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Abstract

The matrix cuts of Lovász and Schrijver are methods for tightening linear relaxations of zero-one
programs by the addition of new linear inequalities. We address the question of how many new inequal-
ities are necessary to approximate certain combinatorial problems with strong guarantees, and to solve
certain instances of Boolean satisfiability.

We show that relaxations of linear programs, obtained by tightening via any subexponential-size
semidefinite Lovász-Schrijver derivation tree, cannot approximate max-k-SAT to a factor better than
1+ 1

2k−1
, max-k-XOR to a factor better than 2− ε, nor vertex cover to a factor better than 7/6.

We prove exponential size lower bounds for tree-like Lovász-Schrijver proofs of unsatisfiability for
several prominent unsatisfiable CNFs, including random 3-CNF formulas, random systems of linear
equations, and the Tseitin graph formulas. Furthermore, weprove that tree-like LS+ cannot polynomi-
ally simulate tree-like cutting planes, and that tree-likeLS+ cannot polynomially simulate unrestricted
resolution.

All of our size lower bounds for derivation trees are based upon connections between the size and
height of the derivation tree (itsrank). The primary method is a tree-size/rank trade-off for Lov´asz-
Schrijver refutations: Small tree size implies small rank.Surprisingly, this does not hold for derivations
of arbitrary linear inequalities. We show that for LS0 and LS, there are examples with polynomial-size
tree-like derivations, but requiring linear rank.

1 Introduction

The method of semidefinite relaxations has emerged as a powerful tool for approximatingNP-complete
problems. Central among these techniques are the lift-and-project methods of Lovász and Schrijver [23]
for tightening a linear relaxation of a zero-one programming problem. For several optimization problems, a
small number of applications of the semidefinite Lovász-Schrijver operator transforms a simple linear pro-
gramming relaxation into a tighter linear program that better approximates the zero-one program and yields
a state-of-the-art approximation algorithm. For example,one round of the semidefinite tightening, starting
from the natural linear programming formulation of the independent set problem gives the Lovász Theta
functions [22], one round starting from the natural linear programming formulation of the max cut prob-
lem gives the famous Goemans-Williamson relaxation for approximating the maximum cut in a graph [15],
and three rounds gives the breakthrough Arora Rao Vazirani relaxation for approximating the sparsest cut
problem [6] (for a discussion of these algorithms in the context of Lovász-Schrijver tightenings of linear
relaxations, see [26] ). When used for solving the Boolean satisfiability problem, one round of semidefinite
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tightening followed by a linear programming test for feasibility efficiently solves satisfiability for CNFs such
as the propositional pigeonhole principle, which are knownto require exponential runtimes when processed
by resolution based solvers [17, 20]. Given the power of Lov´asz-Schrijver tightening, it is natural to ask
what it cannotdo.

The Lovász-Schrijver operators proceed by iteratively adding new inequalities to the linear relaxation of
a zero-one program, and each new inequality satisfies all zero-one solutions to the original program. In
this article, we prove lower bounds for the number of inequalities that must be added in order to approxi-
mate combinatorial optimization problems and to solve certain instances of the Boolean satisfiability prob-
lem. These are unconditional negative results for an important model of computation that includes the best
known approximation algorithms for several fundamental problems and an approach to solving satisfiability
instances that can be exponentially more efficient than resolution-based solvers.

Most prior results studying the limitations of Lovász-Schrijver tightened linear relaxations have focused on
“rank”, that is, the number of rounds of tightening that mustbe applied in order to obtain some approxi-
mation guarantee. If the intermediate inequalities are arranged as the nodes of a tree, with the parents of
an inequality being the previous inequalities from which itis derived, then the rank of an inequality is the
minimum height of a derivation tree for that inequality. We study thesizeof the derivation trees needed to
provide good approximations to combinatorial optimization problems and to solve instances of the Boolean
satisfiability problem (hence the term “tree-size”). By Caratheodory’s theorem we can bound the branching
factor of a derivation tree asO(n2), wheren is the number of variables, and thus lower bounds for tree-size
imply lower bounds for rank viarank= Ω(log(treesize)/ logn). In this way, lower bounds for tree-size are
stronger than lower bounds for rank.

1.1 Tightening linear relaxations, an approach to approximation and solving Boolean sat-
isfiability

The linear relaxation of a zero-one program is simply the shift from optimizing an objective function over the
zero-one points of a polytope to optimizing over all points of a polytope. Atighteningof a linear relaxation
is the addition of new linear inequalities that are satisfiedby all zero-one points of the polytope. Lovász and
Schrijver introduced several methods for tightening linear relaxations, among them thenon-commutative
(LS0), linear (LS), andsemidefinite (LS+) operators [23]. (Definition 2.9 defines these precisely.)

Sometimes by optimizing over all points of a polytope (or ones of its tightenings) we can obtain a decent
approximation to the zero-one optimization problem. Anintegrality gapfor a polytope is a measure of the
quality of such an approximation: For simplicity, we consider only objective functions that take strictly
positive values on non-trivial instances. For a minimization problem, the integrality gap of a polytope is the
ratio of the minimum of the objective function over the zero-one points of the polytope to the minimum of
the objective function over the entire polytope. For maximization problems, it is the ratio of the maximum
of the objective function over the entire polytope to the maximum of the objective function over the zero-one
points of the polytope. In both cases, the integrality gap isat least one, and the closer the integrality gap is
to one, the better the approximation guarantee.

The Lovász-Schrijver operators can be viewed as a way to improve the integrality gap of a zero-one pro-
gramming problem. When using these methods, the hope is thatby adding derived inequalities, fractional
solutions that are poor approximations to the zero-one optimum will be eliminated, and the integrality gap
of the polytope will become closer to one.
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Relaxation and tightening methods can also be used to certify that propositional formulas are unsatisfiable.
In this framework, a formula in conjunctive normal form is translated into a system of linear inequalities in
a standard way (eg.x∨¬y∨z translates intox+1−y+z≥ 1). Derived inequalities are added via one of the
Lovász-Schrijver methods. If linear programming revealsthat the tightened polytope is empty, that proves
that the input CNF is unsatisfiable.

1.2 Summary of results

The first result of the paper is a general tree-size/rank tradeoff for LS0, LS and LS+ refutations1. In par-
ticular, Theorem 3.10 demonstrates that for any LS0, LS or LS+ refutation of a system of inequalitiesI ,
rank(I) ≤ 3

√

nlnST(I), whereST(I) denotes the minimum tree-size of a refutation ofI . This implies that

ST(I) ≥ 2Ω((rank(I))2/9n). We show that the trade-off of Theorem 3.10 is asymptotically tight (up to a loga-
rithmic factor) for the non-commutative (LS0) and linear (LS) Lovász-Schrijver operators (Theorem 3.12).
For the semidefinite operator (LS+), we do not know whether or not Theorem 3.10 is asymptotically tight.

Theorem 3.10 allows us to quickly deduce tree-size lower bounds from known rank lower bounds for LS+

refutations of several well-known “sparse and expanding” systems: Random 3-CNFs, random systems of
linear equations, and the Tseitin principles on a constant-degree expander. These results are presented in
Section 4.

The trade-off of Theorem 3.10 does not hold for derivations of arbitrary linear inequalities. For LS0 and LS,
such an extension of Theorem 3.10 fails outright: Theorem 3.14 demonstrates sets of inequalitiesI and a
target inequalityaTX ≥ b so thataTX ≥ b has polynomial tree-size LS0 derivations fromI but all derivations
of aTX ≥ b from I require linear LS rank. At the heart of this is an interestingobservation: The deduction
theorem in LS0 and LS can require a linear increase in rank. Whether or not there is a rank tree-size trade-off
for arbitrary derivations in LS+ is still open, as is the question of whether or not the deduction theorem for
LS+ requires an increase in rank.

Despite our lack of a general tree-size/rank trade-off for derivations of arbitrary linear inequalities, we prove
integrality gaps for LS+ tightenings of small tree-size by using ad-hoc modifications of the technique. For
several combinatorial optimization problems, we show thatthere are instances for which every polytope
that is obtained by applying an LS+ tightening of sub-exponential tree-size has a large integrality gap: For
max-k-SAT, the integrality gap is 1+ 1

2k−1, for max-k-LIN have integrality gap 2− ε, and for vertex cover,
the integrality gap is 7/6. These results are presented in Section 5.

In Section 6, we address how well LS+ stacks up as a propositional proof system. In particular, weshow
that tree-like LS+ refutations require an exponential increase in size to simulate tree-like Gomory-Chvatal
cutting planes refutations, Theorem 6.10, and that tree-like LS+ refutations require an exponential increase
in size to simulate DAG-like resolution refutations, Theorem 6.27. In the language of propositional proof
complexity [12], we show that LS+ does notp-simulate tree-like cutting planes nor does itp-simulate
DAG-like resolution.

1A refutationis a derivation that shows a zero-one program has no feasiblesolutions.
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1.3 Comparisons with previous work

The technique of applying a partial assignment to reduce therank of a tree-like Lovász-Schrijver derivation
is inspired by a line of work due to Grigoriev and his coauthors [16, 18, 17, 19] and a paper by Kojevnikov
and Itsykson [21] that prove lower bounds on the tree-sizes of LS+ refutations by proving lower bounds
on the tree-sizes ofstatic positivstellensatz refutations. (Static positivstellensaz refutations can efficiently
simulate tree-like LS+ derivations, so LS+ tree-size bounds follow immediately from these size bounds.) A
technique frequently used in those analyses is to show that given a small static positivstellensatz refutation,
one can construct a small assignment to the variables that will cause all monomials of large multilinear
degree to vanish, yet static positivstellensatz refutations of the restricted system of inequalities still require
large multilinear degree. Grigoriev et al used this technique to show that static positivstellensatz refutations
of a system of inequalities known as thefractional knapsackrequire exponential size [17]. Kojevnikov and
Itsykson used a variant of it to show an exponential size lower bound for static positivstellensatz refutations
of the Tseitin principle [21].

In this paper, we apply partial assignments that eliminate all paths in an LS+ derivation that lift on many
different variables, thereby creating low-rank derivations that contradict known rank bounds2. This tech-
nique is somewhat easier to apply than one based upon the static positivstellensatz, simply because there
are many more rank lower bounds known for LS+ than there are multilinear degree bounds known for static
positivstellensatz refutations3.

Our results focus on the Lovász-Schrijver systems, and eliminate reasoning about the (apparently) more
complicated and powerful static positivstellensatz system. For example, our size lower bound for tree-like
LS+ refutations of the Tseitin principle is self-contained in that it follows only from a simple rank lower
bound for LS+ refutations of the Tseitin principle and a general tree-size/rank trade-off for LS+ refutations.
Our tree-size lower bounds for refuting random 3-CNFs and random systems of linear equations are new, as
are our separations of tree-like cutting planes and unrestricted resolution from tree-like LS+.

To the best of our knowledge, all integrality gaps shown earlier for Lovász-Schrijver tightenings of linear
relaxations applied only to tightenings of low rank, so our results for tree-size-based integrality gaps are new.
However, this work on integrality gaps falls squarely within the philosophy delineated by Arora, Bollobas
and Lovász [5]. Hardness of approximation results based upon PCP technology are wanting in three ways.
First, such results are conditional upon complexity theoretic conjectures such asP 6= NP or NP 6= ZPPor
some such thing. Second, because of the heavy use of reductions that increase input size by polynomial
factors, PCP results do not rule out the possibility of slightly-subexponential time approximation algorithms
that run in time 2n

ε
(with ε < 1). Third, for many problems, there is a nagging gap between known PCP based

hardness of approximation results and the best known approximation algorithms. By considering a concrete
approach, Lovász-Schrijver tightenings, we establishunconditionallimits to approximation possible with
current algorithmic techniques. Furthermore, the bounds we obtain are of the form 2Ω(n) wheren is the input
size, so we rule out the possibility of weakly sub-exponential algorithms (of a particular form).

The proof technique that we employ explicitly uses pre-existing rank bounds. In particular, our tree-size-
based integrality gaps for max-k-SAT and max-k-LIN directly extend the rank-based integrality gaps shown
in [9], and our our tree-size-based integrality gap for vertex cover extends the rank-based integrality gap
shown in [24]. Our refutation tree-size bounds for Tsetin principles and random linear equations extend the

2The distinction between paths that lift on many different variables and paths that lift many times upon a small set of variables
is addressed in Subsection 3.2.

3One advantage of working with static positivstellensatz derivations is closure under certain local reductions, see Subsection 6.1.
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rank bounds of [9] and our refutation tree-size bounds for random 3-CNFs extend the rank bounds of [2].
The separation of tree-like GC cutting planes from tree-like LS+ builds upon a rank bound for the counting
mod two principles that is implicit in the work of Grigoriev [16] and Kojevnikov and Itsykson [21], and
the separation of DAG-like resolution from tree-like LS+ begins with an extension of the LS0 rank bound
for the GTn principles proved in [9]. The asymptotic optimality of Theorem 3.10 for LS0 and LS, and
the “deduction requires an increase in rank” result for LS0 and LS, uses theΩ(n) rank bound proved for
refutations of the propositional pigeonhole principle by Grigoriev Hirsch and Pasechnik [17].

1.4 Outline

The rest of the paper is organized as follows. In Section 2 we present some elementary background material,
and define the Lovász-Schrijver proof systems (also known as matrix-cut proof systems), and prove some
basic properties of these systems. In Section 3 we prove the tree-size/rank tradeoff for LS0, LS and LS+
refutations, and prove that such a tradeoff is false for LS0 and LS derivations of arbitrary linear inequalities.
In Section 4, we combine the tree-size/rank tradeoff with existing rank bounds to obtain new tree-size bounds
for refutations of sparse, exanding formulas. In Section 5,we prove the integrality gaps for subexponential
tree-size LS+ tightenings of max-k-SAT, max-k-LIN, and vertex cover. In Section 6, we show that tree-like
LS+ cannot polynomially simulate tree-like Gomory-Chvatal Cutting Planes proofs, nor can it polynomially
simulate unrestricted resolution. We end our journey in Section 7 with discussion and open problems.

2 Background

A literal is a propositional variable or its negation. Aclause is a disjunction of literals. ACNF is a
conjunction of clauses, specified as a set of clauses. Ak-CNF is a CNF whose clauses are each of width at
mostk. When processed by zero-one programming methods, clauses are converted into inequalities in the
usual way, eg.X1∨¬X2∨X3 is converted toX1 + (1−X2)+ X3 ≥ 1. Notice that the 0/1 solutions to the
inequality are exactly the satisfying assignments to the clause. Variables are written with upper case letters,
ie. X1, . . .Xn, whereas points inR are written with lower case letters, eg.x1, . . .xn ∈ R. Vectors of variables
are written simply asX and elements ofRn are written asx.

A restriction ρ is a map from a set of variables to{0,1,∗}. For a polynomialf (X), the restriction of f(X)
by ρ, f (X) �ρ is is defined by substituting 1 for eachXi with ρ(Xi) = 1, and substituting 0 for eachXi with
ρ(Xi) = 0. The restriction of a polynomial inequality,( f (X) ≥ g(X)) �ρ is defined to bef (X) �ρ≥ g(X) �ρ.

We make heavy use of the affine Farkas lemma as a kind of “completeness theorem” for linear programming.

Lemma 2.1. (Affine Farkas Lemma) Let I= {aT
i X ≥ bi | i = 1, . . . ,m} be a system of inequalities so that

for all x satisfying each inequality in I, cTx ≤ b. Then there existsα1, . . . ,αm, eachαi ≥ 0, such that
d−cTX = ∑m

i=1αi(bi −aT
i X).

2.1 Expansion basics

Many of the tree-size lower bounds obtained in Section 4 and Section 5 depend upon expansion in the
constraints of the problems.
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Definition 2.2. Let e(V1,V2) be the number of edges(v1,v2) with vi ∈Vi . The edge-expansion of a graph
G = (V,E) is

min
S⊆V

0<|S|≤|V|/2

e(S,V \S)

|S| .

Definition 2.3. A bipartite graph from V to U is an(r,c)-expander if, for all subsets X⊂V where|X| ≤ r,
we haveΓ(X) ≥ c|X|. The expansion of a set X⊆V, e(X), is the value|Γ(X)|/|X|.

Definition 2.4. Let G be a bipartite graph from V to U. Theboundaryof a set X⊂ V, ∂X, is defined as
∂X = {u∈U : |Γ(u)∩X| = 1}. G is an(r,c)-boundary expander if for all subsets X⊂V where|X| ≤ r,
we have|∂X| ≥ c|X|. The boundary expansion of a set X⊂V is the value|∂X|/|X|.

The following fact relates bipartite expansion with boundary-expansion.

Fact 2.5. If G is a bipartite graph from V to U where V has maximal degree dand if G is an(r,c)-expander,
then G is a(r,2c−d)-boundary expander.

2.2 Matrix-cut proof systems

Our results prove a connection between tree-size, a conceptthat is inherently syntactic, and rank, a concept
that is more often studied from a dual perspective that characterizes the points that survive all possible cuts
(via “protection matrices”). To bridge these perspectives, we must use two equivalent formulations of the
Lovász-Schrijver systems, and the requisite notation to handle both.

When manipulating the Lovász-Schrijver systems syntactically, we reason about points inRn, but when we
take the dual perspective of protection matrices, we reasonabout points inRn+1. Don’t blame us! These
perspectives and methods of notation are standard. For fixedn∈ N, elements ofRn are indexed by{1, . . .n}
and elements ofRn+1 are indexed by{0, . . .n}.

Definition 2.6. A cone is a subset ofRn+1 that is closed under addition and multiplication by positive
scalars. Apolyhedral coneis the set of solutions to a family of homogenized linear inequalities,{x∈ R

n+1 |
Ax≥ 0}. A faceof polyhedral cone{x∈ R

n+1 | Ax≥ 0} is a set of the form{x∈ R
n+1 | A′x≥ 0, A′′x = 0}

where A′ and A′′ partition the rows of A.

Let I = {aT
i X ≥ bi | i = 1, . . . ,m} be a system of linear inequalities in the variables X1, . . .Xn. Definethe

polytope ofI as PI = {x∈ R
n | ∀i ∈ [m], aT

i x≥ bi}. Definethe homogenized cone ofI as KI = {x∈ R
n+1 |

∀i ∈ [m], aT
i x−bix0 ≥ 0}.

Definition 2.7. For S⊆ R
n+1, let S�x0=1= {x ∈ R

n | (1,x1, . . .xn) ∈ S}. For each i∈ [n], ε ∈ {0,1}, let
{Xi = ε} denote either the set{x∈ R

n | xi = ε}, or the set{x∈ R
n+1 | xi = ε}, as context dictates.

Definition 2.8. Let x∈ [0,1]n. Supp(x) are those indices/coordinates i such that xi is equal to 0 or 1. E(x)
are the other indices–those indices j such that xj is not integral. Of course[n] = Supp(x)∪E(x).

There are several cutting planes proof systems defined by Lovász and Schrijver, collectively referred to as
matrix cuts [23]. In these proof systems, we begin with a polytopeP defined by the linear relaxation of the
zero-one programming problem.

Definition 2.9. Given a polytope P⊆ [0,1]n defined by aTi X ≥ bi for i = 1,2, . . . ,m:
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(1) An inequality d−cTX ≥ 0 is called an N-cut for P if

d−cTX =
m

∑
i=1

n

∑
j=1

αi, j (bi −aT
i X)Xj +

m

∑
i=1

n

∑
j=1

βi, j(bi −aT
i X)(1−Xj)+

n

∑
j=1

λ j(X
2
j −Xj) (1)

whereαi, j ,βi, j ≥ 0 andλ j ∈ R for i = 1, . . . ,m, j = 1, . . . ,n.

(2) An N-cut is called an N0-cut if Equation 1 holds when we view XiXj as distinct from XjXi for all
1≤ i < j ≤ n. (For this reason, N0-cuts are callednon-commutative cuts.)

(3) An inequality d−cTX is called an N+-cut if

d−cTX =
m

∑
i=1

n

∑
j=1

αi, j (bi −aT
i X)Xj +

m

∑
i=1

n

∑
j=1

βi j (bi −aT
i X)(1−Xj)+

n

∑
j=1

λ j(X
2
j −Xj)+∑

k

(gk +hT
k X)2

whereαi, j ,βi, j ≥ 0, λ j ∈ R for i = 1, . . . ,m, j = 1, . . . ,n and each(gk +hT
k X) is an affine function.

For each of the above cuts, we say that the inequality aT
i ≥ bi is a hypothesis of a lifting on the literalXj if

αi j > 0 and that isa hypothesis of a lifting on the literal 1−Xj if βi j > 0.

Definition 2.10. A Lov́asz-Schrijver (LS) derivation of aTX ≥ b from a set of linear inequalities I is a
sequence of inequalities g1, . . . ,gq such that each gi is either an inequality from I, or follows from previous
inequalities by an N-cut as defined above, and such that the final inequality is aTX ≥ b. Similarly, a LS0
derivation uses N0-cuts and LS+ uses N+-cuts.

Aneliminationof a point x∈ R
n from I is a derivation from I of an inequality cTX ≥ d such that cTx < d. A

refutation ofI is a derivation of0≥ 1 from I.

An LS (LS0, LS+) tighteningof a polytope PI is a set of inequalities,{cT
j X ≥ d j | j ∈ J} so that each

cT
j X ≥ d j is a formula in some derivationΓ from the hypotheses I. (Note that it is possible forΓ to have

multiple sinks.)

Definition 2.11. LetP be one of the proof systems LS, LS0 or LS+. LetΓ be anP -derivation from I, viewed
as a directed acyclic graph. The derivationΓ is tree-like if each inequality in the derivation, other than the
initial inequalities, is used at most once. In a tree-like derivation the underlying graph, excluding the leaf
nodes, is a forest. The inequalities inΓ are represented with all coefficients in binary notation. The size of
Γ is the size of the underlying directed acyclic graph; the rank of Γ is the depth of the underlying directed
acyclic graph. For a set of boolean inequalities I, theP -size of I is the minimal size over allP refutations of
I. TheP -tree-size of I is the minimal size over all tree-likeP refutations of I. TheP -rank of I is the minimal
rank over allP -refutations of I.

A few technical points. First, it is entirely possible that some nodes of the derivation-DAG are labeled
with the same inequality. For DAG-like derivations, we may assume this is not the case, but for tree-
like derivations, it is a common situation. Second, we definetree-size to be the number of nodes in the
derivation tree, not the sum of the bit-sizes needed to represent each inequality of the derivation (the bit-size
of the derivation). This is because the tree-size trade-offs and lower bounds that we prove apply regardless
of the sizes of the coefficients. On the other hand, the upper bounds that we make use of are easily seen to
create derivations that are of polynomial bit-size. Third,in our definition of the Lovász-Schrijver systems,
we can derive a new inequality from any number of previous inequalities in one step. However, in light of
Caratheodory’s theorem, we may assume without loss of generality that the fan-in in is at mostn2 +n+1.
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Definition 2.12. Let I be a system of inequalities over the variables X1, . . .Xn that includes0≤ Xi ≤ 1 for
all i ∈ [n]. Define LSr0(I) to be the set of all linear inequalities with LS0 derivations from I of rank at most r,
LSr(I) to be the set of all linear inequalities with LS derivations from I of rank at most r, and LSr+(I) to be
the set of all linear inequalities with LS+ derivations from I of rank at most r.

The following simple fact is repeatedly used in this article. It holds simply because the equalities that define
N0-cuts (N-cuts,N+-cuts) are preserved under substituting 0 or 1 for a variable.

Lemma 2.13. Let Γ be an LS0 (LS, LS+) derivation of cTX ≥ d from hypotheses I. Letρ be a restriction to
the variables of X.Γ �ρ is an LS0 (LS, LS+) derivation of

(

cTX ≥ d
)

�ρ from the hypotheses I�ρ.

Corollary 2.14. Let Γ be an LS0 (LS, LS+) elimination of w∈ R
n from hypotheses I. Letρ be a restriction

to the variables of X such that for all i∈ [n], ρ(Xi) ∈ {0,1} ⇒ wi = ρ(Xi). Let w′ be the vector indexed by
variables from[n] \dom(ρ) that agrees with w on[n] \dom(ρ). Γ �ρ is an LS0 (LS, LS+) elimination of w′

from the hypotheses I�ρ.

2.3 Protection matrices and protection vectors

When analyzing the rank needed to refute systems of inequalities and to eliminate points from systems of
inequalities, a dual perpective (introduced by Lovász andSchrijver [23]) has often been used [5, 9, 2, 27,
25, 24].

Definition 2.15. Let y∈ R
n+1 be given, and let K⊆ R

n+1 be a cone. AnLS0 protection matrix fory with
respect toK is a matrix Y∈ R

(n+1)×(n+1) such that:

1. Ye0 = diag(Y) = YTe0 = y,

2. For all i = 0, . . .n, Yei ∈ K and Y(e0−ei) ∈ K.

3. If xi = 0 then Yei = 0, and if xi = y0 then Yei = y.

If Y is also symmetric, then Y is said to be anLS protection matrix. If Y is also positive semidefinite, then Y
is said to be anLS+ protection matrix. If Y is an LS0 (LS, LS+) protection matrix for y with respect toRn+1

(ie. if it is protection matrix for y with respect to some coneK ⊆ R
n+1) then we simply say that Y is an LS0

(LS, LS+) protection matrix for y.

Definition 2.16. Let K⊆ R
n+1 be a cone. Define N0(K) to be set of y∈ R

n+1 such that there exists an LS0

protection matrix for y with respect to K, define N(K) to be set of y∈ R
n+1 such that there exists an LS

protection matrix for y with respect to K, and define N+(K) to be set of y∈ R
n+1 such that there exists an

LS+ protection matrix for y with respect to K.

The setsN0(K), N(K) andN+(K) are easily seen to be cones, and therefore the construction can be iterated.

Definition 2.17. Let K⊆ R
n+1 be a cone. Inductively define N0

0(K) = K and Nr+1
0 (K) = N0(Nr

0(K)). Define
Nr(K) and Nr

+(K) similarly.

The connection between theN0, N and N+ operators, which work on cones inRn+1, and the syntactic
definition of the LS0, LS and LS+ deduction systems is summarized in the following fundamental theorem
of Lovász and Schrijver.
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Theorem 2.18. [23] Let I be a set of inequalities in{X1, . . .Xn} that includes the inequalities0≤ Xi ≤ 1 for
all i ∈ [n], and let KI ⊆R

n+1 be the polyhedral cone given by the homogenization of I. PLSr
0(I)

= Nr
0(KI) �X0=1,

PLSr(I) = Nr(KI) �X0=1, and PLSr
+(I) = Nr

+(KI) �X0=1.

Corollary 2.19. Let I be a set of inequalities in{X1, . . .Xn} that includes the inequalities0≤ Xi ≤ 1 for all
i ∈ [n], and let KI ⊆ R

n+1 be the polyhedral cone given by the homogenization of I. There exists a rank≤ r
LS refutation of I if and only if every point of Nr(KI) satisfies0≥ X0, if and only if Nr(KI) �X0=1 is empty.

There exists a LS elimination of x∈ R
n from I of rank at most r if and only if

(

1
x

)

6∈ Nr(KI). The analogous

statements relate LS0 with N0, and LS+ with N+.

A contrapositive reading of the definition shows that fory∈ R
n+1 and a protection matrixY for y, for any

coneQ with y∈ Q, if y 6∈ N+(Q) then there exists somei ∈ [n] with eitherYei 6∈ Q orY(e0−ei) 6∈ Q. That is,
if y fails to make it into the next round of LS+ tightening, it is because column ofY fails to belong toQ. By
a variant of Theorem 2.18, we are able to make analogous claims for the syntactic formulation ofN+ cuts.

Definition 2.20. Let x∈ R
n be given, and let Y be an LS0 protection matrix for

(

1
x

)

. For each i= 0, . . .n,

let yi be the bottom n entries of the n+1 dimensional column vector Yei , so that Yei =
(

xi
yi

)

. For i ∈ E(x),

let PVi,1(Y) denote the vector yi/xi and let PVi,0(Y) denote the vector(x−yi)/(1−xi). For i ∈ Supp(x), let
PVi,0(Y) = PVi,1(Y) = x. These2n vectors are collectively known as theprotection vectors forx from Y.

Lemma 2.21. (proof in Appendix) Let I= {aT
1 X ≥ b1, . . .aT

mX ≥ bm} be a system of inequalities. Let cTX ≥ d
be an inequality obtained by one one round of LS+ lift-and-project from I, that is:

d−cTX =
m

∑
i=1

n

∑
j=1

αi, j (bi −aT
i X)Xj +

m

∑
i=1

n

∑
j=1

βi, j(bi −aT
i X)(1−Xj)+

n

∑
j=1

λ j(X
2
j −Xj)+∑

k

(gk +hT
k X)2

with eachαi, j ,βi, j ≥ 0. Let x∈ R
n be given such that cTx < d. If Y is an LS+ protection matrix for

(

1
x

)

,

then there exists an i∈ [m] and a j∈ [n] so that either:

1. aT
i X ≥ bi is used as the hypothesis for a lifting inference on Xj , xj 6= 0, and aTi PVj,1(Y) < bi .

2. aT
i X ≥ bi is used as the hypothesis for a lifting inference on1−Xj , xj 6= 1, and aTi PVj,0(Y) < bi .

The proof of Lemma 2.21 is immediate from the usual proof of Theorem 2.18. The following lemma is
immediate from the definitions:

Lemma 2.22.Let x∈R
n be given, and let Y be an LS0 protection matrix for

(

1
x

)

. For all i ∈E(x), ε∈{0,1},

(PV(Y)i,ε)i = ε. For all i ∈ Supp(x), all ε ∈ {0,1}, (PV(Y)i,ε)i = xi .

3 Tree-size versus rank

The proof of the tree-size/rank trade-off is based upon constructing a partial assignment that kills all paths
that lift on a large number of variables - this should then create a low rank refutation of the system. However,
it is not clear what happens to paths that repeatedly lift on asmall number of variables. The distinction is
between rank and what we dubvariable rank.
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We show that rank and variable rank are equal in Subsection 3.2, and we use this to prove the tree-size/rank
trade-off in Subsection 3.3. First, we need some propertiesof how the Lovász-Schrijver operators behave
on the faces of a polyhedral cone.

3.1 Lovász-Schrijver operators and projections

The following lemma and its consequences are crucial for theresults of this paper.

Lemma 3.1. (Lemma 3.6 of [13]) If F is a face of a polyhedral cone K, then N0(F) = N0(K)∩F, N(F) =
N(K)∩F and N+(F) = N+(K)∩F.

Proof. We present the argument for theN0 operator; the other cases are analogous.

Let y∈N0(K∩F) be given. By definition, there is an LS0 protection matrix fory with respect toK∩F. This
is clearly also an LS0 protection matrix fory with respect toK. Therefore,y∈N0(K) and thusy∈N0(K)∩F.

For the other direction, choose a system of homogenized inequalitiesA so thatK = {y∈ R
n+1 | Ay≥ 0}; let

A1, . . .Am denote the rows ofA. ChooseJ ⊆ [m] so thatF = {y∈ K | AJy = 0}. Let y∈ N0(K)∩F be given.
There is an LS0 protection matrixY for y with respect toK. Let i ∈ {0, . . .n} and j ∈ J be given. BecauseY
is an LS0 protection matrix fory with respect toK, Yei ∈ K andY(e0−ei) ∈ K. ThereforeA j(Yei) ≥ 0 and
A j(Ye0−Yei)≥ 0. However, becauseYe0 = y∈ F, A jYe0 = 0, and thereforeA j(−Yei)≥ 0. Because we also
have thatA j(Yei) ≥ 0, A j(Yei) = 0. Becausej ∈ J was arbitrary, bothYei ∈ K ∩F andYe0−Yei ∈ K ∩F.
ThusY is an LS0 protection matrix fory with respect toK∩F, and thereforey∈ N0(K ∩F).

Lemma 3.2. Let I be system of inequalities over the variables X1, . . .Xn, such that I includes0 ≤ Xi ≤ 1
for each i∈ [n]. For every i∈ [n], and every inequality cTX ≥ d, if there is a derivation of(cTX ≥ d) �Xi=0

from I �Xi=0 of rank r, then there isε ≥ 0 and a derivation of cTX + εXi ≥ d of rank at most r. Similarly,
if there is a derivation of(cTX ≥ d) �Xi=1 from I �Xi=1 of rank r, then there isε ≥ 0 and a derivation of
cTX + ε(1−Xi) ≥ d of rank at most r.

Proof. We present the case ofXi = 0 for the LS system, the case ofXi = 1 and the LS0 and LS+ sys-
tems are entirely analogous. LetI , i ∈ [n], and cTX ≥ d be given as in the statement of the Lemma.
Suppose that there is a rankr derivation of(cTX ≥ d) �Xi=0 from I �Xi=0. As a consequence, we have
that there is a rank≤ r derivation ofcTX ≥ d from I ∪{Xi = 0}, and therefore, by Theorem 2.18, for all
x∈ (Nr(KI ∩{Xi = 0})) �X0=1, cTx≥ d. On the other hand:

(Nr(KI ∩{Xi = 0})) �X0=1 = (Nr(KI )∩{Xi = 0}) �X0=1= (Nr(KI) �X0=1)∩{Xi = 0}
= PLSr(I)∩{Xi = 0} = PLSr(I) ∩{Xi ≤ 0}

Therefore, by the affine Farkas lemma, Lemma 2.1, there existα1, . . .αm, with eachα j ≥ 0, ε ≥ 0, and
inequalitiesaT

j −b j ≥ 0, each derivable fromI within rankr, so that:∑m
j=1α j(aT

j −b j)+ε(−Xi) = cTX−d,
and thus∑m

j=1 α j(aT
j −b j) = cTX + εXi −d. ThereforecTX + εXi −d can be derived in LS rank≤ r from I .

Corollary 3.3. Let I be system of inequalities over variables Xi, i ∈ [n]. For every i∈ [n], if there is a
refutation of I�Xi=0 of rank r, then there isε > 0 and a derivation of Xi ≥ ε of rank at most r. Similarly, if
there is a refutation of I�Xi=1 of rank r, then there isε > 0 and a derivation of(1−Xi)≥ ε of rank at most r.
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Proof. Suppose that there is a refutation ofI �Xi=0 of rank at mostr. That is, there is a derivation of 0≥ 1
from I �Xi=0 of rank at mostr. By Lemma 3.2, there existsa≥ 0 so that there is a rank at mostr derivation
of aXi ≥ 1 from I . If a > 0, we multiply by 1/a and haveXi ≥ 1/a > 0. If a = 0, there is a derivation of
0≥ 1 from I - we addXi ≥ 0 to this to obtainXi ≥ 1. The case forI �Xi=1 is analogous.

Definition 3.4. Let y∈ R
n+1 be given with y0 = 1. and let K⊆ R

n+1 be a cone. Let Y be a LS0 (LS, LS+)
protection matrix for y with respect to K. Y is said to besupport extendingif for all i ∈ [n], for all j ∈ [n],
y j = 1⇒ (Yei) j = yi , and yj = 0⇒ (Yei) j = 0.

The designation “support extending” was chosen because of the following lemma:

Lemma 3.5. Let x∈ R
n be given and let I be a set of inequalities that includes0≤ Xi ≤ 1 for all i ∈ [n]. If Y

is a support-extending protection matrix for
(

1
x

)

with respect to the cone KI , then for each i∈ [n], ε ∈ {0,1},

Supp(x)∪{i} ⊆ Supp(PVi,ε(Y)).

Proof. For i ∈ Supp(x), PVi,0(Y) = PVi,1(Y) = x, so the claim holds. Now consideri ∈ E(x). For each
ε ∈ {0,1}, Lemma 2.22 guarantees thati ∈ Supp(PVi,ε(Y)). Now, let j ∈ Supp(y) be given.

(PVi,0(Y)) j =
x j − (Yei) j

1−xi
=

{

0−0
1−xi

= 0 = x j if x j = 0
1−xi
1−xi

= 1 = x j if x j = 1

(PVi,1(Y)) j =
(Yei) j

xi
=

{

0
xi

= 0 = x j if x j = 0
xi
xi

= 1 = x j if x j = 1

Thus, Supp(x)⊆Supp(PVi,ε(Y)). We actually get that the protection vectors also agree withx on the support
of x, but we do not need that in any arguments of this paper.

Lemma 3.6. Let K⊆ R
n+1 be a polyhedral cone that satisfies the inequalities0≤ Xi ≤ X0 for all i ∈ [n].

For all y ∈ K with y0 = 1, y∈ N0(K) (N(K), N+(K)) if and only if there exists a support extending LS0 (LS,
LS+) protection matrix for y with respect to K.

Proof. We present the proof for LS0 operator; the other cases are identical. Clearly, if such a protection
matrix exists, theny ∈ N0(K). Now suppose thaty ∈ N0(K). Let F = {z∈ K | ∀i ∈ [n], (yi = 1 ⇒ zi =
z0), (yi = 0 ⇒ zi = 0)}, this is a face ofK becauseK satisfies the inequalities 0≤ Xi ≤ X0. Of course,
y ∈ N0(K)∩F, and by Lemma 3.1,N0(K)∩F = N0(K ∩F), so y ∈ N0(K ∩F). Therefore, there exists
an LS0 protection matrixY for y with respect toK ∩F . By definition,Y is also a protection matrix for
y with respect toK. Furthermore, becauseY is a protection matrix fory with respect toK ∩F, for each
i ∈ [n], Yei ∈ K ∩F. Of course, membership inF guarantees that for alli ∈ [n] for all j ∈ [n], if y j = 1 then
(Yei) j = (Yei)0 = yi , and ify j = 0, then(Yei) j = 0.
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3.2 Variable rank

Variable rank measures how many distinct variables must be lifted upon along some path in a derivation.
More precisely: LetI be a set of linear inequalities over the variablesX1, . . . ,Xn, and letΓ be a tree-like LS+
derivation fromI . Label the edges of the tree by the literal that is being lifted on in that inference. Letπ
be a path from an axiom to the final inequality. Thevariable rank ofπ is the number of distinct variables
that appear as lift-variables in the edges ofπ. Thevariable rankof Γ is the maximum variable rank of any
path from an axiom to the final inequality inΓ. For any inequalitycTX ≥ d, thevariable rank of cTX ≥ d
with respect to I, vrankI (cTX ≥ d), is defined to be the minimal variable rank of any derivation of cTX ≥ d.
If there is no such derivation, then the variable rank is defined to be∞. The variable rank ofI , vrank(I),
is defined to be vrank(0 ≥ 1). The variable rank of a vectorx ∈ [0,1]n with respect toI , vrankI(x), is the
minimum variable rank with respect toI of an inequalitycTX ≥ d such thatcTx < d.

It turns out that rank equals variable rank. This is what allows us to prove a tree-size/rank trade-off in
Theorem 3.10 instead of tree-size/variable rank trade-off: The strategy for the proof of Theorem 3.10 is to
apply restrictions that kill all paths of high variable rank, possibly leaving some high rank but low variable
rank branches.

Theorem 3.7. Let I be a set of inequalities, then for LS0, LS and LS+, for any x, vrankI (x) = rankI (x).

Proof. Let x ∈ [0,1]n. Clearly vrankI (x) ≤ rankI (x). We will prove the other direction by induction on
rankI(x). We will show that for anyx, if x has rankr, then any elimination ofx must have a path that lifts
on at leastr distinct variables fromE(x). (Recall thatE(x) are those indices/coordinates ofx that take on
nonintegral values.) Forr = 0 the proof is trivial.

For the inductive step, letx be a vector such that rankI (x) ≥ r + 1. By Lemma 3.6, there is a support

extending protection matrixY for
(

1
x

)

with respect toNr
+(PI ). LetΓ be a minimum variable rank elimination

of x that is frugal in the sense thatx satisfies every inequality ofΓ except for the final inequality. Let the
final inference ofΓ be:

d−cTX =
m

∑
i=1

n

∑
j=1

αi, j (bi −aT
i X)Xj +

m

∑
i=1

n

∑
j=1

βi, j(bi −aT
i X)(1−Xj)+

n

∑
j=1

λ j(X
2
j −Xj)+∑

k

(gk +hT
k X)2

By Lemma 2.21, there existsi ∈ [m] and j ∈ [n] so that eitheraT
i X ≥ bi is the hypothesis of anXj lifting and

aT
i PV1, j(Y) < bi , or aT

i X ≥ bi is the hypothesis of an 1−Xj lifting and aT
i PV0, j(Y) < bi .

Suppose that the lifting is onXj (the case of 1−Xj is exactly the same). We now want to argue thatj is not
in Supp(x). Supposej ∈ Supp(x). ThenPV0, j(Y) = PV1, j(Y) = x. But this implies thataT

i x < bi soΓ is not
frugal, as we could have removed this last inference. Thus, we can assume thatj is not in Supp(x). Now

let y = PVj,1(Y). BecauseY is a protection matrix for
(

1
x

)

with respect toNr
+(KI ), y = PVj,1(Y) ∈ Nr

+(KI).

Thereforey has rankr and by the induction hypothesis, this implies that this derivation ofaT
i X ≥ bi must

have some long path that lifts on at leastr variables fromE(y). Consider this long path plus the edge labelled
Xj from aT

i X ≥ bi to cTX ≥ d. We want to show that this path lifts onr + 1 distinct variables fromE(x).
First, letSbe the set ofr distinct variables fromE(y) that label the long path in the derivation ofaT

i X ≥ bi .
BecauseY is support extending, by Lemma 3.5, theser variables are also inE(x). Now consider the extra
variableXj labelling the edge fromaT

i X ≥ bi to cTX ≥ d. We have argued above thatj is in E(x) but not in
E(y) and thereforeXj is distinct fromS. Thus altogether we haver +1 distinct variables fromE(x) that are
mentioned along this long path, completing the inductive step.
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3.3 A trade-off for rank and tree-size

Before we prove the tree-size/rank trade-off, we need a few elementary lemmas.

Lemma 3.8. (proof in Appendix) Letε > 0 be given. From the inequality Xi ≥ ε there is a rank one LS0
derivation of Xi ≥ 1, and from the inequality1−Xi ≥ ε there is a rank one LS0 derivation of−Xi ≥ 0.

Lemma 3.9. (proof in Appendix) For all systems of in equalities I, all positive integers r, and allε,δ > 0:
If there is a rank≤ r −1 derivation from I of Xi ≥ ε and a rank≤ r derivation from I of1−Xi ≥ δ, then
there is a rank≤ r refutation of I. If there is a rank≤ r −1 derivation from I of1−Xi ≥ ε and a rank≤ r
derivation from I of Xi ≥ δ, then there is a rank≤ r refutation of I.

Theorem 3.10.For any set of inequalities I with no0/1 solution, in each of the systems LS0, LS, and LS+,
rank(I) ≤ 3

√

nlnST(I).

The high-level strategy for the proof of Theorem 3.10 is verysimilar to that used by Clegg, Edmonds and
Impagliazzo, showing a relationship between degree and size for the polynomial calculus [11], and that used
by Ben-Sasson and Wigderson showing a size/width trade-offfor resolution [8]. The primary difference is
in how refutations ofI �X=0 andI �X=1 are combined into a refutation ofI . To convert a refutation ofI �X=0

into a derivation ofX > 0, rather than dragging along a side formula, as in [8], the proof of Theorem 3.10
uses Lemma 3.2.

Proof. (of Theorem 3.10) LetΓ be a minimum tree-size refutation ofI , and letS= |Γ|. Setd =
√

2nlnST(I),
anda = (1−d/2n)−1. Let F be the set of paths inΓ of variable rankat leastd. Call such paths “long”. We
show by induction onn andb that if |F | < ab then rank(I) ≤ d+ b. Observe that the claim trivially holds
whend ≥ n, because every refutation that uses at mostn variables has rank at mostn, so we may assume
that d < n. In the base case,b = 0 and there are no paths inΓ of variable rank more thand, and thus by
Theorem 3.7, rank(I)≤ d. In the induction step, suppose that|F |< ab. Because there are 2n literals making
at leastd|F| appearances in the|F| many long paths, there is a literalX (hereX is Xi or 1−Xi for some
i ∈ [n]) that appears in at leastd2n|F | of the long paths. SettingX = 1, Γ �X=1 is a refutation ofI �X=1 with
at most

(

1− d
2n

)

|F | < ab−1 many long paths. By the induction hypothesis, rank(I �X=1) ≤ d + b− 1. By
Lemma 3.2, there isε ≥ 0 and a derivation of 1−X ≥ ε from I of rank at mostd+b−1. On the other hand,
Γ �X=0 is a refutation with at most|F | < ab many long paths and inn−1 many variables. By induction on
the number of variables, rank(I �X=0)≤ d+b. By Lemma 3.2, there isδ ≥ 0 and a derivation ofX ≥ δ from
I of rank at mostd+b. Therefore by Lemma 3.9, rank(I)≤ d+b. This concludes the proof that if|F|< ab,
then rank(I) ≤ d+b.

Because|F| < |Γ| ≤ aloga(S), we have that rank(I) ≤ loga(S)+d so that:

rank(I) ≤ d+ loga(S) = d+ log( 2n
2n−d)

(S)

= d+ log(1+ d
2n−d)

S= d+(lnS) log(1+ d
2n−d)

(e)

= d+(lnS)(ln(1+(d/(2n−d))))−1

Because 0≤ d < n, we have that 0≤ d/(2n−d) < 1, so we may apply the bound ln(1+x)≥ x−x2/2≥ x/2
with x = d/(2n−d). Therefore:

rank(I) ≤ d+(lnS)(d/2(2n−d))−1

≤ d+(lnS)(2·2n/d)

= 3
√

2nlnS
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Corollary 3.11. For the LS0, LS and LS+ systems, we have that for any set of inequalities I in n variables
with no0/1 solution, ST(I) ≥ e(rank(I))2/9n.

3.4 Asymptotic tightness for LS and LS0

Up to logarithmic factors, the trade-off for rank and tree-size is asymptotically tight for LS0 and LS refuta-
tions. This follows from well-known bounds for the propositional pigeonhole principle: On the one hand,
it is shown in [17] that LS refutations ofPHPn+1

n require LS rankΩ(n), but on the other hand, there are
tree-like LS0 refutations ofPHPn+1

n of sizenO(1) (this seems to be a folklore result).

Theorem 3.12. For each n∈ N, there is is a CNF F on N= Θ(n2) many variables such that rank(F) =

Ω
(

√

(N/ logN) · lnST(F)
)

.

The propositional pigeonhole principle has a LS+ refutation of rank one [17], so that example does not show
the trade-off to be asymptotically tight for LS+. Determining whether or not the trade-off is asymptotically
tight for LS+ is an interesting open question.

3.5 No trade-off for arbitrary derivations in LS 0 and LS, and the cost of deduction

Theorem 3.10 shows that for LS or LS+ refutations, strong enough rank lower bounds automatically imply
tree-size lower bounds. But what about derivations of arbitrary inequalities? Somewhat counter-intuitively,
a similar trade-off does not apply for LS or LS0 derivations of arbitrary inequalities, nor for the elimination
of points from a polytope. It is an interesting open problem to determine whether or not such a tree-size/rank
tradeoff for arbitrary derivations holds for LS+.

A natural approach for transforming results abut refutations into results about derivations would be to use
some form of deduction.Deductionis the logical principle that says: If there is a refutation of {ψ1, . . .ψn}
in some logical systemF , then there is anF derivation of¬ψn from the hypotheses{ψ1, . . .ψn−1}. Many
systems of propositional logic enjoy an efficient version ofthe deduction theorem, in which passing from
refutations to derivations does not increase the size (or some other parameter) very much. In the context
of the Lovász-Schrijver systems, deduction means transforming a refutation of{aT

i X ≥ bi | i ∈ [m]} into a
derivation ofaT

mX ≤ bm− ε from the hypotheses{aT
i X ≥ bi | i ∈ [m−1]} for someε > 0.

One hypothetical approach to obtain a tree-size/rank trade-off for arbitrary derivations would proceed as
follows: If we know that derivingaT

mX < bm from the hypotheses{aT
i X ≥ bi | i ∈ [m− 1]} requires high

rank, then “by deduction” refuting{aT
i X ≥ bi | i ∈ [m]} requires high rank and thus large tree-size, therefore

derivingaT
mX < bm from the hypotheses{aT

i X ≥ bi | i ∈ [m−1]} requires large tree-size. Unfortunately, the
hypothetical use of the deduction theorem is fallacious: For LS0 and LS systems, deduction can blow up the
rank.

Theorem 3.13.For sufficiently large n, there exists a system of inequalities I over the variables{X1, . . .Xn}
and an inequality aTX ≤ b such that:

1. Any LS derivation of aTX ≤ b from I requires rankΩ(n).
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2. For anyε > 0, I ∪{aTX ≥ b+ ε} has a rank one LS0 refutation.

3. There is a tree-like LS0 derivation of aTX ≤ b from I of polynomial size.

Proof. Let I be the following system of inequalities: For each 1≤ i < j ≤ n, there isXi + Xj ≤ 1. Let
aTX ≤ b be the inequality∑n

i=1 Xi ≤ 1. We show that derivingaTX ≤ b from I requires rankΩ(n). This
is just a reduction from the well-known rank lower bound for LS refutations ofPHPn

n−1 [17]. Let r be the
minimum rank derivation of∑n

i=1Xi ≤ 1 from I . In then to n− 1 pigeonhole principle, there are clauses
Xi, j + Xi′, j ≤ 1 (for all i, i′ ∈ [n] with i 6= i′, and all j ∈ [n−1]), and∑n−1

j=1 Xi, j ≥ 1 (for all i ∈ [n]). In rankr

we can derive∑n
i=1Xi, j ≤ 1 for eachj ∈ [n−1]. Summing up over allj gives∑n−1

j=1 ∑n
i=1Xi, j ≤ n−1. On the

other hand, there is a rank zero derivation of∑n
i=1 ∑n−1

j=1 Xi, j ≥ n from the inequalities ofPHPn
n−1. Thus we

have a rankr refutation ofPHPn
n−1. Because the LS rank ofPHPn

n−1 is Ω(n), it follows thatr = Ω(n).

Next we want to show that for anyε, the systemI ∪{∑n
i=1 Xi ≥ 1+ ε} has a rank one LS0 refutation: By

multiplying Xi +Xj ≤ 1 byXi and multilinearizing, we getXi +XjXi ≤Xi, equivalently,XjXi ≤ 0. Do this for
all i 6= j, thus obtainingXjXi ≤ 0 for all i 6= j. By multiplying ∑n

j=1Xj ≥ (1+ ε) by Xi and multilinearizing,
we get∑ j 6=i XjXi ≥ εXi. However, adding this with the previously derivedXjXi ≤ 0 inequalities, and scaling,
we get 0≥ Xi, for all i = 1, . . .n. Thus we have 0≥ ∑n

i=1 Xi ≥ (1+ ε), which yields 0≥ 1 after scaling.
Finally, it is not hard to show by induction onk that there is a polynomial tree-size LS0 derivation of
∑k

i=1Xi ≤ 1 from I .

We do not yet know whether or not there is a “rank efficient deduction theorem” for LS+. Theorem 3.13 does
not apply because it relies upon a rank lower bound the propositional pigeonhole principle, andPHPn+1

n has
rank one LS+ refutations [17]. Finally, known bounds for the pigeonholeprinciple show that for LS0 and
LS, there is no tree-size/rank trade-off for eliminations of points.

Theorem 3.14. For sufficiently large n∈ N, there exists a set of inequalities In over X1, . . . ,Xn and a point
x∈ [0,1]n such that there is a polynomial size tree-like LS0 derivation of x from In, but any LS elimination
of x requires rankΩ(n).

Proof. As in the proof of Theorem 3.13, letI be the following system of inequalities: For each 1≤ i < j ≤ n,
there isxi + x j ≤ 1. By the argument of the proof of Theorem 3.13, all derivations of ∑n

i=1xi ≤ 1 from I
require rankr0 = Ω(n). Therefore, by the affine Farkas Lemma, Lemma 2.1, for allr < r0 there exists
z∈ Nr(PI) such that∑n

i=1zi > 1. Let x be such a point belonging toN(r0−1)(PI). On the other hand, there
is a tree-like LS0 derivation of∑n

i=1 xi ≤ 1 from I of sizenO(1). Upon deriving∑n
i=1 xi ≤ 1, the pointx is

eliminated.

4 Tree-size bounds based on expanding constraints

The tree-size/rank trade-off of Theorem 3.10 and Corollary3.11 allows us to quickly deduce tree-size
bounds from previously known rank bounds for LS+ refutations of prominent “sparse and expanding” un-
satisfiable formulas. Specifically, we derive exponential tree size lower bounds for the Tseitin principles,
random 3CNF formulas, and random mod 2 linear equations.

In this section, letF be a set of mod-2 equations overn variables. That is, each equation inF is of the form
∑i∈SXi ≡ a (mod 2), whereS⊆ [n] anda∈ {0,1}. Notice that each such equation can be represented by
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the conjunction of 2|S|−1 clauses, each of which can be represented as a linear inequality. We denote byPF

the polytope bounded by these inequalities and by the inequalities 0≤ Xi ≤ 1.

Let GF be the bipartite graph from the setF to the set of variables where each equation is connected to the
variables it contains.

Definition 4.1. For x ∈ {0,1,1/2}n, we say an equation f∈ F is fixed with respect to x if x sets all the
variables set of f to 0/1 and f is satisfied by x. Let GF(x) be the subgraph of GF induced by the set of
variables E(x) (those variables that are not integral valued) and the set ofnonfixed equations.

Definition 4.2. Random linear equations overZ2: There are2
(n

k

)

linear, mod-2 equations over n variables

that contain exactly k different variables; letM k,n
m be the probability distribution induced by choosing m of

these equations uniformly and independently.Randomk-CNFs: There are2k
(n

k

)

clauses over n variables

that contain exactly k different variables; letN k,n
m be the probability distribution induced by choosing m of

these clauses uniformly and independently.

Definition 4.3. The Tseitin formula for an odd-sized graph G= (V,E) has variables xe for all edges e∈ E.
For each v∈V there is one equation expressing that the sum of all edges incident with v is odd:∑e,v∈exe =
1 mod2.

The following theorem proven by [9] gives a rank lower bound for mod 2 equations as a function of the
expansion.

Theorem 4.4. [9] Let ε > 0 and let w∈ 1
2Z

n. If GF(w) is an(r,c)-boundary expander, then it has LS+ rank
at least r(c−2).

The following results from [9] yield linear rank bounds for instances of Tseitin, 3-CNF, and 3-LIN formulas.

Fact 4.5. For any constantδ, ε, k, there existsα > 0 such that the following holds: Let F∼M k,n
∆n . Then GF

is almost always an(αn,k−1− ε) boundary expander. Likewise for GC where C∼ N k,n
∆n .

Theorem 4.6. [9]

1. The Tseitin tautology on a graph H has LS+ rank at least(c−2)n/2 where c is the edge-expansion of
H;

2. Let k≥ 5. There exists c such that for all constants∆ > c, F ∼ M k,n
∆n requires LS+ rank Ω(n) with

high probability;

3. Let k≥ 5. There exists c such that for all constants∆ > c, C∼ C k,n
∆n requires LS+ rank Ω(n) with high

probability.

As a consequence of Theorem 4.6 combined with Theorem 3.10, we get exponential tree-size bounds for
these formulas.

Theorem 4.7. 1. Let G be an odd-size graph on n nodes with edge-expansion c such that c> 4, and
maximum degree∆. All LS+ refutations of PTS(G) require tree-size2Ω(n/∆).

2. Let k≥ 5. There exists c such that for all constants∆ > c, for F ∼ M k,n
∆n , with probability 1−o(1),

all LS+ refutations of Pf require tree-size2Ω(n).
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3. Let k≥ 5. There exists c such that for all constants∆ > c, for C∼ N k,n
∆n , with probability1−o(1), all

LS+ refutations of PC require tree-size2Ω(n).

The above proofs rely on the fact that fork≥ 5, the boundary expansion is greater than 2. In a subsequent
paper, Alekhnovich, Arora and Tourlakis prove linear rank for random 3-CNFs [2].

Lemma 4.8. [2] For a CNF φ, let Cφ be the bipartite graph between clauses and variables in which there
is an edge between each clause and the variables that it contains. If Cφ is a (δn,2− ε) expander, then

(1,1/2, . . .1/2) ∈ Nεδn/2
+ (SAT(φ)).

By a well-known application of Markov’s inequality, the probability that a random 3-CNFs with at least 5.2n
clauses is unsatisfiable is 1−o(1) asn→ ∞. Furthermore, there exists a constantκ so that the probability
that a random 3-CNF on∆n clauses is a(κn/∆2,4/3) exapnder is 1− o(1) asn → ∞ (cf. [7], although a
slightly different definition of expansion is used there). Thus we have:

Theorem 4.9. There exists a constantβ > 0 such that ifφ is random∆n clause3-CNF on n variables with
∆ ≥ 5.2, then with probability1−o(1) as n→ ∞, φ is unsatisfiable and all LS+ refutations ofφ require rank
at leastβn/∆2.

An immediate application of Corollary 3.11 extends this to:

Theorem 4.10. There exist constants a constantγ > 0 such that ifφ is random∆n clause3-CNF on n
variables, with∆ ≥ 5.2, then with probability1−o(1) as n→ ∞, φ is unsatisfiable and all LS+ refutations
of φ require tree-size at least2γn/∆2

.

5 Tree-size based integrality gaps

In this section, we will prove integrality gaps for small tree-like LS+ derivations. Suppose we want to get an
integrality gap ofg for sizes tree-like LS+ derivations for some optimization problemP. Our goal will be
the following. Given an arbitrary polytopeP′ obtained by a sizes LS+ tightening of the original polytope
P, we want to exhibit a (nonintegral) pointr such that: (i)r is in P′; and (ii) the value of objective function
(what we are trying to maximize) onr is off from the optimal integral solution by a factor ofg.

In this section, we establish tree-size based LS+ integrality gaps for three combinatorial problems: Max-k-
SAT, max-k-LIN, and vertex cover. As discussed in Subsection 3.5, we cannot always use Theorem 3.10
directly to obtain tree-size based integrality gaps. Nonetheless, we prove integrality gaps for sub-exponential
tree-size LS and LS+ relaxations by using variants of the method. For max-k-SAT and max-k-LIN, the
method for establishing a rank-based integrality gap actually establishes a rank bound for refuting the system
stating “all constraints are satisfied” and we will apply Theorem 3.10 in that manner. For vertex cover, on
the other hand, we apply a random restriction to the derivation so that after applying the restriction, all high
variable rank paths are killed, but, on the other hand, the restricted vertex cover instance still requires high
variable rank to eliminate all points with a poor integrality gap.

5.1 Max-k-SAT and Max-k-LIN

The problem MAX-k-SAT (MAX-k-LIN) is the following: Given a set ofk-clauses (mod-2 equations),
determine the maximum number of clauses (equations) that can be satisfied simultaneously. It is known that
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it cannot be well-approximated in polynomial time ifP 6= NP. Here we show inapproximation results (that
are unconditional) for a restricted class of approximationalgorithms that involve LS+-relaxations of a linear
program.

Given a set ofk-mod-2 equationsF = { f1, . . . , fm} over variablesX1, . . . ,Xn, add a new set of variables
Y1, . . . ,Ym. For eachfi : ∑ j∈Ii Xj ≡ a (mod 2), let f ′i be the equationYi +∑ j∈Ii Xj ≡ a+1 (mod 2). Let F ′

be the set off ′i ’s. If Yi is 1, thenf ′i is satisfied if and only iffi is satisfied. Hence we want to optimize the
linear function∑m

i=1Yi subject to the constraintsF ′.

Call this linear programLF . In the same way, we can obtain a maximization problem,LC, corresponding to
a set ofk clausesC. analagous manner. Anr-round LS+ relaxation ofLF (or any linear program) is a linear
program with the same optimization function but with any additional constraints that can be generated in
depthr from the original constraints using LS+. Similarly, a sizes tree-like LS+ relaxation ofLF (or any
linear program) is a linear program with the same optimization function, but withs additional constraints
that are derived from the original ones via a tree-like LS+ proof.

Theorem 5.1. Let k≥ 5. For any constantε > 0, there are constants∆,β > 0 such that if F∼ M k,n
∆n then

the integrality gap of any size s≤ 2βn tree-like LS+ relaxation of LF is at least2− ε with high probability.
Similarly, for any k≥ 5 and anyε > 0, there exists∆,β > 0 such that if C∼ N k,n

∆n , then the integrality gap

of any size s≤ 2βn-round relaxation of LC is at least 2k

2k−1 with high probability.

Proof. We will obtain size based integrality gaps via a reduction tothe tree-size lower bounds proven in the
previous section for 3-CNF and 3-LIN refutations.

We present the proof forLF ; an analgous argument works forLC. GivenF ∼ M k,n
∆n , we want to show that

there is no derivation of∑Yi < m (wherem is the number of mod 2 equations) via a polynomial-size tree
derivation from the original equationsF ′. Consider a new constraintg = ∑m

i=1Yi ≥ m. The set of constraints
F ′ ∪ g is unsatisfiable withF ∼ M k,n

∆n . In fact, for ∆ ≥ (8− 4ε + ε2)/ε2, a Chernoff bound and a union
bound show that with high probability, no boolean assignment satisfies more than a 1/(2− ε) fraction of
F ′’s equations.

First, we show that the unsatisfiable system of inequalitiesF ′∪{g} requires large tree size refutations. We
do this by applying the tree-size/rank trade-off of Theorem3.10 For the rank bound, we will show that the
the assignmentz where allYi ’s are set to 1 and allXi ’s are set to 1/2 survives forΩ(n) many rounds of LS+
lift-and-project. This assignment clearly satisfies all inequalities inF ′ ∪{g}. Now, when we consider the
equations restricted to the nonintegral values, it is just the original equations ofF. With probability 1−o(1)

overF ∼M k,n
∆n , the associated graphGF is an(αn,2+δ)-boundary expander for someα,δ > 0 that depend

on ∆. Let β = αδ. Hence by Theorem 4.4, the rankF∪{g}(z) = Ω(n), and therefore rank(F ∪{g}) = Ω(n).
By Theorem 3.10, we can conclude that the extended systemF ′∪g requires tree-size 2Ω(n) to refute in LS+.

Now, we show that that the above superpolynomial tree-size needed to refuteF ′ ∪{g} implies the same
tree-size lower bound for deriving∑m

i=1Yi ≤ m− ε for all ε > 0: Suppose that we can derive∑m
i=1yi ≤ m− ε

from the original equationsF ′ for someε > 0 using tree-sizeS, can derive the empty polytope fromF ′∪g
by summing∑m

i=1yi ≤ m− ε with g, to yield 0≥ ε. ThusS= 2Ω(n).
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5.2 LS+ Integrality Gap for Vertex Cover

Given a 3XOR instanceF over{X1, . . .Xn} with m= ∆n equations, we define the FGLSS graphGF as fol-
lows. GF hasN = 4mvertices, one for each equation ofF and for each assignment to the three variables that
satisfies the equation. We think of each vertex as being labelled by a partial assignment to three variables.
Two verticesu andv are connected if and only if the partial assignments that label u andv are inconsistent.
The optimal integral solution forF is equal to the largest independent set inGF . Note thatN/4 is the largest
possible independent set inGF , where we choose exactly one node from each 4-clique.

The vertex cover and independent set problems onGF is encoded in the usual way, with a variableYC,η for
each node(C,η) of GF , whereC corresponds to a 3XOR equation inF, andη is a satisfying assignment for
C. Its polytopes is denotedVC(GF).

The following lemma was proven in [24].

Lemma 5.2. Let F be a(k,1.95)-expanding 3XOR instance such that any two equations of F share at most
one variable, and let GF be the corresponding FGLSS graph. The point(3/4, . . . ,3/4) is in the polytope
generated afterk−4

44 rounds of LS+ lift-and-project applied to VC(GF).

The following lemma, also proven in [24], shows that there are instances of 3XOR satisfying the hypotheses
of Lemma 5.2.

Lemma 5.3. For every c< 2, ε > 0, there existα,∆ > 0 such that for every n∈ N there is a 3XOR instance
F of mod 2 equations on n variables with m= ∆n equations such that: (i) No more than(1/2+ ε)m of
equations of F are simultaneously satisfiable; (ii) Any two equations of F share at most one variable; and
(iii) F is (αn,c)-expanding.

The above lemmas combine to give the following lower bound.

Theorem 5.4. [24] For everyε > 0 there exists cε > 0 such that for infinitely many n, there exists a graph
G with n vertices such that the ratio between the minimum vertex cover of size G and the optimum solution
produced by any rank cεn LS+ tightening of VC(G) is at least7/6− ε.

Proof. Let ε > 0 be given. Apply Lemma 5.3 and takeα,∆ > 0, t sufficiently large (to demonstrate that the
theorem holds for arbitrary large graphs), and a 3XOR instanceF overX1, . . .Xt with m= ∆t many equations
so thatGF is (αt,1.95) edge expanding, at most(1/2+ ε)m equations ofF are simultaneously satisfiable,
and no two equations ofF share more than one variable.

Note that for any 3XOR instanceF, a minimum size vertex cover ofGF consists of all nodes, less some
independent set of maximum size, and an independent set inGF that containsm0 nodes corresponds to
a an assignment that satisfiesm0 equations ofF. Therefore, the minimum vertex cover size forGF is
≥ 4m−m(1/2+ ε). On the other hand, by Lemma 5.2, the all 3/4 point remains afterαt−4

44 rounds of

LS+ lift-and-project fromVC(GF). Thus, the integrality gap forN
αt−4

4
+ (VC(GF)) is at least4m−m(1/2+ε)

(3/4)4m =
7
6 − ε

3 ≥ 7
6 − ε. The number of vertices inGF is 4∆t, socε ≤ αt−4

44(4∆t) suffices for the Theorem statement.

We will improve Lemma 5.2 by proving a 7/6− ε integrality gap not only for small rank LS+ tightenings
of vertex cover but also for small tree LS+ tightenings of vertex cover. The basic idea is to apply a random
restriction ρ = ρX ∪ ρY, with ρX to the X variables of the 3XOR instance andρY to theY variables of
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the independent set instance, so that: (i) The independent set constraints forGF become the independent
set constraints ofGF�ρX

after applyingρY, ie. VC(GF) �ρY= VC(GF�ρX
). (ii) F �ρX retains the expansion

properties needed to apply Lemma 5.2. (iii) In an LS+ derivation fromVC(GF), any path that lifts onΩ(n)
variables will have some lifting-literal falsified byρY with probability at least 1−2−Ω(n).

Regarding the issue of relating theρX andρY assignments: Given a partial assignmentρX to theX’s, we
simply defineρY via:

ρY(YC,η) =







1 if η is a sub-assignment ofρX

0 if η is inconsistent withρX

YC,η otherwise

It is immediate upon inspection that for anyρX that does not falsify any equation ofF , with ρY defined as
above,VC(GF) �ρY= VC(GF�ρX

) (up to renaming variablesYC,η in which ρX andη are consistent, butρX

sets at most two variables ofC).

We now take an alternative view to point (iii), in which we replace the goal of “falsifying some literal of a
long path” with the goal of satisfying a 3-DNFin the X variables. We construct the 3-DNF on a literal-by-
literal basis: For a negative literal literal 1−YC,η let φ−C,η be the 3-DNF stating that “ρX satisfiesη”, that is,

let xi , x j , xk denote the variables of equationC, and setφ−C,η to bexη(i)
i ∧ xη( j)

j ∧ xη(k)
k . For a positive literal

YC,η, let φ+
C,η be the 3-DNF stating “ρX satisfiesC by satisfying someη′ 6= η”, that is, letxi , x j , xk denote

the variables of equationC, let β1,β2,β3 the three assignments that satisfyC but are notη, and setφ+
C,η to be

∨3
l=1 xβl (xi)

i ∧x
βl (xj )
j ∧xβl (xk)

k . For a pathπ in an LS+ derivation, letφπ denote the 3-DNF obtained by taking
the disjunction ofφ+

C,η, for eachYC,η that is used positively in some lift ofπ, and ofφ−C,η for eachYC,η that is
used negatively in some lift ofπ. We clearly have that: Ifφπ �ρX= 1 thenρY falsifies some lift-literal ofπ.

We are now faced with the task of constructing a restriction to theX variables that will preserve the expansion
properties of the 3XOR instance, but will satisfy the 3-DNFφπ with overwhelming probability whenπ is
a long a path. This was solved by Misha Alekhnovich in his analysis of Res(k) refutations of random
3XORinstances [1]. We now revisit the definitions and results of [1], and show why they may be applied.
The primary difference between our restriction and that of [1] is that we focus on the preservation ofedge
expansion, as opposed toboundary expansion. All that is needed about these closure operators is that they
guarantee expansion after their application, and that the number of equations eliminated is bounded by a
constant times the number of variables set. The correctnessof the random restriction lemma of [1] does
require that the initial system of equations have constant-rate boundary expansion. This applies in our use
because by Fact 2.5, a(r,η) edge expander is an(r,2η−d) boundary expander, and we apply the restriction
lemma to an(αn,1.98) edge expander with 3 variables per equation.

Definition 5.5. (after [3, 1]) Let A∈ {0,1}m×n be an(r,η) edge expander, letδ ∈ (0,1) be given, and let
J ⊆ [n] be given. Define the relatioǹe

J on subsets of[m] as:

I1 `e
J I2 ⇐⇒ |I2| ≤ (r/2)∧

∣

∣

∣
NA(I2)\

(

⋃

i∈I1
Ai ∪J

)
∣

∣

∣
< δ ·η|I2| (2)

Define theδ expansion closure ofJ, eclδA(J), via the following iterative procedure: Initially let I= /0. So
long as there exists I1 so that I`e

J I1, let I1 be the lexicographically first such set, replace I by I∪ I1 and
remove all rows in I1 from the matrix A. Set eclδ

A(J) to be the value of I after this process stops. When the
matrix A is clear from the context, we drop the subscript. Lettheδ-cleanup ofA after removingJ, CLδ

J(A),
be the matrix that results by removing all rows of eclδ(J) and all columns of J∪⋃

i∈eclδA(J) Ai from A.
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Lemma 5.6. [3, 1] Let A∈ {0,1}m×n, δ ∈ (0,1), and J⊆ [n] be given. If CLδJ(A) is non-empty, then CLδ
J(A)

is an(r/2,δ ·η) edge expander.

Lemma 5.7. (after [3, 1], proof of in Appendix) Let A∈ {0,1}m×n be an(r,η)-edge expander, letδ ∈ (0,1)

be given, and let J⊆ [n] be given. If|J| < r(1−δ)η
2 , then|eclδA(J)| < |J|

(1−δ)η .

Lemma 5.8. [1] Let A ∈ {0,1}m×n be an(r,η) edge expander, and let J⊆ [n] be given. For all I0 ⊆ [m], if
NA(I0) ⊆ J then I0 ⊆ eclA(J).

Lemma 5.9. (folklore, cf. [1]) Let Ax= b be a system of equations so that A is an(r,β) boundary expander
with β > 0. For every I⊆ [m] with |I | ≤ r, AIx = bI is satisfiable.

Definition 5.10. Fix δ,γ ∈ (0,1). Let A∈ {0,1}m×n be an(r,β)-boundary expander, and let b∈ {0,1}m be
given. LetD (A, r,β,δ,γ) be the distribution on partial assignments to the variablesX1, . . .Xn generated by

the following experiment: Uniformly select a subset S0 ⊆ {X1, . . .Xn} of sizerβ(1−δ)γ
2 . Let I = eclδA(S0). Let

S= S0∪{Xj | ∃i ∈ I , Ai, j = 1}. The restrictionρ is a uniformly selected assignment to the variables of S
that satisfies AIX = bI .

In the above definition, take note that|S0| ≤ rβ(1−δ)γ
2 ≤ r

2, so that by Lemma 5.7,|I |= |eclδA(S0)| < |S0|
η(1−δ) ≤

r(1−δ)βγ
2η(1−δ) ≤ r(1−δ)ηγ

2η(1−δ) = γr/2 < r/2. Therefore, by Lemma 5.9, the system of equationsAIX = BI is satisfiable.

Below is the random restriction lemma of [1]. We defer the definition of “normal form” until after the
statement.

Definition 5.11. Let F be a DNF, and let S be a set of variables. If every term of F contains a variable from
S, then we say that Sis a cover ofF. Thecovering number ofF, c(F), is the minimum cardinality of a cover
of F.

Lemma 5.12. [1] Let A ∈ {0,1}m×n be an(r,β)-boundary expander such that each column of A contains
at most d ones. Let b∈ {0,1}m be arbitrary. There exists a> 0 (dependent upon only onβ, γ and δ, and
decreasing inβ) such that for any k-DNF F so that F is in normal form:

Prρ∈D (A,r,β,δ,γ)[F �ρ 6= 1] < 2−c(F)/dak

The notion of normal form used in [1] depends upon another definition of “closure”.

Definition 5.13. (after [4, 1]) Let A∈ {0,1}m×n and J⊆ [n] be given. Define theclosure ofJ, clA(J), via
the following iterative procedure: Initially let I= /0. So long as there exists I1 so that∂A(I1) ⊆ J∪ I, let I1
be the lexicographically first such set, replace I by I∪ I1 and remove all rows in I1 from the matrix A. Set
clA(J) to be the value of I after this process stops. When the matrix Ais clear from the context, and we drop
the subscript. Let t be a term. We define cl(t) to be cl(Vars(t)). We say that t islocally consistentif the
formula t∧ [Acl(t)X = bcl(t)] is satisfiable. A DNF F is said to be innormal formif every term t∈ F is locally
consistent.

Lemma 5.14. Let F be an instance of 3XOR, written as AX= b, where A is an(r,η) edge expander with
r ≥ 2 and η > 1.5. Let π a set of literals over the variables{YC,η | (C,η) ∈V(GF)}. The formulaφπ is in
normal form.
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Proof. Let t be a term ofφπ. By definition, t is of the formxη(xi )
i ∧ x

η(xj )
j ∧ xη(xk)

k whereC is an equation
of F, whose variables arexi , x j , andxk, andη is an assignment to these three variables satisfyingC. By
Definition 5.13, we clearly have that equationC belongs toclA(t) = clA(vars(C)). However, the closure
process cannot proceed past the second step, because the edge expansion ofA guarantees all other equations
C′ contain at least one variable not invars(C), so thatN(C′) 6⊆ vars(t) ∪ vars(C) = vars(C). Therefore,

clA(t) = {C}. Becauseη is assignment to{xi ,x j ,xk} that satisfiesC, we have thatt = xη(xi )
i ∧x

η(xj )
j ∧xη(xk)

k
and the equationC can be simultaneously satisfied.

We now address how to bound the maximum number of equations inwhich each variable can occur.

Lemma 5.15. (after [1]) Let ε,α,∆ > 0 and n∈ N be given. Let F be a system of m= ∆n many 3XOR
equations that satisfies: (i) No more than(1/2+ ε)m of the equations of F are simultaneously satisfiable;
(ii) No two equations of F share more than one variable; (iii)F is (αn,1.99) edge-expanding.

There is a 3XOR instance F′ in the X variables satisfying: (i) No more than a(1/2+ ε) fraction of the
equations of F′ are simultaneously satisfiable; (ii) No two equations of F′ share more than one variable;
(iii) F ′ is (αn/2,1.98) edge-expanding; (iv) No variable appears in more than3000∆

α equations. (v) F′ has
at most∆n many equations.

Proof. LetA be equation/variable incidence matrix forF . DefineJ to be the set ofαn
1000 columns of the largest

hamming weight inA, by Lemma 5.7|ecl
199
200
A (J)| < 200|J| ≤ 200(.001r) ≤ r/5 = αn/5. Therefore, CLδJ(A)

has at least∆n−αn/5 many rows, and at leastn− 3αn/5 many columns. Furthermore, by Lemma 5.6,
CLδ

J(A) is an(αn/2, 199
200 · 199

1000) edge expander, which implies that it is an(αn/2,1.98) edge expander.

By Lemma 5.9, we may choose an assignmentρ to the variables ofecl
199
200
A (J) that satisfies every equation

of ecl
199
200
A (J). Let F ′ = F �ρ. F ′ is non-empty becauseF is unsatisfiable, andF ′ is not falsified because any

falsified equation would belong toecl
199
200
A (J). The equation/variable incidence matrix ofF ′ is a submatrix of

CLδ
J(A), and as such is an(αn/2,1.98) edge expander. Furthermore, as restriction ofF, no two equations of

F ′ share more than one variable, and at most a(1/2+ ε) fraction of the equations ofF ′ are simultaneously
satisfiable.

Finally, every variable ofF ′ can appear in at most 3000 equations ofF ′. If more than αn
1000 of the variables

occurred in more than3000∆
α equations, the total number of variable occurrences would exceed3000∆

α · αn
1000 =

3∆n, but this cannot happen since every equation one of the∆n equations contains three variables.

Lemma 5.16. Let F be a 3XOR instance over the X variables such that every X variable appears in at most
d equations of F. Letπ be a set of literals in the Y variables, such that each literalis over a distinct variable.
Then c(φπ) ≥ |π|

4d .

Proof. Each term ofφπ has the formxη(xi )
i ∧ x

η(xj )
j ∧ xη(xk)

k where some equationC of F is in the variable
xi ,x j ,xk and η is one of the four assignments to those three variables that satisfiesC. Because eachX
variable can belong to at mostd many equation, eachX variable can belong to at most 4d terms ofφπ. Thus
c(φπ) ≥ |π|

4d .
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Theorem 5.17. For all ε > 0, there exists∆,c > 0 so that for sufficiently large n, there exists F, a system
of at most∆n many 3XOR equations over{X1, . . .Xn}, such that any tree-like LS+ tightening VC(GF) with
integrality gap≤ 7

6 − ε has size at least2cn.

Proof. Chooseε0,γ > 0 so thatε0 + γ/2 = 3ε. Apply Lemma 5.3, and choose∆,α > 0, and then, takingn
sufficiently large to show that the claim holds for arbitrarily large instances, letF ′ be a system of∆n many
3XOR equations onn variables such thatGF ′ is an(αn,1.99) edge expander, no two equations ofF ′ share
more than one variable, and at most∆n(1/2+ ε0) equations ofF ′ are simultaneously satisfiable.

Apply Lemma 5.15 to obtainF so that: (i) No more than a(1/2+ ε0) fraction of the equations ofF are
simultaneously satisfiable (ii) No two equations ofF share more than one variable (iii)F is (αn/2,1.98)
edge-expanding (iv) No variable appears in more than3000∆

α equations. (v) The number of equations inF is
at most∆n. Setd = 3000∆

α , setδ = 195
198, and leta be the parameter of Lemma 5.12 withδ = 195

198, γ as defined
previously, andβ equal to the boundary expansion ofGF (and thusβ ≥ 0.96).

For eachρ in the support ofD (A,(α/2)n,β,δ,γ), as per Definition 5.10, let the pointwρ be defined by:

wρ
C,η =







1 if ρY(YC,η) = 1
0 if ρY(YC,η) = 0

3/4 otherwise

For eachρ, if ρY(YC,η) = 1 thenρ(YC,η′) = 0 for all η 6= η′, so ∑(C,η)∈V(GF) wρ
C,η ≤ 3m. On the other

hand, each suchρ satisfies at mostγ(α/2)n/2 ≤ γm/2 many equations ofF, so the minimum size vertex
cover in GF�ρ has size at least

(7
2 − ε0

)

m− γm/2. Therefore, the integrality gap of eachwρ is at least
( 7

2−ε0)m−γm/2
3m =

7
2−ε0−γ/2

3 = 7
6 − ε.

SetR= (α/4)n−4
44 . Assume for sake of contradiction that there is a tree-like LS+ tightening ofVC(GF) with

integrality at most76 − ε and tree-size at mostS=
√

2R/4d3a+1 −1. Call this forest of derivationsΓ. Choose
a restrictionρ according to the distributionD (A,(α/2)n,β,δ,γ).

Let π be a path in the derivationΓ from a formula to one of its ancestors that contains at leastR many
distinct variables as lift variables. By Lemma 5.14,φπ is in normal form, and by Lemma 5.16,c(φπ) ≥ R

4d .

Therefore, we may apply Lemma 5.12:Prρ[φπ �ρ 6= 1] < 2−R/4d3a+1
. There are at mostS2 = 2R/4d3a+1 − 1

such paths inΓ, so by the union bound, there exists aρ in the support ofD (A,(α/2)n,β,δ,γ), so thatρY

falsifies a literal on every path ofΓ of variable rank≥ R.

Because the integrality gap ofwρ is at least 7/6− ε and the tighteningΓ has integrality gap at most 7/6− ε,
we may choose an inequalitycTX ≥ d that is derived inΓ such that thatcTwρ < d. Because every path in
Γ of variable rank at leastR has one of its lifting literals falsified, there is a variablerank< R derivation of
(

cTY ≥ d
)

�ρY from VC(GF) �ρY= VC(GF�ρ). BecausecTwρ < d andwρ agrees withρY on the variables
set byρY, wρ also falsifies

(

cTY ≥ d
)

�ρY . So the variable rank needed to eliminatewρ from VC(GF) �ρY is

< R= (α/4)n−4
44 . Thus by Theorem 3.7,wρ can be eliminated fromVC(GF) �ρY with rank< (α/4)n−4

44 . Let
u be the all 3/4’s vector indexed by the variables ofVC(GF) �ρY . BecauseVC(GF) �ρY= VC(GF�ρ), the

elimination ofwρ from VC(GF) �ρY with rank< (α/4)n−4
44 can be transformed into a elimination ofu from

VC(GF�ρ) with rank< (α/4)n−4
44 . However, by Lemma 5.6,F �ρ is an(αn/4,1.95) expander. Furthermore,

any two of its equations share at most one variable. So by Lemma 5.2,u requires rank at least(α/4)n−4
44 to

eliminate fromVC(GF�ρ). Contradiction.
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We have shown that any tree-like LS+ tightening ofVC(GF) with integrality at most76 − ε has tree-size

> S=
√

2R/4d3a+1 −1 =

√

2

(

(α/4)n−4
44

)

/4d3a+1

−1 = 2Ω(n).

6 Separations between proof systems

In this section, we compare the tree-like LS+ proof system for proving CNFs unsatisfiable with other meth-
ods for proving CNFs unsatisfiable- the method of Gomory-Chvatal cuts, and resolution. We show that
tree-like LS+ refutations can require an exponential increase in size to simulate these systems.

6.1 TreeLS+ cannot p-simulate tree GC cutting planes

Another method of solving zero-one programs by adding new inequalities to the linear program is the
Gomory-Chvatal cutting planes(GC) method.

Definition 6.1. Let ai be a real vector of dimension n and let x be a vector of n booleanvariables. The rules
of GC cutting planes are as follows: (1) (Linear combinations) From aT1 x−b1 ≥ 0, . . . ,aT

n x−bn ≥ 0, derive
∑k

i=1(λiaT
i x−λibi) ≥ 0, whereλi are positive rational constants; (2) (Rounding) From aTx−λ ≥ 0 derive

aTx−dλe ≥ 0, provided that the coordinates of a are integers. Without loss of generality, we can assume
that a rounding operation is always applied after every application of rule (1), and thus we can merge (1)
and (2) into a single rule, called a Chvatal-Gomory (GC) cut.A GC cutting planes refutation for a system
of inequalities, f= f1, . . . fm, is a sequence of linear inequalities g1, . . . ,gq, such that each gi is either an
inequality from f , or an axiom (x≥ 0 or 1−x≥ 0), or follows from previous inequalities by a GC cut, and
the final inequality gq is 0≥ 1. The size of a refutation is the sum of the sizes of all gi , where the coefficients
are written in binary notation.

In this subsection, we show that tree-like LS+ cannotp-simulate tree-like GC cutting planes. This is done
by establishing a tree-size lower bound for LS+ refutations of certain counting modulo two principles. The
counting principles that we use are a more complicated version of the ordinary count two principle stating
that there can be no partition of a universe of size 2n+1 into pieces of size exactly two, defined below.

Definition 6.2. For each n∈ N, Count2n+1
2 is the CNF consisting of the following clauses over the variables

{xe | e∈
([2n+1]

2

)

}: For each v∈ [2n+1],
∨

e3v xe. For each e, f ∈
([2n+1]

2

)

with e∩ f 6= /0, ¬xe∨¬xf .

Unfortunately, the rank bounds for theCount2n+1
2 principles are of the formΩ(n), but the number of vari-

ables isΘ(n2), so we cannot directly apply the tree-size rank trade-off toCount2n+1
2 to obtain superpolyno-

mial tree-size lower bounds. Instead we will consider a morecomplicated version of the count two principle,
that we will call TG−Count, and our plan is as follows. We will begin with the well-knownTseitin prin-
ciple on a sparse graphG; it is good for us because it is similar in proof complexity tothe mod 2 counting
principle, but it has only linearly many variables.

Linear rank bounds for LS+ can be proven for the Tseitin principle on a sparse expander graph by observing
that this principle has linear degree bounds in the strongerstatic positivestellensatz proof system, which
imply linear rank bounds for LS+. We then use a reduction from Tseitin to the count two principle from [10],
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which shows that from a low degree static positivestellensatz refutation ofTG−Count, we can obtain a low
degree static positivestellensatz refutation of the Tseitin principle. Thus it follows thatTG−Count requires
linear rank in LS+. Now using our rank-treesize tradeoff for LS+, it follows that TG −Count requires
exponential-size tree-like LS+ proofs. Finally, it is not hard to show thatTG−Count has polynomial-size
tree-like GC cutting planes proofs, thus establishing thattree-like LS+ cannot polynomially simulate GC
cutting planes. We formalize this argument below.

Definition 6.3. Let { f1, . . . , fm} be a system of polynomials overR. A static positivestellensatz refutation
of { f1, . . . , fm} is a set of polynomials{g1, . . . ,gm} and{h1, . . . ,hl} such that∑m

i=1 figi = 1+ ∑l
i=1 h2

i . The
degree of the refutation is the maximum degree of any figi or h2

i .

Definition 6.4. The Tseitin principle on a graph G= (V,E) is specified as follows. The underlying variables
are xe for all e∈ E. For each vertex v there is a corresponding constraint thatspecifies that the mod 2 sum
of all variables xe, where e ranges over all edges incident with v, is 1. We will specify the constraints by a
set of inequalities if we are interested in LS+ proofs, or by a set of polynomial equations if we are interested
in static positivestellensatz proofs. (In either case, each constraint is specified with2O(d) inequalities or
polynomial equations, where d is the degree of the graph.)

Theorem 6.5. [21] For all n sufficiently large, there is a6-regular graph, Gn, on 2n+1 vertices such that
any static positivestellensatz refutation of the Tseitin principle on Gn requires degreeΩ(n).

There is a natural reduction from the the Tseitin principle to the count two principle [10]: Start with an
instance of the Tseitin principle on ad-regular graphG = (V,E) with 2n+ 1 vertices. Let the underlying
variables of the Tseitin principle bexe for all edgese∈E. The associated count two principle will be defined
on a universeU as follows. The underlying elements ofU will consist of one element corresponding to each
vertex i in V, and two elements corresponding to each edgee = (i, j) in E. We will denote the element
corresponding to vertexi by (i) and the elements corresponding to the edgee= (i, j) by (i, j,1) and(i, j,2).

The idea behind the reduction is as follows. Suppose that there is an assignment to the Tseitin variables so as
to satisfy all of the underlying mod 2 equations. Then we willdefine an associated matching onU . Consider
a nodei in G and ther labelled edges(i, j1),(i, j2), . . . ,(i, jr) leading out ofi, where j1 < j2 < .. . < jr .
Suppose that the values of these edges area1,a2, . . . ,ar , ai ∈ {0,1}. Then for eachl , 1≤ l ≤ r, we take the
first al elements inU from (i, j l ,∗) and group them with the first(2−al ) elements inU from ( j l , i,∗). This
gives usr 2-partitions so far. Note that the number of remaining, ungrouped elements associated with node
i is (2−a1)+ (2−a2)+ . . .+(2−ar)+ 1, which is congruent to 0 mod 2 since(a1 + . . .+ ar)mod2 = 1.
We then group these remaining, ungrouped elements associated with i, two at a time, in accordance with
the following ordering. Ungrouped elements from(i, j1,∗) are first, followed by ungrouped elements from
(i, j2,∗) and so on, and lastly the element(i). It should be intuitively clear that if we started with an
assignment satisfying all of the mod 2 Tseitin constraints,then the associated matching described above
will be a partition ofU into groups of size 2.

Given a graphG, the formulaTG−Count denotes the mod 2 counting principle defined over the universe
U as given by the reduction just described. WhenG has degreed, the degree of the polynomial equations
expressingTG−Count will be d, and the number of variables is at most 2dn+ dn+ n

(d
2

)

. (See [10] for a
formal description ofTG−Count.) [10] prove the following theorem, which shows that the above reduction
can be formalized with low degree static positivestellensatz refutations. This is not too surprising since the
reduction itself, as well as the underlying reasoning behind the correctness of the reduction, is all local.
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Theorem 6.6. [10] Let G be a graph of degree d. If there is no degree max(dr,d) static positivestellensatz
refutation of the Tseitin principle, then there is no degreer static positivestellensatz refuatation of TG −
Count.

The theorem below shows that degree lower bounds for static positivestellensatz refutations implies rank
lower bounds for LS+.

Theorem 6.7. [21] Let G be a degree d graph. If there is no degree2r + 3d static positivestellensatz
refutation of TG−Count, then there is no rank r LS+ refutation of TG−Count.

From Theorems 6.5, 6.7, 6.6 we see that rank ofTG−Count is Ω(n), and becauseTG−CounthasO(n)
many variables, we may apply Theorem 3.10 to conclude:

Corollary 6.8. For all n sufficiently large, there is a graph Gn on2n+1 vertices and degree 6 such that any
tree-like LS+ refutation of TG−Count requires size2Ω(n).

On the other hand, it is not hard to show thatTG−Counthas GC cutting planes refutations of polynomial
size.

Lemma 6.9. Let Gn be a family of graphs on2n+1 vertices, with constant degree d. Then TG−Count has
polynomial-size tree-like GC cutting planes refutations.

Proof. There is a standard cutting planes derivation of∑e3v xe ≤ 1 using the inequalitiesxe+xf ≤ 1. It has
rankΘ(n) and tree-size polynomial inn. Summing over all of these gives∑e∈([2n+1]

2 )2xe = ∑v∈[2n+1] ∑e3v xe≤
2n+ 1. Apply a single GC cut to this and we havesumv∈[2n+1] ∑e3vxe ≤ 2n. On the other hand, summing
over all of the inequalities∑e3v xe ≥ 1 yields∑v∈[2n+1] ∑e3v xe ≥ 2n+1.

Theorem 6.10.Tree-like LS+ does not polynomially simulate GC cutting planes.

6.2 Tree LS+ cannot p-simulate DAG-like resolution

It is known that unrestricted (DAG-like) LS0 p-simulates resolution, but that simulation constructs Lovász-
Schrijver derivations that are are also DAG-like. In this section we show that this is necessary: Tree-like
LS+ cannotp-simulate DAG-like resolution. The family of CNFs that we show to be hard for tree-like LS+
is the “GTn principle”. It is one of the canonical examples for showing that a system cannotp-simulate
DAG-like resolution, and it says that in any total order on a finite set, there exists a minimal element.

Definition 6.11. For n≥ 1, the CNF GTn is a CNF on the variables Xi, j , for i, j ∈ n, i 6= j. The clauses of
GTn include:

1. For each1≤ i < j ≤ n, Xi, j ∨Xj,i.

2. For each1≤ i < j ≤ n,¬Xi, j ∨¬Xj,i.

3. For each i, j,k,¬Xi, j ∨¬Xj,k∨Xi,k

4. For each i,
∨

j 6=i Xj,i.
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Let E= {(i, j) ∈ [n]2 | i 6= j}, so we can think of the variables as Xu,v indexed by(u,v) ∈ E. The CNF GTn
is translated into a system of linear inequalities in the usual manner.

It was shown by Buresh-Oppenheim et al that LS0 refutions ofGTn have rankΩ(n) [9]. Our tree-size lower
bound is modeled after the basic ingredients of their argument.

6.3 Protection matrices forGTn

The first thing we do is strengthen the rank bound of [9] to apply to LS+, not just LS0. As in that work, the
rank bound is based upon protecting vectors that correspondto so-calledscaled partial orders.

Definition 6.12. A partial order≺ on [n] is said to be t-scaled if there is a partition of[n] into sets A1, . . .At

such that≺ is a total ordering within each Ai , but elements from different Ai ’s are incomparable. For each
u∈ Ai, we say that Ai is the class ofu with respect to≺. We say that≺ is at leastt-scaledif ≺ is t′-scaled
for some t′ ≥ t, and that≺ is at mostt-scaledif ≺ is t′-scaled for some t′ ≤ t.

We say that(i, j) and(l ,k) are equivalent with respect to≺, written (i, j) ≡ (l ,k), if i ≺ j and l ≺ k, or if
j ≺ i and k≺ l, or if there exist r,s such that r6= s, i, l ∈ Ar and j,k ∈ As. We say that(i, j) and(l ,k) are
opposing with respect to≺, written (i, j) ⊥ (l ,k), if i ≺ j and k≺ l, or if j ≺ i and l ≺ k, or if there exist r,s
such that r6= s, i, l ∈ Ar and j,k∈ As.

For a partial order≺, let x≺ ∈ R
E be defined by:

x≺(i, j) =







1 if i ≺ j
0 if j ≺ i
1
2 if i and j are incomparable with respect to≺

For i, j ∈ [n] such that i and j incomparable with respect to≺, let≺(i, j) denote the scaled partial order that
refines≺ by placing every element from the class of i before every element of the class of j. If i≺ j, then
≺(i, j)=≺, and if j≺ i, then≺(i, j)=≺R, where≺R denotes the reversal of≺.

Here is an easy fact about assignments from scaled partial orders:

Lemma 6.13.Let≺ be a scaled partial order on[n]. For all (i, j)≡ (l ,k), x≺(i, j) = x≺(l ,k). For all (i, j)⊥ (l ,k),

x≺(i, j) = 1−x≺(l ,k).

Here are some easy facts about scaled partial orders:

Definition 6.14. Let Ps denote least polytope containing{x≺ | ≺ is at least s-scaled}.

Lemma 6.15. (cf. [9]) When s≥ 3, Ps ⊆ PGTn.

Definition 6.16. Let≺ be a scaled partial order on[n]. Define the matrix Y≺ ∈ R
{0}∪E×{0}∪E as follows:

Y0,0 = 1, and for all (i, j) ∈ E, Y(i, j),0 = Y0,(i, j) = x(i, j). For (i, j),(l ,k) ∈ E:

Y≺
(i, j),(l ,k) =











x≺(i, j) if (i, j) ≡ (l ,k)

0 if (i, j) ⊥ (l ,k)
x≺(i, j)x

≺
(l ,k) otherwise
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The following two lemmas are proved in the Appendix.

Lemma 6.17.Let≺ be a scaled partial order, let x= x≺, and let Y=Y≺. For each(i, j)∈E, if 0< x(i, j) < 1

then PV(i, j),1(Y) = x≺
(i, j)

and PV(i, j),0(Y) = x≺
( j,i)

, otherwise PV(i, j),0(Y) = PV(i, j),1(Y) = x.

Lemma 6.18. For all at least(s+1)-scaled partial orders≺, the matrix Y≺ is an LS+ protection matrix for
x≺ with respect to Ps.

Lemma 6.19. Let s∈ N+3 be given. For every n≥ s, if≺ is an at least s-scaled partial order on[n], then
rankGTn(x≺) ≥ s−3.

Proof. We show by induction ons∈ N + 3 that Ps ⊆ Ns−3
+ (PGTn). For s = 3, this is a consequence of

Lemma 6.15, which tells usP3 ⊆ PGTn. Assume that the claim holds fors. Let n≥ s+ 1 be given, and let
≺ be an at least(s+ 1)-scaled partial order. Consider the matrixY≺: By Lemma 6.18, this is a protection
matrix for x≺ with respect toPs. However, by the induction hypothesis,Ps ⊆ Ns−3

+ (PGTn), soY≺ is also a
protection matrix forx≺ with respect toNs−3

+ (PGTn). Therefore,x≺ ∈Ns−2
+ (PGTn). Because≺ was an arbitary

at least(s+1)-scaled partial order,Ps+1 ⊆ Ns−2
+ (PGTn).

Corollary 6.20. For all n ≥ 3, the LS+ rank of GTn is at least n−3.

Because there aren2−n variables inGTn and the rank bound is onlyn−3, the lower bound obtained from the
tree-size/rank trade-off is a trivial constant bound. The tree-size bound for LS+ refutations ofGTn requires
more work than that, but the machinery developed to prove Corollary 6.20 is used.

6.4 A measure of rank that corresponds to scaled partial orders

An obvious approach to proving a tree-size lower bound for LS+ refutations ofGTn would be to apply a
random restriction to the refutation and eliminate all paths of high variable rank. A natural choice for such a
restriction is to randomly chooseS⊆ [n] of sizen/2 and place a random total order on those elements, thus
creating an(n/2+ 1)-scaled partial order≺. The restricted refutation ofGTn eliminatesx≺, yet we would
hope that the restriction kills all paths of high variable rank. It turns out that this is not the case. Suppose
that the lift-variables of a path areX1,2,X1,3,X1,4, . . .: This path will not be killed unless 1 is placed into the
setS, and that happens with probability exactly one 1/2.

The idea behind the random restriction approach can be salvaged: It suffices to kill the scaled partial order
generated by a path. The path of the example actually generates the scaled partial order 1,2,3,4. . ., and this
can be killed by simply placing somej ≺ i wherei < j, and this happens with overwhelming probability. A
notationally cumbersome issue that arises is that we are nowdealing with the scaled partial order generated
by a path, which depends not just the set of literals lifted upon, but on the order in which the literals are
lifted upon.

Definition 6.21. Let n be given. All refutations and inequalities in what follows are over the variables of
GTn.

Let Γ be an LS+ derivation of cTX ≥ d. Let≺ be a scaled partial order on[n]. Letπ be a path inΓ from an
inequality to one of its ancestors (the ancestor is not necessarily a hypothesis of the derivation).

The partial order ofπ extending≺, ≺π, is either a scaled partial order on[n], or a special null value
corresponding to “inconsistency”. It is defined recursively as follows: Ifπ has length0 (eg. π begins and
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ends at the same inequality), then≺π=≺. Otherwise, let Xu,v (or 1−Xv,u) be the lifting variable for the
inference of the first step inπ, and letπ0 be the remainder ofπ. If v ≺ u, then we say thatπ and≺ are
inconsistent. Otherwise,≺π= (≺(u,v))π0.

We make a simple observation that follows by induction:

Lemma 6.22. Let Γ be an LS+ derivation of cTX ≥ d. Let≺ be a scaled partial order on[n]. Let π be a
path inΓ from an inequality to one of its ancestors. If≺ andπ are consistent, then≺π refines≺.

Definition 6.23. Let≺ be a scaled partial order on[n]. For any single-step LS+ derivation: A lift on Xu,v

or 1−Xv,u is said tohave cost 0 with respect to≺ if u ≺ v, a lift on Xu,v or 1−Xv,u is said to beinconsistent
with respect to≺ if v ≺ u, otherwise, a lift on Xu,v or 1−Xv,u is said tohave cost 1 with respect to≺.

Let π be a path inΓ from an inequality to one of its ancestors such thatπ is consistent with≺. Thecost
of π with respect to≺, cost≺(π), is defined recursively as follows: Ifπ has length0, then cost≺(π) = 0.
Otherwise, let l be the lifting literal for the inference of the first step inπ, chose u,v∈ [n] so that l= Xu,v or
l = 1−Xv,u, and letπ0 be the remainder ofπ. cost≺(π) = cost≺(l)+cost≺(u,v)(π0).

The following lemma is the analog of a rank lower bound, and shows in particular that any derivation ofGTn

requires a path of high cost.

Lemma 6.24. Let n∈ N be given, and let≺ be an s-scaled partial order on[n]. Let Γ be an elimination of
x≺ from GTn. Let t be such that every branch ofΓ either is inconsistent with≺, or has cost at most t with
respect to≺. We have that s− t ≤ 2.

Proof. We induct on the size ofΓ. The induction hypothesis is: “For everyΓ of size at mostS, for all
s, t ∈ N, if Γ that is an elimination of anx≺ from GTn where≺ is ans-scaled partial order and every branch
of Γ either is inconsistent with≺, or has cost at mostt with respect to≺, then there exists≺∗ which refines
≺, such that≺∗ is at leasts− t scaled andx≺

∗ 6∈PGTn.” Lemma 6.24 then follows from Lemma 6.15, because
that guarantees that≺∗ is at most 2-scaled and thuss− t ≤ 2.

For the base case,|Γ| = 1, soΓ consists of a single inequalityaTX ≥ b from GTn such thataTx≺ < b. It
immediately follows thatx≺ 6∈PGTn, moreover, because≺ is s-scaled, for allt ≥ 0,≺ is at least(s−t)-scaled.

Let S∈ N be given and assume that the lemma holds for all eliminationsof size at mostS. Let s∈ N be
given, and let≺ be ans-scaled partial order on[n]. Let Γ be an elimination ofx = x≺ from GTn such that
the size ofΓ is S+ 1, and lett be an upper bound on the cost of every branch inΓ with respect to≺. Let
dTX ≥ c be the final inequality ofΓ, and consider its derivation:

c−dTX =
m

∑
i=1

n

∑
j=1

αi, j (bi −aT
i X)Xj +

m

∑
i=1

n

∑
j=1

βi, j(bi −aT
i X)(1−Xj)+

n

∑
j=1

λ j(X
2
j −Xj)+∑

k

(gk +hT
k X)2

with eachαi, j ,βi, j ≥ 0.

LetY = Y≺, as per Definition 6.16. By Lemma 2.21, there exists ani ∈ [m] and a(u,v) ∈ E such that:

1. aT
i X ≥ bi is used as the hypothesis for a lifting inference onX(u,v) andaT

i PV(u,v),1(Y) < bi andxu,v 6= 0.

2. aT
i X ≥ bi is used as the hypothesis for a lifting inference on 1−X(u,v) andaT

i PV(u,v),0(Y) < bi and
xu,v 6= 1.
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Suppose that Case 1 holds; the analysis under Case 2 is essentially the same. LetΓ∗ be the sub-derivation
of aT

i X ≥ bi . The size ofΓ∗ is at mostS, so the induction hypothesis applies toΓ∗.

If xu,v = 1, thenPV(u,v),1(Y) = x, so thatΓ∗ is an elimination ofx = x≺. Notice that in this situation we have
thatu≺ v, so that≺(u,v)=≺. Every path inΓ∗ from aT

i X ≥ bi to one of its ancestors that is consistent with
respect to≺ is the suffix of a path inΓ from dTX ≥ c to one of its ancestors that is consistent with≺, and
therefore has cost at mostt with respect to≺. Therefore, by the induction hypothesis, there is≺∗ refining
≺ such that≺∗ is at leasts− t scaled andx≺

∗ 6∈ PGTn.

Now consider the case whenxu,v 6= 1. Because Case 1 guarantees thatxu,v 6= 0, we have thatxu,v = 1/2, so

thatu andv are incomparable with respect to≺. Sety= PV(u,v),1(Y) = x≺
(u,v)

. Note that≺(u,v) is s−1 scaled
and that it refines≺. Furthermore,u andv are in different components of≺, so that the lift uponXu,v has cost
one with respect to≺. Every path inΓ∗ from aT

i X ≥ bi to one of its ancestors that is consistent with respect
≺(u,v) is the suffix of a path inΓ from dTX ≥ c to one of its ancestors that is consistent with≺, so every path
in Γ∗ that is consistent with respect to≺(u,v) has cost at mostt −1 with respect to≺(u,v). Therefore, by the
induction hypothesis, there is≺∗ refining≺(u,v) such that≺∗ is at least(s−1)− (t −1) = s− t scaled and
x≺

∗ 6∈ PGTn. By the transitivity of refinement,≺∗ also refines≺.

The following lemma is the random restriction lemma. It shows that for any subexponential-sized proofΓ,
there exists a restriction that is not too large and such thatall relevant paths inΓ under the restriction have
low cost.

Lemma 6.25. There exists c> 0 so that for all n≥ 6, if Γ is a refutation of GTn and the size ofΓ is at most
1
42cn, then there exists a partial order≺ on [n] that is at least n/4 scaled, and such that all paths inΓ that
are consistent with respect to≺ have cost at most n/4−3 with respect to≺.

Proof. We generate≺ at random as follows: Randomly generateV ⊆ [n] by placingi ∈ [n] intoV with with
independent probability 1/2. Select a total order for the elements ofV uniformly at random. Alli ∈ [n]\V
are incomparable with the elements ofV and with each other.

We reckon the cost of paths with respect to “the degenerate partial order”≺D, that satisfies for allx,y∈ [n],
x 6≺D y. This suffices to prove the lemma, because the cost ofπ with respect to≺ can only exceed the cost
of π with respect to the degenerate partial order.

Let π be a path inΓ such that the cost ofπ with respect to the degenerate partial order exceedsn/2−3. Let
A1, . . .At be the classes of≺π, and note thatt ≤ n/2+3. Letai = |Ai |. List out the elements ofAi according
to ≺π, ui,1, . . .ui,ai . For eachj = 1, . . .bai/2c, the probability that≺ placesai,2 j beforeai,2 j−1 is clearly 1

8.
For distinct j ’s, these events are independent. Therefore the probability that for all j = 1, . . .bai/2c, that
≺ and≺π do not disagree on the relative order ofai,2 j−1 andai,2 j is at most(7/8)bai/2c. Because the sets
A1, . . .At are disjoint, the probability that for alli = 1, . . . t, ≺ and≺π do not disagree on the relative order
of anyai,2 j−1 andai,2 j with j ∈ {1, . . .bai/2c} is at most∏t

i=1(7/8)bai/2c.

Let n2 be the number ofu∈ [n] such thatu appears in a classAi of ≺π with |Ai| = 2. Letn≥3 be the number

of u∈ [n] such thatu appears in a classAi of ≺π with |Ai| ≥ 3. We immediately have that∏t
i=1

(

7
8

)bai/2c ≤
(

7
8

)(1/2)n2+(2/3)n≥3

At mostt −1 elements of[n] can appear in singleton classes, and therefore at leastn/2−3 items appear in

classes of size two or more. Thus,n2 +n≥3 ≥ n/2−3. It follows that:
(

7
8

)(1/2)n2+(2/3)n≥3 ≤
(

7
8

)(1/2)(n/2−3)
.
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Because the event that≺π and≺ are consistent implies that for alli = 1, . . . t, ≺ and≺π do not disagree on
the relative order of anyai,2 j−1 andai,2 j with j ∈ {1, . . .bai/2c}, the probability thatπ is consistent with

respect to≺ is at most
(

7
8

)(1/2)(n/2−3)
. Choosec > 0 so that

(

7
8

)(1/2)(n/2−3)
< 2−cn for all n≥ 6.

Let Γ be a refutation ofGTn such that the size ofΓ is at most142cn. Choose≺ by the distribution described
above. By the union bound, the probability that there existsa pathπ in Γ that has cost≥ (n/4)− 3 with
respect to the degenerate partial order and is also consistent with respect to≺ is at most 1/4. Because
the expected size of|V| is n/2, the probability that|V| ≥ (3/4)n is at most 2/3 by Markov’s inequality.
Therefore, there exists≺ which is at leastn/4 scaled such that for allπ in Γ, if the cost ofπ with respect to
the empty partial order≥ (n/4)−3, thenπ is inconsistent with respect to≺.

Theorem 6.26. There exists c> 0 so that for all n∈ N, every tree-like LS+ refutation of GTn has size at
least2cn.

Proof. Suppose for the sake of contradiction that there is an LS+ refutation ofGTn of size < 2cn. By
Lemma 6.25, there is partial order≺ on [n] such that≺ is at leastn/4 scaled, and all paths inΓ that are
consistent with≺ have cost at mostn/4−3 with respect toΓ. However, by Lemma 6.24, we must have that
3 = (n/4)− ((n/4)−3) ≤ 2, which is false.

It is well-known that theGTn principle possesses unrestricted resolution refutationsof sizeO(n3). Thefore
we have as a corollary to Theorem 6.26:

Theorem 6.27.Tree-like LS+ refutations cannot p-simulate DAG-like resolution.

Because DAG-like LS+ canp-simulate DAG-like resolution, we have:

Corollary 6.28. Tree-like LS+ refutations cannot p-simulate DAG-like LS+ refutations.

7 Discussion

Our results bound the size of the derivation tree needed for LS+ tightening of linear relaxations to obtain
strong integrality gaps or to refute an unsatisfiable CNF. Another way to measure the size of an LS+ deriva-
tion is to arrange the formulas as directed acyclic graph. Derivations in this model are called “DAG-like”
or simply “unrestricted”. The most urgent, burning question left open by this paper is to prove size lower
bounds for LS+ derivations in theDAG-likemodel.

At present, only one bound on DAG-like refutation size is known for LS0 [14], and no non-trivial bounds
are known for any DAG-like LS or LS+ derivations. Moreover, no bounds are known on the DAG-sizes
necessary to obtain good integrality gaps for any natural optimization problem (such as vertex cover or
max-k-SAT) using any of the Lovász-Schrijver operators.

A natural question to ask is whether or not the techniques of this paper can be extended to the DAG-like
model: Is it possible to acheive a general size/rank tradeoff for DAG-like LS? In particular, can we prove
that small DAG-like LS proofs imply small rank? We suspect that the answer is negative.
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An interesting loose-end to address is whether or not the tree-size/rank tradeoff for LS+ holds for derivations
as well as refutations. A positive answer would simplify thetask of proving tree-size based integrality gaps
for LS+. However, we suspect that the answer is negative and that onesimply needs to find the right
counterexamples. It would also be nice to resolve the issue of whether or not deduction requires an increase
in the rank for the LS+ system, and to determine if Theorem 3.10 is asymptotically tight for LS+ refutations.

There are some integrality gaps known for low-rank LS+ and LS tightenings for which we have not yet
obtained tree-size based integrality gaps, for example, set cover [2] and max-cut [25]. We suspect that rank-
based integrality gaps such as these can be used to obtain tree-size-based integrality gaps in these cases as
well.

Finally, there is the question of whether or not a tree-size/rank trade-off holds for other zero-one program-
ming derivation systems, such as the Sherali-Adams system or Lassier proofs. This seems likely and inter-
esting, but stronger (ie. super-logarithmic) rank bounds for those systems are needed before such a trade-off
would be of any use.
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A Proof of Lemma 2.21

Proof. (of Lemma 2.21) Express all inequalities in homogenized form: EachaT
i X ≥ bi becomes

(

−bi
ai

)T (

1
X

)

,

with ui =
(

−bi
ai

)

, andcTX ≥ d becomeshT
(

1
X

)

≥ 0 with h =
(

−d
c

)

.

Because the coefficients of the non-linear monomials all cancel, there is a skew-symmetric matrixA ∈
R

(n+1)×(n+1) and a positive semidefinite matrixB∈ R
(n+1)×(n+1) so that:

heT
0 =

m

∑
i=1

n

∑
j=1

αi, juie
T
j +

m

∑
i=1

n

∑
j=1

βi, jui(e0−ej)
T +

n

∑
j=1

λ jej(e0−ej)
T +A+B

Take the entry-wise product of this matrix withY we have thatheT
0 •Y = cTx−d < 0. Therefore:

0 > heT
0 •Y = ∑

i, j
αi, j uie

T
j •Y +∑

i, j
βi, jui(e0−ej)

T •Y +∑
j

λ jej(e0−ej)
T •Y +A•Y+B•Y

≥ ∑
i, j

αi, j u
T
i Yj +∑

i, j

βi, j
(

uT
i Y0−uT

i Yj
)

+∑
j

λ j(Y0, j −Yj, j)+0+0

= ∑
i, j

αi, j u
T
i Yj +∑

i, j

βi, ju
T
i (Y0−Yj)

Therefore, there exists somei ∈ [m] and j ∈ [n] so thatαi, juT
i Yj + βi, juT

i (Y0−Yj) < 0.

In the case thatx j = 0, by Definition 2.15,Yj = 0 andY0 −Yj =
(

1
x

)

. 0 > αi, j uT
i Yj + βi, juT

i (Y0 −Yj) =

βi, juT
i

(

1
x

)

. Therefore,βi, j > 0 (so there is some lift upon 1−Xj) and 0>−bi +aT
i x =−bi +aT

i (PVj,0(Y)).

In the case thatx j = 1, by Definition 2.15,Yj =
(

1
x

)

andY0 −Yj = 0. 0> αi, j uT
i Yj + βi, juT

i (Y0 −Yj) =

αi, juT
i

(

1
x

)

. Therefore,αi, j > 0 (so there is some lift uponXj ) and 0> −bi +aT
i x = −bi +aT

i (PVj,1(Y)).

Now consider the case with 0< x j < 1. By Definition 2.15, we may choosey ∈ R
n so thatYj =

(

xj
y

)

.

Substituting
(

xj
y

)

for Yj yields αi, j(−bix j + aTy)+ βi, j(−bi(1− x j)+ aT
i (x− y)) < 0. If 0 > αi, j (−bix j +

aT
i y), thenαi, j > 0 (so−bi + aT

i X ≥ 0 is used as the hypothesis for some lift onXj), and also 0> −bi +
aT

i (y/x j ) = −bi + aT
i (PVj,1(Y)). Similarly, if 0 > βi, j(−bi(1− x j) + aT

i (x− y)), thenβi, j > 0 (so−bi +
aT

i X ≥ 0 is used as the hypothesis for some lift on(1−Xj)), and 0> −bi + aT
i ((x− y)/(1− x j )) = −bi +

aT
i (PVj,0(Y)).

B Lemmas for the tree-size/rank trade-off

Proof. (of Lemma 3.8) From the hypothesisXi ≥ ε, we may infer(1−Xi)Xi ≥ ε(1−Xi), multilinearize by
adding a multiple ofX2

i −Xi = 0 and we have 0≥ ε(1−Xi). Multiply through by 1/ε and we haveXi ≥ 1.
Clearly this derivation has LS0 rank one.
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From the hypothesis(1−Xi) ≥ ε, we may inferXi(1−Xi) ≥ εXi, multilinearize by adding a multiple of
X2

i −Xi = 0 and we have 0≥ εXi. Multiply through by 1/ε and we have−Xi ≥ 0. Clearly this derivation
has LS0 rank one.

Proof. (of Lemma 3.9) The two cases are nearly identical, for brevity we do the first case only. By hypoth-
esis, there is a rank≤ r − 1 derivation ofXi ≥ ε; combine this with Lemma 3.8, and we have a rank≤ r
derivation ofXi ≥ 1 from I . By hypothesis, there is a rank≤ r derivation of 1−Xi ≥ δ. Adding these two
formulas we have 1≥ 1+ δ, which yields 0≥ 1 after multiplying by the positive scalar 1/δ.

C Edge expansion closure calculation

Proof. (of Lemma 5.7) Suppose for the sake of contradiction that|eclδ(J)| ≥ 1
(1−δ)η |J|. Let I1, . . . It be the

sequence of subsets of[m] that are taken in cleaning procedure, with each|Ii | ≤ r/2.

First we inductively show that for eachs≤ t, |NA(
⋃s

i=1 Ii)\J| ≤ δ ·η|⋃s
i=1 Ii |. For the base case, Equation 2

yields |NA(I1) \ J| ≤ δ ·η|I1|. For the induction step, assume that|NA(
⋃s

i=1 Ii) \ J| ≤ δ ·η|⋃s
i=1 Ii | for an

arbitrarys< t. By Equation 2,|NA(Is+1)\
(

J∪⋃

i∈⋃s
i=1 Ii Ai

)

| ≤ δ ·η|Is+1|. Because rows added toeclδ(J)

are removed from the matrix after each stage of cleaning, thesetsI1, . . . It are pairwise disjoint, thus:
∣

∣

∣
NA

(

⋃s+1

i=1
Ii
)

\J
∣

∣

∣
≤

∣

∣

∣
NA

(

⋃s

i=1
Ii
)

\J
∣

∣

∣
+

∣

∣

∣
NA(Is+1)\

(

J∪
⋃

i∈⋃s
i=1 Ii

Ai

)∣

∣

∣

≤ δ ·η
∣

∣

∣

⋃s

i=1
Ii
∣

∣

∣
+ δ ·η |Is+1| = δ ·η

∣

∣

∣

⋃s+1

i=1
Ii
∣

∣

∣

Now, let i0 be the first index with|⋃i0
i=1 Ii | > 1

(1−δ)η |J|. Note that|⋃i0
i=1 Ii | ≤ |⋃i0−1

i=1 Ii|+ |Ii0| ≤ 1
(1−δ)η |J|+

r/2 ≤ 1
(1−δ)η

r(1−δ)η
2 + r/2 = r. Therefore by edge expansion,|NA

(

⋃i0
i=1 Ii

)

| > η|⋃i0
i=1 Ii |. Therefore:

|NA

(

⋃i0
i=1 Ii

)

\ J| ≥ η|⋃i0
i=1 Ii| − |J| > η|⋃i0

i=1 Ii| −η(1− δ)|⋃i0
i=1 Ii| = δ ·η|⋃i0

i=1 Ii |. This contradicts the

previously established fact that|NA

(

⋃i0
i=1 Ii

)

\J| ≤ δ ·η|⋃i0
i=1 Ii|.

D Protection matrices for GTn

Proof. (of Lemma 6.17) The cases forx(i, j) ∈ {0,1} follow from the definition of protection vectors, so
consider(i, j) with x(i, j) = 1/2.

By definition:

(PV(i, j),1(Y))(l ,k) = Y(l ,k),(i, j)/x≺(i, j) =















x≺(i, j)/x≺(i, j) = 1 = x≺
(i, j)

(l ,k) if (i, j) ≡ (l ,k)

0/x≺(i, j) = 0 = x≺
(i, j)

(l ,k) if (i, j) ⊥ (l ,k)

x≺(l ,k)x
≺
(i, j)/x≺(i, j) = x≺l ,k = x≺

(i, j)

(l ,k) otherwise
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(PV(i, j),0(Y))(l ,k) =
Y(l ,k),0 −Y(l ,k),(i, j)

1−x≺(i, j)
=

x≺(l ,k) −Y(l ,k),(i, j)

1−x≺(i, j)
=























x≺(l ,k)−x≺(l ,k)
1−x≺(i, j)

= 0 = x≺
( j,i)

(l ,k) if (i, j) ≡ (l ,k)

x≺(l ,k)−0

1−x≺
(i, j)

= 1/2
1/2 = 1 = x≺

( j,i)

(l ,k) if (i, j) ⊥ (l ,k)
x≺l ,k−x≺

(i, j)x
≺
(l ,k)

1−x≺
(i, j)

= x≺(l ,k) = x≺
( j,i)

(l ,k) otherwise

Proof. (of Lemma 6.18) LetY = Y≺. Let y =
(

1
x≺

)

.

We just check that the properties of Definition 2.15 hold:

1. Thatx≺ ∈ Ps: By hypothesis,≺ is (s+1)-scaled, sox≺ ∈ Ps.

2. Ye0 = diag(Y) =
(

1
x≺

)

. By definition,Y0,0 = 1,Y0,(i, j) = y0y(i, j) = 1·x≺(i, j) = x≺(i, j), andY(i, j),(i, j) = x≺(i, j).

3. For all(i, j) ∈ E, if x≺(i, j) = 1, thenYe(i, j) =
(

1
x≺

)

.

By definition,(Ye(i, j))0 = x≺(i, j) = 1. For(l ,k) ∈ E(x≺), we have:

(Ye(i, j))(l ,k) = Y(l ,k),(i, j) =











x≺(l ,k) = x≺(i, j) if (i, j) ≡ (l ,k)

0 = x≺(l ,k) if (i, j) ⊥ (l ,k)

x≺(l ,k)x
≺
(i, j) = x≺(l ,k) ·1 = x≺l ,k otherwise

4. For all(i, j) ∈ E, if x≺(i, j) = 0,Ye(i, j) = 0. By definition,(Ye(i, j))0 = x≺(i, j) = 0. For(l ,k) ∈ E, we have:

(Ye(i, j))(l ,k) = Y(l ,k),(i, j) =











x≺(l ,k) = x≺(i, j) = 0 if (i, j) ≡ (l ,k)

0 if (i, j) ⊥ (l ,k)
x≺(l ,k)x

≺
(i, j) = x≺(l ,k) ·0 = 0 otherwise

5. ThatPV(i, j),0(Y),PV(i, j),1(Y) ∈ Ps for all othe(i, j) ∈ E. This follows immediately from Lemma 6.17,
and the fact that both≺(i, j) and≺( j,i) ares-scaled.

6. The matrixY is positive semidefinite.

Let y =
(

1
x≺

)

. We define a disjoint family of subsets ofE as follows: For eachr,s∈ [t] with r 6= s,

there is a setCr,s = {(i, j) | i ∈ Ar , j ∈ As}. For each 1≤ r < s≤ t let z(r,s) ∈ [−1,1]n be defined via:

z(r,s)
0 = 0, and for(i, j) ∈ E:

z(r,s)
(i, j) =















√

y(i, j) −y2
(i, j) if (i, j) ∈Cr,s

−
√

y(i, j) −y2
(i, j) if (i, j) ∈Cs,r

0 otherwise
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The calculation below reveals that:

Y = yTy+
m

∑
1≤r<s≤t

(z(r,s))Tz(r,s)

This suffices to finish the proof of the claim, because a sum of positive semidefinite matrices is also
positive semidefinite.

Checking the calculations: LetZ = yTy+ ∑m
1≤r<s≤t(z

(r,s))Tz(r,s).

Let (i, j) and(l ,k) with (i, j) ≡ (l ,k) be given. First consider the case whenx≺(i, j) ∈ {0,1}. This forces

that the arcs(i, j) and(l ,k) do not cross two pieces of the partition, and thatx≺(l ,k) ∈ {0,1}. Moreover,

z(r,s)
(i, j) = z(r,s)

(l ,k) = 0 for all r,s.

Z(i, j),(l ,k) = Z(i, j),(i, j) = y(i, j)y(l ,k) = x≺(i, j) ·x≺(l ,k) = x≺(i, j) = Y(i, j),(l ,k)

Now consider the case when(i, j) ≡ (l ,k) andx≺(i, j) = 1/2 (so that both(i, j) and(l ,k) cross from
someAr to someAs, WLOG r < s):

Z(i, j),(l ,k) = y(i, j)y(l ,k) +z(r,s)
(i, j)z

(r,s)
(l ,k)

= y(i, j)y(l ,k) +
√

y(i, j) −y2
(i, j)

√

y(l ,k) −y2
(l ,k)

= 1/4+
√

1/2−1/4
√

1/2−1/4 = 1/2 = x≺(i, j) = Y(i, j),(l ,k)

Let (i, j) and(l ,k) with (i, j) ⊥ (l ,k) be given. Whenx≺(i, j) ∈ {0,1}, (i, j) and(l ,k) do not cross two

pieces of the partition, and thatx≺(l ,k) = 1−x≺(i, j). Moreover,z(r,s)
(i, j) = z(r,s)

(l ,k) = 0 for all r,s. So we have:

Z(i, j),(l ,k) = y(i, j)y(l ,k) = x≺(i, j)(1−x≺(i, j)) = 0 = Y(i, j),(l ,k)

Now consider the case when(i, j) crosses fromAr to As and (l ,k) crosses fromAs to Ar and both
x≺(i, j) = x≺(l ,k) = 1/2.

Z(i, j),(l ,k) = y(i, j)y(l ,k) +z(r,s)
(i, j)z

(r,s)
(l ,k)

= y(i, j)y(l ,k) −
√

y(i, j) −y2
(i, j)

√

y(l ,k) −y2
(l ,k)

= x≺(i, j)x
≺
(l ,k) −

√

x≺(i, j) − (x≺(i, j))
2
√

x≺(l ,k) − (x≺(l ,k))
2

= 1/4−
√

1/2−1/4
√

1/2−1/4 = 0 = Y(i, j),(l ,k)

For all other(i, j), (l ,k), we have that for all 1≤ r < s≤ t, eitherz(r,s)
(i, j) = 0 or z(r,s)

(l ,k) = 0, so that

Z(i, j),(l ,k) = y(i, j)y(l ,k) = x≺(i, j)x
≺
(l ,k) = Y(i, j),(l ,k).
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