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Abstract

We give a polynomial time construction of binary codes with the best currently known
trade-off between rate and error-correction radius. Specifically, we obtain linear codes over fixed
alphabets that can be list decoded in polynomial time up to the so called Blokh-Zyablov bound.
Our work builds upon [8] where codes list decodable up to the Zyablov bound (the standard
product bound on distance of concatenated codes) were constructed. Our codes are constructed
via a (known) generalization of code concatenation called multilevel code concatenation. A
probabilistic argument, which is also derandomized via conditional expectations, is used to show
the existence of inner codes with a certain nested list decodability property that is appropriate
for use in multilevel concatenated codes. A “level-by-level” decoding algorithm, which crucially
uses the list recovery algorithm for folded Reed-Solomon codes from [8], enables list decoding
up to the designed distance bound, aka the Blokh-Zyablov bound, for multilevel concatenated
codes.
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1 Introduction

1.1 Background and Context

A fundamental trade-off in the theory of error-correcting codes is the one between the proportion
of redundancy built into codewords and the fraction of errors that can be corrected. Let us say we
are interested in binary codes that can be used to recover the correct codeword even when up to a
fraction ρ of its symbols could be corrupted by the channel. Such a channel can distort a codeword
c (that is n bits long) into about 2H(ρ)n possible received words, where H(ρ) = −ρ log2 ρ − (1 −
ρ) log2(1−ρ) stands for the binary entropy function. Now for each of these words, the error-recovery
procedure must identify c as a possibility for the true codeword. (In fact, even if the errors are
random, the algorithm must identify c as a candidate codeword for most of these 2H(ρ)n received
words, if we seek a low decoding error probability.) To put it differently, if we require the error-
recovery procedure to pin down a relatively small number of candidate codewords for all (or even
most) received words, then there must be “nearly-disjoint” Hamming balls of size 2H(ρ)n centered
at each of the codewords. This implies that there can be at most about 2(1−H(ρ))n codewords.
Therefore the best rate of communication we can hope for when a fraction ρ of the bits can be
corrupted is 1 − H(ρ).

If we could pack about 2(1−H(ρ))n pairwise disjoint Hamming balls of radius ρn in {0, 1}n,
then one can achieve a rate approaching 1 − H(ρ) while guaranteeing correct and unambiguous
recovery of the codeword from an arbitrary fraction ρ of errors. Unfortunately, it is well known
that such a “perfect” packing of Hamming balls in {0, 1}n does not exist. Perhaps surprisingly (and
fortunately), it turns out that it is possible to pack more than 2(1−H(ρ)−ε)n such Hamming balls
such that no O(1/ε) of them intersect at a point. In fact a random packing has such a property
with high probability.

In turn, this implies that for 0 < ρ < 1/2 and any ε > 0, and all large enough n, there exist binary
codes of rate 1−H(ρ)− ε that enable correcting a fraction ρ of errors, outputting a list of at most
O(1/ε) answers in the worst-case (this error-recovery model is called “list decoding”).1 Therefore,
one can approach the information-theoretically optimal rate of 1−H(ρ). A similar result holds for
codes over alphabet with q symbols – for correction of a fraction ρ, 0 < ρ < 1 − 1/q, of errors, we
can approach the optimal rate of 1−Hq(ρ), where Hq(ρ) = ρ logq(q−1)−ρ logq ρ−(1−ρ) logq(1−ρ)
is the q-ary entropy function.

While the above pinpoints R = 1 − H(ρ) as the optimal trade-off between the rate R of the
code and the fraction ρ of errors that can corrected, it is a non-constructive result. The codes
achieving this trade-off are shown to exist via a random coding argument and are not explicitly
specified. Further, for a code to be useful, the decoding algorithm must be efficient, and for a
random, unstructured code only brute-force decoders running in exponential time are known.

The big challenge then is to approach the above trade-off with explicit codes and polynomial
time list decoding algorithms. Recently, in [8], we were able to achieve such a result for large
alphabets. For large q, the optimal rate 1 − Hq(ρ) approaches 1 − ρ, and in [8], we give explicit

codes of rate 1 − ρ − ε over an alphabet of size 2(1/ε)O(1)
with a polynomial time list decoding

algorithm for a fraction ρ of errors (for any 0 < ρ < 1). However, approaching the list decoding
capacity of 1−Hq(ρ) for any fixed small alphabet size q, such as q = 2, remains an important open
question.

1The proof of Shannon’s theorem for the binary symmetric channel also says that for most received words at most
one codeword would be output.
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The best known trade-off between R and ρ (from [8]) that can be achieved by an explicit binary
code along with efficient list decoding algorithm is the so called Zyablov bound [14]. Figure 1 gives
a pictorial comparison between the Zyablov bound and the list decoding capacity. As one can see,
there is a still a huge gap between the nonconstructive results and what is known explicitly, closing
which is a challenging open problem. Narrowing this gap serves as the primary motivation for this
work.
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Figure 1: Rate R of our binary codes plotted against the error-correction radius ρ of our algorithm.
The best possible trade-off, i.e., capacity, is ρ = H−1(1 − R), and the Zyablov bound are also
plotted.

ρ 0.01 0.02 0.03 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Capacity rate 0.919 0.858 0.805 0.713 0.531 0.390 0.278 0.188 0.118 0.065

Zyablov rate 0.572 0.452 0.375 0.273 0.141 0.076 0.041 0.020 0.009 0.002

Blokh Zyablov rate 0.739 0.624 0.539 0.415 0.233 0.132 0.073 0.037 0.017 0.006

Table 1: Values of rate at different error correction radius for List decoding capacity, Zyablov bound
and Blokh Zyablov bound in the binary case. For rates above 0.4, the Blokh Zyablov bound is 0
up to 3 decimal places, hence we have not shown this.

1.2 Our Results and Techniques

In this paper, we present linear codes over any fixed alphabet that can be constructed in polynomial
time and can be efficiently list decoded up to the so called Blokh-Zyablov bound. This achieves a
sizable improvement over the previous best known result (see Figure 1 and Table 1 for the binary
case).
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Our codes are constructed via multilevel concatenated codes. We will provide a formal definition
later on — we just sketch the basic idea here. For an integer s > 1, a multilevel concatenated code C
over Fq is obtained by combining s “outer” codes C0

out, C
1
out, . . . , C

s−1
out of the same block length , say

N , over large alphabets of size say qa0 , qa1 , . . . , qas−1 , respectively, with a suitable “inner” code over
Fq. The inner code, say Cin, is of dimension a0 + a1 · · · + as−1. Given messages m0,m1, . . . ,ms−1

for the s outer codes, the encoding as per the multilevel generalized concatenation codes proceeds
by first encoding each mj as per Cj

out. Then for every 1 6 i 6 N , the collection of the ith symbols

of Cj
out(mj) for 0 6 j 6 s−1, which can be viewed as a string over Fq of length a0 +a1 + · · ·+as−1,

is encoded by the inner code. For s = 1 this reduces to the usual definition of code concatenation.
In other words, this is like normal code concatenation with inner code Cin and outer code obtained
by juxtaposing the symbols of codewords of C0

out, . . . , C
s−1
out .

We present a list decoding algorithm for C, given list recovery algorithms for the outer codes (list
recovery is a generalization of list decoding that will be defined later) and list decoding algorithms
for the inner code and some of its subcodes. What makes this part more interesting than the usual
code concatenation, is that the inner code in addition to having list decodable properties, also needs
to have good list decodable properties for certain subcodes. Specifically, the subcodes of dimension
aj + aj+1 + · · · + as−1 of the inner code obtained by arbitrarily fixing the first a0 + · · · + aj−1

symbols of the message, must have better list-decodability properties for increasing j (which is
intuitively possible since they have lower rate). In turn, this allows the outer codes Cj

out to have
rates increasing with j, leading to an overall improvement in the rate for a certain list-decoding
radius.

To make effective use of the above approach, we also prove, via an application of the probabilistic
method, that a random linear code over Fq has the required stronger condition on list decodability.
By applying the method of conditional expectation ([1]), we can construct such a code determinis-
tically in time singly exponential in the block length of the code (which is polynomial if the inner
code encodes messages of length O(log n)). Note that constructing such an inner code, given the
existence of such codes, is easy in quasi-polynomial time by trying all possible generator matrices.
The lower time complexity is essential for constructing the final code C in polynomial time.

1.3 Related Work

Our work can be seen as a generalization of the result of list decoding concatenated codes from [8].
The outer codes used in our work are the same as the ones used in [8]. However, the inner codes used
in [8] are not sufficient for our purposes. Our proof of existence of the requisite inner codes (and
in particular the derandomization of the construction of such codes using conditional expectation)
is similar to the one used to establish list decodability properties of random “pseudolinear” codes
in [6] (see also [5, Sec. 9.3]).

Concatenated codes were defined in the seminal thesis of Forney [4]. Its generalizations to linear
multilevel concatenated codes were introduced by Blokh and Zyablov [2] and general multilevel
concatenated codes were introduced by Zinoviev [12]. Our list decoding algorithm is inspired by
the argument for “unequal error protection” property of multilevel concatenated codes [13].

1.4 Organization of the Paper

In Section 2, we start with some definitions and preliminaries. Section 3 presents a construction
of a linear code that has good “nested” list decodable properties. In section 4, we present our
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algorithm for list decoding multilevel concatenated codes. In Section 5, we present the main result
of the paper. We conclude with some remarks in Section 6.

2 Preliminaries

2.1 Basic Coding Definitions

A code of dimension k and block length n over an alphabet Σ is a subset of Σn of size |Σ|k. The
rate of such a code equals k/n. Each vector in C is called a codeword. In this paper, we will focus
on the case when Σ is a finite field. We will denote by Fq the field with q elements. A code C over
Fq is called a linear code if C is a subspace of F

n
q . In this case the dimension of the code coincides

with the dimension of C as a vector space over Fq. By abuse of notation we will also think of a code
C as a map from elements in F

k
q to their corresponding codeword in F

n
q . If C is linear, this map is

a linear transformation, mapping a row vector x ∈ F
k
q to a vector xG ∈ F

n
q for a k × n matrix G

over Fq called the generator matrix.
The Hamming distance between two vectors in Σn is the number of places they differ in. The

(minimum) distance of a code C is the minimum hamming distance between any two pairs of
distinct codewords from C. The relative distance is the ratio of the distance to the block length.

2.2 Multilevel Concatenated Codes

We will be working with multilevel concatenation coding schemes [3]. We start this section with
the definition of multilevel concatenated codes. As the name suggests, these are generalizations
of the well-studied concatenated codes. Recall that for a concatenated code, we start with a code
Cout over a large alphabet (called the outer code). Then we need a code Cin that maps all symbols
of the larger alphabet to strings over a smaller alphabet (called the inner code). The encoding
for the concatenated code (denoted by Cout ◦ Cin) is done as follows. We think of the message as
being a string over the large alphabet and then encode it using Cout. Now we use Cin to encode
each of the symbols in the codeword of Cout to get our codeword (in Cout ◦ Cin) over the smaller
alphabet. Most of the constructions of good binary codes are achieved via code concatenation. In
particular, binary codes with the best known trade-off (called the Zyablov bound) between rate
and list decoding radius are constructed via code concatenation [8]. These codes have folded Reed-
Solomon codes as outer codes and suitably chosen binary codes as inner codes, and can be list
decoded up to the designed minimum distance, which is equal to the product of the outer and inner
code distances.

Multilevel concatenation codes generalize the usual code concatenations in the following manner.
Instead of there being one outer code, there are multiple outer codes. In particular, we “stack”
codewords from these multiple outer codes and construct a matrix. The inner codes then act on
the columns of these intermediate matrix. We now formally define multilevel concatenated codes
(this will also contain the formal definition of the concatenated codes as a special case).

There are s > 1 outer codes, denoted by C0
out, C

1
out, . . . , C

s−1
out . For every 0 6 i 6 s − 1, Ci

out

is a code of block length N and rate Ri and defined over a field FQi
. The inner code Cin is code

of block length n and rate r that maps tuples from FQ0 × FQ1 × · · · × FQs−1 to symbols in Fq. In
other words,

Ci
out : (FQi

)RiN → (FQi
)N ,
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Cin : FQ0 × FQ1 × · · · × FQs−1 → (Fq)
n.

The multilevel concatenated code, denoted by (C0
out×C1

out× . . . Cs−1
out )◦Cin is a map of the following

form:

(C0
out × C1

out × . . . Cs−1
out ) ◦ Cin : (FQ0)

R0N × (FQ1)
R1N × · · · × (FQS−1

)Rs−1N → F
nN
q .

We now describe the encoding scheme. Given a message (m0,m1, . . . ,ms−1) ∈ (FQ0)
R0N×(FQ1)

R1N×
· · ·× (FQS−1

)Rs−1N , we first construct an s×N matrix M , whose ith row is the codeword Ci
out(mi).

Note that every column of M is an element from the set FQ0 ×FQ1×· · ·×FQs−1. Let the jth column
(for 1 6 j 6 N) be denoted by Mj. The codeword corresponding to the multilevel concatenated

code (C
def
= (C0

out × C1
out × . . . Cs−1

out ) ◦ Cin) is defined as follows

C(m0,m1, . . . ,ms−1) = (Cin(M1), Cin(M2), · · · , Cin(MN )) .

(The codeword can be naturally be thought of as an n×N matrix, whose i’th column corresponds
to the inner codeword encoding the i’th symbols of the s outer codewords.)

For the rest of the paper, we will only consider outer codes over the same alphabet, that is,
Q0 = Q1 = · · · = Qs−1 = Q. Further, Q = qa for some integer a > 1. Note that if C0

out, . . . , C
s−1
out

and Cin are all Fq linear, then so is (C0
out × C1

out × · · · × Cs−1
out ) ◦ Cin.

The gain from using multilevel concatenated codes comes from looking at the inner code Cin

along with its subcodes. For the rest of the section, we will consider the case when Cin is linear
(though the ideas can easily be generalized for general codes). Let G ∈ F

as×n
q be the generator

matrix for Cin. Let r0 = as/n denote the rate of Cin. For 0 6 j 6 s − 1, define rj = r0(1 − j/s),
and let Gj denote rjn × n submatrix of G containing the last rjn rows of G. Denote the code

generated by Gj by Cj
in; the rate of Cj

in is rj. For our purposes we will actually look at the subcode
of Cin where one fixes the first 0 6 j 6 s− 1 message symbols. Note that for every j these are just
cosets of Cj

in. We will be looking at Cin, which in addition to having good list decoding properties

as a “whole,” also has good list decoding properties for each of its subcode Cj
in.

The multilevel concatenated code C (= (C0
out × · · · × Cs−1

out ) ◦ Cin) has rate R(C) that satisfies

R(C) =
r0

s

s−1
∑

i=0

Ri . (1)

The Blokh-Zyablov bound is the trade-off between rate and relative distance obtained when
the outer codes meet the Singleton bound (i.e., Cj

out has relative distance 1− Rj), and the various

subcodes Cj
in of the inner code, including the whole inner code Cin = C0

in, lie on the Gilbert-
Varshamov bound (i.e., have relative distance δj > H−1

q (1−rj)). The multilevel concatenated code
then has relative distance at least min06j6s−1(1 − Rj)H

−1
q (1 − rj). Expressing the rate in terms

of distance, the Blokh-Zyablov bound says that there exist multilevel concatenated C with relative
distance at least δ with the following rate:

Rs
BZ(C) = max

0<r<1−Hq(δ)
r −

r

s

s−1
∑

i=0

δ

H−1
q (1 − r + ri/s)

. (2)

As s increases, the trade-off approaches the integral

RBZ(C) = 1 − Hq(δ) − δ

∫ 1−Hq(δ)

0

dx

H−1
q (1 − x)

. (3)

The convergence of Rs
BZ(C) to RBZ(C) happens quite quickly even for small s such as s = 10.
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2.3 List Decoding and List Recovery

Definition 2.1 (List decodable code). For 0 < ρ < 1 and an integer L > 1, a code C ⊆ F
n
q is

said to be (ρ, L)-list decodable if for every y ∈ F
n
q , the number of codewords in C that are within

Hamming distance ρn from y is at most L.

We will need to work with two different generalizations of list decoding. The first one is
motivated by multilevel concatenation schemes. The definition looks more complicated than it
really is.

Definition 2.2 (Nested linear list decodable code). Given a linear code C in terms of some gen-
erator matrix G ∈ F

k×n
q , an integer s that divides k, a vector L = 〈L0, L1, . . . , Ls−1〉 of integers Lj

(0 6 j 6 s − 1), a vector ρ = 〈ρ0, ρ1 . . . , ρs−1〉 with 0 < ρj < 1, and a vector r = 〈r0, . . . , rs−1〉 of
reals where r0 = k/n and 0 6 rs−1 < · · · < ri < r0, C is called an (r, ρ,L)-nested list decodable if
the following holds:

For every 0 6 j 6 s − 1, Cj is a rate rj code that is (ρj , Lj)-list decodable, where Cj is the
subcode of C generated by the the last rjn rows of the generator matrix G.

The second generalization of list decoding called list recovery, a term first coined in [6] even
though the notion existed before, has been extremely useful in list decoding concatenated codes.
The input for list recovery is not a sequence of symbols but rather a sequence of lists (or more
accurately sets, since the ordering of elements in the input lists does not matter).

Definition 2.3 (List recoverable code). A code C ⊆ F
n
q , is called (ρ, `, L)-list recoverable if for

every sequence of sets S1, S2, . . . , Sn, where Si ⊆ Fq and |Si| 6 ` for every 1 6 i 6 n, there are at
most L codewords in c ∈ C such that ci ∈ Si for at least (1 − ρ)n positions i.

The following simple folklore lemma shows how, for suitable parameters, a list recoverable outer
code can be concatenated with a list decodable inner code to give a new list decodable code. The
approach is simply to run the list decoding algorithm for each of the inner blocks, returning a list
of possible symbols for each possible outer codeword symbol, which are then used as input to the
list recovery algorithm for the outer code.

Lemma 2.1. If Cout is a (ξ, `, L)-list recoverable over an alphabet of size Q, and Cin is a (ρ, `)-list
decodable code with Q codewords, then the concatenated code Cout ◦ Cin is (ξ · ρ, L)-list decodable.

2.4 Known Result on List Recoverable Codes

We will use the following powerful result concerning good list recoverable codes from [8]; these
codes will serve as the outer codes in our multilevel concatenation scheme.

Theorem 2.2. For every integer ` > 1, for all constants ε > 0, for all R,R′; 0 < R 6 R′ < 1,
and for every prime p, there is an explicit family of folded Reed-Solomon codes, over fields of
characteristic p that have rate at least R and which can be (1 − R − ε, `, L(N))-list recovered in
polynomial time, where for codes of block length N , L(N) = (N/ε2)O(ε−1 log(`/R)) and the code is
defined over alphabet of size (N/ε2)O(ε−2 log `/(1−R′)).

We remark that the above theorem was stated with R′ = R in [8], though the above follows
immediately from the proof for R′ = R and properties of the folded Reed-Solomon codes [11]. The
proof for R′ > R uses folded Reed-Solomon codes with a larger “folding” parameter. A larger
folding parameter increases the fraction of errors that can be tolerated at the expense of a larger
alphabet size.
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3 Linear Codes with Good Nested List Decodability

In this section, we will prove the following result concerning the existence (and constructibility) of
linear codes over any fixed alphabet with good nested list decodability properties.

Theorem 3.1. For any integer s > 1 and reals 0 < rs−1 < rs−2 < · · · < r1 < r0 < 1, ε > 0, let
ρj = H−1

q (1 − rj − 2ε) for every 0 6 j 6 s − 1. Let r = 〈r0, . . . , rs−1〉, ρ = 〈ρ0, ρ1, . . . , ρs−1〉 and

L = 〈L0, L1, . . . , Ls−1〉, where Lj = q1/ε. For large enough n, there exists a linear code (over fixed
alphabet Fq) that is (r, ρ,L)-nested list decodable. Further, such a code can be constructed in time
qO(n/ε).

Proof. We will show the existence of the required codes via a simple use of the probabilistic method
(in fact, we will show that a random linear code has the required properties with high probability).
We will then use the method of conditional expectation ([1]) to derandomize the construction with
the claimed time complexity.

Define kj = brinc for every 0 6 j 6 s− 1. We will pick a random k0 × n matrix G with entries
picked independently from Fq. We will show that the linear code C generated by G has good nested
list decodable properties with high probability. Let Cj, for 0 6 j 6 s− 1 be the code generated by
the “bottom” kj rows of G. Recall that we have to show that with high probability Cj is (ρj , q

1/ε)
list decodable for every 0 6 j 6 s − 1 (Cj obviously has rate rj). Finally for integers J, k > 1, and
a prime power q, let Ind(q, k, J) denote the collection of subsets {x1, x2, . . . , xJ} ⊆ F

k
q such that all

vectors x1, . . . , xJ are linearly independent over Fq.
We need the following two claims: (i) Given any L distinct vectors from F

k
q , for some k > 1,

at least dlogq Le of them are linearly independent; (ii) Any set of linearly independent vectors in

F
k
q are mapped to independent random vectors in F

n
q by a random k × n matrix over Fq. The first

claim is obvious. For the second claim, first note that for any v ∈ F
k
q and a random k × n matrix

G (where each of the kn values are chosen uniformly and independently at random from Fq) the
values at the n different positions in v ·G are independent. Further, the value at position 1 6 i 6 n,
is given by v · Gi, where Gi is the ith column of G. Now for fixed v, v · Gi takes values from Fq

uniformly at random (note that Gi is a random vector from F
k
q ). Finally, for linearly independent

vectors v1, . . . ,vm by a suitable linear invertible map can be mapped to the standard basis vectors
e1, . . . , em. Obviously, the values e1 · Gi . . . , em ·Gi are independent.

We now move on to the proof of existence of linear codes with good nested list decodability. We
will actually do the proof in a manner that will facilitate the derandomization of the proof. Define
J = dlogq(q

1/ε + 1)e. For any vector r ∈ F
n
q , integer 0 6 j 6 s − 1, subset T = {x1, . . . , xJ} ∈

Ind(q, kj , J) and any collection S of subsets S1, S2, . . . , SJ ⊆ {1, . . . , n} of size at most ρjn, define
an indicator variable I(j, r, T,S) in the following manner. I(j, r, T,S) = 1 if and only if for every
1 6 i 6 J , C(xi) differs from r in exactly the set Si. Note that if for some 0 6 j 6 s − 1, there
are q1/ε + 1 codewords in Cj all of which differ from some received word r in at most ρjn places,
then this set of codewords is a “counter-example” that shows that C is not (r, ρ,L)-nested list
decodable. Since the q1/ε + 1 codewords will have some set T of J linearly independent codewords,
the counter example will imply that I(j, r, T,S) = 1 for some collection of subsets S. In other
words, the indicator variable captures the set of bad events we would like to avoid. Finally define
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the sum of all the indicator variables as follows:

SC =

s−1
∑

j=0

∑

r∈Fn
q

∑

T∈Ind(q,kj ,J)

∑

S={S1,...,SJ},
Si⊆{1,...,n},|Si|6ρjn

I(j, r, T,S).

Note that if SC = 0, then C is (r, ρ,L)-nested list decodable as required. Thus, we can prove the
existence of such a C if we can show that EC[SC ] < 1. By linearity of expectation, we have

E[SC ] =
s−1
∑

j=0

∑

r∈Fn
q

∑

T∈Ind(q,kj ,J)

∑

S={S1,...,SJ},
Si⊆{1,...,n},|Si|6ρjn

E[I(j, r, T,S)]. (4)

Fix some arbitrary j, r, T = {x1, x2, . . . , xJ},S = {S1, S2, . . . , SJ} (in their corresponding domains).
Then we have

E[I(j, r, T,S)] = Pr[I(j, r, T,S) = 1]

=
∏

xi∈T

Pr[C(xi) differ from r in exactly the positions in Si]

=

J
∏

i=1

(

q − 1

q

)|Si|(1

q

)n−|Si|

=

J
∏

i=1

(q − 1)|Si|

qn
, (5)

where the second and the third equality follow from the definition of the indicator variable, the
fact that vectors in T are linearly independent and the fact that a random matrix maps linearly
independent vectors to independent uniformly random vectors in F

n
q . Using (5) in (4), we get

E[SC ] =

s−1
∑

j=0

∑

r∈Fn
q

∑

T∈Ind(q,kj ,J)

∑

S={S1,...,SJ},
Si⊆{1,...,n},|Si|6ρjn

J
∏

i=1

(q − 1)|Si|

qn

=

s−1
∑

j=0

∑

r∈Fn
q

∑

T∈Ind(q,kj ,J)

∑

(`1,`2,...,`J )∈{0,1,...,ρjn}J

J
∏

i=1

(

n

`i

)

(q − 1)`i

qn

=
s−1
∑

j=0

∑

r∈Fn
q

∑

T∈Ind(q,kj ,J)

(ρjn
∑

`=0

(

n

`

)

(q − 1)`

qn

)J

6

s−1
∑

j=0

∑

r∈Fn
q

∑

T∈Ind(q,kj ,J)

qnJ(Hq(ρj )−1)
6

s−1
∑

j=0

qn · qJkj · qnJ(Hq(ρj)−1)

6

s−1
∑

j=0

qnJ(1/J+rj+1−rj−2ε−1)
6 sq−εnJ . (6)

The first inequality follows the following known inequality for p < 1−1/q ([10]):
∑pn

i=0

(

n
i

)

(q−1)i 6

qHq(p)n. The second inequality follows by upper bounding the number of J linearly independent

vectors in F
kj
q by qJkj . The third inequality follows from the fact that kj = brjnc and ρj =

H−1
q (1 − rj − 2ε), The final inequality follows from the fact that J = dlogq(q

1/ε + 1)e.
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Thus, (6) shows that there exists a code C (in fact with high probability) that is (r, ρ,L)-
nested list decodable. In fact, this could have been proved using a simpler argument. However, the
advantage of the argument above is that we can now apply the method of conditional expectations
to derandomize the above proof.

The algorithm to deterministically generate a linear code C that is (r, ρ,L)-nested list decodable
is as follows. The algorithm consists of n steps. At any step 1 6 i 6 n, we choose the ith

column of the generator matrix to be the value vi ∈ F
k0
q that minimizes the conditional expectation

E[SC |G1 = v1, . . . ,Gi−1 = vi−1,Gi = vi], where Gi denotes the ith column of G and v1, . . . ,vi−1

are the column vectors chosen in the previous i − 1 steps. This algorithm would work only if for
any 1 6 i 6 n and vectors v1, . . . ,vi, we can exactly compute E[SC |G1 = v1, . . . ,Gi = vi]. Indeed
from (4), we have E[SC |G1 = v1, . . . ,Gi = vi] is

s−1
∑

j=0

∑

r∈Fn
q

∑

T∈Ind(q,kj ,J)

∑

S={S1,...,SJ},
Si⊆{1,...,n},|Si|6ρjn

E[I(j, r, T,S)|G1 = v1, . . . ,Gi = vi].

Thus, we would be done if we can compute the following for every value of j, r, T = {x1, . . . , xJ},S =
{S1, . . . , SJ}: E[I(j, r, T,S) = 1|G1 = v1, . . . ,Gi = vi]. Note that fixing the first i columns of G
implies fixing the value of the codewords in the first i positions. Thus, the indicator variable is 0
(or in other words, the conditional expectation we need to compute is 0) if for some message, the
corresponding codeword does not disagree with r exactly as dictated by S in the first i positions.
More formally, I(j, r, T,S) = 0 if the following is true for some 1 6 ` 6 i and 0 6 i′ 6 J :
xi′ ·G` 6= r`, if ` 6∈ Si′ and xi′ · G` = r` otherwise. However, if none of these conditions hold, then
using argument similar to the ones used to obtain (5), one can show that

E[I(j, r, T,S)|G1 = v1, . . . ,Gi = vi] =

J
∏

`=1

(

q − 1

q

)|S′
`
|(1

q

)n−i−|S′
`
|

,

where S′
` = S` \ {1, 2, . . . , i} for every 1 6 ` 6 J .

To complete the proof, we need to estimate the time complexity of the above algorithm. There
are n steps and at every step i, the algorithm has to consider qk0 6 qn different choices of vi.
For every choice of vi, the algorithm has to compute the conditional expectation of the indicator
variables for all possible values of j, r, T,S. It is easy to check that there are

∑s
i=1 qn · qJkj ·

2nJ 6 sqn(1+2J) possibilities. Finally, the computation of the conditional expected value of a fixed
indicator variable takes time O(snJ). Thus, in all the total time taken is O(n ·qn ·sqn(1+2J) ·snJ) =
qO(n/ε), as required.

4 List Decoding Multilevel Concatenated Codes

In this section, we will see how one can list decode multilevel concatenated codes, provided the
outer codes have good list recoverability and the inner code has good nested list decodability. We
have the following result, which generalizes Lemma 2.1 for regular concatenated codes (the case
s = 1).

Theorem 4.1. Let s > 1 and ` > 1 be integers. Let 0 < R0 < R1 < · · · < Rs−1 < 1, 0 < r0 < 1,
0 < ξ0, · · · , ξs−1 < 1, 0 < ρ0, · · · , ρs−1 < 1 and ε > 0 be reals. Let q be a prime power and let

10



Q = qa for some integer a > 1. Further, let Cj
out (0 6 j 6 s−1) be an Fq-linear code over FQ of rate

Rj and block length N that is (ξj , `, L)-list recoverable. Finally, let Cin be a linear (r, ρ,L)-nested
list decodable code over Fq of rate r0 and block length n = as/r0, where r = 〈r0, · · · , rs−1〉 with
ri = (1 − i/s)r0, ρ = 〈ρ0, · · · , ρs−1〉 and L = 〈`, `, · · · , `〉. Then C = (C0

out × · · · × Cs−1
out ) ◦ Cin is a

linear (minj ξj · ρj , L
s)-list decodable code. Further, if the outer code Cj

out can be list recovered in
time Tj(N) and the inner code Cin can be list decoded in time tj(n) (for the jth level), then C can

be list decoded in time O
(

∑s−1
j=0 Lj (Tj(N) + N · tj(n))

)

.

Proof. Given list recovery algorithms for Cj
out and list decoding algorithms for Cin (and its subcodes

Cj
in), we will design a list decoding algorithm for C. Recall that the received word is an n × N

matrix over Fq. Each consecutive “chunk” of n/s rows should be decoded to a codeword in Cj
out.

The details follow.
Before we describe the algorithm, we will need to fix some notation. Define δ = minj ξjρj . Let

R ∈ F
nN
q be the received word, which we will think of as an n × N matrix over Fq (note that s

divides n). For any n × N matrix M and for any 1 6 i 6 N , let Mi ∈ F
n
q denote the ith column of

the matrix M . Finally, for every 0 6 j 6 s − 1, let Cj
in denote the subcode of Cin generated by all

but the first ja rows of the generator matrix of Cin. We are now ready to describe our algorithm.
Recall that the algorithm needs to output all codewords in C that differ from R in at most δ

fraction of positions. For the ease of exposition, we will consider an algorithm that outputs matrices
from C0

out × · · · × Cs−1
out . The algorithm has s phases. At the end of phase j (0 6 j 6 s − 1), the

algorithm will have a list of matrices (called Lj) from C0
out × · · · × Cj

out, where each matrix in Lj

is a possible submatrix of some matrix that will be in the final list output by the algorithm. The
following steps are performed in phase j (where we are assuming that the list decoding algorithm for
Cj

in returns a list of messages while the list recovery algorithm for Cj
out returns a list of codewords).

1. Set Lj to be the empty set.

2. For every c = (c0, · · · , cj−1) ∈ Lj−1 repeat the following steps (if this is the first phase, that
is j = 0, then repeat the following steps once):

(a) Let Gj be the first aj rows of the generator matrix of Cin. Let X = (Gj)
T · c, where we

think of c as an ja×N matrix over Fq. Let Y = R−X (for j = 0 we use the convention

that X is the all 0s matrix). For every 1 6 i 6 N , use the list decoding algorithm for Cj
in

on column Yi for up to ρj fraction of errors to obtain list Sj
i ⊆ (FQ)s−j . Let T j

i ⊆ FQ

be the projection of every vector in Sj
i on to its first component.

(b) Run the list recovery algorithm for Cj
out on set of lists {T j

i }i obtained from the previous
step for up to ξj fraction of errors. Store the set of codewords returned in Ij.

(c) Add {(c,v)|v ∈ Ij} to Lj.

At the end, remove all the matrices M ∈ Ls−1, for which the codeword (Cin(M1), Cin(M2), · · · , Cin(MN ))
is at a distance more than δ from R. Output the remaining matrices as the final answer.

We will first talk about the running time complexity of the algorithm. It is easy to check that
each repetition of steps 2(a)-(c) takes time O(Tj(N) + N · tj(n)). To compute the final running
time, we need to get a bound on number of times step 2 is repeated in phase j. It is easy to
check that the number of repetitions is exactly |Lj−1|. Thus, we need to bound |Lj−1|. By the
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list recoverability property of Cj
out, we can bound |Ij| by L. This implies that |Lj | 6 L|Lj−1|, and

therefore by induction we have

|Li| 6 Li+1 for i = 0, 1, . . . , s − 1 . (7)

Thus, the overall running time and the size of the list output by the algorithm are as claimed in
the statement of the theorem.

We now argue the correctness of the algorithm. That is, we have to show that for every
M ∈ C0

out × · · · ×Cs−1
out , such that (Cin(M1), Cin(M2) · · · , Cin(MN )) is at a distance at most δ from

R (call such an M a good matrix), M ∈ Ls−1. In fact, we will prove a stronger claim: for every
good matrix M and every 0 6 j 6 s− 1, M j ∈ Lj, where M j denotes the submatrix of M that lies

in C0
out × · · · ×Cj

out (that is the first j “rows” of M). For the rest of the argument fix an arbitrary
good matrix M . Now assume that the stronger claim above holds for j′ − 1 (< s − 1). In other
words, M j′−1 ∈ Lj′−1. Now, we need to show that M j′ ∈ Lj′.

For concreteness, let M = (m0, · · · ,ms−1)
T . As M is a good matrix and δ 6 ξj′ρj′ , Cin(Mi) can

disagree with Ri on at least a fraction ρj′ of positions for at most ξj′ fraction of column indices i.
The next crucial observation is that for any column index i, Cin(Mi) = (Gj′)

T ·(m0,i, · · · ,mj′−1,i)+
(G \ Gj′)

T · (mj′,i, · · · ,ms−1,i), where Gj′ is as defined in step 2(a), G \ Gj′ is the submatrix of G
obtained by “removing” Gj′ and mj′,i is the ith component of the vector mj′ . The following might
help the reader to visualize the different variables.

GT · M =



 (Gj′)
T (G \ Gj′)

T



 ·





















m0,1 · · · m0,i · · · m0,N
...

mj′−1,1 · · · mj′−1,i · · · mj′−1,N

mj′,1 · · · mj′,i · · · mj′,N
...

ms−1,1 · · · ms−1,i · · · ms−1,N





















=





↑ ↑ ↑
Cin(M1) · · · Cin(Mi) · · · Cin(MN )

↓ ↓ ↓





Note that G \ Gj′ is the generator matrix of Cj′

in. Thus, for at most ξj′ fraction of column indices
i, (mj′,i, · · · ,ms−1,i) · (G \ Gj′) disagrees with Ri − Xi on at least ρj′ fraction of places, where X

is as defined in Step 2(a), and Xi denotes the i’th column of X. As Cj′

in is (ρj′ , `)-list decodable,

for at least 1 − ξj′ fraction of column index i, M j′

i will be in Sj′

i (where M j′

i is Mi projected on

it’s last s− j′ co-ordinates and Sj′

i is as defined in Step 2(a)). In other words, mj′,i is in T j′

i for at

least 1− ξj′ fraction of i’s. Further, as |Sj′

i | 6 `, |T j′

i | 6 `. This implies with the list recoverability

property of Cj′

out that mj′ ∈ Ij′ , where Ij′ is as defined in step 2(b). Finally, step 2(c) implies that
M j′ ∈ Lj′ as required.

The proof of correctness of the algorithm along with (7) shows that C is (δ, Ls)-list decodable,
which completes the proof.

5 List Decoding up to the Blokh-Zyablov Bound

We combine the results we have proved in the last couple of sections to get our main result.
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Theorem 5.1 (Main). For every fixed field Fq, reals 0 < δ < 1, 0 < r 6 1−Hq(δ), ε > 0 and integer
s > 1, there exists linear codes C over Fq of block length N that are (δ − ε, L(N))-list decodable
with rate R such that

R = r −
r

s

s−1
∑

i=0

δ

H−1
q (1 − r + ri/s)

, (8)

and L(N) = (N/ε2)O(sε−3δ/(H−1
q (1−r)−δ)). Finally, C can be constructed in time (N/ε2)O(s/(ε6rδ))

and list decoded in time polynomial in N .

Proof. Let γ > 0 (we will define its value later). For every 0 6 j 6 s− 1 define rj = r(1− j/s) and
Rj = 1− δ

H−1
q (1−rj)

. The code C is going to be a multilevel concatenated code (C0
out×· · ·×Cs−1

out )◦Cin,

where Cj
out is the code from Theorem 2.2 of rate Rj and block length N ′ (over Fqa) and Cin

is an (〈r0, . . . , rs−1〉, ρ,L)-nested list decodable code as guaranteed by Theorem 3.1, where for
0 6 j 6 s − 1, ρj = H−1

q (1 − rj − 2γ2) and Lj = q1/γ2
. Finally, we will use the property of Cj

out

that it is (1 − R − γ, q1/γ2
, (N ′/γ2)O(γ−3 log(1/Rj )))-list recoverable. Theorem 2.2 implies that such

codes exist with (where we apply Theorem 2.2 with R′ = maxj Rj = 1 − δ/H−1
q (1 − r/s))

qa = (N ′/γ2)O(γ−4H−1
q (1−r/s)/δ). (9)

Further, as codes from Theorem 2.2 are Fq-linear [8], C is a linear code.
The claims on the list decodability of C follow from the choices of Rj and rj and Theorems 2.2,

3.1 and 4.1. In particular, note that we invoke Theorem 4.1 with the following parameters: ξj =

1−Rj−γ and ρj = H−1
q (1−rj−2γ2) (which implies2 that ξjρj > δ−ε as long as γ = Θ(ε)), ` = q1/γ2

and L = (N ′/γ2)O(γ−1 log(`/Rj)). The choices of ` and γ imply that L = (N/ε2)O(ε−3 log(1/Rj )). Now
log(1/Rj) 6 log(1/Rmin), where Rmin = minj Rj = 1− δ/H−1

q (1− r). Finally, we use the fact that
for any 0 < y < 1, ln(1/y) 6 1/y−1 to get that log(1/Rj) 6 O(1/Rmin−1) = O(δ/(H−1

q (1−r)−δ)).
The claimed upper bound of L(N) follows as L(N) 6 Ls (by Theorem 4.1).

By the choices of Rj and rj and (1), the rate of C is as claimed. The construction time for C is the

time required to construct Cin, which by Theorem 3.1 is 2O(n/γ2) where n is the block length of Cin.
Note that n = as/r, which by (9) implies that the construction time is (N/ε2)O(ε−6sH−1

q (1−r/s)/(rδ)).
The claimed running time follows by using the bound H−1

q (1 − r/s) 6 1.
We finally consider the running time of the list decoding algorithm. We list decode the inner

code(s) by brute force, which takes 2O(n) time, that is, tj(n) = 2O(n). Thus, Theorems 2.2, 4.1 and
the bound on L(N) implies the claimed running time complexity.

Choosing the parameter r in the above theorem so as to maximize (8) gives us linear codes over
any fixed field whose rate vs. list decoding radius trade-off meets the Blokh-Zyablov bound (2).
As s grows, the trade-off approaches the integral form (3) of the Blokh-Zyablov bound.

6 Concluding Remarks

Code concatenation has been instrumental in all the progress in construction explicit binary codes
that can be list decoded in polynomial time. However, the best known trade-off between rate and
fraction of errors that can corrected via such codes (as we showed in this work) is the Blokh-Zyablov

2As for any 0 < x < 1 and small enough α > 0, H
−1
q (x − α

2) > H
−1
q (x) − Θ(α) [11].

13



bound, which is no where close to the list-decoding capacity. A natural question to ask is if whether
concatenated codes can achieve list decoding capacity or is this work the best one can hope for? One
reason to suspect the latter would be that the natural decoding algorithm for concatenated codes
(which was used in this paper) and its analysis seem to bottom out at the Blokh-Zyablov bound. In
recent work [9], we show that there exist q-ary linear concatenated codes that achieve list decoding
capacity (in the sense that every Hamming ball of radius H−1

q (1 − R − ε) has polynomially many
codewords, where R is the rate). In particular, this results holds when the outer code is a folded
RS code. However, realizing the full potential of concatenated codes and achieving capacity (or
even substantially improving upon the Blokh-Zyablov bound) with explicit codes and polynomial
time decoding remains a huge challenge.
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