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Abstract

We argue that the symmetries of a property being tested ptayntal role in property testing. We
support this assertion in the context of algebraic funajty examining properties of functions mapping
a vector spac&” over a fieldK to a subfieldF. We consideif-linear properties that are invariant under
linear transformations of the domain and prove tha©dm)-local “characterization” is a necessary and
sufficient condition forO(1)-local testability wherK| = O(1). (A local characterization of a property
is a definition of a property in terms of local constraintss$agd by functions exhibiting a property.) For
the subclass of properties that are invariant under affaresformations of the domain, we prove that the
existence of aingleO(1)-local constraint implie®)(1)-local testability. These results generalize and
extend the class of algebraic properties, most notablgtityeand low-degree-ness, that were previously
known to be testable. In particular, the extensions inclodgerties satisfied by functions of degree
linear inn that turn out to be&(1)-locally testable.

Our results are proved by introducing a new notion that wa téormal characterizations”. Roughly
this corresponds to characterizations that are given hygesiocal constraint and its permutations under
linear transformations of the domain. Our main testing ltesows that local formal characterizations
essentially imply local testability. We then investigateerties that are linear-invariant and attempt to
understand their local formal characterizability. Ounteshere give coarse upper and lower bounds on
the locality of constraints and characterizations fordinmvariant properties in terms of some structural
parameters of the property we introduce. The lower bourdsut any characterization, while the upper
bounds give formal characterizations. Combining the twegia test for all linear-invariant properties
with local characterizations.

We believe that invariance of properties is a very intenggtiotion to study in the context of property
testing, in general and merits a systematic study. In pdaicthe class of linear-invariant and affine-
invariant properties exhibits a rich variety among algabpaioperties and offer better intuition about
algebraic properties than the more limited class of lowrdedunctions.
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1 Introduction

Property testing considers the task of testing efficiebtyyytandom sampling, if a function mapping a finite
domain to a finite range “essentially” satisfies a given priypel'he property to be tested can be specified
by the family of functionsF that possess the property. A propefyis k-locally testableif there exists a
randomized test that queries the value of a funcfi@m & inputs and acceptg € F and rejecty ¢ F with
probability lower bounded by a quantity proportional to thistance off from F. Proximity of functions

is measured in terms of its relative Hamming distan¢g g) = Pr.[f(z) # g(z)] whenz is chosen
uniformly from the finite domain. A functiorf is j-close toF if there exists g € F such that(f,g) < o
andd-far otherwise.

The study of property testing emerged in the wake of the titegest of Blum, Luby, and Rubinfeld [4]
and was defined formally in Rubinfeld and Sudan [18]. The $ukistantial investigation of property testing
occurred in Goldreich, Goldwasser, and Ron [10] who foalissethe testing of properties of combinatorial
objects, in particular of graphs. Subsequent works hawkttemajor strides in the testing of graph properties
culminating with the works of Alon et al. and Borgs et al. [1, Bhe testing of algebraic properties has also
seen significant progress since [4, 18] including testinguattions satisfying functional equations [17],
and testing of various algebraic properties leading toraroorecting codes e.g. testing of Reed-Muller
codes [2], generalized Reed-Muller codes [16, 13], duaHB®©des [15]. On the negative side, the works
of Bogdanov, Obata, and Trevisan [5] and Ben-Sasson, Harsh&askhodnikova [3] give properties that
are not locally testable.

In the light of this progress it is natural to ask: What aredbgential features that make a property testable.
In the context of graph-property testing (in the “densgsbfanodel) this question is answered by the works
of [1, 6], who show that a certain feature that they term “lagty” is necessary and sufficient for testing
graph properties. In the algebraic setting, a similar ustdeding of properties that lead to local testability
is lacking. In this paper we take some steps to remedy this.

Invariance and Property Testing: Our approach to (algebraic) property testing is to attaliestability to
some “invariance” features exhibited by the property. tiarece features of a familyF, especially under
permutations of the domain, seems naturally linked to ptggesting. For example, let us consider the test
for “majority” (the propertyF consisting of all functionsf : {1,..., N} — {0,1} that take the value

at leastN/2 times). This test is considered uninteresting and we p@poformal explanation. This test
actually uses the symmetry of the propefiy and the symmetry required is the full group of permutations
over the domain. Indeed the test easily extends to any oflyenthetric” property# of Boolean functions,
which has the feature that ff € 7 and~ is a permutation on the domain, thieo 7(z) = f(w(x)) is also

in F. A formal reason to declare the test “obvious” may be thagttoeip of invariances needed #is so
large (qualitatively).

Graph property testing similarly revolves around symnestriT his setting consider functiods: {1,...,n}x
{1,...,n} — {0,1}, and properties that are invariant under permutationsplahute rows and columns
simultaneously. The groups of symmetries thus is somewhatler (/N)! as opposed taV!, where

N = n?is the domain size). But now one needs some more featuresotorocity/heredity) to get property
testers [1, 6]. Despite this natural link between propesstihg and invariances, this link does not seem to
have been explicit in prior literature. We make it explioitr. We remark that in independent work, Gol-
dreich and Sheffet [11], also make this notion explicit, asd it to understand the randomness complexity
needs of property testing.

In this paper we explore invariances of an algebraic kind.dd@o, we consider functions mapping an
n-dimensional vector space over a finite fi&ldo a subfieldF of K. Among such functions the families



we consider satisfy two properties:

1. They areK-linear invariant (or simply linear invariand, i.e., for every functionf € F, and linear
mapL : K — K" (i.e., a function that satisfiesL(x) + BL(y) = L(ax + (y) for everya, 5 € K
andx,y € K"), itis the case thaf o L, given by(f o L)(x) = f(L(x)), is also inF. If such a
closure holds for all affine mags from K" to K", then the property* is said to beaffine-invariant

2. They areF-linear (or simplylinear), i.e., for every pair of functiong, g € 7 anda, 8 € F it is the
case that the functionf + gg is also inF. This is the property that typically leads to linear codes
over the alphabéf.

In the algebraic context, linear-invariance over the donsaems to be a natural class of invariances (though
not necessarily the only class) to consider, and may be desenalogous to the choice of working with
“graph-properties”. The linearity of the familf§ (when viewed as a vector space over the range) is an
additional property we impose to derive some testabiligults (analogous to the role played by hered-
ity/monotonicity in graph property testing).

For simplicity we suppress the use of the phraBdifiear” in this paper, and use the term linear-invariant
(affine-invariant) family to reflect families which are bdihear-invariant (resp. affine-invariant) and linear.
(We stress that this is merely a notational choice. It mayhtdnteresting to study non-linear properties
that are linear-invariant also, but we don’'t do so here.)

The resulting collection of families unify most previousignsidered in algebraic settings. They include
the class of linear functions, low-degree polynomials (#ngs generalized Reed-Muller codes), as well
as the dual-BCH codes. But they also include other familieshsas homogenous polynomials of any
given degree and linearized polynomials. They satisfy niosure properties e.g., # andF; are linear-
invariant, then so aré&; N 5, andF; + F», the family that consists of the sum of functions fr¢fp and

Fs. Finally, we remark that the group of symmetries requiredibgar-invariance is relatively tiny, and
only quasipolynomial in the domain size, compared to theoegptial sizes relied upon in the symmetric
properties as well as in graph properties.

Our principal results are to show necessary and sufficientlifons for testing linear-invariant families
mappingK™ to F. The results hold for all choices & andF asn — oo, but are specially strong when
IK| = O(1). We describe our results, and approach, below.

Constraints, Characterizations, Formal Characterizations, and Testing: To understand necessary con-
ditions for local testability, we start by recalling the sprnasic notions in this context, namely those of
“constraints” and “characterizations”.

We say that a familyF satisfies aonstraintC' = (1, ..., zy;S) wherezy, ...,z € K* andS C F¥ if
every membeyf € F satisfies(f(x1),..., f(zx)) € S. We refer to this constraint askalocal constraint.

In order for a property to bg-locally testable, with one-sided error, it must be the d¢haéfunctions in the
family satisfy somek-local “constraint” (since every rejected function mustéegcted with a proof of non-
membership in the family). Local constraints also esskfdiaa family of functions to be self-correctible
and indeed it turns out that all function families we analgee self-correctible.

Testable properties where every non-member is rejectddpeisitive probability (as required by our defi-
nition of a local test) actually need to show even more stimectSpecifically, it must be that there is some
set of local constraints that completalgaracterizethe family, i.e.,f € F if and only if it satisfies every
one of the given set df-local constraints. (See Definition 2.1 for a formal defonit) In this paper we will
consider all function families that are linear invariantidrave a local characterization and show that they
are testable.



To derive this result we examine the source of the local dtaraability of a family. Local characterizability
of a family requires that a family be specified bgverallocal constraints. In examining the features that
lead to property testing it is natural to ask for an explamafor this abundance of local constraints. One
way to explain them is via the invariance features of the farifia family satisfies one local constraint, then
every “permutation” of the domain that preserves membprghthe family yields a potentially new local
constraint. In our case, thus the abundance of constraambe explained by the linear invariance of the
family. Every linear transformation of a constraint, leémlanother valid constraint, and together this set can
be quite large. Motivated by this, we introduce the notiom drmal characterizationwhich requires that
the family be specified by singleconstraint and its “orbit”, i.e., all the other constraiotg#tained by linear
transformations of the given one, characterize the fanfifyie actual definition allows a slightly broader
class of characterizations, see Definition 2.3.) Moduloftlmal definitions of these objects, we can state
our first theorem informally as follows:

Main Theorem 1 (Informal): If a family F is linear-invariant and has &-local formal characterization,
which satisfies some additional restrictions, then ik#ocally testable. (See Theorem 2.9 for a formal
statement.)

The requirement that a single constraint and its orbit attarze a family may seem overly restrictive, but
known characterizations of most algebraic functions idiclg those from [4, 18, 2, 16, 13] are actually
formal and satisfy the (thus far unspecified) additionalriettions (see Proposition 2.7). As a result Theo-
rem 2.9 already subsumes many of the algebraic testingsedlbreover, as discussed later in this section,
the proof is actually somewhat simpler and unifies the difieproofs presented in the literature for the
different cases.

Our other main results show that the above theorem actuaigs desters for all linear-invariant families
provided the family is locally characterizable, a clearassary condition. For the special case of affine-
invariant families, we show that the existence d$iagle local constraint suffices to establish testability.
Again we describe these theorems informally below.

Main Theorem 2 (Informal): If a family F is affine-invariant and has &-local constraint, then it has a
kroly(IKI)_|ocal formal characterization which satisfies the additb restrictions mentioned in Main Theo-
rem 1 (Informal). Hence is kP (KD |ocally testable. (See Theorem 2.10 for a formal statement.)

Thus whenK| = O(1), the above pins down the local testability to with polynoniéctors. Moving to
the case of linear-invariant families, here we do get looainal characterizations, but they do not satisfy
the additional restrictions described in Theorem 2.9. Hareve still manage to use the theorem to give a
local test for all such families.

Main Theorem 3 (Informal): If a family F is linear-invariant and has &-local characterization, then it
has akP°(IK-local formal characterization (which need not satisfy #uitional restrictions mentioned
in Main Theorem 1 (Informal)). Furthermore is kP°Y (KD Jocally testable. (See Theorem 2.11 for a
formal statement.)

Significance of results: The significance of the results depend on the “novelty” ofdlass of properties
that are linear-invariant, and have local constraints @ratierizations. At first look it may appear that
linear-invariance is just a rephrasing of the notion of gdow-degree polynomiats Indeed we even prove

1We remark that it is not possible to deny that every propedmfK™ to F is a property of “polynomials”, since every function
is from K™ to F is a polynomial. However this is no more interesting tharirgayhat the function family i$K|™-locally testable!
What we claim here, and show later in the paper, is that trss dbproperties showing linear-invariance is not just potyials of
a given upper bound on the degree.



that whenkK = F = Z, is a prime field then the onlgffine-invariantfamilies are polynomials of a given
bound on their degree. However each restrictiéns I, F = Z,, and the affine-invariance df (as opposed

to mere linear-invariance), when relaxed leads to a broselsof properties.

For instance, whei = F andF is not a prime field, then the class of “linearized polynosiid¢ad to an
interesting collection of “high-degree” polynomials tlaae affine-invariant, but testable with much greater
locality than their degree would suggest. (Linearized polyials over the field of cardinalityp® for prime
pands > 1 are functions of the for@f:‘& c;zP".) In Theorem 7.1 we give a generalization of this result to
multivariate polynomials ang-degree greater thah giving a moderately broad class of functions that are
very locally testable using Theorem 2.9.

Moving to the case wherE = F, a priori it is not even clear that it is good to think of thempasynomials
over K (though as noted earlier, every function frd¥ to K, and hence fronK” to IF, is a polynomial
with coefficients fronK). Every non-constant function takes on a constant vallig| fraction of the times
and so must be a very high degree polynomial &egof degree at least<|/|F'|). Yet they can be locally
testable withO(1) locality, again suggesting that the “degree” of polynomiialthe set is not a good way to
measure their testability. This class of functions arerégting in that they capture the “dual-BCH” codes
studied (in the context of property testing) by Kaufman aitdyin [15]. In this paper, we give some basic
structural results about such functions (see Section &mwdidiows us to get some weak, but general, results
about testing multivariate versions of such functions.

The strongest contrast from low-degree polynomials howesmes when studying linear-invariant (as op-
posed to affine-invariant) families. In the previous ca#iegas the structure within the field that played a
central role in differentiating the properties under cdasation from the class of low-degree polynomials.
While this distinction led to some nice examples, the “ceaess” of our general results (Informal Theo-
rems 2 and 3 above) is weak to capture this distinction. lrc#se of linear-invariant families, homogenous
polynomials start to play a special role and this role is gtetively much more significant. For example
consider the set af-variate polynomials ovef.s supported on monomials of odd degree or monomials of
degree at most 10. It can be verified that this a linear-iavrfamily. On the one hand this set includes
polynomials of degree upt®n — 1, and indeed the supporting set of monomials has cardinafitgast
2". However, it turns out that this family is testable witt{1)-locality independent of. (and this follows
from Lemma 6.17 that is used to prove the Informal Theoremd@®e}h Indeed Lemma 6.17 gives a broad
generalization of this example to a rich collection of nomHdegree polynomials that are locally testable.
We remark that linear-invariance also leads to other ridbces. As mentioned above, the class of ho-
mogenous polynomials of degrekeis linear-invariant and)(d)-locally testable. Also ifF; and F, are
linear-invariant, then so i%; + F». It follows, again from Lemma 6.17, that if both are locakstable then
S0 isFy + Fo.

In summary, we assert that the class of linear-invarianpgnties mappind™ to IF form a rich enhancement
of the class of low-degree polynomials and our results heoerow to extend some of the property testing
results to the enhanced collection of properties.

Techniques: Our techniques belong into three different categories.

Unification of previous testing results by Tensor productades. Our testing result (Informal Theorem
1) unifies, simplifies and generalizes the proof of the romsgt result from several prior works [4, 18, 2,
16, 13]. The later works in this sequence built on the proafcstire developed in [4], but then needed to
find new ways to address the many variants of a common tedhprmalem that arose in all the proofs. Our
insight in this work is to notice that all these problems weweering around the concept of “tensor products”
of linear spaces (or codes). By extracting this elementieXpl(see proofs of Lemmas 3.1 and 3.3) we are
able to find a single proof (not much more complicated thanfitis§ that simultaneously solves all the
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Figure 1: Informal summary of the notions and results in fiaper.

problems. We remark that this proof does not specialize yooathe previous proofs, not even in the case
of [4]. Previous proofs were more “efficient” in terms of thhadeoff between the rejection probability of
the test and the distance from the famity By sacrificing this efficiency we are able to unearth some of
the underlying reasons for why testing works. Given there¢mble of linearity and low-degree testing in
complexity theory, we hope that the additional understagavill be of technical benefit in the future.

Structural theorems for linear invariant familieOur structural theorems about linear-invariant families
(Informal Theorems 2 and 3) are based on a careful analygpslghomials mappind” to F. Recalling
that every function fronK"™ to F can be viewed as a-variate polynomial oveik, we ask questions of
the form, what does a linear invariant family containing a single function (polynomiaf) look like? We
present some very simple but broadly useful lemmas in thisest, which we describe first for the simple
case wherK = F. We give a “monomial extraction lemma”, Lemma 4.2, whichwbithat every monomial
appearing in the support gfis also inF (where we view the monomial also as a function frhto F).

For example, any linear-invariant family containing thdypomial 22 + 2y + »* also contains the function
xy?. This turns our attention to linear invariant famili&shat contain some given monomial. We show a
“monomial spreading lemma”, Lemma 4.6, which describesyadimer monomials that should be contained
in F as well. For example a family containing the monomia? over a field of characteristic greater than
5 also contains the monomials andzy* etc. We show a similar (more general) variant for affine-iiara
families also. These lemmas, though simple, forge the gatla better understanding of linear-invariant
and affine-invariant families. In particular they say thege families are completely characterized by the
monomials in the families. In the case of affine-invariamhilées, the maximum degree of the monomials
in the family forms a good, though crude, bound on the logalftthe characterization/tests of the family,
and this leads to the Informal Theorem 2 above.

For linear-invariant families however, the degree turnstole the wrong measure to estimate the locality
of characterizations or tests. Instead we introduce a neanpeter that we call thinear-invariance degree
of a family. For example, for the earlier-mentioned exanubline family mappindZ: to Z3 supported on all
monomials of odd degree and on other monomials of degreeldptbe linear-invariance degree turns out
to be10. We show that this invariance degree bounds, again crutieyocality of the characterization/tests
of any family and this leads to the Informal Theorem 3 aboveheé case oK = F.

Systematic study of functions from a fiddto a subfieldF. Finally we extend the results to the case of



function families mappind”™ to some subfield of K. Thus, our work provides thirst systematic study

of testability of functions from a field to its subfield. In $hiase we describe a basis for functions mapping
K" to IF, which itself seems somewhat new. This basis generalizesdommon way the well-studied
“trace” and “norm” functions, both of which maK to F. These functions, that we refer to as “Traces
of monomials”, satisfy similar properties to the monomimishe simpler case of functions frofi* to

F. Viewed as a polynomial ovek, if a function f has a support on a monomiad, then the trace of the
monomialm is itself a function in any linear-invariant family contaig f. Furthermore, the presence of
one monomial implies the presence of many others in the fateéding to upper and lower bounds on the
characterizations/tests of the family.

Conclusions, the Alon et al. Conjecture and Future Work: Our work attempts to highlight on the role
of invariance in property testing. We remark that despigedhvious relationship of this notion to property
testing, it has not been highlighted before. The only pri@ntions seem to be in the works of Alon et
al. [2], and in Goldreich and Sheffet [11].

Our work highlights linear-invariance as a central themalgebraic property testing. Our results show
that this notion yields a wide class of properties that haall property tests. These results are strong
when the underlying fiel& is small. However wheiK is large, the characterization results (in particular,
Theorem 2.10) becomes quite weak, even for affine-invafantlies. In particular, in the case of the dual-
BCH codes (which consider functions mappifg to IF;), our characterizations are completely trivial, while
these codes do have very efficient tests [15]. One way to ingoar results would be if Theorem 2.10 could
be improved to have no dependencetoiThis however is not possible, as shown in upcoming jointkwor
with Grigorescu [12]. Specifically they exhibit a family dfiae-invariant functions mapping,: to IF, that
have 8-local constraints, but rdt)-local characterizations. Thus some dependencK @ necessary in
translating constraints to characterizations.

Our work provides the first systematic study of testing fior from a field to its subfield. This setting is
different than the well studied case of functions from a fieldtself. This difference is best illustrated by
the following example

e For affine invariant function family of the forri; — F2 we have : a local constraint imply local
characterization and local testability.

e For affine invariant function family of the forifi,» — Fo we might have (by the work of [12]) a local
constraint, buto local characterization! , and henge local testing!

Moreover, our work suggests a method to construct new ptaditable codes by picking the dual code to
be a code spanned by an orbit of a short local constraintt(enioier the group of linear transformations).

In general, we feel that the class of linear-invariant fiord offer a rich variety of properties, sufficiently
wide to test out conjectures about the nature of testablpepties. For instance, Alon et al. [2] had con-
jectured that linear codes of large distance, that have d smeaght codeword in the dual, and have a
“2-transitive invariant group” are locally testable. Whapplied to codes derived from affine-invariant
function families, their conjecture implies that every rdfiinvariant family fromK™ — F with a k-local
constraint, must have afx(k)-local test and in particular, afi(k)-local characterization. The aforemen-
tioned result [12] refutes this conjecture of [2] by considg affine-invariant families. However, our work
(Theorem 2.10) shows that a weak version of the [2] conjealoes hold, within the class of linear-invariant
codes, by giving arfk (k)-local algebraic characterization and test.



This leaves the possibility that every locally characedizode with a “2-transitive invariant group” may
be locally testable. Again we feel that this question can strmlild be examined in the context of affine-
invariant families. In general, we feel that for every migsarrow, or qualitatively weak one, in Figure 1
poses an interesting open question that we hope will betigated in future work.

This work put in focus object of the following forni-linear subspaces that are invariant under permutations
of a groupG. In this work the group is the group of linear transformations of the domain. In afeit
work one may try to understand invariance under differeatigs in the following sense.

e Doesk-local formal characterization imply local-testing alshem the group of invariances is differ-
ent than the group of linear transformations?

e Given a linear subspace that is invariant under permutsiadra groupG:, when it is the case that
k-local formal characterization exists (i.e. when theresexdne short orbit that span the dual space)?

Organization of this paper:

In Section 2 we introduce some basic definitions needed septeur main results and we provide formal
statements of our main results. Then in Section 3 we proven@in result on testing linear-invariant
families. Section 7 presents an example of some familiespgbssess very local characterizations and
thus local tests. The remaining sections undertake the/sinadf locality of characterizations in general
linear-invariant families. Section 4 describes some bssiactural properties, in particular on the role of
monomials in functions mapping™ to F. Section 5 turns these results into bounds on the localithef
characterizations and tests for affine-invariant and fi@ariant families mapping” to F. Section 6
extends the results of the previous two sections to the ddsaaions mappindK™ to IF.

2 Definitions and Statement of Results

We start with some common notation we use. We Zige refer to the integers. We uge] to denote the
set{1,...,n}. Throughout we work with finite field& of cardinalityq = p* andK of cardinality@ = ¢'.
F* and K* will denote the non-zero elements of the fields. For an integetord = (d,...,d,) with
0 < d; < Q ande € K*, we letc- x4 denote the monomial- [/, . We useK[x] to denote polynomials
in x with coefficients fromK. We useL to denote the space of linear functions fréft — K" and.A to
denote the set of affine functions.

2.1 Robust local tests

We start with the formal definitions of constraints, chaeazhtions and formal characterizations.

Definition 2.1 (k-local constraint/characterization) A k-local constraintC'is given byk pointsxy, ..., xy €
K" and a setS C F*. We say that a familyF satisfies ak-local constraintC’ = (xi,...,x;S) if
(f(x1),..., f(xx)) € Sforeveryf € F. We say that a familyF has ak-local characterizatiofif there
exists a collectior® of k-local constraints such that € F if and only if f satisfies all constraint€’ € C.

When the property being testedlislinear, it is well-known [3] that the sef might as well be arf-linear
proper subspace @". In what follows we often use the lett&f to denote such a subspace (instead)of



We now introduce the notion of falocal formal characterization. We start with a strong aledjant defi-
nition, though we will soon switch to a slightly weaker (bubre cumbersome) definition that is easier to
work with. The strong definition formalizes characteriaat derived from linear, or affine, translations of
asinglek-local constraint.

Definition 2.2 (Strong Formal Characterization) A family of functionsF C {K" — F} has astrongk-
local formal characterizatioit there exists a constrain® = (x1,...,x;; V C F¥) such thatf € F if and
only if for every linear functiorl. : K" — K" it is the case tha{f(L(x1)),..., f(L(xz))) € V.

Characterizations such as the above are common in propstigd. For instance the class of linear functions
from Zj to Z,, for primep andn > 2 can be described by the constraiiit= (a,b,a + b; V) where

a = (1,0,...,0), b = (0,1,0,...,0), andV = {(o, 8, + )|, 5 € Z,}. Similarly, the class of
degreed polynomials mappingZy to Z,, for d < p andn > 2 can be described by the constradit=
(a,a+b,a+2b,...,a+ (d+1)b; Vy) whereVy = {{aq, ..., aqr1) € FH2 S5 (—1)i (T oy = 0.
More complex expressions can be found for functions mappoignomials over any (esp. a non-prime)
field to itself. However all these definitions do restricto be at leas®, which is somewhat artificial. Also
for technical reasons we will use a “dual” (and weaker) notba “formal” constraint.

In the above version, a formal characterization may be wiesgebeing given by a collection of constraints:
one for every linear map frok™ to K™. In the “dual” version below, we will consider a collectiofi o
constraints which are parametrized by a constant numbearahles taking values iK™, The “variables”

of a constraint, i.e., locations examined by the constrairg linear functions of the parameters. As usual
the constraint requires that the vector of function valughespecified locations come from the set

Definition 2.3 ((Weak) k-local formal characterization) A family 7 has a (weak}-local formal charac-
terization if there exists an integen; k linear functions/y, ..., ¢, : (K)™ — K; and a linear subspace
V C F* such thatf ¢ F if and only if for everyy, ..., ym € K", we havef(x1),..., f(zx)) € V, where
x; = 4i(y1,...,ym). (Here we interpret the linear functiof) as a map from(K")”™ — K" in the natural
way.)

The following proposition establishes a fairly close cartimn between strong and weak formal characteri-
zations.

Proposition 2.4 A family 7 C {K" — F} has a weakk-local formal characterization if is it has a strong
k-local formal characterization. Ifi > & then the converse also holds.

Proof: LetC' = (x1,...,xx; V) give a strong formal characterization 8t Renumber;, ..., x; so that
the vectorsxy, ..., x,, are linearly independent and = > \;;x; for j € {m +1,...,k}. Now let
l1,..., 0 : K™ — K be defined ag;(z1,...,2y,) = 2 if j <mandlj(z,...,zm) = > vy Xijz for
je{m+1,...,k}. Thenitcan be easily seen that ..., ¢, andV give a weak formal characterization
of F.

In the other direction, suppogg, ...,/ : K™ — K andV give a weak formal characterization &t Let
ay,...,an € K" be linearly independent vectorsIi&®. (Note such a collection exist sinee < k < n.)
Letx,,...,x; be given byx; = /;(a,...,ay). Thenit can be verified that the constraigt, . . ., xy; V)
gives a strong formal characterization6f |

Henceforth whenever we refer to formal characterizatioresmean weak ones. The formal version of the

Informal Theorems 1, 2, and 3 rely on some restricted clasE&wmal characterizations that we specify
below.



Definition 2.5 (2-ary Independent and Affine Formal Characteizations) A k-local formal characteri-
zation(y, ..., l; V) is 2-ary independerif ¢; and/; are linearly independent for evegye {2,...,k}. If

all the ¢;’s are of the formy; +€~i(y2, ces Ym),s where/;’s are non-zero, then we say that the characterization
is anaffinecharacterization. (Note that every affine characterizatip also 2-ary independent.)

In the propositions below, we mention some general resultthe existence of formal local characteriza-
tions. The first gives a general transformation, which maygbige weak for largek, but is quite useful
for smallK. The second summarizes known (quite strong) charactemizain our terms. Both proofs are
omitted.

Proposition 2.6 For everyK there exists a function = gx : Z — Z such that if 7 has ak-local charac-
terization, then it has g(k)-local formal characterization.

Proposition 2.7 (Follows from [7, 16]) The setF,, 4 r of n-variate polynomials of degree at mesoverF
(so hereK = T) of cardinality ¢ = p*, have ad + 2-local formal characterization, il < ¢ — ¢/p, and a
q!#/(a(=1/p)]|ocal formal characterzation ifl > d(1 — 1/p). In both cases, the formal characterizations
are affine.

A much wider class of properties (other than just the classwefdegree polynomials) have local character-
izations. We discuss this in detail shortly, but first we didsgca natural test for properties with local formal
characterizations.

Definition 2.8 (Linear-invariant test) For family 7 that has a formal local characterization given &y, . .., (x; V),
the linear-invariant test is defined to be: “Pick,...,z, € K" at random and accept if and only if

<f(y1)7 ey f(yk)> € V’ Whereyi = Ei(xlv oo 7$m)'”

We can now state our main theorem, which formalizes the tm&rTheorem 1 of Section 1, for testing
linear-invariant families with local formal characteriipan.

Theorem 2.9 If F is a (linear invariant) family of functions mappirig” to IF, with a 2-ary independent
k-local formal characterization, then it i&-locally testable. Specifically, the linear-invariant tescepts

all members ofF, while a functionf that isd-far from F is rejected with probabilitynin {g e }
We prove this Theorem in Section 3. In particular, note thatll cases the rejection probability is indepen-
dent ofn andK. So if k = O(1), then the rejection probability ().

For well-known linear-invariant families such as lineandtions [4], and Reed-Muller codes [18, 2, 16, 13],
the theorem above produces local tests with the same lpealiin the previous works, though the rejection
probability may be slightly smaller in our case. The resthid section describes property tests that we can
derive that are not already captured by previous results.

To do so we study invariance properties of functions mapfifigto F. All functions from K™ to F are
polynomials. So the principal questions we study here avéhith subsets of polynomials are linear (or
affine) invariant?” and “Which of these families hak«docal formal characterizations?”

We differentiate our results into two categories: thosedtfine-invariant families and those for linear-
invariant families. In both cases, as argued earlier thegerich variety of function families that are not
“merely” low-degree polynomials. However in the case ofreffinvariant families, the maximum degree
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of functions in the family does give a crude bound on the ibcalf characterizations and tests for the

family. On the one hand families that contain even a singiatiegree function cannot satisfy any local

constraint; and on the other hand families with only low+@egunctions have local formal characterizations
(see Lemmas 6.9 and 6.14). For affine-invariant families,ctmaracterizations can be converted to affine-
invariant, and hence 2-ary independent ones, one can ndwy &jpporem 2.9 to get a testing result as well.

This leads us to the following theorem, which formalizeotnfal Theorem 2.

Theorem 2.10. For fieldsF C K with |F| = ¢ and |K| = Q, let F C {K" — F} be an affine-invariant
family with ak-local constraint. ThetF has ak’ = (Q2k)?”-local formal affine characterization. Further-
more F is k'-locally testable where the test accepts member5 wifith probability 1 and rejects functions

that ared-far with probability min { §, ks |-

Theorem 2.10 is proved in Section 6, though the simpler cémrak = F is proved in Section 5.

The gap between the upper and lower bounds is the above thdésmguite weak. Partly this is because
the degree of the polynomial in a family is only a weak estonatf the locality of characterizations. In
Section 7 we give an example of a family mappifigto F where the degree is larger than the locality of the
characterization by a factor of aboytp. This example is interesting in its own right in that it shosesne

of the ways in which affine-invariant families differ fromrfélies of low-degree polynomials.

In the case of linear-invariant families, the degree is ng&r even a crude estimator of the locality of
characterizations. In Section 5 we introduce the notiorheflinear-invariance degree of a family and use
this parameter in Sections 5 and 6 to derive upper boundseoio¢hlity of formal characterizations, while
also deriving lower bounds on the locality of (any) chardztgion (see Lemmas 6.8 and 6.16). These
characterizations, unfortunately, are not 2-ary indepahdHowever we manage to reduce the testing of
linear-invariant families to some related families thathdve 2-ary independent characterizations. This
allows us to use Theorem 2.9, in a slightly more involved wayget local tests for linear-invariant families
as well. The following theorem, which formalizes Informdidorem 3, summarizes this investigation.

Theorem 2.11. For fieldsF C K with |F| = ¢ and K| = Q, let 7 C {K" — TF} be an linear-
invariant family with ak-local characterization. Theft has ak’ = (Q%)Qz—local formal characterization.
FurthermoreF is kq-locally testable, foiky = 2Qk’ where the test accepts membersrofvith probability

1 and rejects functions that affar with probability min {g WM}.

Again, Theorem 2.11 is proved in Section 6, though the singase wherd& = F is proved in Section 5.

10



Part |

3 Local Testing from Local Formal Characterizations

In this section we wish to prove Theorem 2.9 which assertsahemear-invariant familyF with a 2-ary
independent:-local formal characterization is-locally testable, by the linear-invariant test fér. We
restate the theorem below.

Theorem 2.9 (restated)if F is a (linear invariant) family of functions mappir§” to I, with a 2-ary inde-
pendentk-local formal characterization, then it is-locally testable. Specifically, the linear-invariant tes

accepts all members @, while a functionf that iss-far from F is rejected with probabilitynin {%, m }
In particular, the theorem implies that every affine-inaatifamily 7 with a k-local formal characterization
is testable.

Recall the linear-invariant test picks, . . . , z,, € K" atrandom and accepts if and only ff(y1), ..., f(yx)) €
V, Whel’eyi = Ei(ﬂj‘l, ce ,;Em) fori e [k?]

Lete(f) denote the probability that the linear-invariant testetje functionf. Itis clear that iff € F then
e(f) = 0. So to prove Theorem 2.9 for the case of 2-ary independemtdiocharacterizations, it suffices to

show that ife(f) < m thend(f, F) < 2¢(f).

We start by making some notational simplifications. Faz [k] andj € [m], let¢;; € K be such that
(T, .. ) = Z;ﬁ:l c;jxj. Without loss of generality, we assume that the firstinear functions
simply project on to the first: coordinates; i.e4;(x1, ..., z,,) = z; for i € [m]. (This can be achieved by
a linear transformation of the variahlg, . .., z,, and by permuting thé;'s.) Furthermore, we assume the
remaining coordinates are linearly independent 0énd so for every # 1, the vector{c;a, . .., ¢im) # 0.

Fix a function f with e(f) < 1/((2k + 1)(k — 1)). As in [4], we now describe a functiog : K" — F
that is close tof, that will turn out to be a member ¢f. For any choice of valuess, ..., a; € F notice
that there is at most one € IF such that{«, as, . .., ax) € V. Define DECODE(«y, . . ., o) to be thisa if

it exists (and a special symbadl denoting error otherwise). Far € K™ and |etSCf(w;w2, ceyTy) =
DECODE(f(y2),- .., f(yx)) Wherey; = {;i(z,x2,...,x,). Note thate(f) equals the probability that
flx) # SCf(w;wQ, ..., Ty), Whenz, z,, ..., z,, are chosen uniformly and independently frdgfi. In
particular f (z) = Sc/ (z; 2o, ..., ) for everyz, x, ..., z,, ifand only if f € F.

Finally, we are ready to define the functignwhich we claim to be the function close fahat is inF. For

z € K", letg(x) = plurality ¢ (gnym—1 Sc/ (z, a).

We now follow the same sequence of steps as in [4]. It is ditlggvard to show thaf is close tog and we
do so in Lemma 3.2. But before we do so, we move to the cruagl, sthich is to prove that the plurality
above is really an overwhelming majority for every We show this first in Lemma 3.1. Finally, a proof
similar to that of Lemma 3.1 shows thamust be a member ¢f and we do so in Lemma 3.3. Theorem 2.9
follows easily from these lemmas.

Lemma 3.1 For everyz € K", Pry ,[(Sc/ (z,y) # Sc/ (z,2))] < 2(k — 1)e(f). Hence, for every € K",
Pry[g(x) # Sc/ (z,y)] < 2(k — De(f).

Proof: Lete = ¢(f). We build twok x k matricesM, N with M;; € K" andN;; € F and use properties of
these matrices to prove the lemma.
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Fori,j € [m] picky;; € K" as follows. Lety;; = x, v1; = y;, Vi1 = 2, and~;; be chosen independently
and uniformly at random frorK" otherwise. (Note every;; exceptyi; is thus drawn uniformly at random
from K".) Now fori € [k] andj € [m], let M;; = €;(y1,...,7vmj). (In particular, we havé/;; = ~;; for

i,j € [m].) Finally fori € [k] andj € [k], let M;; = ¢;(M;1, ..., M;y,). The second matridV;; is defined

to be f(M;;) except wheri = j = 1, in which case we defind’; = Sc/(z,y).

Below we show that all the rows df are codewords o (with high probability), and that all the columns
except possibly the first are also codeword$/ofThis allows us to conclude that the first column is also a
codeword ofl” and this in turn yields the lemma.

We start by examining the properties bf and N. We claim that every row and every column &f cor-
responds to the queries of a potential test by our tester. tévewgith the rows. Fix € [k] and note that
the entries of theéth row correspond to queries of the test with randomndss . . . , M;,,, (corresponding
to queries of the test “Doef(M;;) = Scf(Mﬂ; Mo, ..., M;,)?"). Notice further that foi # 1 the values
M;,. .., M, are drawn uniformly and independently at random frgfh(independent o). To see this,
suppose;; # 0 for somej € {2,...,m}. Then note that there is a one to one correspondence between
(Yj1s---+Yjm) and (M, ..., M;y,) for any fixed choice of v }i; k. Thus choosingv;i, ..., ¥jm) uni-
formly at random make&M;1, ..., M;,,) uniform over(K")™ independent of;;; = x. We conclude that
the probability thatf (M;1) # Scf(Mil; Mo, ..., M;y,) is at mosk. In other words, the probability that the
ith row of V is nota codeword ol is at most for i # 1.

Next we move to the columns @ff and N. Note that the construction @ff was asymmetric in that every
row was defined to form a “query” pattern of our test. Howewar,note that the same matrix could have
been defined by constructing the firstrows first, and then defining each column to be a “query pattdrn
the test. To see this recall thatxy, ..., z,,) = Z;”zl cijzj. Thus we have

Mij = gj(Mila ey Mzm)

= gi(Mlja ey Mmj)-

By a similar argument to the previous paragraph we now haatetlie probability that thegth column of V

is not a codeword is at mosffor j #£ 1.

Thus, by the union bound, we have that with probability att@0k — 1)e there exists a row (other than the
first) or a column (other than the first) such ti¥trestricted to the row or the column is not a codeword of
V. We now use this to show that the first row/gfand the first column ol are also codewords &f. Here
we use the properties of tensor products of codes. Recalthibdaensor product of” with itself, denoted

V ® V is the code consisting of all x k& matrices oveif all of whose rows are codewords Bfand all of
whose columns are codewordsof It is well known that ifV has distance then its tensor product with
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itself has the following “erasure-correcting” propertyivén the projection of any matri8 = A|gsxr to
a subsetS of the rows and a subsét of the columns with S|, |T'| > k& — d + 1, B can be extended to a
(unique) codeword! of V' ® V' if and only if for every rows € S, the sth row of B is consistent with (the
projection toT of) some codeword oV, and for every column € T, thetth column of B is consistent
with (the projection taS of) some codeword of .

In our case, the cod¥ has distance at leagtand we know the projection oV onto all columns ex-
cept the first and all rows except the first are consistent Wwith Thus the extension t&v to a code-
word of V' ® V' is unique and this is the unique value which satisfi@s = DECODE(Nys, ..., Ni;) =
DECODE(Nay, . . ., Ni1). We conclude that with probability at ledst 2(k—1)e, we havePry, ,[Sc/ (z,y) #
Sc/ (z,2)] < 2(k — 1)e(f).

The consequence pfollows from the fact when drawing samples from a distribnfithe probability of a
collision is no more than the probability of the most likelgment. |

We now revert to the task of proving thétis close tog and thatg is a member of the familyr. We start
with the former task which we show in exactly the same way 44,i4.8].

Lemma 3.2 §(f,g) < 2¢(f).

Proof: Let B = {z € K"| Pr,[f(x) # Sc/ (z,@)] > 3}. Notice thate(f) > & Pr,[x € B]. On the other
hand, ifz ¢ B, thenf(z) = plurality,,[Sc/ (z, a)]. The lemma follows. ll

Next we show that the proof technique of Lemma 3.1 can be adaot prove also thay € F. This
modification is similar to those in the early papers [4, 18].

Lemma 3.3 Let f be a function witke( f) 3 and letg be its self-corrected version. There F.

< EEFDED
Proof: It suffices to show that for every,,...,x,, € K" the vector(g(y1),...,9(yx)) € V, where
yi = li(x1,...,zy). Fixsuch a sequenca, ..., z,, € K" and lety; = ¢;(z1,...,z,,). fori € [k]. Asin
the proof of Lemma 3.1, we will construct a matd¥ € (K")*** whose first row will beyi, . .., y.. We
will then define a related matri®%y and show that all rows oV, except possibly the first, and all columns
are codewords of. We will then conclude that its first row must be a codeword’adind this will imply
the lemma.

Fori,j € [m], pick;; as follows.;; = x; and~;; is drawn uniformly and independently frokf* for all
otheri, j pairs. Fori’ € [k] andj € [m], defineM;; = Cir(v1j,-..,vm;). Finally, fori, ;" € [k], define
M;rjr =Ly (M, . .., Myrp,). Now let N;; = g(M;;) it i = 1 and f(M;;) otherwise.

As in the proof of Lemma 3.1 we have that all the rowsMf except the first represent the queries of

a random test, and in particular the queried points are emidgnt ofyq,...,y;. Thus we have that the
probability that the’th row of NV is not a codeword o¥ is at moste, for i’ # 1.
Next we turn to the columns aV. Note that once again we havd;; = ¢;(M;,..., M, ). Now for

every j, the jth column of M represents the queries of a random test through Thus we have that
the probability that theith column of NV is not a codeword of/ is given by the probability of the event
g(y;) # Scf (yj; My, ..., M,,;) and by Lemma 3.1 the probability of this event is at mitfgt — 1)e.

Taking the union of all the “bad events” and deducting them have that with probability at least- (2k +
1)(k — 1)e we have that all the rows a¥ except the first, and all the columns &f are codewords of'.
We conclude (as in the proof of Lemma 3.1) that the first rowNofi.e., the vectog(y1),...,9(yx)) isa
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codeword ofV. Sincel — (2k+1)(k —1)e(f) > 0, we have with positive probabilityg(y1), ..., g(yx)) €
V. Butyy,...,yr were chosen deterministically and so the probability of #wient is either zero or one,
yielding that this event must happen with probability onlk.

Finally, we can prove our main testing theorem, namely thedlly (formally) characterized function fami-
lies are locally testable.

Proof of Theorem 2.9: From Lemma 3.2, we hawgf, g) < 2¢(f). and by Lemma 3.3, we havee F
and sos(f) < 2¢(f). |
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Part Il

4  Structure of Affine-/Linear-Invariant Families

In this section we aim to study structural properties ofdinvariant and affine-invariant families of func-
tions mappingf™ to F. (Later we extend the study to functions frdf¥ to F in Section 6.) We start by
proving two basic lemmas that describe some of the membeasyofinear-invariant (or affine-invariant)
family F containing a given functiorf. The first of these shows that in a linear-invariant fanfycon-
taining f, every monomial in the support g¢f, when viewed as a function, is also in the famify The
second lemma illustrates that given a single monomial inesbnear-invariant familyF, one can deduce
the presence of many other monomials7in In fact, over a prime field we show thall monomials with
degree less than or equal to that of the starting monomiahates family, if the family is affine-invariant.
Together, these lemmas lead to a good understanding of tievibe of linear-invariant families and help
the study of (formal) local characterizations in Section 5.

Before launching into the section we first introduce sometia and definitions that apply generally to
functions mappind™ — F.

We use{K" — F} to denote the set of all functions mappikg to F.

Definition 4.1 For a set of functions¥ C {K" — F}, SPANg(F) = {X°_, ai-fill € ZT, 04 € F, fi € F}
denotes the linear span (ovE) of F. For a family of functionsF C {K” — F} we let the linear span of,
denotedL-sPANR(F), be the smallest linear-invariant family of functions aining F. Finally, the affine
span ofF, denotedA-sSPANr(F) is the smallest affine-invariant family containitrg

When the rang&" is clear from the context we suppress the subscript and tef8PANg(F) as simply
SPAN(F). Note that LSPAN(F) can be written as®N({ f(L(x))|f € F andL : K — K" is a linear function).
Similarly, A-SPAN(F) can be written asN({ f(A(x))|f € F andA : K" — K" is an affine functiof).

We will be switching back and forth between functions ang/pomials. Specifically, given am-dimensional
vector spac&", we will associate: variablesx = (x4, . .., z,,) with the space. Given a functigh: K" —
IF we will often use it exchangeably to represent the uniqugrmohial inp; € K[x] (with coefficients in
K) whose degree in each variable is at m@st— 1, and which evaluates to the functigron every point in
K™. In particular, below we will be thinking of monomials #ix] as functions fron¥™ — F.

4.1 Extracting Monomials in Linear-Invariant Families

For a polynomialf = ", caxd, we refer to the support of to be the set of monomialg;x9 with ¢, # 0.
For a monomialn = x4, we denote the degree of the monomialday(m) = > 7, d;. Our first lemma
asserts that in a linear-invariant family mappiff¢gto IF, every monomial in the support of a function in the
family also belongs to the family.

Lemma 4.2 [Monomial extraction lemma] For every functioh: F* — F, every monomial in the support
of f is contained irL-SPAN(f).

Proof: We prove the lemma by proving the following claim about un&@ polynomials, and then using
induction on the number of variables.
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Claim 4.3 Let f(x) = ZZ;% ;- 2!, wheref; € F[z1,...,2,-1]fori € {0,...,¢ — 1} andq = |F|. Then
for every suchk € {0,...,q — 1}, fi - 2% € L-SPAN(f).

Proof: Note that fork = 0, fo = f(x1,...,2,-1,0) which is obviously in LsPAN(f). So fixk €
{1,...,¢—1}. Nowletf = f — fo = zg;ll fi - #%. Note that sincef € L-SPAN(f), it suffices

n

to show thatf;, - zF € L-sPAN(f). Fix a primitive elementx € F — {0}. We claim thatfy, - zk =

— Z?;} o ki f(xy, ... xa_1,0izy,), which immediately impliesf;, - ¥ € L-span(f). To verify the
claim, we work on the RHS:

q-—1 g—1 g—1
- Z M@y, e, ddr) = =Y TRy f(dl )
j=1 j=1 i=1
q—1 -

q—1
J

i=1 =1

But the inside term is of the for@?;% 7 which is zero for every € F— {1}, and equals-1 wheng = 1.
We conclude that the above expression simplifiegtoz” . This concludes the proof of Claim 4.3

We now conclude the proof of the lemma with a simple inductisgument. Leff = >, caxd. Fix a vector
e such thate # 0. We will show thatcex® is in L-SPAN(f). To do so let

) n
d; €j
hi = E : Cdy,....dis€i11,0-€n ij H Ty
Jj=1

diod; j=i+1

Note thath,, = f andhg = cex® is the monomial of interest to us. From Claim 4.3 we get thaeferys,
h; is in L-sPAN(h41) and thus in LsPAN(f). Fori = 0, this yields the lemma.ll

4.2 The spread of monomials in linear-/affine-invariant famlies

The main lemma is a general lemma that asserts that the peeeéa single monomial in a family implies

the presence of other monomials, with “smaller” degrees sormewhat technical sense. We follow the
lemma up with a corollary that describes some of the ways iichvthe lemma will be used later. Before
presenting the lemma we present a simple useful proposition

Proposition 4.4 Let x and z be disjoint sets of variables. If a monomial = x4 has the monomial
m/ = x© - z¢ itits linear (affine) span, then the monomial- zf has the monomiaty’ - z¢'tf it its linear
(resp. affine) span.

Proof: We prove the proposition for the case of affine spans. Thadioase is similar.

Letn denote the dimension afandn’ denote the dimension af By the fact thain’ is in the affine span of
m we get thatn’ = x° - z¢ = 3°°_ ¢;(4;x + b;)d for some finite sequencc;, A;, b;)}._, with ¢; € F,
A; € FHn)xn andb,; € B+, For everyi € [(], let A, ¢ F(»+7)x(n+1) he given by

r_ (4|0
A= (] )
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and letb, = b;. Note that

)4
Zc,—A;(x,z + b)) — Zc,—(Aix +b)% - 2f =x°. 2% 2.
i—1 i=1

Thus we have that the monomigf - zf has the monomiate - z¢'+ it its affine span. ll

Proposition 4.5 Letm, m’ € F[x] C F[x, y] be such thain’ € A-sPAN(m). Thenydea(m)—deg(m’) ./ ¢
L-SPAN(m).

Proof: Letd = deg(m) andd’ = deg(m'). Letm’ = Zle cim(A;x + b;). Thean:1 cim(A;x + by)

is a homogenous polynomigl(x, y) of degreed. Furthermoref(x,1) = m’. If follows that f(x,y) =
y¢=4 .m/. To see this, lef (x,y) = Z?:o f:(x)y* wheref; is a homogenous polynomial of degrée- i.
Thenf(x,1) = Z?:o fi(x). Note that if f;(x) # 0, then there are no cancellations from the any of the
other f;(x)’s since these polynomials have disjoint support. Thuslibfes that f;(x) = 0 fori # d — d
andf;_4(x) = m/, thus yielding the proposition.l

We now present the main lemma of this section. To motivatéetimena, we first give an example. Consider
the linear span of the monomia? € F[z,y|. If the characteristip of F is greater tha$ (or if p = 3), then
L-SsPAN(z%) = SPAN({z®, z*y, 232, 2%y3, 23*,4°}). On the other hand, iF is of characteristic, the
L-sPAN(z%) = SPAN({z%,3°}). If F is of characteristiQ, then LsPAN(x) = SPAN({z%, 2y, xy*, °}).
The lemma below attempts to capture some of this diversity.

Lemma 4.6 (Monomial Spread Lemma) Letd = (d,...,d,) € {0,...,q—1}" ande = (ey,...,e,) €
{0,...,¢—1}". Fori € [n] andj € {0, ...,s—1} letd;; ande;; be the unique integers frof, ..., p—1}
such thatd; = Y°%— d;;p’ ande; = 3%_g e;;p’. Letm be the monomiak? and letr’ = x°. If for every
j€H0,...,s—1}itisthecase thad ., e;; <>, di;, then the following hold:

1. m’ € A-SPAN(m).

2. yf—deg(m)+deg(m) 4/ ¢ | -spaN(y/ - m) for every non-negative.

Proof: We only prove Part (2). The affine case follows by settjng 1 in the proof below. Alternately, one
can make the general observation that if a mononftab’ is contained in LsPAN(m) for m, m’ € F[x],
thenm' is contained in AsPAN(m). Applying this observation to the conclusion from Part (2)he lemma
(with f = 0) yields Part (1).

We start with a simple claim that deals with the special cds$leeospan of bivariate monomials. The lemma
then follows by a simple induction using this claim.

Claim 4.7 Letk € {0,...,q— 1} andky, ..., ks—1 € {0,...,p— 1} be such thak = > *_{ k;p’. Let/ be
a non-negative integer and Ig§ € {0, ...,s— 1} be such that;;, > 0. Then, the monomigl+?" . zk "
is contained in_-sPaN (y* - z¥).

Proof: Let M (z,y) = y* - 2. We show below thad/ (x + y, ) has the monomial! (z, y) - (y/x)P° inits
support. The claim then follows by Lemma 4.2.
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For a monomial* [[5_, 2% »7 we say thab " a; is its pseudo-degree. Then note thdtz + y,y) =
M(z,y) + Eje s Ki - M(x,y) - (y/x)p,-,l + M'(z,y) where M'(x,y) is a polynomial of pseudo-degree
less than(>_%_; k;) — 1. Thus the coefficient oM (z, y)(y/x)Po~1 in M (x + y,y) is exactlyk;, which is
non-zero ifk;, # 0. |

We now move to the proof of the lemma. We prove this lemma byatidn on}_; . |d;; — e;;|. We consider
two cases:

CASE 1: Jjs.t. Y dij > > ey Letl € {0,...,s — 1} be such thad |, diy > >, e and letk € [n]
be such thatl;,, > egp. Let dw be given as foIIowde = dgy — 1 anddZy = d;; otherwise. Letd; =

S%Z4di;p’. By Claim 4.7 we have that the monomigl " - z* is in the linear span of/z{* and so

(using Proposition 4.4y/+7"~" [T, z% is in the linear span of’ [], . By induction we also have that
y/+deg(m)—deg(m’) xe 5 in the linear span of/+»'~'x4. Putting the two together we get the lemma in this
case.

CASE 2: dkq, ko, £ S 1. dklg > €yt anddeg < €k2g Now deflned to bedklg = dklg 1, d~k2£ = deg +1
anddy = d;; otherwise. Agaln letl; = Zs_é dijp’. Applying Claim 4.7 tox = zj, andy = x,, we

dy

d
now have that the monomlaj " . z,:% is contained in the linear span mﬁl - a2 It follows (using

Proposition 4.4) thay” - [T, :::Z.Z is in the linear span offx4. Again, by induction, it also follows that
y/+deg(m)—deg(m’) . xe' 5 in the linear span af/ x4 We conclude thag/+deg(m—des(m’) . i/ s in the linear
span ofy/ - m. This yields the lemma statement for this case.

The lemma now follows since the two cases above are exhausllv

In the following corollary we describe some of the specialasathat are used in later sections.

Corollary 4.8 The following statements are true:

1. Ifey,..., e, are non-negative integers such thgt | + e, < p then the monomiat{* - - - z¢» is in
the linear span of the monomiaf* - - - 52 - 217",

n—1

2. If¢/p < d < g and f is an arbitrary integer then the monomia$/?y/*+4-4/? js in the linear span of
2%yl andz9/? is in the affine span af‘.

3. Ifdy +---+d, >q/pandf > 0, then the monomiaylefx‘{/p is in the linear span of/ z{" - - - zd»
for e = dy + - - d,, — q/p, and2?” is in the affine span of?" .. . zn,

Proof: We prove only the containments in the linear span. The affamegan be obtained by setting= 1
in the proofs.

1. Part 1 is obtained as follows. Lét = ¢; fori € [n — 2] andd,,—1 = e,—1 + e, andd,, = 0. Let
d;;s be the unique integers such that= ijl dijpﬂ'—l, and lete;; be defined analogously from.
Finally let f = f’ = 0. Then itis clear that;; = d;; except possibly whehe {n —1,n} andj = 1.
In these cases we hadg_, 1 = e,—1 + ¢, ande,_11 = e,—1 ande,; = e,, Which also satisfies
dn—11+dn1 < en—11 + €n1. Also note thatf’ = f + ijlpﬂ'—l S (dij — €;5) = 0. Thus, by

Lemma 4.6, we have thaf’ - - - ¢ is in the linear span of the monomig{* - - - 52 - 2" 17"
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2. For Part 2, we use Lemma 4.6 with; such thad = % _, dijp’~! andey; = 0 except whery = s
in which casee;; = 1. Sinced > ¢/p we haved;; > 1 = ey, satisfying the condition of the
corollary.

3. For Part 3, assumf > dy > --- > d,. Letk > 1 be the smallest index such thlghtg Zle d; < q.
(Note that such & exists since eitheg/p < d; < ¢ in which casek = 1, ord; < q/p for everyi
and so for the first: such thats"* | d; > ¢/p, this sum is also less thaly/p.) Lete = % d,.

Consider the linear transformation that sefs- - - , xy to z; andxy1, - - -, x,, to y. This shows that
the monomiabm; = x;¢yXi=19n—c+f is in L-spAN(y/z{" - zd»). Applying, Part 2 tom; we get
this part.

Lemma 4.9 Letm € F[x,y] be a monomial of degreé. Let/ = |d/q]. Then]_[lexg/p is contained
in A-sPAN(m), Furthermore {y® - m/|m’ € A-sPaN([]'_, 2%/7),d; + deg(m’) = d mod (g — 1)} is
contained inL-SPAN(m).

Proof: We prove only the containment for the assertion abowrAN(m) and the containment in the linear
span follows using Proposition 4.5.

Letm = x‘fl xf{ and letd; > dy > --- > d,. Partition the variables; into blocks where the total
degree of the variables within each block (except at mos} sr&t leasty/p and less thag. The number
of full blocks (ones of total degree at leagftp) is at least/. Inductively, with¢ applications of Part 3 of

q
Corollary 4.8 (and using Proposition 4.4), we get tﬁﬁtzl x! isin A-spAN(xd). i

We also prove a characterization of affine-invariant fagsilover prime fields, showing that a family of
functions over a prime field is affine-invariant if and if onlforms a “Generalized Reed-Muller code”.

Corollary 4.10 F is an affine invariant family mapping, — [, if and only if there exists an integef
such thatF is the family of all polynomials ovéf, in n-variables of degree at most

Proof: It is obvious that the set of degrekepolynomials form an affine-invariant family, giving one di-
rection. For the other direction, lgtbe the maximum degree of any polynomial/# and letm be the
monomial of degred in the support of this polynomial. Then by the Monomial egtien lemmam < F.
Furthermore, using the affine part of Lemma 4.6 (witk: 1) we see that every monomi&f of degree at
mostd is contained inF. We conclude that every polynomial of degréés in F. Finally, 7 contains no
other functions (since the highest degree of any polynomidt is d). We conclude thaf is the set of
polynomials of degre€, as asserted 1

5 Bounding the Locality of Characterization for Aff/Lin

In this section we prove Theorems 2.10 and 2.11 for the speas® wherK = F. In the process we give
upper and lower bounds on the locality of formal charac#ions of affine-invariant and linear-invariant
families, in terms of the degree patterns of the monomiatkeir support.

Our (upper bounds on) characterizations are obtained bsidenng the values of a given function on some
small dimensional subspace and verifying that these valgese with the values of some function in the
family. Keeping this in mind, we define the restriction of adtion family to a smaller dimension.
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Definition 5.1 (Projections of function families) For positive integerd andrn, and for a linear-invariant
family of functionsF C {K"™ — F}, the /-dimensional restriction (extension) &, denotedF|, is the
family |, = {f o L|f € F, L : K — K" linear }.

Note that we don't insist that < n and indeed the definition above makes sense also in thisldasever

in all our usage below, we think ¢f< n.

For affine-invariant families our characterizations depsimply on the maximum degree of functions in the
family. For linear invariant functions this is no longerdtu~or instance, the family of functions supported
on all monomials inz4, ..., z, of degree3 mod 4 overFs5 has a 2-local characterization even though it
contains polynomials of degré&(n). For linear-invariant families, the characterizationpeted on a more
refined parameter that we define next.

Definition 5.2 For a linear invariant familyF properly contained in(F" — F}, let dj,(F), thelinear-
invariance degreef F, be the largest integesi such thatZ contains a monomialn; of degreed, while
there also exists a monomial, ¢ F of degreed’ for somed’ > 0 withd’ = d( mod ¢ — 1).

5.1 Upper bounds on locality of characterizations

The next lemma is the crux of our characterizations for lisie@ariant as well as affine-invariant families.

Lemmab5.3 . LetF C {F" — F} be a linear-invariant family of linear-invariance degreg,(F) = d.
Supposef : F* — Fis notinF. Then, ifn > 1 + (% (d+ q)), then there exists a linear function
L:F*! — F"suchthatf o L ¢ Fl,_1.

Proof. Letm = xfl .-z pe a monomial of maximal degree in the supportfdhat is not contained in
F. We show that there is a linear mép: F*~! — F" such thatm o L is not in F|,,_;. We consider two
cases:

Case 1:There exist distinct indices j such thatd; + d; < p: Without loss of generality assunie= n — 1
andj = n. Letm’ be the monomiat’ = 2% ... 222 . 2% 1% First note by the Monomial Spread
Lemma (in particular, by Part 1 of Corollary 4.8) thate L-SPAN(m’). Som’ ¢ F and hencen’ & F|,_1.
We claim that for some choice of, 3 € F, the mapL,, g(z1,...,2n—1) = (21, .., Tn-2, 0Tp_1, BTn_1)
leaves the monomiak’ with non-zero support itf o L,, 3, which would suffice to prove the lemma (in this
case).

To see this, let; be the coefficient of the monomiaf’ - - 2% . zi 2%t "in . Let h(z,y) =
Zfﬁgﬁd” cirlydn-1+dn=i |t can be verified that the coefficient af’ in f o L, s is exactly h(a, B).
Furthermorep(«, (3) is a non-zero polynomial since the coefficient , is the coefficient ofn in f which

is non-zero. Thus there must exist( such that:(«, 3) # 0 and this yields the claim.

Case 2: For every pair of distinct, j, d; + d; > p. Let e denote the degree oh. For everyt, we have
dat—1 + doy > p, and sce, the total degree ah, is at leasp|n/2] > d + q.

We first note that no monomiab’ of degree: ore — (¢ — 1) is in F. Otherwise the linear-invariance degree
of 7 would be the degree ofi'. For example, ifn’ has degree — (¢ — 1) > d, thenm' satisfies the role
of the monomialm; in the definition of the linear-invariance degree andf degreee = e — (¢ — 1)(
mod ¢ — 1) satisfies the role afu; in the definition of linear-invariance degree thereby yirdddy;,, (F) =

e — (¢ — 1) > d. So we concluden’ can not be inF.
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But now consider the linear mdp, g as in the previous case, i.&4 g(z1,...,Zp—1) = (T1,...,Tn—2, ATp_1, fTp_1).
Let m’ be the monomiai:‘li1 e xfl”_*; -m£_1 wheref =d,,_1+d,ifd,_1+d, <gandf =d,_1+d, —

(¢ — 1) otherwise. The degree of’ is thuse or e — (¢ — 1). We claim that for some, 3, the coefficient of

m/ is non-zero inf o L, g and this will yield the lemma in this case.

To verify the claim, note that the coefficient ef’ in f o L, s is exactly h'(c, ) whereh'(z,y) =
somindabdntdnt} iy dn+duo1=i ande, is the coefficient of the monomiaf’™ - - - x%52.q | g Hn—17

in f. Again, we have/(z,y) is not identically zero (the coefficiemt, , is non-zero) and so there exists

a, 3 such that/ (o, 3) # 0. |

n—1

We can now give a characterization for linear-invariant ifeas

Lemma 5.4 Let F be a linear invariant family, properly contained "™ — F}, of linear-invariance

degreed,,.x. ThenF has ag’-local formal characterization fof = —Z(d; 2,

Proof: We claim that the characterization is simply the one that F if and only if f o L is in F|, for
every linear mag. : F¢ — F™.

It is easy to verify that (if this indeed characterizes thaifa correctly) this is ag‘-local formal characteri-
zation. We analyze the correctness below.

In one direction, it is obvious that evefyc F andL : F* — F" satisfiesf o L € F|,. The other direction is
a simple induction based on Lemma 5.3. Fi¢ F. Letm be any integer betweeh+ 1 andn. Assume by
induction onn —m that there a linear map,,, : F* — F" such thatfo L,,, ¢ F|,,. Now we prove that there
isamapL,, 1 : F"~! — F* suchthatf o L,, 1 & F|m_1. SinceF is linear-invariant, so is|,,,. Also the
linear-invariance degree @f|,, is at mostd,,.,. By Lemma 5.3 there is a linear mdp: F~! — F™ such
that(f o L) o L &€ (Flm)lm—-1 = Flm-1. Thusf o Ly,—1 & F|ym—1 fOr Ly,—1 = Ly, o L. We conclude
that the linear mag,, : F* — F" derived from settingn = ¢ + 1, satisfiesf o L, ¢ F|,. |

Immediately, we also get a characterization for affine4ilara families (since every affine invariant family
with polynomials of degree at mogt,. is also a linear-invariant family of linear-invariance degat most

dmax) "

Lemma 5.5 LetF be a proper subset ¢ff" — F} and letd ., denote the maximum degree of any function
in F. ThenF has aqé-local formal characterization fof < @.

5.2 Lower bounds on locality of characterizations for affineinvariant families

We now turn to proving lower bounds on the locality of conisitsa(and thus characterizations) in affine-
invariant families. The lower bound is eventually deriveahfi the study of Generalized Reed-Muller codes
where it is known that the family of polynomials of degrébas nogl?/4. -local characterizations. Specifi-
cally we have:

Lemma 5.6 ([14, 8]) F = A-sPaN([]%, ;) has nogl¥/4/-local constraints.

Proof: Note that every monomiat® of degree at most is contained inF. Suppose = (eq,...,e,) then
we can substitute:; for e; variables in[ [, z; for everyj, and substitutd for the remaining variables to
get an affine transormation that transfor]?]'ﬁz1 x; to x®. Thus the family#; of d-variate polynomials of
degree at most is contained inF.
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We can now invoke well-known results from the study of the Hémlized Reed-Muller codes”, in par-
ticular [14, Theorem 5] (see also [8, Theorems 2.2.1 and®],Bwhich state that the class of degrée
polynomials ind variables have no constraints of localify’/%). In other wordsF, has nogl%/4-local

d
constraints. Using Claim 5.8 we get tifatalso has nqLEJ-Iocal constraints. ll

We are now ready to prove lower bounds on the locality of cairgs in affine-invariant families.

Lemma 5.7 Let F be an affine invariant family properly contained {fi” — F} containing a polynomial
of degreed. ThenF has nog’-local constraints for < (d — ¢%)/q.

Proof. Before proving the lower bound, we provide generic condgiander which the absence of local
constraints in one family of functions imply the absenceosfl constraints in another family.

Claim 5.8 Let F; and F, be non-trivial families of functions frofi" — F. SupposeF; has nok-local
constraints. Then, if there exists a functign F* — F" such that for everyf € Fj it is the case that
fog € Fy, thenF, also has nok-local constraints. In particular, itF; C F, then F, has nok-local
constraints.

Proof: SupposeF; has ak-local constraint of the formz, ..., x; S) wherez; € F” and S is a proper
subset ofF*. (l.e., f € F, implies (f(z1),...,f(xy)) € S for every f € F».) Then we can usg

to translate this into the constraity(z1), ..., g(xx); S) for Fi (since(h(g(x1)),...,h(g(zx))) € S for

everyh € F1), which would be a contradiction.

In particular, if 7y C F», then using the identity function(x) = z, we get thatF, has nok-local con-
straints. ll

We now apply Claim 5.8 to the conclusion of Lemma 5.6 to deavewer bound on the constraints of a
family of functions that is slightly more convenient for wswork with.

q
Claim 5.9 The familyF = A-spaN([[_, =7 ) has nogl%/4)-local constraints.

Proof: By Lemma 5.6 we have tha; = A-spAN([], =;) has nayl%/4)-local constraints. Lej(z1, . . ., x,) =
<x‘{/”, ..., 2¥P). Note thaty~ ! (z1, ..., zn) = (z,...,2h). Note that for every, x n matrix A and vector

b e F", We haveAg(z) +b = g(g~'(A)x + g~ (b)) (Whereg—!(A) simply appliesy—* to every column

of A). This implies that every € F; = A-sPAN([ ], z;) satisfiesf o g € F. So we can apply Claim 5.8 to
conclude thatF also has ngl%/4)-local constraints. il

We ready to prove Lemma 5.7. Recall that we are given a faffiilyith some monomial, say, of degree
d. By Lemma 4.9 the monomiah; hasF; = ]_[Z i f/p in its affine span fof = |d/q|. By Claim 5.9,

we have thatF; has nogl¥/4)-local constraints. Sinc& > F, we can now apply Claim 5.8 again (with the
identity functiong) to conclude thatF has nogl¢/4!-local constraints either. The lemma follows using the

fact that|[d/q)/g] > (d - *)/q*. B
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5.3 Lower bounds for Linear-Invariant Families

In this section we provide lower bounds on the locality ofrelaterizations of linear-invariant families,
based on their “linear-invariance degree” (see Definitid?).5As shown in Section 5.1, this parameter also
yields upper bounds and thus together we find that this paesirgeverns (in some weak sense, since the
bounds are far apart) the locality of characterizationdif@ar-invariant families.

In order to understand the locality of characterizations,imtroduce the notion of a constraint on a family
F relative to a familyFs.

Definition 5.10 For familiesF;, F» C {F™ — F}, with /7, C F», we say that a constrair' is a constraint
on F; relative toF; if every functionf € F; satisfiesC and there exists a functiopn € F» that does not
satisfyC.

The following straightforward fact explains the relevarafeconstraints relative to other families when
analyzing characterizations.

Proposition 5.11 If C1, ..., C,, form a characterization of;, then for every familyr; 2 F, there exists
an index;j such that the constrain@’; is a constraint onf; relative to 7.

In what follows, we will consider a familyF of linear invariance degreé We will construct familiesF; and
F, related tod such thatF; has no constraints of small locality relative /6. We will then use reductions
to tranfer this result to showing th&t has no constraints of small locality relative to some fanfilywhich
will yield a lower bound on the locality of its characterimats.

Throughout this section we will consider functions frdfi*! — F, and we will associate them with
polynomials fromF|x, y] wherex = (x1,...,x,) is a collection ofn variables.

For a set of functiong C {F™ — F}, let SPAN(G) denote the span of the functionsgni.e., PAN(G) =
{>i-) cugilos € F,g; € G}

Lemma 5.12 Letd and/ be positive integers and 16, = SPAN({y® - m|m € A-sPaN([]‘_, 27/7), d; +
deg(m) = d mod (¢ —1),1 < dj < q—1}). LetFy, = SPAN{m|m monomial inF[x, y], deg(m) = d
mod (g — 1),deg,(m) > 1}, be the collection of all polynomials supported on monosizfl degreed
mod (¢ — 1), with positive degree ip. ThenZ; has no constraints of localityl*/4) relative toF>.

Proof: Note by the definitions af; andF; thatF;, C F». (In particular the degree inof every monomial

in the support ofF; is positive.) IfF; = F5 then the claim is trivial since there can be no function in
F» — F1 and so none violating any given constraint. So assing Fo.

Let C' = (z1,...,2zx;S), whereS, be a constraint otF; relative toF,. We will show thatk > ¢/9. To
show this we will map (most points of**! to F™ in a way that maps homogenous polynomials of positive
degree iny to generic polynomials ovet.

For a pointz = (x1,...,z,,y) € F"* letn(z) = (x1/y, ..., 2, /y) if y # 0 and some special symbal

if y=0.

Note that for any functionf € F and pointz € F**!, f(z) = 0if n(z) = L. Further, note that if
m(z1) = 7(z2) then there exists & € F — {0} such thatzy = \z; and f(z3) = A\?f(z;1). We use these
observations to “simplify” the constrairdt while maintaining the property that it remains a constraimt
J relative toFs.
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First note that we can assume w.l.o.g. thét;) # L for everyi € [k]. To see this, suppose(z;) = L.

Then it can be verified that the constraiitt= (z1,...,z;_1;S’) is a constraint oF; relative toF,, where

S ={(a1,...,ap-1)|{1,...,,_1,0) € S}. (We omit the simple verification steps.)

Next, we also note that we can assume thi;)’s are all distinct for distinct € [k]. Again to see this,
supposer(z;_1) = m(z). Then it must be that, = A\z;_;. Once again it can be verified that the constraint

C' = (z1,...,2x_1;5') is aconstraint odF] relative toF,, whereS’ = {{a1,...,ap_1)[{a1,. .., 1, \ag_1) €
S}. (Again, we omit the simple verification steps.)

Note that in the “simplification” process above, we may havteptially lost the property thaf # F*. But

we note that the fact that is a constraint o, relative toF, implies S # F* as follows: Suppos€’ is
violated by some functiop € F,. Then we have thaly(z1), ..., g(z)) € S and soS # FF.

So we may now assume that thez;)’s are distinct elements & and thatS # F*. Letz; = (x;1, . .., Zin, yi)-
Now consider the constraitt’ = (7(z1),...,m(zx),S"), for $' = {{a1/y{,...,ar/yD){a1,. .., ar) €

S}. SinceS # F*, we also haveS’ # F*. We claim thatC’ is a k-local constraint on the family

A-sPAN([T._, 2%/7). To verify this claim, we need to show that evefye A-spAN([._, 2¥/?) satisfies

i=1T; i=1Yi
(f(m(2)), ..., f(m(z)) € 5.

Consider the following map from polynomials ¥{x| to F», where a monomiain € F[x] is mapped to
the monomiakin = m - y* wherei € [¢ — 1] is chosen so thaleg(m) +i = d mod (¢ — 1). This
map can be extended linearly to every polynoniigt] mapping the polynomiap to p. Note that since
functionally y/(@~1)+ = 4 we can w.l.o.g. think of the monomiat as having degree d. In particular
for monomials from ASPAN(Hf:1 xg/p) the corresponding monomial has degree exattlyhus, for any
function f € A-sPan([]_, z%/?), the corresponding functiofi € 7. Thus we have thaf satisfies the
constraintC, i.e.,(f(z1),. .., f(zx)) € S. By the definition ofr and f, we have thaff (z;) = y?- f(n(z;)).
Thus(y{ - f(n(21)), ...y} - f(n(zy))) € S and so Thug f(n(z1)),. .., f(m(zx))) € 5.

ThusC” is a non-trivial constraint on APAN([]._, z#/?) and so, by Claim 5.2 > ¢l#/a). |

=13

Lemma 5.13 Let F C {F"*! — F} be a family of linear invariance degre ThenF has no characteri-
zations of localityy(@-9°)/4*

Proof: Letm € F C F[x,y] be a monomial of degreé Letm’ € F[x, y] be a monomial of degre& = d
mod (¢ — 1) such thatn’ ¢ F. (Such monomials exists, by the definition of linear-ineade degree.)
Assume without loss of generality th&tgy(m’) > 0 (since we could rename variables to achieve this).

Let/ = |d/q]. Let F; andF, be as in Lemma 5.12, so th&} has no constraints of localiyt*/%) relative
to F». Note first that by Lemma 4.9 we have ti#&t is contained in LsPAN(m) C F.

Let 73 = F + F» consist of all functionda.f + Bg|f € F,g € Fo,, 3 € F}.

Note thatF C F3. The containment is by definition, while the propriety of t@ntainment follows from
the fact thatn’ € F5 — F.

We now claim thatF has nogl¢/4)-local constraints relative t&; and this (combined with Proposition
5.11) yields the lemma.

Suppose&” = (z1,...,2g;S) is a constraint oiF relative toF3. Without loss of generality, we can assume
that S is aF-linear subspace @& (sinceF is a linear subspace) [3]. On the one hand, siigec F we
have thatC is also a constraint off;. We now claim thatU is actually a constraint off; relative toF.
Now leth = of + Bg € F3 not satisfyC, wheref € F andg € F>. Letvy = (f(z1),..., f(zk)),
vg = (9(21),...,9(zr)), andvy, = (h(z1),...,h(z)). Then we havey, = avy + Sv,. On the one hand,
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we havev; € S (sincef € F) and on the other, we havg ¢ S. SinceS is a linear subspace, it must be
thatv, ¢ S. Thusg € F» violatesC and soC' is a constraint ot relative toF,. By Claim 5.9 we have
k> qlt/dl, 1

5.4 Testing Linear Invariant Families

The formal characterization described in Section 5.1 camediately be turned into an affine invariant
characterization for affine-invariant families. CoupledhaTheorem 2.9 this leads immediately to a tester
for affine-invariant families. However the characteriaatdoes not immediately lead to a tester for linear-
invariant families, since these characterizations arenaoessarily 2-ary independent. In this section we fix
this gap.

We start with a definition that isolates a seemingly probkreubclass of linear-invariant families, where
the characterizations are necessarily not 2-ary indepgnde

Definition 5.14 A linear invariant family7 C {F" — T} is said to beprojectiveif, for every pair of
monomialsx? andx® with 37 d; = 3", e; mod (g — 1), itis the case thak? is in the support ofF
if and only ifx€ is in the support ofF.

Projective families have a very simple local formal chagaegation, which is unfortunately not 2-ary inde-
pendent, as described below.

Proposition 5.15 A family F is projective if and only if there exists a set of monomgals {20, 2!, ... x4~}
on a single variabler such that the following holdsf € F if and only if for everyl-dimensional linear
function : F — F", the support off o L is contained inS.

Proof: Let D be the set of degrees of monomials in the supporf eéduced modulg — 1 (i.e., to the set
{1,...,q — 1}, except if the monomiak® is in the support ofF, in which case we includé in the setD).
LetS = {'|i € D}.

On the one hand, it is clear that thatfifc F then f o L has its support irt for every linear function
L : F — F". For the reverse direction, we reason as in the proof of Casel2mma 5.3. Letf be
a polynomial not inF and letm be a monomial of maximal degree in the supportfahat is not inF.
Suppose the degree of is d. By the definition of projective families, we have thatmod (¢ — 1) ¢ D.
We first note that there is a linear functidn, : F*~! — F” such thatf o L,, has a monomial in its support
of degreed or d — (¢ — 1). In either case the degree of this monomial (module- 1)) is notin D. We
continue this way to find a sequence of linear functifins Fi~! — F? such that forL, = L, 0---o0 Ly itis
the case thaf o L has a monomial in its support of degree nofin |

Even though projective families do not have a 2-ary indepahdinear characterization, they turn out to
have a simple local test: Namely pick a random line F — F™ and verify f o L has its support irb.
We won't prove the correctness of this test right now (it idllow from the general case). Instead we
turn to showing that every linear invariant family can betten as the sum of a nice family (with a 2-ary
independent formal characterization) and a projectivaljaamd this ends up leading to a test.

Lemma 5.16 Let F be a linear-invariant family of linear invariance degree Then there exists a linear-
invariant family 7; containing polynomials of degree at mastand a projective family¥ such thatF =
F1 + F». Furthermore given an oracle to a functioh : F* — [F one can construct an oracle for a
functiong : F* — [ where the oracle foy makesg oracle calls tof, such thaty € F; if f € F and
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Proof: The first part follows from the definition of linear invariandegree. LeD C {1,...,q — 1} be
given by D = {i|3 monomialm € F with deg(m) > d anddeg(m) = i mod (¢ — 1)}. Let F; be the
span of the set of monomials i of degree at mosi. Let 7, be the span of set of the monomialg of
degreedeg(m’) =i mod (¢ — 1) for somei € D. By the definition of linear-invariance degree, we have
that every monomialn’ of degreedeg(m’) = ¢ mod (¢ — 1) for somei € D is contained inF and so
Fo C Fo. It thus follows thatF = F; + Fs.

For the second part, we defige F"* — F as follows. Giverw = {(ay, ..., a,) € F", Let fo(t) = f(t - a).
Further, letco, ... .c,—1 be such thaff,(t) = Y7 c;t’. Finally let fu(t) = 3", c;t'. We defineg(a) =
fa(l). Note by the definition of that computingy at any point only requireg oracle calls to the oracle for
I

We claim thatf — g € F5,. This is verified by noting that for linear functiods : F — F”, the function
(f — g) o L has all of its support on monomials with degree/in (For instance ifL(t) = t - «, then
(f —g)o L= falt) — falt) = >iep cit'.) By Proposition 5.15, it follows thaf — g € Fo.

Itis immediate thad (f, F) = 6(g, F) < 6(g, F1). To see that iff € F theng € F;, note thay o L always
has its monomials fromj0, ..., ¢ — 1} — D. Applying Proposition 5.15, we find thgte F’ whereZ” is the
projective space consisting of the span of monomials whegee¢, modulg — 1, isin{0,...,¢—1} — D.
But sinceg € F and the only monomials it whose degree modulp— 1 is not in D, are those of degree
at mostd, we conclude thag is of degree at most and hencegy € F7.

Finally we use a simple proposition that can be used to gigeydndependent localy characterizations for
family F; above.

Proposition 5.17 Let ¥ C F’ have ak;-local formal characterization. Furthermore suppogé has a
2-ary independents-local formal characterization. Thef has ak; + ks-local 2-ary independent formal
characterization.

Proof: Letm, ¢y, ..., ¢,V describe the characterization &fi.e., f € F iff for every 1, ...,z € K" it
is the case thatf (v1), ..., f(yk,)) € V fory, = li(z1, ..., zm).

Similarly letm/, ¢}, ..., ¢,,, V' denote the characterization &T.

Then we claim that the characterizatiori +m, 7}, ..., ¢ .é1,. .., {y,, V forms a2-ary independent char-

acterization ofF, where

@\Z

o V(21,2 @1y Ty) = (21, 20),
° gi(zl,...,zm/,:nl,...,xm) =Lli(x1,. .., Tm),

e and(ai,...,an,,b1,...,by,) € Vifandonlyif (a1, ...,ax,) € V' and(by, ..., by,) € V.

The claim isimmediate: On the one handf i F then there mustexist, . . ., z,,, suchthatf (v1) ..., f(yk,)) &

V and thus for everyy, ...,z (f(W1),- - FWh,) F (W), f(uk,)) & V., Wherey; = (i1, ..., 2p,)
andy; = £;(z1, ...,z ). Onthe other hand if € F thenf is also inF’ and so for every, ..., oy, 21, . ., 2

we have(f(y1), .-, f(Yr,), f(w1), -, flur)) € V. Finally, it is straightforward to verify thaf is lin-
early independent of all the other linear functions: it idépendent of;. by th 2-ary independence of the
characterization af’; and it is independent df since it operates on a disjoint set of formal variabldh.

Putting all the ingredients together we get:
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Lemmab5.18 Let ¥ C {F" — F} be a linear-invariant family of linear-invariance degrele Then it is
K = 2q - ¢*4t9/P|ocally testable. Specifically, therefi$-query local test that accepts membersfoivith

probability 1 and rejects functions that adfar from  with probability min {g e }

Proof: By Lemma 5.16 there exists a linear-invariant fanifly of polynomials of degree at mogtand a
projective familyF, such thatF = F; + F».

Since the linear invariance degree’8f is at mostd, it has, by Lemma 5.4 g2(¢+9)/P-|ocal formal char-
acterization. SinceF; is contained in the family of degreépolynomials it also has a 2-ary independent
(in fact, affine)¢2(@+t9)/?-local formal constraint (now using the fact that any caaistron the family of
degreed polynomials is a constraint af; and using Lemma 5.4 again to see that the family of dedree
polynomials has an affine invariaqt(¢+%)/?-local constraint). Using Proposition 5.17, we concluds #
has a2¢2(¢+4)/r-|ocal 2-ary independent formal characterization. By Tken2.9, we have thaf; has a
k, = 2¢2(d+ad)/P|ocal test that accepts members/Bf and rejects a member thatdsfar with probability
min {3, el |-

We now describe the test for membershigfinGiven oracle access to a functignwe invoke Lemma 5.16
to get oracle access to the functigsuch thatv (f, F) < d(g, 1) and such thaf € F impliesg € F;. We
testifg € F7 using the test fofF; from the previous paragraph. This test makek; queries into the oracle

for f (to simulate thé:; queries tay). If f € F theng € F; and this test accepts with probability If f is

o-far from F, theng is alsod-far from F; and so the test rejects with probabilityin {g, m }

The lemma follows using’ = gk;. |

5.5 Summarizing: Constraints, Characterizations and Test

The lemmas proved in the earlier parts of this section comtiirprove Theorems 2.10 and Theorems 2.11
for the special case whel = [F. Specifically, we get that affine invariant families havealotormal
characterizations and local tests if and only if they havéngles local constraints. For linear invariant
families we get the same conclusion under the stronger hgpis that they have a local characterization.
For the sake of completeness we include a formal statemerraof below.

Theorem 5.191f 7 C {F" — F} is an affine-invariant family with &-local constraint, then it has a
k' = (q2k)7’-local formal affine characterization, where = |F|. FurthermoreF is k’-locally testable
where the test accepts membersFoivith probability 1 and rejects functions that aefar with probability

min{g, m}

Proof: By Lemma 5.7 we have that if has ak-local constraint then every function ¢f has degree

d < ¢+ ¢ log, k. Now, from Lemma 5.5 we have that if every function’is a polynomial of degree
at mostd, then F has ak’ = ¢2(¢+9/? |ocal formal characterization. Combining the two boundshwi
some crude manipulations, we get that < (qQk)q2. Since every formal characterization of an affine
invariant family can be converted into an affine formal clteazation, and hence a 2-ary independent
formal characterization, with the same locality, we can rapply Theorem 2.9 to conclude thatis &’-
locally testable. |

Similarly, by combining Lemmas 5.13, 5.4, and 5.18, we alsioagp analogous theorem for linear-invariant
families where the hypothesis kflocal constraint is replaced by the hypothesis kflacal characterization,
and the parameter of interest in the proof is now the lineeariance degree of.
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Theorem 5.20 If 7 C {F" — F} is a linear-invariant family with &-local characterization then it has a
k' = (¢*k)?-local formal characterization fog = |F|. Furthermore is ko-locally testable fork, = 2¢k’
where the test accepts membersFoivith probability 1 and rejects functions that aefar with probability

mindd, ¢
27 (2ko+q)(ko+q) [*

Proof: By Lemma 5.13, we have that the linear-invariance degreg isfat mostd < ¢ + ¢2log, k. By
Lemma 5.4, we have thaf has ak’ = ¢(¢+9)/p-|ocal formal characterization. It follows that < (¢2k)’.
Finally, by Lemma 5.18, we have th@tis k, = 2¢k’-locally testable. I

6 Function Families over Extension Fields

In this section we now generalize our study of function fasilto the case of general fields and F
with K O F. We extend the results from Sections 4 and 5 to this settingouighout the section we let
q = |F| = p* andQ = |K| = ¢’ (though sometimes we will repeat this fact, for redundancy)

We start by describing a basis for functions fréhi to IF that extends the role played by monomials in the
case of functions fromi™ to IF. Two well-known functions mappink to I are the “Trace” function, which
we will denoteTracey(-), and the “Norm” function. The standard Trace function isegiby Traceg(z) =
24294 --+27"". The Norm functionN (z) is given byN (z) = z!t9++4"""  We wish to find a “basis”

of all functions that map fronkK™ to IF, we need a family which generalizes both these familiesefubly

in a nice algebraic way. We describe such a generalizatitowbé&Ve refer to the functions we work with
as the ‘Traces of monomials”. (We are not aware of previoesofishis family.)

Definition 6.1 For a vectord = (dy, ..., d,) of non-negative integers, létd) denote the smallest positive
integerb such thatd; - ¢ = d; mod (Q — 1) for everyi € [n]. Note thath < t. We say that € K is
d-admissible if¢"(@) = ¢. For a vectord and d-admissible coefficient € K, the Trace of the monomial
m = c- x4, denotedTrace(m), is the polynomial + m? + - - - + m? 1 for b = b(d).

In what follows it is critical that we do not confuse the moriahTrace functiorilrace(m) : K® — F from
the functionTracey o m : K™ — F. Whereas the latter is more commonly studied, it is the forthat

is central to this section. For example, oW@r= Fs andF = Fs, Trace(z?) = 23 + 2% + 212 + 27,
Trace(y®) = y° + ', andTrace(z3y®) = 23y® + 20910 + 21295 + 29910,

In the definition above, we were careful with the coefficiesftthe monomials in the argument of the Trace
function. This is important since the functidirace(az?) could be linearly independent (ov&) of the
function Trace(z?). However, for admissible coefficientrace(az?) andTrace(3z?) generate the same
linear span, as we show below. (This proposition simplifieslife later, by letting us ignore the coefficients
of the monomials in our basis functions.)

Proposition 6.2 For a vectord = (di,...,d,) of non-negative integers and-admissible coefficients
a, 3 € K¥, itis the case thallrace(ax?) € L-SPAN(Trace(3x9)).

Proof: Letb = b(d). Note that admissibility ofy, 3 implies that they are contained in the fiéld= F

(sincea? = aand3? = B). LetS denote the set of coefficients= {v| Trace(yx9) € L-SPAN(Trace(8x9)).
We will prove the proposition by proving = L.
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First note that since the monomial-Trace function is adeljtand the linear span of any set is closed under
addition, we get tha$ is closed under addition.

Now we turn to its multiplicative properties. To do so, we diée understand = bd. Notice thatg’ — 1
dividesd; - (¢® — 1) for everyi. So if we lete = ged(dy, . .., d,), we have that’ — 1 dividese - (¢° — 1)

and furthermore is the smallest positive integer that has this property..Lbeé a primitive(q* — 1)th root

of unity in K. Then, by the fact that is the smallest integer such thgt— 1 dividese - (¢ — 1), we have
thatLL is the smallest subfield & that containsv®. We claim that ifr € S, thenr - w® € S. To see this,
letay,...,a, be integers such that= >, a;d;. Then note thallrace(r(wz1)% - - - (wnz,)) €
L-sPAN(Trace(rx4)) and so we havew® € S. We thus conclude thas is closed under addition, and
under multiplication byv®. It follows thatS = L. |

Thus from now on, whenever we refer to monomials, we may igribe leading coefficient, since any
admissible coefficient is equivalent to the coefficientThe central nature of the trace of monomials is
explained by the following proposition.

Proposition 6.3 Every functionf : K” — I can be described by a set of monomiaitsuch thatf (x) =
> mem Trace(m).

Proof: Let f(x) = > 4 cax9d. We prove the lemma by induction on the size of the suppoft. dfet e be

a vector such that, # 0. Then we note that(;.c) mod (Q-1) = cé. This is so sincef (x)4 = f(x) (since
f(x) € F. Furthermore f(x)? = (34 cax¥)? = 3 chx?d med (@=1) " By considering the coefficient of
Cpe mod (Q—1) W G€tC(ye) mod (1) = c&. Note further that sincg’®e = e mod (Q — 1) it follows
thatc?"” = ¢ and soce is e-admissible. It follows that if we subtradirace(cex®) from f(x) we get a
function on a smaller support. We conclude tliatan be decomposed into a sum of traces of monomials.

In what follows, we start by giving an extraction lemma fardar-invariant families of function mapping
K" to IF, which shows that the trace of any monomial that is in the sty a function in the family is also

in the family. We then use this, along with standard monortsptead” properties to give upper bounds
(see Section 6.2) and lower bounds (Sections 6.3 and 6.4)eoconstraints and characterizations of affine-
invariant and linear-invariant families mappifi@ to F. In Section 6.5 we use the characterizations to build
a tester for the linear-invariant case. The resulting thecrare summarized in Section 6.6.

6.1 Extracting Traces of Monomials

For a set of functions§ C {K"” — F}, recall the notions of 8AN(S) = SPANg(S) and L-SPAN(S) and
A-SPAN(S) (see Definition 4.1 in Section 4 for the formal definitionsheBe notions will be used in this
and subsequent sections.

Lemma 6.4 (Trace of Monomial Extraction Lemma) Let f : K* — F. Then for every monomiak in
the support off, we haveTrace(m) € L-SPAN(f).

Proof: Let m be a monomial in the support gf. Letm = cx® wheree = (e1,--- ,e,) andc € Kis

e-admissible. Leb = b(e), so thatTrace(m) = m 4+ m? + --- + m? . We wish to showIrace(m) €
L-SPAN(f).
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We first claim that we can assume w.l.0.g. that 0 for everyi € [n]. If not, and suppose,, = 0, then

we are done by induction on the number of variables, sires, ... ,xn_l)éf(ajl, ..., Tp_1,0) has the
feature thatn is in the support ofy andg depends on fewer variables. Sbace(m) € L-SPAN(g) and
g € L-sPAN(f) yielding Trace(m) € L-SPAN(f).
Next we claim that we can assume that for evegy [n] and for every monomiatgx? in the support off,
it is the case tha#; # 0. We prove this by induction oh Assume the statement is true fpre [i] (i.e.,
d; # 0 for everyj € [i] and every monomiatd with non-zero coefficient irf). Now consider the function
f(xl, cxn) = flx1,.. o an) — f(®1, ..., 2,0, 249, ..., x,). f now has no support on monomials of
the formxd with d; = 0 for anyj € [i + 1]. Butm is still in the support off andf L-sPAN(f). So
proving Trace(m) € L-SPAN(f) suffices to provélrace(m) € L-SPAN(f).
Finally we get to the real case: We now have a monomiat ¢x® in the support off. For every monomial
cax? in the support off and everyi € [n] we haved; # 0. We'd like to showTrace(m) € L-SPAN(f).
Let f =>4 caxd. LetK* = K — {0}. Consider the following expression.

b—1

(@)™ ()™ (g o ).

s=0 (aq,...,an)E(K*)™
We claim thatg(x) € L-SPAN(f) and thatg(x) = (—1)" - Trace(cex®) thereby showing thdfrace(m) €
L-SPAN(f).

For the first part, it is obvious that(x) is in L-SPANk(f), but this is not what we want. We need to
show thatg(x) € L-SPANg(f). To see this we use the property of the monomigl = x©. Note that

Trace(mg) = mgo + mg +- mg“ sinceb = b(e) is independent of. Note that

Z Trace(mo(a)) - flag ' wr, 05 ' ag, -, o tay,).
ac(K*)n

Since Trace(mp) mapsK” to F, we have that the expression fgrforms an[F-linear combination off
applied toK-linear transforms of the vectst. By definition of L-sPAN we haveg € L-SPANg(f).

Next to see thag(x) = (—1)" Trace(cex®), We writeg(x) = Zi;}] gs(x), whereg,(x) = > ek mo(a)? -
flagtey, -+ a5 e,). We claim thatg,(x) = (—1)"cgs.emo(x)? = ¢ mo(x)?" and this implieg)(x) =
Trace(m). But then the identitys(x) = (—1)"cy=.emo(x)?, follows easily from the Fourier Transform.
Specifically:

gs(x) = Z at e flay ey, - o a,)

ac(K*)m

= g al’e. g cqa x4
ae(K*)m

= E cqxd E q?’e—d
d ae(K*)r

Now the summatlmza K a(.q ei—di) equals—1 if g°e; = d; and0 otherwise. So the final quantity above
equals(—1)"c x4 as desired. I



6.2 Upper bounds on the characterizations of linear-invarant families

In this section we give characterizations, and thus uppent® on the locality of characterizations, of
affine-invariant and linear-invariant families mappikg to F. As in the case wheiX = F, the affine-
invariance locality is a function of the degree of the hidh#sgree polynomial contained in the family
under consideration. In the linear-invariant case we neecttend the notion of the linear-invariance degree
and we do so below.

Definition 6.5 For a linear invariant familyF properly contained iflK" — F}, let dj;, (F), thelinear-
invariance degreef F, be the largest integetl such thatF contains a monomiain; of degreed in its
support, while there also exists a monomia} that is not in the support of, whose degree i¢' for some
d > 0withd =d mod (Q — 1), where@ = |K|.

To get an upper bound, we first give a simple monomial spreadie for functions fronkK™ to IF.

Lemma 6.6 Letm = x4 be a monomial withl,, _; < p andd,, = 0. Fori € {0,...,d,_1}, letin be the

monomialz? - - - an2 cat - z4=~"_Then the functiofirace(in) € L-SPAN(Trace(m)).

n—2

Proof: Let f(x) = Trace(m(x)). Note that sincel,_; < p < ¢, we have that'~'d,_; < ¢* and sob(d)
must equat. ThusTrace(m(x)) = Tracep(m(x)). So we need to sholbrace(m) € L-SPAN(Traceg(m)).

Now considetf(x) = f(x1,. .., Zn_2, Zn_1+xn,0) € L-SPAN(f). We havef (x) = 08 Sofnor (deo1) (g . ..

i
dn_1—1

xl -y )2, We note that the coefficient af in this expression is exactlff"=*) which is non-zero.
It follows from the monomial extraction lemma thétis in L-SPAN(f) C L-SPAN(f). |

The following lemma now shows that one can project non-membga family 7 to smaller dimensional
subspaces while preserving non-membershifin

Lemma 6.7 Let 7 C {K" — F} be a linear-invariant family of linear-invariance degrek,(F) = d.

Supposef : K* — FisnotinF. Then, ifn > 1+ (@), then there exists a linear functiah :

K"~! — K" such thatf o L & F|,,_1.

Proof: The proof is exactly the same as that of Lemma 5.3 with natatiohanges. We include it below for
completeness.

Letm = xfl ...z be a monomial of maximal degree in the supportfdhat is not contained in the
support of F. We show that there is a linear mép: K»~! — K" such thatn o L is not in the support of

Fln—1. We consider two cases:

Case 1:There exist distinct indices j such thatd; + d; < p: Without loss of generality assunie=n — 1
andj = n. Note first that for the the monomial’ = z{* - --xfﬁj . fl”_*lﬁd", we have, by Lemma 6.6,
Trace(m') ¢ F (and hencelrace(m') ¢ Fl,—1). We claim that for some choice of, 3 € F, the map

Log(z1,...,20-1) = (21,...,2Tn—2,0Zp_1, fr,—1) leaves the monomiak’ with non-zero support in
f o Lo g, which would suffice to prove the lemma (in this case).

To see this, let; be the coefficient of the monomiaf® - -- 2% - i 28" "in . Leth(z,y) =
S dn 1 ¢ pigydn—itdn—i_ |t can be verified that the coefficient ef’ in f o L s is exactly h(a, 3).
Furthermoref(«, 3) is a non-zero polynomial since the coefficient_, is the coefficient ofn in f which

is non-zero. Thus there must exist € K such thati(«, 5) # 0 and this yields the claim.
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Case 2: For every pair of distinct, j, d; + d; > p. Let e denote the degree of. For everyt, we have
dot—1 + dot > p, and sce, the total degree ofi, is at leasp|n/2] > d + Q.

We first note that no monomiat’ of degree: ore — (Q — 1) is in F. Otherwise the linear-invariance degree

of F would be the degree ofi'. For example, ifn’ has degree — (Q — 1) > d, thenm/ satisfies the role

of the monomialn, in the definition of the linear-invariance degree andf degreee = e — (Q — 1)(

mod @ — 1) satisfies the role af, in the definition of linear-invariance degree thereby yirddd;,, (F) =

e —(Q — 1) > d. So we concluden’ can not be inF.

But now consider the linear mdp, g as in the previous case, i.&4 g(z1, ..., Zp—1) = (Z1,...,Tn—2, ATp_1, fTp_1).
Let m’ be the monomiah‘fl---:::fl”_*z2 . x£_1 wheref = d, 1 +d, ifdy 1 +d, < Qandf =

dn—1 + d, — (Q — 1) otherwise. The degree of’ is thuse or e — (Q — 1). We claim that for some

a, 3, the coefficient ofn’ is non-zero inf o L, g and this will yield the lemma in this case.

To verify the claim, note that the coefficient ef’ in f o L, s is exactly h/(c, ) whereh'(z,y) =

SomQ= b tdnad o giydntdno1=i ande; is the coefficient of the monomiaf™ - - - x5 2.qf | g Hn17

in f. Again, we have/(z, y) is not identically zero (the coefficiemf;, , is non-zero) and so there exists
a, 3 such that/(«, 3) # 0. |

We are now ready to give the characterization for lineaadiiant families.

Lemma 6.8 Let F be a linear invariant family, properly contained §gK" — F}, of linear-invariance

degreed. ThenZ has a(Q)*-local formal characterization fof = @-

Proof: We claim that the characterization is simply the tiiat F if and only if f o L is in F|, for every
linear mapL : K¢ — K™,

It is again easy to verify that, if correct, this is indeeg‘docal formal characterization. We analyze the
correctness below.

In one direction, it is obvious that everfy ¢ F andL : K¢ — K" satisfiesf o L € F|,. The other
direction is a simple induction based on Lemma 5.3. Fig F. Let m be any integer betweeh+ 1 and
n. Assume by induction om — m that there a linear map,,, : K™ — K" such thatf o L,, & F|,.
Now we prove that there is a mdp,,_; : K™! — K" such thatf o L,,, 1 & Fl|m_1. SinceF is linear-
invariant, so is¥|,,. Also the linear-invariance degree 81, is at mostd,,,x. By Lemma 5.3 there is a
linear mapL : K™~! — K™ suchthat f o L) o L & (F|m)|lm—1 = Flm_1. Thusfo L,,_1 & F|m_1 for
Ly—1 = Ly, o L. We conclude that the linear mdp : K¢ — K" derived from settingn = ¢ + 1, satisfies

foLig Flo. 1

Again, using the fact that the maximum total degree of a gmiyial in the familyF is an upper bound on
the linear-invariance degree 8f, we also get the following corollary for affine-invariannidies.

Lemma 6.9 Let F be a proper subset dfK” — F} and letd denote the maximum degree of any function
2(d+Q)

in F. ThenF has aQ*‘-local formal characterization fof < ==

6.3 Lower bounds on the locality of constraints for Affine Invariant Families

We now move to lower bounds on the locality of constraints dffine-invariant families. Our starting

point is Claim 5.9 which shows that the family #rang ([T¢_, z%/7 C {K" — K} has noQ'¥/?/-local
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constraints. We start with a simple proposition that tuims into a lower bound on a family mappirig®
toIF. First we recall some definitions.

Recall thatTraceq : K — F denotes the standard trace function giverilbyceg(z) = > i = 0~ 129", We
extend this to functions and function families as followsr F : K" — K, Traceq(f) is the function that
mapsx € K" to Tracey(f(x)). ForF C {K" — K}, let Traceo(F) = {Traceo(f)|f € F}.

We also extend the notion of the trace of monomials to funstiand function families. We say that a
monomialex® is admissible it is e-admissible. For a functiofi : K® — K which is the sum of admissible
monomials, we defin@race(f) to be the sum of the traces of the monomials in its supportallyirfor a
function family 7, we letTrace(F) = {Trace(f)|f € F}.

The following proposition relate€$race(F) to Trace(F).

Proposition 6.10 For a linear-invariant familyF C {K" — K}, Traceo(F) C Trace(F).

Proof: Note that it suffices to show thd@taceg(m) € Trace(F) for every monomiah € F. Letm = cx9
and leth = b(d). Note thatTraceg(m) = Trace(m’) wherem’ = x4 andd = c+¢?’ + 7" 441"

In particular note that’)¢’ = ¢ and soc’ is d-admissible. Also note that.’ is an admissible monomial
and a member of and soTrace(m) € Trace(F). We thus conclude thélraceg(m) € Trace(F). The
proposition follows. i

The next proposition shows that a lower bound on the localitirelative) constraints for a familyF C
{K" — K} also yields a lower bound fdFraceq(F).

Proposition 6.11 LetF;, 7>, C {K"™ — K}. If 71 has nok-local constraints relative t¢,, thenTraceq(F)
has nok-local constraints relative tdracey(Fz).

Proof: LetC' = (x1,...,x;,S) with S C F* be a constraint ofiraceq(F; ) relative toTraceq(F»). Then
we claim thatC’ = (xg,...,x;,5'), whereS’ = {(a1,...,ar) € K¥ | (Traceg(ay),. .., Traceg(ay)) €
S}, is a constraint ot relative toF,. We omit the straightforward verification stepsl

The above propositions immediately give a family of affineaimant functions with no constraints of small
locality.

Lemma 6.12 For every/, the familyA-sPAN(Trace(JT-_; /7)) has no constraints of localitg|*/@)

=11
Proof: Follows immediately by combining Claim 5.9 with Proposit$o6.10 and 6.11.1

We now turn to the task of showing that a family with some higlgrée monomial also contains other high
degree monomials. We don't provide a very general lemmagabiier one that is sufficient for our purposes.

Lemma 6.13 For every vectod = (dy, . ..,d,) of non-negative integers and indéx [n], the monomial
Trace(x®) € A-SPAN(Trace(xd)), wheree = (ey,...,e,) is given bye; = Q/p, ande; = d; for
Jj € [n] — {3}, providedd; > Q/p.

Proof: For notational simplicity we assume= 1.

Letb = b(d). Note that since; = Q/p, we have that the smallest integésuch that} = e; mod (Q—1)
is t and thusTrace(x®) = Traceg(x®). Our goal is thus to show th&tracey(x®) is in the affine span of
Trace(x9). If d; = Q/p, then this is trivial, and so assumg > Q/p.
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We claim that, for some € K, the monomialk® has a non-zero coefficient in the polynomigik) =
Trace((z1 + v, 22, . .., z,)%). Assuming this claim, using the fact thatx) € A-sPAN(Trace(x4)) and
that every monomiain in the support ofj(x) is in A-SPAN(g), we get that for some admissiblee K*,
Trace(8 - x®) is in A-SPAN(Trace(x9)). Combining with Proposition 6.2 we see that we can drop the
coefficients and get thaflrace(x®) is also in AsPAN(Trace(x?)). It thus suffices to prove the claim.

Note that
di d n J
_ 1), di—1. j
g(x) = Trace <§_0 <z>7 1 331) .H;pjj

Jj=2
b—l d1 qé n
. . v
- () ) T
=0 \i=o \ " =2

To determine the coefficient of® in the above expression, l&t = {(i,£)|0 < i < b,i-q¢" = Q/p
mod (Q — 1) andd; - ¢* = dj mod (Q — 1), Vj € {2,...,n}}. Then the coefficient ok® in g(x) is
Y ines (4) AT T = 47 5 o (%) -0 This coefficient is itself a polynomial i and
we prove that it is a non-zero polynomial. To see this we fomughe coefficient ofy?'. Note that, by
the definition of the index (and Trace(x?)), the only index/ for which ¢¢ - d; = d;( mod Q — 1) (and
q'-d; = d;( mod @ — 1) for all otherj’s) is ¢ = 0. Furthermore, the onlyfor whichi-¢° = Q/pis Q/p.
Thus the paifQ/p, 0) is the unique pair irf that contributes to the coefficient 9f in the expression above
and this coefficient iﬁ{g}p) which can be verified to be non-zero. Thus the coefficientis a non-zero
polynomial iny and thus there exists~afor which this coefficient is non-zero. This proves the claamd
hence the lemma.ll

The two lemmas above can be combined to derive a lower bourttieotocality of constraints for any
affine-invariant family containing any high-degree polgmal, as shown next.

Lemma 6.14 If an affine-invariant familyx C {K" — F} contains a polynomial of degreg then it has
no constraints of locality)(@-@*)/@*

Proof: Fix a monomialm such thatTrace(m) is in F and the degree af: is d. Partition the variables
in x so that the degree of. in each block,except at most one, is betwégfp and@ — 1 (again this can
be done by putting variables of degree greater fd@p into blocks of their own, and greedily packing the
remaining variables into blocks till a block size exce€ly®). The number of blocks is thus strictly greater
thand/Q. Now replace all variables in blockby the variabler; to get a new monomiah’ = x9 such that
Trace(m') € F and the degree of at lea@{/p variables inn' is at least) /p. Applying Lemma 6.13 to these

variables in turn shows thatrace ([ ] xQ/p) is contained inF for ¢ = |d/Q|. Applying Lemma 6.12 we

=1 "4
conclude thatF has noQ(@-9*/@ |ocal constraints. I

6.4 Lower Bound in the Linear Invariant Case

We now give a lower bound for the the case of linear-invarfantilies. We do so by reducing to the lower
bound for functions fronK"™ — K.

Lemma 6.15 Letd € (Z™)", i € [n], and letf be a non-negative integer, such that> Q/p. Lete be
given bye; = d;, except wheri = i in which case:; = Q/p. Thenx® - yf+%-Q/p ¢ L-span(x? - y/).
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Proof: Similar to the proof of Lemma 6.131

Lemma 6.16 . LetF C {K" — F} be alinear invariant family of linear invariance degréde ThenF does
not have aQ(?-@*)/@* |ocal characterization.

Proof: We proceed as in the proof of Lemma 5.13. bete K[x] be a monomial of degre¢ such that
Trace(m) € F. Letm’ be a monomial of degre# = d mod (Q — 1) such thatTrace(m’) ¢ F. Let

x1 be a variable of positive degree in’. Then note that the monomiak = m’y/z; € K[x,y] also

satisfiesTrace(m) ¢ F (sincem is in the linear span ofn). Since the degree in of m is 1, we have that
Trace(m) = Traceg(m). We now usen andm to get a lower bound on the characterizationfof

Let? = |d/Q]. Let F; = SPAN({y®* - my|m; monomial in € A-sPAN([]'_, 2%/7),dy + deg(my) = d
mod (¢ —1),1 < d; < q—1}). Let Fo = SPAN{m2|mo monomial inF[x, y|, deg(msa) = d mod (q —
1),deg,(m2) > 1}, be the collection of all polynomials supported on monosldegreel mod (¢ —1),
with positive degree iny. Recall, by Lemma 5.12, thaf; has no constraints of localit!*/?! relative
to F,. By Propositions 6.10 and 6.11, we also have thaice(F;) has no constraints of localitg /<!
relative toTraceg(F2). Furthermore, sinc8raceg(m) € Traceg(F2), we have thaflraceg(F2) is not
containedF. Thus it suffices to show th&frace(F;) is contained inF.

For this part, we proceed as in the proof of Lemma 6.14. Wecbthe variables af in blocks with each
block having degree betweep/p and(@ in m. By identifying the variables within a block with copies of
a single variable, we get a monomial; of degree betwee)/p and (@ in at least/ variables such that
Trace(m;) € F. Repeatedly applying Lemma 6.13 to it, we get that for eveopomialms € Trace(F;),
Trace(msg) € F, and thusIrace(F;) C F.

It follows that F has no constraints of localit9‘/?! relative toF + Traceo () and hence does not have

aQ¥/@l-local characterization. The lemma follows by noting thatQ | = |¢/Q?| > (d — @2)/Q% 1

6.5 Testing for linear invariant families

We conclude, as in Section 5.4, by giving a testing theoranfirfiear-invariant families. Again we remark
that the test does not follow immediately from the charazadion results, since the characterization are not
necessarily 2-ary independent.

However, it follows directly from the results of Section 5ahd the characterization of Section 6.2, that
every linear invariant family of linear invariance degréés Q2(¢+Q)/P|ocally testable. Specifically we
note that:

e Definition 5.14 of “projective” families is still applicablto families mappin™ — [, being subsets
of {K" — K}.

e Proposition 5.15 characterizing projective familied stiplies.

e Lemma 5.16 giving a decomposition of every linear invari@mily F into the sum of a familyF;
of bounded degree and a projective famfly, along with a local reduction to compute a functign
whose distance fronf; estimates the distance éffrom F, also still applies.

e The familyF; derived in the previous step does have a 2-ary independsaitftomal characterization
and thus a local test.
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Putting that above observations together, as in the probéwima 5.18 we get:

Lemma 6.17 Let 7 C {K" — [} be a linear-invariant family with &-local characterization. Then has a
K =2Q - (sz)QQ—Iocal test that accepts members/Biwith probability 1, while rejectingd-far members

with probability at leasinin {g, WM }

6.6 Putting the results together

Combining Lemmas 6.14 and 6.9 and Theorem 2.9 we get a prddiedrem 2.10.
Similarly, by combining Lemmas 6.16, 6.8, and 6.17, we geat@fof Theorem 2.11.
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Part Il

7 A non-trivial local formal characterization

In this section we consider a set of polynomials, of potdgtigery large degrees, which is affine invariant.
We show that this set has a formal characterization of veildotality.

Let IFZ [z1,...,z,] denote the space of polynomials of degree at rdastn variables oveff,. Forq = p®,
let FS" [z, ..., x,,] be the space of functions
s—1 s—1
{f €Fylxr,...,xn]|3g € Ffll[zll, ooy Zen) S f(m1, . xy) = glan, 2,2 a2l )

Whend = 1, andg is homogenous, then we get the class of linearized polyrientixtending this terrible
nomenclature, we refer to elementsiy aLr’d[x] asd-ized polynomialsWe claim below that the property of
being ad-ized polynomial is locally testable witfil + 2)-local tests.

Theorem 7.1 For ¢ = p™ with p being prime and for an integet < p — 2, the family ofd-ized polynomials
has a(d+2)-local formal affine characterization. Specifically a fuoatf : Fy — T, is ad-ized polynomial

if and only ifx,y € F?, % o, 4 f (x + iy) = 0, wherea, g = (—1)*(*).

We remark that the degree ofidzed polynomial ovep™ may be as high ag- p*~! and so the characteri-
zation can be quite local even when the polynomial has higjnege To prove Theorem 7.1 we use heavily
the characterization from [18, 9] that for a prime fiélgl a functiong : F}; — [, is a degreel polynomial

if and only if > ! aig(x + iy) = 0 for everyx,y € FZ.

To translate results abofi, to results abouf, for ¢ = p™, we use the following correspondence frdip
to IF" using linearized polynomials. (For this part we also usefdleethatlF, is contained irf¥,, given by
the solutions of the equatior? — x = 0.)

Proposition 7.2 There exist maps: F, — F* andb™! : FI* — F, satisfying:

e Foreverys e F,, 5 =b"1(b(B)).

e b = (by,...,bn), wherebi : F, — I, is a linearized polynomial (i.e., a polynomial of the form
bi(x) = Z;.”:‘Ol cijzP’) with its image being,,. In particular, theb;’s are F,-linear maps.

e b~!is anF,-linear map. In particulary=*(0) = 0.
We extend the maps andb~! to apply to vectors iy and Fj™™ using the extensioh(xy,...,z,) =
(b(z1),-..,b(xy,)), andb~! being its inverse. Using these maps we can create an altezhatacterization
of the d-ized polynomials.

Lemma7.3 f: Fy* — F,is ad-ized polynomial if and only if there exists polynomigys. . . , g, : F'" —
FF,, of degree at most such thatf(x) = b= (g1 (b(x)), - - . , gm (b(x))).
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Proof. We start with the forward direction, i.e., Assume sygh. . ., g,,, exist and prove thaf is d-ized in
such a case.

For both parts it is useful to see a “more” explicit versionbof. Sinceb™! is linear, we have that there
existswy, ..., w,, € F,such thab~!(ay,...,amn) = >t auw; (for all aq, ...,y € Fp). Using this
we see thaff (x) = b= (g1(b(x)), ..., gm(b(x))) = D", gi(b(x))w;. Butb(x) is just a collection ofnn
linear forms inzy,...,z%" ,...,2% ', andg; is a degreel polynomial in its arguments, and so their
composition is degreé-ized polynomial inx. Thus we get each; (b(x)) is ad-ized polynomial inx and

so f, which is a linear combination of such polynomials, is alsbiaed polynomial.
For the other direction, assunyeis d-ized. Sof (w1, ...,2,) = g(a1,...,20" ,...,a8" ') for some

degreed polynomialg. Note that

g(y) = b(f(b7'(y))

= bi(fO_yws > ynjw;))
i i

P
(o) (2]
J J

- bz(g(yly cee 7ymn))

m—1 pmfl
) E YnjW;
J

for some degred polynomial inmn variables with coefficients frorfi,. (For the last step we use the fact
thaty? = y; wheny; € F,.) Finally we use the fact that we are only interested in treustions ofg over
elements off"". Note thath;(g) has the same degree @ this case, sincé; is IF-linear (and so for a

monomial of the forme - ]_[y;;f we haveb; (c - Hyejk) = b;(c) - Hy] . |

We are now ready to prove Theorem 7.1.

Proof: We prove the forward direction first. Suppoge F, We wish to show that for every,y €
Fy, Zd“ a;f(x +1iy) = 0. By Lemma 7.3 we have that there exist degfg@olynomialsgs, . .., gm :

char, d[ ]

Iﬁ‘gm — F,, such thatf (x) = b7 1(g1(b(x)), . .., gm(b(x))). So we have
d+1
Z a; f(x +1y)
i=0
d+1
= Zaz (b(x +1iy)), - - gm(b(x +iy)))
d+1 d+1
= <Z a;g1(b(x + iy)) Z i gm (b(x + zy))) (By the linearity ofb—1)
=0 =0
d+1 d+1
= <Z ;g1 (b(x) + ib(y Z a;gm (b(x) + ib(y ))) (By the linearity ofb)

= b7'(0,...,0) (By[18])
= 0 (By linearity ofb=1)
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Now for the reverse direction, suppoge F; — F, satlsﬁeszc“rl a;f(x +iy) = 0 for everyx,y € Fy.
Consider the functiop; : F'" — T, given bygl(z = {211, 2mn)) = bi(f(b~1(z))). We now note that
for any pairu,v € F"™", We have

d+1 d+1
> agiutjv) = Zaj “Lu+ jv)))
3=0

d+1
= (Z%f u+jv>>)

d+1
S Zagf w) + b~ <>>)

:0)

We conclude tha; is a degreel polynomial for everyi € [m]. But now sincef (x)b~!(g1(x), ..., gm(x)),
we conclude thaf must also be d-ized polynomial. |

39



Acknowledgments

We would like to thank Oded Goldreich, Elena Grigorescu, Sikdopparty, Alex Samorodnitsky, and Avi
Wigderson for many valuable discussions.

References

[1]

2]

[3]

[4]

Noga Alon, Eldar Fischer, llan Newman, and Asaf Shapi#acombinatorial characterization of the
testable graph properties: It's all about regularitySIROC 2006pages 251-260, 2006.

Noga Alon, Tali Kaufman, Michael Krivelevich, Simon kign, and Dana Ron. Testing low-degree
polynomials over GF(2). IiProceedings of the 7th International Workshop on Randaimizand Ap-
proximation Techniques in Computer Science (RANDOM 203&)ture Notes in Computer Science,
vol. 2764 pages 188-199, New York, 2003. Springer.

Eli Ben-Sasson, Prahladh Harsha, and Sofya Raskhodmikbome 3CNF properties are hard to test.
In STOC '03: Proceedings of the thirty-fifth annual ACM symposbn Theory of computingages
345-354, New York, NY, USA, 2003. ACM Press.

Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Se#fsting/correcting with applications to nu-
merical problemsJournal of Computer and System Scienei43):549-595, 1993.

[5] Andrej Bogdanov, Kenji Obata, and Luca Trevisan. A lovwsund for testing 3-colorability in

[6]

[7]

[8]

[9]

[10]

[11]

[12]

bounded-degree graphs. HOCS pages 93-102. IEEE Computer Society, 2002.

C. Borgs, J. Chayes, L. Lovasz, V.T. Sos, B. Szegedy, antékkztergombi. Graph limits and parameter
testing. INSTOC 2006pages 261-270, 2006.

Stephen D. Cohen. Functions and polynomials in vectacep. Archiv der Mathematik48(5):409—
419, May 1987.

P. Delsarte, J.M. Goethals, and F.J. MacWilliams. Onegalizved Reed-Muller codes and their rela-
tives. Information and Contrql16(5):403—-442, 1970.

Katalin Friedl and Madhu Sudan. Some improvements tal tdegree tests. IfProceedings of
the 3rd Annual Israel Symposium on Theory of Computing arste8\ys pages 190-198, Washing-
ton, DC, USA, 4-6 January 1995. IEEE Computer Society. @beck version available online at
http://theory.csail.mit.eduhadhu/papers/friedl.ps.

Oded Goldreich, Shari Goldwasser, and Dana Ron. Pippesting and its connection to learning and
approximation.JACM, 45(4):653—750, 1998.

Oded Goldreich and Or Sheffet. On the randomness cotitpleof property test-
ing. In Proceedings of RANDOM, 2007page to appear, 2007. Also available at
http://ww. wi sdom wei znmann. ac.il/ “oded/ p.ors. htm .

Elena Grigorescu, Tali Kaufman, and Madhu Sudan. Lecaistrained affine-invariant properties
without local characterizations. Manuscript, In Prepargt2007.

40



[13] Charanijit S. Jutla, Anindya C. Patthak, Atri Rudra, @alid Zuckerman. Testing low-degree poly-
nomials over prime fields. IROCS '04: Proceedings of the Forty-Fifth Annual IEEE Syniymson
Foundations of Computer Sciengeages 423-432. IEEE Computer Society, 2004.

[14] T.Kasami, S. Lin, and W. W. Peterson. New generalizatibthe Reed-Muller codes - Part I: Primitive
codes.IEEE Transactions on Information Theor4:189-199, 1968.

[15] T. Kaufman and S. Litsyn. Almost orthogonal linear cedee locally testable. IRroceedings of the
Forty-sixth Annual Symposium on Foundations of Computien8e pages 317-326, 2005.

[16] T. Kaufman and D. Ron. Testing polynomials over genéeddls. InProceedings of the Forty-fifthth
Annual Symposium on Foundations of Computer Scjqramges 413-422, 2004.

[17] Ronitt Rubinfeld. Robust functional equations andrthgplications to program testingGIAM Journal
on Computing28(6):1972-1997, 1999.

[18] Ronitt Rubinfeld and Madhu Sudan. Robust characteoma of polynomials with applications to
program testingSIAM Journal on Computing?5(2):252-271, April 1996.

41

ECCC ISSN 1433-809
http://eccc.hpi-web.de/




