG-like LS or LS derivations. Moreover, no bounds are known on the DAG-sizes
necessary to obtain good integrality gaps for any naturéihndgation problem (such as vertex cover or
maxk-SAT) using any of the Lovasz-Schrijver operators.

A natural question to ask is whether or not the techniquesisfgaper can be extended to the DAG-like
model: Is it possible to acheive a general size/rank trddenDAG-like LS? In particular, can we prove
that small DAG-like LS proofs imply small rank? We suspedéttthe answer is negative.
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An interesting loose-end to address is whether or not tieesize/rank tradeoff for LSholds for derivations
as well as refutations. A positive answer would simplify thgk of proving tree-size based integrality gaps
for LS,.. However, we suspect that the answer is negative and thasiom@y needs to find the right
counterexamples. It would also be nice to resolve the isbudether or not deduction requires an increase
in the rank for the LS system, and to determine if Theorem 3.10 is asymptoticight for LS, refutations.

There are some integrality gaps known for low-rank L&hd LS tightenings for which we have not yet
obtained tree-size based integrality gaps, for exampleoser [2] and max-cut [25]. We suspect that rank-
based integrality gaps such as these can be used to ob&isizeebased integrality gaps in these cases as
well.

Finally, there is the question of whether or not a tree-sird( trade-off holds for other zero-one program-
ming derivation systems, such as the Sherali-Adams systdrassier proofs. This seems likely and inter-
esting, but stronger (ie. super-logarithmic) rank bourddHose systems are needed before such a trade-off
would be of any use.
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A Proof of Lemma 2.21

T
Proof. (of Lemma 2.21) Express all inequalities in homogenizethfdEacha! X > by becomes( ’;’i> (i) ,

with u = (), andcTX > d becomedi” () = 0withh = (7).

Because the coefficients of the non-linear monomials altelrthere is a skew-symmetric matixe
R(MDx(n+1) and a positive semidefinite matrke R(MD*(+1) 5o that:

m n m n n
he) = aijuie] + Bijui(eo—€)" + > Ajej(eo—e)) +A+B
211; J lzlgl JZl

Take the entry-wise product of this matrix withwe have thahe] oY = c"x—d < 0. Therefore:

0>he)eY = Zai,juiejToY+ZBi,jui(eo—ej)T .Y+2)\jej(eo—ej)T.Y+A.Y+B.Y
1] Ny ]

> ;ai.juiTYj —|—;Bi,j (UiTYo—UiTYj) —|—§)\j(Y0,j —Yj.j)—l-O—I—O

= Yagu Y+ Bijul (o)
| 1)

Therefore, there exists sorme [m] andj € [n] so thato; julY; +Bi jul (Yo—Y;j) < 0.

In the case thax; = 0, by Definition 2.15)Y; = 0 andYp — Yj = <1> 0> aijulY; +Bijuf (oY) =

X

Bijul (i) Therefore; ; > 0 (so there is some lift upon-1X;) and 0> —b; +a'x = —b; + a7 (PV, o(Y)).
In the case thax; = 1, by Definition 2.15)Y; = ()1() andYo—Y; =0. 0> aj;ulYj+Biju (Yo—Yj) =
o jul (i) Thereforeq; j > 0 (so there is some lift upoX;) and 0> —bj +a' x = —b; +aT (PV; 1(Y)).

Now consider the case withQ x; < 1. By Definition 2.15, we may choosec R" so thatY; = (?)

Substituting(?) for Y; yields aj j (—bixj +aTy) + Bi j(—=bi(1—Xj) + & (x—y)) < 0. If 0 > a j(—bix; +
a'y), thena; ; >0 (so—b; +a X > 0 is used as the hypothesis for some lift)y), and also 0> —bj +
al (y/xj) = —bi +a] (PV;1(Y)). Similarly, if 0> Bi;(—bi(1—x;) +a' (x—y)), thenBi; > 0 (so—b;j +
a' X > 0 is used as the hypothesis for some lift@n- X;)), and 0> —b; +a' ((x—Yy)/(1—X;)) = —bi +
al (PVjo(Y)).

O

B Lemmas for the tree-size/rank trade-off

Proof. (of Lemma 3.8) From the hypothesis > €, we may infer(1— X)X > €(1— X;), multilinearize by
adding a multiple o2 — X; = 0 and we have 0 (1 — X;). Multiply through by ¥e and we havex; > 1.
Clearly this derivation has LgSank one.
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From the hypothesi$l — X;) > €, we may inferX;(1—X;) > €X;, multilinearize by adding a multiple of
Xi2 — X =0 and we have @ €X;. Multiply through by /e and we have-X; > 0. Clearly this derivation
has Lg rank one. O

Proof. (of Lemma 3.9) The two cases are nearly identical, for byewi do the first case only. By hypoth-
esis, there is a rank r — 1 derivation ofX; > €; combine this with Lemma 3.8, and we have a rafnk
derivation ofX; > 1 from|. By hypothesis, there is a rankr derivation of 1— X; > 8. Adding these two
formulas we have ® 1+ 9, which yields 0> 1 after multiplying by the positive scalaya O

C Edge expansion closure calculation

Proof. (of Lemma 5.7) Suppose for the sake of contradiction bl (J)| > (=55 3| Letly,... I be the
sequence of subsets [of| that are taken in cleaning procedure, with edgh< r /2.

First we inductively show that for eac< t, |[Na (U1 1i) \J| < 8-n|U} 1I ] For the base case, Equation 2
yields |[Na(l1) \ J| < &-nll1|. For the induction step, assume thisih (U3, 1i) \ J| < &-n|Ui_,1i| for an
arbitrarys < t. By Equation 2|Na(ls+1) \ (;lUU,eU i A.) | <&-nllst1|. Because rows added ézl®(J)
are removed from the matrix after each stage of cleaningsdtst,, ... |; are pairwise disjoint, thus:

Na(UZE)N] = MU0 V3 M (30U, )|
+1
<5 n\U i +8nlsil =8|
Now, letig be the first indexwithUi‘;lli|> |J| Note that|U:°1||<|U: i 1| < = 5 |3+
r/2 < 1)n r(l—zé)n +r/2=r. Therefore by edge expansiofa (Ui:1 .)| >n|UP,li|. Therefore:
|NA<U'° 1)\ 3] = n[US3 = 13 > nlUs Bl = n(2 = 9] ULl = 8-n[UL4lil. This contradicts the

previously established fact thiN (U'O l; ) \J| < &-nU° .
O
D Protection matrices for GT,

Proof. (of Lemma 6.17) The cases fa; ;) € {0,1} follow from the definition of protection vectors, so
consider(i, j) with x; j = 1/2.

By definition:
ng)/ng) =1=x; ;(; if (i,j)=(,k)
i e e -
(PVii.iy (YD) ak = Yok.ii /X5 ) = O/xf =0=xjy if (i,7) L (I,k)
(i,j) .
X 0% /xIJ = X=X, ; otherwise
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e oy iD=
Y(I.k).O—Y(I,k),(i,j) X(T,k) _Y(I7k)7(i7i) xg‘w—_oxa'j) 1/2 ?m) o
(PViio(Y))aw = = = = e — i =1=Xy i) LK
1 X(| ) 1 X(| i - )<(g> -
’ ’ KX X _<lib ,
#)J)('k) =X 1 =Xk otherwise

0

Proof. (of Lemma 6.18) LeY =Y~. Lety = (x£ )
We just check that the properties of Definition 2.15 hold:

1. Thatx™ € Ps: By hypothesis< is (s+ 1)-scaled, s € Ps.
2. Yg= dlag(Y) = <X£> By definition,Yo,o = 11YO.(i.j) =YoYi,j) = l'Xaj) = Xaj), andY(i’j)’(i’j) = Xaj).

3. Forall(i,j) € E,if x7 ) =1, thenYg; ) = (X1<>

By definition, (Y& j))o = x(f j =1 For(l.k) € E(x*), we have:
XiK = :‘ﬁj) it,) =k
(Yeiiak = Yow.i) = 0=X7y if (i,]) L (1,k)

XiwXii) =Xik 1=Xx  otherwise

4. Forall(i,j) € E, if x(T.j) =0,Ye; j) = 0. By definition,(Yeg; j))o = X(T,j) =0. For(l,k) € E, we have:

Xiw =Xiy=0 (i) =(k
(Ve =Yow.ii) = < W< ° < it (i, §) L (1,k)
Xi X3 =Xik 0=0  otherwise

5. ThatPV jyo(Y), PV j1(Y) € Psfor all othe(i, j) € E. This follows immediately from Lemma 6.17,
and the fact that botk(:)) and< (") ares-scaled.
6. The matrixY is positive semidefinite.

Lety= (Xi) We define a disjoint family of subsets Bfas follows: For each,s € [t] with r # s,
there is a se€rs = {(i,]) |i € A, j € As}. Foreach K r <s<tletZ"¥ ¢ [-1,1]" be defined via:
4¥ =0, and for(i, j) € E:

Yij) —Ya; if(,])€Cs

(rs) _ .
i) Ty —Yaq Yoy (1) €Csr
0 otherwise
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The calculation below reveals that:

m
Y :yTy+ z (Z(r,s))TZ(r,s)

1<r<s<t
This suffices to finish the proof of the claim, because a sunosttipe semidefinite matrices is also
positive semidefinite.
Checking the calculations: L& =yTy+ 3T _(Z")TZ"),
Let (i, j) and(l,k) with (i, j) = (I, k) be given. First consider the case thgq) € {0,1}. This forces
that the arcgi, j) and(l,k) do not cross two pieces of the partition, and vkm) € {0,1}. Moreover,

(rs) _ 19
z(i.j)_z(I K = =O0forallr,s.

Zipok = Ziih =YanYok =Xi i) Xk =Xij) = Yii.0x

Now consider the case whén j) = (I,k) andx = 1/2 (so that both(i, j) and(l,k) cross from
someA, to someAs;, WLOGT < 9):

(r9) ()
Zip.ok = YapYok TZi5HZik

= YaijphYak +\/Y|J Lj)\/y(l,k)_y( k)

1/4+/1/2-1/4\/1/2—-1/4=1/2= X = Y0k

Let (i, ) and(l,k) with (i, j) L (I,k) be given. Wherx ) € {0,1}, (i, ) and(l,k) do not cross two

pieces of the partition, and thle&k) =1- X(Li)' Moreover,zgug = ZELk)) =0for allr,s. So we have:
Zijpak = YinYow =Xy E=Xi;) =0=Yijak

Now consider the case whén j) crosses fromA, to As and (l,k) crosses fromAs to A, and both

Xi = x* =1/2.

(i) —

_ (rs) 1)
Zijpak = YanYok TZi5H %0

= YihYakx — \/y(i7j)_y(2i’j)\/y(|7k) Yk
= XX~ X — O 2y X — ()2
= 1/4—/1/2—-1/4\/1/2—-1/4=0=Y j) 1k

—
=

For all other(i, j), (I,k), we have that for all K r <s<t, eitherzg’?; =0or Z(f.i)) =0, so that
Ziij), k0 =YYk =X jXix = Yi.0K-
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