
The Optimal Read-Once Branching Program

Complexity for the Direct Storage Access

Function

Beate Bollig

FB Informatik, LS2, Univ. Dortmund, 44221 Dortmund, Germany
beate.bollig@uni-dortmund.de

Abstract. Branching programs are computation models measuring the
space of (Turing machine) computations. Read-once branching programs
(BP1s) are the most general model where each graph-theoretical path is
the computation path for some input. Exponential lower bounds on the
size of read-once branching programs are known since a long time. Never-
theless, there are only few functions where the BP1 size is asymptotically
known exactly. In this paper, the exact BP1 size of a fundamental func-
tion, the direct storage access function, is determined.

Keywords: Computational complexity, lower bounds, read-once branch-
ing programs

1 Introduction and Result

Branching programs are a model of computation measuring the space of
(Turing machine) computations. Since the proof of non-polynomial lower
bounds on the branching program complexity of so-called explicitly de-
fined Boolean functions is out of scope of known lower bound methods,
several restricted models have been studied. Read-once branching pro-
grams are the most general model where each graph-theoretical path is
the computation path for some input. Besides the complexity theoreti-
cal viewpoint restricted (read-once) branching programs are used as data
structure for boolean functions in several applications (see e.g. Wegener
(2000)), where the complexity of fundamental functions is of interest.

Definition 1. A branching program (BP) on Xn := {x1, . . . , xn} is a

directed acyclic graph G = (V,E) whose sinks are labeled by Boolean

constants and whose non sink (or inner) nodes are labeled by Boolean

variables from Xn (see Figure 1). Each inner node has two outgoing edges

one labeled by 0 and the other by 1. Each node v represents a Boolean

function fv : {0, 1}n → {0, 1} defined in the following way. In order to

evaluate fv(b), b ∈ {0, 1}n, start at v. After reaching an xi-node choose

Electronic Colloquium on Computational Complexity, Report No. 110 (2007)

ISSN 1433-8092

the outgoing edge with label bi until a sink is reached. The label of this

sink defines fv(b). The branching program is called read-once if each path

contains for each variable xi at most one node labeled by xi. The size of

a (read-once) branching program is equal to the number of its nodes. The

(read-once) branching program complexity of a function f , denoted by

BP(f) (BP1(f)), is the minimal size of a (read-once) branching program

representing f .

It is an obvious aim to determine BP1(f) for as many of the interesting
functions f as exactly as possible. This is similar to other fundamental
complexity measures, among them circuit size, formula size, monotone
circuit size or algebraic complexity (for such results see Wegener (1987)).
Although many even exponential lower bounds on the BP1 complexity
of fundamental Boolean functions are known (see e.g. Bollig and Woelfel
(2001)), there are only few functions where the BP1 complexity is known
exactly (see e.g. Wegener (1984)). To the best of our knowledge, we start
to fill this gap by presenting the first exact bound on the BP1 complexity
for a nonsymmetric function, namely the direct storage access function
DSAn, often also called multiplexer MUXn.

Definition 2. The direct storage access function DSAn (or multiplexer

MUXn) is defined on n + k variables ak−1, . . . , a0, x0, . . . , xn−1, where

n = 2k. The a-variables are called address variables and the x-variables

data variables. DSAn(a, x) = x|a|, where |a| is the number whose binary

representation equals (ak−1, . . . , a0).

The result of the paper is the following one.

Theorem 1. BP1(DSAn) = 2n + 1.

The upper bound is contained in Wegener (2000) (Theorem 4.3.2)
and it is even shown that the direct storage access function can be rep-
resented by restricted read-once branching programs, called OBDDs, in
size 2n + 1. Only recently, Bollig, Range, and Wegener (2007) have pe-
sented the matching lower bound on the OBDD size. In Section 2, we
improve their result by presenting the lower bound on the complexity of
the more general BP1s. To obtain the optimal bound, we have to count
the number of nodes very carefully but we do not introduce a new lower
bound method. Since Bollig, Range, and Wegener (2007) have made use
of the fact that in an OBDD on all paths from the source to the sinks the
variables have to be tested according to a given order of the variables, we
have to use new arguments to prove the lower bound for BP1s.

2

2 The BP1 Complexity of the Direct Storage Access

Function

In this section, we determine a lower bound on the size of BP1s represent-
ing the direct storage access function. Figure 1 shows a restricted BP1
for the direct storage access function, where n = 4.

a1

a0

x0

a0

10

x3

x2

x1

Fig. 1. A BP1 for DSA4 (dotted edges are edges with label 0 and solid edges are edges
with label 1).

Lemma 1. The size of a BP1 for the representation of the direct storage

access function is at least 2n + 1.

Proof.

Let G be a BP1 of minimal size representing the direct storage access
function. Since DSAn depends essentially on all data variables, for each
variable xi, 0 ≤ i ≤ n− 1, there is at least one node labeled by xi. More-
over, there have to be two sinks. In the following, we prove that there
exists at least 2k − 1 further nodes representing non-constant subfunc-
tions of the direct storage access function, such that the number of nodes
altogether in the BP1 is at least 2 + n + 2k − 1 = 2n + 1.

First, we transform G into a BP1 G′ representing DSAn where on
each path from the source to a sink each variable is tested exactly once

3

(for the transformation see e.g. Wegener (2000), Proof of Lemma 6.2.2).
We only use G′ to define certain sets of paths and the corresponding
subfunctions of DSAn for which we will show that a certain number of
nodes is necessary in G.

Now, we define sets Pi, 1 ≤ i ≤ k, of paths in G′ in the following way.
All paths in Pi start at the source, each node labeled by a data variable
is left via the 0-edge. A path in Pi contains exactly i − 1 nodes labeled
by an address variable and ends at a node labeled by an address variable.
Furthermore, for two paths p and q in Pi there exists an address variable
a such that p contains a node labeled by a and left via the 0-edge and q

contains a node labeled by a left via the 1-edge or vice versa. The paths
in Pi, 2 ≤ i ≤ k, are extensions of the paths in Pi−1. Each path in Pi−1

that reach a node w labeled by an address variable is extended by leaving
w via the 0-edge and via the 1-edge. Our aim is to prove that there exists
at least one further node for each path in P := ∪1≤i≤kPi. Obviously, a
set Pi contains 2i−1 paths, 1 ≤ i ≤ k, and |P| = 2k − 1.

For two different paths in P there are only two possibilities:

– one path is an extension of the other path or

– there exists an address variable a such that one path contains a node
labeled by a and left via the 0-edge and the other one contains a node
labeled by a left via the 1-edge.

We use the following notation. Let p be a path in Pi, 1 ≤ i ≤ k,
and aj1, . . . , aji−1

the address variables tested on p, i.e., aj1 is the first
address variable tested on p, aj2 the second one, and so on. The path p

ends at a node labeled by the address variable aji . Furthermore, let bp

be the assignment of the address variables aj1 , . . . , aji−1
according to p.

The group Gp contains all data variables xj such that the assignment of
aj1, . . . , aji−1

in the binary representation of j equals bp. Rp is the set of
the x-variables for which there does not exist a node on p labeled by one
of these x-variables.

The following two observations will be helpful.

– Gp ∩ Gq = ∅ for two different paths p and q in P where p is not an
extension of the path q and vice versa.

– A subfunction corresponding to a path p essentially depends on the
data variables in Gp ∩Rp and does not essentially depend on all other
data variables.

For each path p in P we distinguish two cases. The first case is similar
to part of the lower bound proof presented by Bollig, Range, and Wegener

4

(2007). The second one is more complicated and different from the OBDD
lower bound proof for DSAn.

Case 1: Gp ∩ Rp 6= ∅.
Let p end at a node labeled by the address variable a in G′. We show

that there also exists a node in G labeled by the address variable a that
represents the subfunction corresponding to p.

Let xj ∈ Gp ∩ Rp. Obviously, the subfunction corresponding to p es-
sentially depends on xj. Since Gp ∩ Gq = ∅ for two different paths p and
q where p is not an extension of the path q and vice versa, the subfunc-
tion corresponding to q does not depend essentially on xj and has to be
represented at a different node in G. Furthermore, the subfunction cor-
responding to p essentially depends on the address variable a, since the
assignment 1 to xj , 0 to all other data variables, and the binary represen-
tation of j to the address variables has the function value 1 but changing
only the assignment of the address variable a leads to the function value
0.

Altogether, we have shown that there has to be one further node
labeled by the addres variable a in G.

Case 2: Gp ∩ Rp = ∅.

This case is more difficult. The reason is the following one. Let p end at
a node labeled by the address variable a in G′. Unlike Case 1, it is possible
that the subfunction corresponding to p does not essentially depend on
the address variable a. We have to inspect this case very carefully in
order to guarantee that we count each node of the BP1 G representing
the direct storage access function only once.

Let p′ be the shortest shortening of p such that p′ ends at a node
labeled by an address variable aj`

and Gp′ ∩ Rp′ = ∅. Clearly, there are
2log n−`+1 − 1 extensions of p′ (including p′) in ∪`≤i≤kPi. We prove that
in G there is at least one further node labeled by a data variable for
each extension of p′. Since Gp′ ∩ Rp′ = ∅ and |Gp′ | = 2log n−`+1, we know
that there are at least 2log n−`+1 nodes on p′ labeled by one of the data
variables in Gp′ . Let xi1, . . . , xi

2log n−`+1
be data variables in Gp′ . Now, we

prove that there are at least 2 ·2log n−`+1−1 nodes labeled by one of these
data variables in G. Considering the fact that we already have counted
one node for each data variable, we can conclude that there are at least
2 · 2log n−`+1 − 1 − 2log n−`+1 = 2log n−`+1 − 1 further nodes in G.

Let p′ij be the shortening of p′ that ends at the node labeled by xij ,

1 ≤ j ≤ 2log n−`+1. Since the subfunction of DSAn corresponding to p′ij
essentially depends on xij there has to be a node in G labeled by xij , where
the subfunction corresponding to p′ij is represented. Next, we consider

5

the path p′i1 and extend this path by leaving the node labeled by xi1 via
the 1-edge. The corresponding subfunction f essentially depends on the
variables xij , 2 ≤ j ≤ 2log n−`+1. Therefore, there has to be a node v in G

where f is represented and in the sub-BP1 Gf that consists of all nodes in
G reachable from v there has to be at least one node for each data variable
xij , 2 ≤ j ≤ 2log n−`+1. It remains to prove that these nodes are different
from the nodes representing the subfunctions corresponding to the paths
p′ij , 2 ≤ j ≤ 2log n−`+1. The subfunction corresponding to p′ij essentially

depends on all address variables not tested on p′ij . To see this, we consider

the following assignment to the remaining variables (not tested on p′ij).
The data variable xij is set to 1, the remaining data variables to 0. The
address variables are set to the binary representation of ij (this is possible
since xij ∈ Gp′ij

). Obviously, the function value for this assignment is 1

but changing only the assignment of one address variable (not tested on
p′ij) leads to an assignment with function value 0, since all other data
variables except xij are set to 0. In order to show that the xij -node in
G representing the subfunction corresponding to p′ij is different from the
xij -node in the sub-BP1 Gf , we consider the following assignment b to
the variables not tested on p′ij . The data variables are set to 0 and the
remaining address variables are set to the binary representation of i1
(this is possible since xi1 ∈ Gp′ij

). Obviously, the function value of the

subfunction corresponding to p′ij is 0. Now, there are only two possibilities.
Either the subfunction represented at the considered xij -node in the sub-
BP1 Gf does not essentially depend on one of the address variables not
tested on p′ij , or the value of the subfunction represented at the xij -node
in Gf for the assignment b is 1. In both cases the considered xij -nodes
have to be different.

Since Gp ∩ Gq = ∅ for two paths p and q in P, where p is not an
extension of q and vice versa, we count different nodes labeled by a data
variable for p and q.

Altogether, we have shown that there exists at least one further node
for each path in P. Therefore, there are at least 2 + n + 2k − 1 = 2n − 1
nodes in G.

2

References

1. Bollig, B., Range, N., and Wegener, I. (2007). Exact OBDD bounds for some fun-
damental functions. ECCC TR07-049.

6

2. Bollig, B. and Woelfel, P. (2001). A read-once branching program lower bound of
Ω(2n/4) for integer multiplication using universal hashing. Proc. of 33rd STOC, 419–
424.

3. Wegener, I. (1984). Optimal decision trees and one-time-only branching-programs
for symmetric Boolean functions. Information and Control 62, 129–143.

4. Wegener, I. (1987). The Complexity of Boolean Functions. Wiley-Teubner.
5. Wegener, I. (2000). Branching Programs and Binary Decision Diagrams - Theory

and Applications. SIAM Monographs on Discrete Mathematics and Applications.

7

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

