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Abstract

We argue that the symmetries of a property being tested play acentral role in property testing. We
support this assertion in the context of algebraic functions, by examining properties of functions mapping
a vector spaceKn over a fieldK to a subfieldF. We considerF-linear properties that are invariant under
linear transformations of the domain and prove that anO(1)-local “characterization” is a necessary and
sufficient condition forO(1)-local testability when|K| = O(1). (A local characterization of a property
is a definition of a property in terms of local constraints satisfied by functions exhibiting a property.) For
the subclass of properties that are invariant under affine transformations of the domain, we prove that the
existence of asingleO(1)-local constraint impliesO(1)-local testability. These results generalize and
extend the class of algebraic properties, most notably linearity and low-degree-ness, that were previously
known to be testable. In particular, the extensions includeproperties satisfied by functions of degree
linear inn that turn out to beO(1)-locally testable.

Our results are proved by introducing a new notion that we term “formal characterizations”. Roughly
this corresponds to characterizations that are given by a single local constraint and its permutations under
linear transformations of the domain. Our main testing result shows that local formal characterizations
essentially imply local testability. We then investigate properties that are linear-invariant and attempt to
understand their local formal characterizability. Our results here give coarse upper and lower bounds on
the locality of constraints and characterizations for linear-invariant properties in terms of some structural
parameters of the property we introduce. The lower bounds rule out any characterization, while the upper
bounds give formal characterizations. Combining the two gives a test for all linear-invariant properties
with local characterizations.

We believe that invariance of properties is a very interesting notion to study in the context of property
testing, in general and merits a systematic study. In particular, the class of linear-invariant and affine-
invariant properties exhibits a rich variety among algebraic properties and offer better intuition about
algebraic properties than the more limited class of low-degree functions.
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1 Introduction

Property testing considers the task of testing efficiently,by random sampling, if a function mapping a finite
domain to a finite range “essentially” satisfies a given property. The property to be tested can be specified
by the family of functionsF that possess the property. A propertyF is k-locally testableif there exists a
randomized test that queries the value of a functionf onk inputs and acceptsf ∈ F and rejectsf 6∈ F with
probability lower bounded by a quantity proportional to thedistance off from F . Proximity of functions
is measured in terms of its relative Hamming distanceδ(f, g) = Prx[f(x) 6= g(x)] when x is chosen
uniformly from the finite domain. A functionf is δ-close toF if there exists ag ∈ F such thatδ(f, g) ≤ δ
andδ-far otherwise.
The study of property testing emerged in the wake of the linearity test of Blum, Luby, and Rubinfeld [4]
and was defined formally in Rubinfeld and Sudan [18]. The firstsubstantial investigation of property testing
occurred in Goldreich, Goldwasser, and Ron [10] who focussed on the testing of properties of combinatorial
objects, in particular of graphs. Subsequent works have lead to major strides in the testing of graph properties
culminating with the works of Alon et al. and Borgs et al. [1, 6]. The testing of algebraic properties has also
seen significant progress since [4, 18] including testing offunctions satisfying functional equations [17],
and testing of various algebraic properties leading to error-correcting codes e.g. testing of Reed-Muller
codes [2], generalized Reed-Muller codes [16, 13], dual-BCH codes [15]. On the negative side, the works
of Bogdanov, Obata, and Trevisan [5] and Ben-Sasson, Harsha,and Raskhodnikova [3] give properties that
are not locally testable.
In the light of this progress it is natural to ask: What are theessential features that make a property testable.
In the context of graph-property testing (in the “dense-graph” model) this question is answered by the works
of [1, 6], who show that a certain feature that they term “regularity” is necessary and sufficient for testing
graph properties. In the algebraic setting, a similar understanding of properties that lead to local testability
is lacking. In this paper we take some steps to remedy this.

Invariance and Property Testing: Our approach to (algebraic) property testing is to attribute testability to
some “invariance” features exhibited by the property. Invariance features of a familyF , especially under
permutations of the domain, seems naturally linked to property testing. For example, let us consider the test
for “majority” (the propertyF consisting of all functionsf : {1, . . . , N} → {0, 1} that take the value1
at leastN/2 times). This test is considered uninteresting and we propose a formal explanation. This test
actually uses the symmetry of the propertyF , and the symmetry required is the full group of permutations
over the domain. Indeed the test easily extends to any other “symmetric” propertyF of Boolean functions,
which has the feature that iff ∈ F andπ is a permutation on the domain, thef ◦ π(x) = f(π(x)) is also
in F . A formal reason to declare the test “obvious” may be that thegroup of invariances needed inF is so
large (qualitatively).
Graph property testing similarly revolves around symmetries. This setting consider functionsA : {1, . . . , n}×
{1, . . . , n} → {0, 1}, and properties that are invariant under permutations thatpermute rows and columns
simultaneously. The groups of symmetries thus is somewhat smaller ((

√
N)! as opposed toN !, where

N = n2 is the domain size). But now one needs some more features (monotonicity/heredity) to get property
testers [1, 6]. Despite this natural link between property testing and invariances, this link does not seem to
have been explicit in prior literature. We make it explicit here. We remark that in independent work, Gol-
dreich and Sheffet [11], also make this notion explicit, anduse it to understand the randomness complexity
needs of property testing.
In this paper we explore invariances of an algebraic kind. Todo so, we consider functions mapping an
n-dimensional vector space over a finite fieldK to a subfieldF of K. Among such functions the familiesF
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we consider satisfy two properties:

1. They areK-linear invariant (or simply linear invariant), i.e., for every functionf ∈ F , and linear
mapL : Kn → Kn (i.e., a function that satisfiesαL(x) + βL(y) = L(αx + βy) for everyα, β ∈ K

andx,y ∈ Kn), it is the case thatf ◦ L, given by(f ◦ L)(x) = f(L(x)), is also inF . If such a
closure holds for all affine mapsL from Kn to Kn, then the propertyF is said to beaffine-invariant.

2. They areF-linear (or simply linear), i.e., for every pair of functionsf, g ∈ F andα, β ∈ F it is the
case that the functionαf + βg is also inF . This is the property that typically leads to linear codes
over the alphabetF.

In the algebraic context, linear-invariance over the domain seems to be a natural class of invariances (though
not necessarily the only class) to consider, and may be viewed as analogous to the choice of working with
“graph-properties”. The linearity of the familyF (when viewed as a vector space over the range) is an
additional property we impose to derive some testability results (analogous to the role played by hered-
ity/monotonicity in graph property testing).
For simplicity we suppress the use of the phrase “F-linear” in this paper, and use the term linear-invariant
(affine-invariant) family to reflect families which are bothlinear-invariant (resp. affine-invariant) and linear.
(We stress that this is merely a notational choice. It maybe quite interesting to study non-linear properties
that are linear-invariant also, but we don’t do so here.)
The resulting collection of families unify most previouslyconsidered in algebraic settings. They include
the class of linear functions, low-degree polynomials (andthus generalized Reed-Muller codes), as well
as the dual-BCH codes. But they also include other families such as homogenous polynomials of any
given degree and linearized polynomials. They satisfy niceclosure properties e.g., ifF1 andF2 are linear-
invariant, then so areF1 ∩ F2 andF1 + F2, the family that consists of the sum of functions fromF1 and
F2. Finally, we remark that the group of symmetries required bylinear-invariance is relatively tiny, and
only quasipolynomial in the domain size, compared to the exponential sizes relied upon in the symmetric
properties as well as in graph properties.
Our principal results are to show necessary and sufficient conditions for testing linear-invariant families
mappingKn to F. The results hold for all choices ofK andF asn → ∞, but are specially strong when
|K| = O(1). We describe our results, and approach, below.

Constraints, Characterizations, Formal Characterizations, and Testing:To understand necessary con-
ditions for local testability, we start by recalling the some basic notions in this context, namely those of
“constraints” and “characterizations”.
We say that a familyF satisfies aconstraintC = (x1, . . . , xk;S) wherex1, . . . , xk ∈ Kn andS ( Fk if
every memberf ∈ F satisfies〈f(x1), . . . , f(xk)〉 ∈ S. We refer to this constraint as ak-local constraint.
In order for a property to bek-locally testable, with one-sided error, it must be the casethat functions in the
family satisfy somek-local “constraint” (since every rejected function must berejected with a proof of non-
membership in the family). Local constraints also essential for a family of functions to be self-correctible
and indeed it turns out that all function families we analyzeare self-correctible.
Testable properties where every non-member is rejected with positive probability (as required by our defi-
nition of a local test) actually need to show even more structure. Specifically, it must be that there is some
set of local constraints that completelycharacterizethe family, i.e.,f ∈ F if and only if it satisfies every
one of the given set ofk-local constraints. (See Definition 2.1 for a formal definition.) In this paper we will
consider all function families that are linear invariant and have a local characterization and show that they
are testable.
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To derive this result we examine the source of the local characterizability of a family. Local characterizability
of a family requires that a family be specified byseverallocal constraints. In examining the features that
lead to property testing it is natural to ask for an explanation for this abundance of local constraints. One
way to explain them is via the invariance features of the family. If a family satisfies one local constraint, then
every “permutation” of the domain that preserves membership in the family yields a potentially new local
constraint. In our case, thus the abundance of constraints can be explained by the linear invariance of the
family. Every linear transformation of a constraint, leadsto another valid constraint, and together this set can
be quite large. Motivated by this, we introduce the notion ofa formal characterization, which requires that
the family be specified by asingleconstraint and its “orbit”, i.e., all the other constraintsobtained by linear
transformations of the given one, characterize the family.(The actual definition allows a slightly broader
class of characterizations, see Definition 2.3.) Modulo theformal definitions of these objects, we can state
our first theorem informally as follows:

Main Theorem 1 (Informal): If a familyF is linear-invariant and has ak-local formal characterization,
which satisfies some additional restrictions, then it isk-locally testable. (See Theorem 2.9 for a formal
statement.)

The requirement that a single constraint and its orbit characterize a family may seem overly restrictive, but
known characterizations of most algebraic functions including those from [4, 18, 2, 16, 13] are actually
formal and satisfy the (thus far unspecified) additional restrictions (see Proposition 2.7). As a result Theo-
rem 2.9 already subsumes many of the algebraic testing results. Moreover, as discussed later in this section,
the proof is actually somewhat simpler and unifies the different proofs presented in the literature for the
different cases.
Our other main results show that the above theorem actually gives testers for all linear-invariant families
provided the family is locally characterizable, a clear necessary condition. For the special case of affine-
invariant families, we show that the existence of asingle local constraint suffices to establish testability.
Again we describe these theorems informally below.

Main Theorem 2 (Informal): If a familyF is affine-invariant and has ak-local constraint, then it has a
kpoly(|K|)-local formal characterization which satisfies the additional restrictions mentioned in Main Theo-
rem 1 (Informal). HenceF is kpoly(|K|)-locally testable. (See Theorem 2.10 for a formal statement.)

Thus when|K| = O(1), the above pins down the local testability to with polynomial factors. Moving to
the case of linear-invariant families, here we do get local formal characterizations, but they do not satisfy
the additional restrictions described in Theorem 2.9. However, we still manage to use the theorem to give a
local test for all such families.

Main Theorem 3 (Informal): If a familyF is linear-invariant and has ak-local characterization, then it
has akpoly(|K|)-local formal characterization (which need not satisfy theadditional restrictions mentioned
in Main Theorem 1 (Informal)). Furthermore,F is kpoly(|K|)-locally testable. (See Theorem 2.11 for a
formal statement.)

Significance of results:The significance of the results depend on the “novelty” of theclass of properties
that are linear-invariant, and have local constraints or characterizations. At first look it may appear that
linear-invariance is just a rephrasing of the notion of being low-degree polynomials1. Indeed we even prove

1We remark that it is not possible to deny that every property fromKn to F is a property of “polynomials”, since every function
is from Kn to F is a polynomial. However this is no more interesting than saying that the function family is|K|n-locally testable!
What we claim here, and show later in the paper, is that the class of properties showing linear-invariance is not just polynomials of
a given upper bound on the degree.
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that whenK = F = Zp is a prime field then the onlyaffine-invariantfamilies are polynomials of a given
bound on their degree. However each restriction,K = F, F = Zp and the affine-invariance ofF (as opposed
to mere linear-invariance), when relaxed leads to a broaderset of properties.
For instance, whenK = F andF is not a prime field, then the class of “linearized polynomials” lead to an
interesting collection of “high-degree” polynomials thatare affine-invariant, but testable with much greater
locality than their degree would suggest. (Linearized polynomials over the fieldF of cardinalityps for prime
p ands > 1 are functions of the form

∑s−1
i=0 cix

pi

.) In Theorem 7.1 we give a generalization of this result to
multivariate polynomials andp-degree greater than1, giving a moderately broad class of functions that are
very locally testable using Theorem 2.9.
Moving to the case whereK 6= F, a priori it is not even clear that it is good to think of them aspolynomials
over K (though as noted earlier, every function fromKn to K, and hence fromKn to F, is a polynomial
with coefficients fromK). Every non-constant function takes on a constant value1/|F| fraction of the times
and so must be a very high degree polynomial overK (of degree at least|K|/|F |). Yet they can be locally
testable withO(1) locality, again suggesting that the “degree” of polynomials in the set is not a good way to
measure their testability. This class of functions are interesting in that they capture the “dual-BCH” codes
studied (in the context of property testing) by Kaufman and Litsyn [15]. In this paper, we give some basic
structural results about such functions (see Section 6) which allows us to get some weak, but general, results
about testing multivariate versions of such functions.
The strongest contrast from low-degree polynomials however comes when studying linear-invariant (as op-
posed to affine-invariant) families. In the previous cases,it was the structure within the fieldK that played a
central role in differentiating the properties under consideration from the class of low-degree polynomials.
While this distinction led to some nice examples, the “coarseness” of our general results (Informal Theo-
rems 2 and 3 above) is weak to capture this distinction. In thecase of linear-invariant families, homogenous
polynomials start to play a special role and this role is quantitatively much more significant. For example
consider the set ofn-variate polynomials overZ3 supported on monomials of odd degree or monomials of
degree at most 10. It can be verified that this a linear-invariant family. On the one hand this set includes
polynomials of degree upto2n − 1, and indeed the supporting set of monomials has cardinalityat least
2n. However, it turns out that this family is testable withO(1)-locality independent ofn (and this follows
from Lemma 6.17 that is used to prove the Informal Theorem 3 above)! Indeed Lemma 6.17 gives a broad
generalization of this example to a rich collection of non-low-degree polynomials that are locally testable.
We remark that linear-invariance also leads to other rich effects. As mentioned above, the class of ho-
mogenous polynomials of degreed is linear-invariant andO(d)-locally testable. Also ifF1 andF2 are
linear-invariant, then so isF1 +F2. It follows, again from Lemma 6.17, that if both are locally testable then
so isF1 + F2.
In summary, we assert that the class of linear-invariant properties mappingKn to F form a rich enhancement
of the class of low-degree polynomials and our results here show how to extend some of the property testing
results to the enhanced collection of properties.
Techniques:Our techniques belong into three different categories.
Unification of previous testing results by Tensor product ofcodes. Our testing result (Informal Theorem
1) unifies, simplifies and generalizes the proof of the robustness result from several prior works [4, 18, 2,
16, 13]. The later works in this sequence built on the proof structure developed in [4], but then needed to
find new ways to address the many variants of a common technical problem that arose in all the proofs. Our
insight in this work is to notice that all these problems werehovering around the concept of “tensor products”
of linear spaces (or codes). By extracting this element explicitly (see proofs of Lemmas 3.1 and 3.3) we are
able to find a single proof (not much more complicated than thefirst) that simultaneously solves all the
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Figure 1: Informal summary of the notions and results in thispaper.

problems. We remark that this proof does not specialize to any of the previous proofs, not even in the case
of [4]. Previous proofs were more “efficient” in terms of the tradeoff between the rejection probability of
the test and the distance from the familyF . By sacrificing this efficiency we are able to unearth some of
the underlying reasons for why testing works. Given the central role of linearity and low-degree testing in
complexity theory, we hope that the additional understanding will be of technical benefit in the future.

Structural theorems for linear invariant families.Our structural theorems about linear-invariant families
(Informal Theorems 2 and 3) are based on a careful analysis ofpolynomials mappingKn to F. Recalling
that every function fromKn to F can be viewed as an-variate polynomial overK, we ask questions of
the form, what does a linear invariant familyF containing a single function (polynomial)f look like? We
present some very simple but broadly useful lemmas in this context, which we describe first for the simple
case whenK = F. We give a “monomial extraction lemma”, Lemma 4.2, which shows that every monomial
appearing in the support off is also inF (where we view the monomial also as a function fromFn to F).
For example, any linear-invariant family containing the polynomialx2 +xy2 +y4 also contains the function
xy2. This turns our attention to linear invariant familiesF that contain some given monomialm. We show a
“monomial spreading lemma”, Lemma 4.6, which describes many other monomials that should be contained
in F as well. For example a family containing the monomialx2y3 over a field of characteristic greater than
5 also contains the monomialsx5 andxy4 etc. We show a similar (more general) variant for affine-invariant
families also. These lemmas, though simple, forge the path for a better understanding of linear-invariant
and affine-invariant families. In particular they say that these families are completely characterized by the
monomials in the families. In the case of affine-invariant families, the maximum degree of the monomials
in the family forms a good, though crude, bound on the locality of the characterization/tests of the family,
and this leads to the Informal Theorem 2 above.

For linear-invariant families however, the degree turns out to be the wrong measure to estimate the locality
of characterizations or tests. Instead we introduce a new parameter that we call thelinear-invariance degree
of a family. For example, for the earlier-mentioned exampleof the family mappingZn

3 to Z3 supported on all
monomials of odd degree and on other monomials of degree upto10, the linear-invariance degree turns out
to be10. We show that this invariance degree bounds, again crudely,the locality of the characterization/tests
of any family and this leads to the Informal Theorem 3 above, in the case ofK = F.

Systematic study of functions from a fieldK to a subfieldF. Finally we extend the results to the case of
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function families mappingKn to some subfieldF of K. Thus, our work provides thefirst systematic study
of testability of functions from a field to its subfield. In this case we describe a basis for functions mapping
Kn to F, which itself seems somewhat new. This basis generalizes ina common way the well-studied
“trace” and “norm” functions, both of which mapK to F. These functions, that we refer to as “Traces
of monomials”, satisfy similar properties to the monomialsin the simpler case of functions fromFn to
F. Viewed as a polynomial overK, if a functionf has a support on a monomialm, then the trace of the
monomialm is itself a function in any linear-invariant family containing f . Furthermore, the presence of
one monomial implies the presence of many others in the family, leading to upper and lower bounds on the
characterizations/tests of the family.

Conclusions, the Alon et al. Conjecture and Future Work: Our work attempts to highlight on the role
of invariance in property testing. We remark that despite the obvious relationship of this notion to property
testing, it has not been highlighted before. The only prior mentions seem to be in the works of Alon et
al. [2], and in Goldreich and Sheffet [11].

Our work highlights linear-invariance as a central theme inalgebraic property testing. Our results show
that this notion yields a wide class of properties that have local property tests. These results are strong
when the underlying fieldK is small. However whenK is large, the characterization results (in particular,
Theorem 2.10) becomes quite weak, even for affine-invariantfamilies. In particular, in the case of the dual-
BCH codes (which consider functions mappingF2t to F2), our characterizations are completely trivial, while
these codes do have very efficient tests [15]. One way to improve our results would be if Theorem 2.10 could
be improved to have no dependence ont. This however is not possible, as shown in upcoming joint work
with Grigorescu [12]. Specifically they exhibit a family of affine-invariant functions mappingF2t to F2 that
have 8-local constraints, but noo(t)-local characterizations. Thus some dependence onK is necessary in
translating constraints to characterizations.

Our work provides the first systematic study of testing functions from a field to its subfield. This setting is
different than the well studied case of functions from a fieldto itself. This difference is best illustrated by
the following example

• For affine invariant function family of the formFn
2 → F2 we have : a local constraint imply local

characterization and local testability.

• For affine invariant function family of the formF2n → F2 we might have (by the work of [12]) a local
constraint, butno local characterization! , and henceno local testing!

Moreover, our work suggests a method to construct new locally testable codes by picking the dual code to
be a code spanned by an orbit of a short local constraint (orbit under the group of linear transformations).

In general, we feel that the class of linear-invariant functions offer a rich variety of properties, sufficiently
wide to test out conjectures about the nature of testable properties. For instance, Alon et al. [2] had con-
jectured that linear codes of large distance, that have a small weight codeword in the dual, and have a
“2-transitive invariant group” are locally testable. Whenapplied to codes derived from affine-invariant
function families, their conjecture implies that every affine-invariant family fromKn → F with a k-local
constraint, must have anfF(k)-local test and in particular, anfF(k)-local characterization. The aforemen-
tioned result [12] refutes this conjecture of [2] by considering affine-invariant families. However, our work
(Theorem 2.10) shows that a weak version of the [2] conjecture does hold, within the class of linear-invariant
codes, by giving anfK(k)-local algebraic characterization and test.
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This leaves the possibility that every locally characterized code with a “2-transitive invariant group” may
be locally testable. Again we feel that this question can andshould be examined in the context of affine-
invariant families. In general, we feel that for every missing arrow, or qualitatively weak one, in Figure 1
poses an interesting open question that we hope will be investigated in future work.

This work put in focus object of the following form:F-linear subspaces that are invariant under permutations
of a groupG. In this work the groupG is the group of linear transformations of the domain. In a future
work one may try to understand invariance under different groups in the following sense.

• Doesk-local formal characterization imply local-testing also when the group of invariances is differ-
ent than the group of linear transformations?

• Given a linear subspace that is invariant under permutations of a groupG, when it is the case that
k-local formal characterization exists (i.e. when there exists one short orbit that span the dual space)?

Organization of this paper:
In Section 2 we introduce some basic definitions needed to present our main results and we provide formal
statements of our main results. Then in Section 3 we prove ourmain result on testing linear-invariant
families. Section 7 presents an example of some families that possess very local characterizations and
thus local tests. The remaining sections undertake the analysis of locality of characterizations in general
linear-invariant families. Section 4 describes some basicstructural properties, in particular on the role of
monomials in functions mappingFn to F. Section 5 turns these results into bounds on the locality ofthe
characterizations and tests for affine-invariant and linear-invariant families mappingFn to F. Section 6
extends the results of the previous two sections to the case of functions mappingKn to F.

2 Definitions and Statement of Results

We start with some common notation we use. We useZ to refer to the integers. We use[n] to denote the
set{1, . . . , n}. Throughout we work with finite fieldsF of cardinalityq = ps andK of cardinalityQ = qt.
F∗ andK∗ will denote the non-zero elements of the fields. For an integer vectord = 〈d1, . . . , dn〉 with
0 ≤ di < Q andc ∈ K∗, we letc ·xd denote the monomialc ·∏n

i=1 xdi

i . We useK[x] to denote polynomials
in x with coefficients fromK. We useL to denote the space of linear functions fromKn → Kn andA to
denote the set of affine functions.

2.1 Robust local tests

We start with the formal definitions of constraints, characterizations and formal characterizations.

Definition 2.1 (k-local constraint/characterization) Ak-local constraintC is given byk pointsx1, . . . ,xk ∈
Kn and a setS ( Fk. We say that a familyF satisfies ak-local constraintC = (x1, . . . ,xk;S) if
〈f(x1), . . . , f(xk)〉 ∈ S for everyf ∈ F . We say that a familyF has ak-local characterizationif there
exists a collectionC of k-local constraints such thatf ∈ F if and only iff satisfies all constraintsC ∈ C.

When the property being tested isF-linear, it is well-known [3] that the setS might as well be anF-linear
proper subspace ofFk. In what follows we often use the letterV to denote such a subspace (instead ofS).
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We now introduce the notion of ak-local formal characterization. We start with a strong and elegant defi-
nition, though we will soon switch to a slightly weaker (but more cumbersome) definition that is easier to
work with. The strong definition formalizes characterizations derived from linear, or affine, translations of
asinglek-local constraint.

Definition 2.2 (Strong Formal Characterization) A family of functionsF ⊆ {Kn → F} has astrongk-
local formal characterizationit there exists a constraintC = (x1, . . . ,xk;V ⊆ Fk) such thatf ∈ F if and
only if for every linear functionL : Kn → Kn it is the case that〈f(L(x1)), . . . , f(L(xk))〉 ∈ V .

Characterizations such as the above are common in property testing. For instance the class of linear functions
from Zn

p to Zp, for prime p andn ≥ 2 can be described by the constraintC = (a,b,a + b;V ) where
a = 〈1, 0, . . . , 0〉, b = 〈0, 1, 0, . . . , 0〉, andV = {〈α, β, α + β〉|α, β ∈ Zp}. Similarly, the class of
degreed polynomials mappingZn

p to Zp, for d ≤ p andn ≥ 2 can be described by the constraintC =

(a,a + b,a + 2b, . . . ,a + (d + 1)b;Vd) whereVd = {〈α0, . . . , αd+1〉 ∈ Fd+2|∑d+1
i=0 (−1)i

(

d+1
i

)

αi = 0}.
More complex expressions can be found for functions mappingpolynomials over any (esp. a non-prime)
field to itself. However all these definitions do restrictn to be at least2, which is somewhat artificial. Also
for technical reasons we will use a “dual” (and weaker) notion of a “formal” constraint.
In the above version, a formal characterization may be viewed as being given by a collection of constraints:
one for every linear map fromKn to Kn. In the “dual” version below, we will consider a collection of
constraints which are parametrized by a constant number of variables taking values inKn. The “variables”
of a constraint, i.e., locations examined by the constraint, are linear functions of the parameters. As usual
the constraint requires that the vector of function values at the specified locations come from the setS.

Definition 2.3 ((Weak)k-local formal characterization) A familyF has a (weak)k-local formal charac-
terization if there exists an integerm; k linear functions`1, . . . , `k : (K)m → K; and a linear subspace
V ⊂ Fk such thatf ∈ F if and only if for everyy1, . . . , ym ∈ Kn, we have〈f(x1), . . . , f(xk)〉 ∈ V , where
xi = `i(y1, . . . , ym). (Here we interpret the linear functioǹi as a map from(Kn)m → Kn in the natural
way.)

The following proposition establishes a fairly close connection between strong and weak formal characteri-
zations.

Proposition 2.4 A familyF ⊆ {Kn → F} has a weakk-local formal characterization if is it has a strong
k-local formal characterization. Ifn ≥ k then the converse also holds.

Proof: Let C = (x1, . . . ,xk;V ) give a strong formal characterization ofF . Renumberx1, . . . ,xk so that
the vectorsx1, . . . ,xm are linearly independent andxj =

∑m
i=1 λijxi for j ∈ {m + 1, . . . , k}. Now let

`1, . . . , `k : Km → K be defined as̀j(z1, . . . , zm) = zj if j ≤ m and`j(z1, . . . , zm) =
∑m

i=1 λijzi for
j ∈ {m + 1, . . . , k}. Then it can be easily seen that`1, . . . , `k andV give a weak formal characterization
of F .
In the other direction, suppose`1, . . . , `k : Km → K andV give a weak formal characterization ofF . Let
α1, . . . , αm ∈ Kn be linearly independent vectors inKn. (Note such a collection exist sincem ≤ k ≤ n.)
Let x1, . . . ,xk be given byxj = `j(α1, . . . , αm). Then it can be verified that the constraint(x1, . . . ,xk;V )

gives a strong formal characterization ofF .

Henceforth whenever we refer to formal characterizations,we mean weak ones. The formal version of the
Informal Theorems 1, 2, and 3 rely on some restricted classesof formal characterizations that we specify
below.
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Definition 2.5 (2-ary Independent and Affine Formal Characterizations) A k-local formal characteri-
zation(`1, . . . , `k;V ) is 2-ary independentif `1 and`j are linearly independent for everyj ∈ {2, . . . , k}. If
all the`i’s are of the formy1+ ˜̀

i(y2, . . . , ym), where˜̀
i’s are non-zero, then we say that the characterization

is anaffinecharacterization. (Note that every affine characterization is also 2-ary independent.)

In the propositions below, we mention some general results on the existence of formal local characteriza-
tions. The first gives a general transformation, which may bequite weak for largeK, but is quite useful
for smallK. The second summarizes known (quite strong) characterizations in our terms. Both proofs are
omitted.

Proposition 2.6 For everyK there exists a functiong = gK : Z → Z such that ifF has ak-local charac-
terization, then it has ag(k)-local formal characterization.

Proposition 2.7 (Follows from [7, 16]) The setFn,d,F of n-variate polynomials of degree at mostd overF
(so hereK = F) of cardinality q = ps, have ad + 2-local formal characterization, ifd ≤ q − q/p, and a
qdd/(q(1−1/p))e-local formal characterzation ifd ≥ d(1 − 1/p). In both cases, the formal characterizations
are affine.

A much wider class of properties (other than just the class oflow-degree polynomials) have local character-
izations. We discuss this in detail shortly, but first we describe a natural test for properties with local formal
characterizations.

Definition 2.8 (Linear-invariant test) For familyF that has a formal local characterization given by(`1, . . . , `k;V ),
the linear-invariant test is defined to be: “Pickx1, . . . , xm ∈ Kn at random and accept if and only if
〈f(y1), . . . , f(yk)〉 ∈ V , whereyi = `i(x1, . . . , xm).”

We can now state our main theorem, which formalizes the Informal Theorem 1 of Section 1, for testing
linear-invariant families with local formal characterization.

Theorem 2.9 If F is a (linear invariant) family of functions mappingKn to F, with a 2-ary independent
k-local formal characterization, then it isk-locally testable. Specifically, the linear-invariant test accepts

all members ofF , while a functionf that isδ-far fromF is rejected with probabilitymin
{

δ
2 , 1

(2k+1)(k−1)

}

.

We prove this Theorem in Section 3. In particular, note that in all cases the rejection probability is indepen-
dent ofn andK. So if k = O(1), then the rejection probability isΩ(δ).

For well-known linear-invariant families such as linear functions [4], and Reed-Muller codes [18, 2, 16, 13],
the theorem above produces local tests with the same locality as in the previous works, though the rejection
probability may be slightly smaller in our case. The rest of this section describes property tests that we can
derive that are not already captured by previous results.

To do so we study invariance properties of functions mappingKn to F. All functions from Kn to F are
polynomials. So the principal questions we study here are: “Which subsets of polynomials are linear (or
affine) invariant?” and “Which of these families havek-local formal characterizations?”

We differentiate our results into two categories: those foraffine-invariant families and those for linear-
invariant families. In both cases, as argued earlier there is a rich variety of function families that are not
“merely” low-degree polynomials. However in the case of affine-invariant families, the maximum degree
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of functions in the family does give a crude bound on the locality of characterizations and tests for the
family. On the one hand families that contain even a single high-degree function cannot satisfy any local
constraint; and on the other hand families with only low-degree functions have local formal characterizations
(see Lemmas 6.9 and 6.14). For affine-invariant families, the characterizations can be converted to affine-
invariant, and hence 2-ary independent ones, one can now apply Theorem 2.9 to get a testing result as well.
This leads us to the following theorem, which formalizes Informal Theorem 2.

Theorem 2.10 . For fieldsF ⊆ K with |F| = q and |K| = Q, let F ⊆ {Kn → F} be an affine-invariant
family with ak-local constraint. ThenF has ak′ = (Q2k)Q

2
-local formal affine characterization. Further-

moreF is k′-locally testable where the test accepts members ofF with probability 1 and rejects functions

that areδ-far with probabilitymin
{

δ
2 , 1

(2k′+1)(k′+1)

}

.

Theorem 2.10 is proved in Section 6, though the simpler case whereK = F is proved in Section 5.

The gap between the upper and lower bounds is the above theorem is quite weak. Partly this is because
the degree of the polynomial in a family is only a weak estimator of the locality of characterizations. In
Section 7 we give an example of a family mappingFn to F where the degree is larger than the locality of the
characterization by a factor of aboutq/p. This example is interesting in its own right in that it showssome
of the ways in which affine-invariant families differ from families of low-degree polynomials.

In the case of linear-invariant families, the degree is no longer even a crude estimator of the locality of
characterizations. In Section 5 we introduce the notion of the linear-invariance degree of a family and use
this parameter in Sections 5 and 6 to derive upper bounds on the locality of formal characterizations, while
also deriving lower bounds on the locality of (any) characterization (see Lemmas 6.8 and 6.16). These
characterizations, unfortunately, are not 2-ary independent. However we manage to reduce the testing of
linear-invariant families to some related families that dohave 2-ary independent characterizations. This
allows us to use Theorem 2.9, in a slightly more involved way,to get local tests for linear-invariant families
as well. The following theorem, which formalizes Informal Theorem 3, summarizes this investigation.

Theorem 2.11 . For fields F ⊆ K with |F| = q and |K| = Q, let F ⊆ {Kn → F} be an linear-
invariant family with ak-local characterization. ThenF has ak′ = (Q2k)Q

2
-local formal characterization.

FurthermoreF is k0-locally testable, fork0 = 2Qk′ where the test accepts members ofF with probability

1 and rejects functions that areδ-far with probabilitymin
{

δ
2 , Q2

(2k0+Q)(k0+Q)

}

.

Again, Theorem 2.11 is proved in Section 6, though the simpler case whereK = F is proved in Section 5.
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Part I

3 Local Testing from Local Formal Characterizations

In this section we wish to prove Theorem 2.9 which asserts that a linear-invariant familyF with a 2-ary
independentk-local formal characterization isk-locally testable, by the linear-invariant test forF . We
restate the theorem below.

Theorem 2.9 (restated)If F is a (linear invariant) family of functions mappingKn to F, with a 2-ary inde-
pendentk-local formal characterization, then it isk-locally testable. Specifically, the linear-invariant test

accepts all members ofF , while a functionf that isδ-far fromF is rejected with probabilitymin
{

δ
2 , 1

(2k+1)(k−1)

}

.

In particular, the theorem implies that every affine-invariant familyF with ak-local formal characterization
is testable.

Recall the linear-invariant test picksx1, . . . , xm ∈ Kn at random and accepts if and only if〈f(y1), . . . , f(yk)〉 ∈
V , whereyi = `i(x1, . . . , xm) for i ∈ [k].

Let ε(f) denote the probability that the linear-invariant test rejects a functionf . It is clear that iff ∈ F then
ε(f) = 0. So to prove Theorem 2.9 for the case of 2-ary independent formal characterizations, it suffices to
show that ifε(f) < 1

(2k+1)(k−1) , thenδ(f,F) ≤ 2ε(f).

We start by making some notational simplifications. Fori ∈ [k] andj ∈ [m], let cij ∈ K be such that
`i(x1, . . . , xm) =

∑m
j=1 cijxj. Without loss of generality, we assume that the firstm linear functions

simply project on to the firstm coordinates; i.e.,̀i(x1, . . . , xm) = xi for i ∈ [m]. (This can be achieved by
a linear transformation of the variablex1, . . . , xm and by permuting thèi’s.) Furthermore, we assume the
remaining coordinates are linearly independent ofx1 and so for everyi 6= 1, the vector〈ci2, . . . , cim〉 6= 0.

Fix a functionf with ε(f) < 1/((2k + 1)(k − 1)). As in [4], we now describe a functiong : Kn → F

that is close tof , that will turn out to be a member ofF . For any choice of valuesα2, . . . , αk ∈ F notice
that there is at most oneα ∈ F such that〈α,α2, . . . , αk〉 ∈ V . Define DECODE(α2, . . . , αk) to be thisα if
it exists (and a special symbol⊥ denoting error otherwise). Forx ∈ Kn and letScf (x;x2, . . . , xm) =
DECODE(f(y2), . . . , f(yk)) whereyi = `i(x, x2, . . . , xm). Note thatε(f) equals the probability that
f(x) 6= Scf (x;x2, . . . , xm), whenx, x2, . . . , xm are chosen uniformly and independently fromKn. In
particularf(x) = Scf (x;x2, . . . , xm) for everyx, x2, . . . , xm if and only if f ∈ F .

Finally, we are ready to define the functiong, which we claim to be the function close tof that is inF . For
x ∈ Kn, let g(x) = pluralityα∈(Kn)m−1Scf (x, α).

We now follow the same sequence of steps as in [4]. It is straightforward to show thatf is close tog and we
do so in Lemma 3.2. But before we do so, we move to the crucial step, which is to prove that the plurality
above is really an overwhelming majority for everyx. We show this first in Lemma 3.1. Finally, a proof
similar to that of Lemma 3.1 shows thatg must be a member ofF and we do so in Lemma 3.3. Theorem 2.9
follows easily from these lemmas.

Lemma 3.1 For everyx ∈ Kn, Pry,z[(Scf (x,y) 6= Scf (x, z))] ≤ 2(k − 1)ε(f). Hence, for everyx ∈ Kn,
Pry[g(x) 6= Scf (x,y)] ≤ 2(k − 1)ε(f).

Proof: Let ε = ε(f). We build twok × k matricesM,N with Mij ∈ Kn andNij ∈ F and use properties of
these matrices to prove the lemma.
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For i, j ∈ [m] pick γij ∈ Kn as follows. Letγ11 = x, γ1j = yj, γi1 = zi, andγij be chosen independently
and uniformly at random fromKn otherwise. (Note everyγij exceptγ11 is thus drawn uniformly at random
from Kn.) Now for i ∈ [k] andj ∈ [m], let Mij = `i(γ1j , . . . , γmj). (In particular, we haveMij = γij for
i, j ∈ [m].) Finally for i ∈ [k] andj ∈ [k], let Mij = `j(Mi1, . . . ,Mim). The second matrixNij is defined
to bef(Mij) except wheni = j = 1, in which case we defineN11 = Scf (x,y).

Below we show that all the rows ofN are codewords ofV (with high probability), and that all the columns
except possibly the first are also codewords ofV . This allows us to conclude that the first column is also a
codeword ofV and this in turn yields the lemma.

We start by examining the properties ofM andN . We claim that every row and every column ofM cor-
responds to the queries of a potential test by our tester. We start with the rows. Fixi ∈ [k] and note that
the entries of theith row correspond to queries of the test with randomnessMi1, . . . ,Mim (corresponding
to queries of the test “Doesf(Mi1) = Scf (Mi1;Mi2, . . . ,Mim)?”). Notice further that fori 6= 1 the values
Mi1, . . . ,Mim are drawn uniformly and independently at random fromKn (independent ofx). To see this,
supposecij 6= 0 for somej ∈ {2, . . . ,m}. Then note that there is a one to one correspondence between
〈γj1, . . . , γjm〉 and〈Mi1, . . . ,Mim〉 for any fixed choice of{γik}i6=j,k. Thus choosing〈γj1, . . . , γjm〉 uni-
formly at random makes〈Mi1, . . . ,Mim〉 uniform over(Kn)m independent ofγ11 = x. We conclude that
the probability thatf(Mi1) 6= Scf (Mi1;Mi2, . . . ,Mim) is at mostε. In other words, the probability that the
ith row ofN is not a codeword ofV is at mostε for i 6= 1.

Next we move to the columns ofM andN . Note that the construction ofM was asymmetric in that every
row was defined to form a “query” pattern of our test. However,we note that the same matrix could have
been defined by constructing the firstm rows first, and then defining each column to be a “query pattern” of
the test. To see this recall that`i(x1, . . . , xm) =

∑m
j=1 cijxj. Thus we have

Mij = `j(Mi1, . . . ,Mim)

=
m
∑

j′=1

cjj′Mij′

=

m
∑

j′=1

cjj′

m
∑

i′=1

cii′Mi′j′

=

m
∑

i′=1

cii′

m
∑

j′=1

cjj′Mi′j′

=

m
∑

i′=1

cii′Mi′j

= `i(M1j , . . . ,Mmj).

By a similar argument to the previous paragraph we now have that the probability that thejth column ofN
is not a codeword is at mostε for j 6= 1.

Thus, by the union bound, we have that with probability at most 2(k − 1)ε there exists a row (other than the
first) or a column (other than the first) such thatN restricted to the row or the column is not a codeword of
V . We now use this to show that the first row ofN and the first column ofN are also codewords ofV . Here
we use the properties of tensor products of codes. Recall that the tensor product ofV with itself, denoted
V ⊗ V is the code consisting of allk × k matrices overF all of whose rows are codewords ofV and all of
whose columns are codewords ofV . It is well known that ifV has distanced then its tensor product with
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itself has the following “erasure-correcting” property: Given the projection of any matrixB = A|S×T to
a subsetS of the rows and a subsetT of the columns with|S|, |T | ≥ k − d + 1, B can be extended to a
(unique) codewordA of V ⊗ V if and only if for every rows ∈ S, thesth row ofB is consistent with (the
projection toT of) some codeword ofV , and for every columnt ∈ T , the tth column ofB is consistent
with (the projection toS of) some codeword ofV .

In our case, the codeV has distance at least2 and we know the projection ofN onto all columns ex-
cept the first and all rows except the first are consistent withV . Thus the extension toN to a code-
word of V ⊗ V is unique and this is the unique value which satisfiesN11 = DECODE(N12, . . . , N1k) =
DECODE(N21, . . . , Nk1). We conclude that with probability at least1−2(k−1)ε, we havePry,z[Scf (x,y) 6=
Scf (x, z)] ≤ 2(k − 1)ε(f).

The consequence tog follows from the fact when drawing samples from a distribution, the probability of a
collision is no more than the probability of the most likely element.

We now revert to the task of proving thatf is close tog and thatg is a member of the familyF . We start
with the former task which we show in exactly the same way as in[4, 18].

Lemma 3.2 δ(f, g) ≤ 2ε(f).

Proof: Let B = {x ∈ Kn|Prα[f(x) 6= Scf (x, α)] ≥ 1
2}. Notice thatε(f) ≥ 1

2 Prx[x ∈ B]. On the other

hand, ifx 6∈ B, thenf(x) = pluralityα[Scf (x, α)]. The lemma follows.

Next we show that the proof technique of Lemma 3.1 can be adapted to prove also thatg ∈ F . This
modification is similar to those in the early papers [4, 18].

Lemma 3.3 Letf be a function withε(f) < 1
(2k+1)(k−1) and letg be its self-corrected version. Theng ∈ F .

Proof: It suffices to show that for everyx1, . . . , xm ∈ Kn the vector〈g(y1), . . . , g(yk)〉 ∈ V , where
yi = `i(x1, . . . , xm). Fix such a sequencex1, . . . , xm ∈ Kn and letyi = `i(x1, . . . , xm). for i ∈ [k]. As in
the proof of Lemma 3.1, we will construct a matrixM ∈ (Kn)k×k whose first row will bey1, . . . , yk. We
will then define a related matrixN and show that all rows ofN , except possibly the first, and all columns
are codewords ofV . We will then conclude that its first row must be a codeword ofV and this will imply
the lemma.

For i, j ∈ [m], pick γij as follows.γ1j = xj andγij is drawn uniformly and independently fromKn for all
otheri, j pairs. Fori′ ∈ [k] andj ∈ [m], defineMi′j = `i′(γ1j , . . . , γmj). Finally, for i′, j′ ∈ [k], define
Mi′j′ = `j′(Mi′1, . . . ,Mi′m). Now letNij = g(Mij) if i = 1 andf(Mij) otherwise.

As in the proof of Lemma 3.1 we have that all the rows ofM except the first represent the queries of
a random test, and in particular the queried points are independent ofy1, . . . , yk. Thus we have that the
probability that thei′th row ofN is not a codeword ofV is at mostε, for i′ 6= 1.

Next we turn to the columns ofN . Note that once again we haveMij = `i(M1j , . . . ,Mmj). Now for
every j, the jth column ofM represents the queries of a random test throughyj. Thus we have that
the probability that thejth column ofN is not a codeword ofV is given by the probability of the event
g(yj) 6= Scf (yj;M2j , . . . ,Mmj) and by Lemma 3.1 the probability of this event is at most2(k − 1)ε.

Taking the union of all the “bad events” and deducting them, we have that with probability at least1− (2k+
1)(k − 1)ε we have that all the rows ofN except the first, and all the columns ofN are codewords ofV .
We conclude (as in the proof of Lemma 3.1) that the first row ofN , i.e., the vector〈g(y1), . . . , g(yk)〉 is a
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codeword ofV . Since1− (2k +1)(k− 1)ε(f) > 0, we have with positive probability〈g(y1), . . . , g(yk)〉 ∈
V . But y1, . . . , yk were chosen deterministically and so the probability of this event is either zero or one,
yielding that this event must happen with probability one.

Finally, we can prove our main testing theorem, namely that locally (formally) characterized function fami-
lies are locally testable.

Proof of Theorem 2.9: From Lemma 3.2, we haveδ(f, g) ≤ 2ε(f). and by Lemma 3.3, we haveg ∈ F
and soδ(f) ≤ 2ε(f).
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Part II

4 Structure of Affine-/Linear-Invariant Families

In this section we aim to study structural properties of linear-invariant and affine-invariant families of func-
tions mappingFn to F. (Later we extend the study to functions fromKn to F in Section 6.) We start by
proving two basic lemmas that describe some of the members ofany linear-invariant (or affine-invariant)
family F containing a given functionf . The first of these shows that in a linear-invariant familyF con-
taining f , every monomial in the support off , when viewed as a function, is also in the familyF . The
second lemma illustrates that given a single monomial in some linear-invariant familyF , one can deduce
the presence of many other monomials inF . In fact, over a prime field we show thatall monomials with
degree less than or equal to that of the starting monomial arein the family, if the family is affine-invariant.
Together, these lemmas lead to a good understanding of the behavior of linear-invariant families and help
the study of (formal) local characterizations in Section 5.

Before launching into the section we first introduce some notation and definitions that apply generally to
functions mappingKn → F.

We use{Kn → F} to denote the set of all functions mappingKn to F.

Definition 4.1 For a set of functionsF ⊆ {Kn → F}, SPANF(F) = {∑`
i=1 αi ·fi|` ∈ Z+, αi ∈ F, fi ∈ F}

denotes the linear span (overF) ofF . For a family of functionsF ⊆ {Kn → F} we let the linear span ofF ,
denotedL-SPANF(F), be the smallest linear-invariant family of functions containing F . Finally, the affine
span ofF , denotedA-SPANF(F) is the smallest affine-invariant family containingF .

When the rangeF is clear from the context we suppress the subscript and referto SPANF(F) as simply
SPAN(F). Note that L-SPAN(F) can be written as SPAN({f(L(x))|f ∈ F andL : Kn → Kn is a linear function}).
Similarly, A-SPAN(F) can be written as SPAN({f(A(x))|f ∈ F andA : Kn → Kn is an affine function}).
We will be switching back and forth between functions and polynomials. Specifically, given ann-dimensional
vector spaceKn, we will associaten variablesx = 〈x1, . . . , xn〉 with the space. Given a functionf : Kn →
F we will often use it exchangeably to represent the unique polynomial inpf ∈ K[x] (with coefficients in
K) whose degree in each variable is at most|K| − 1, and which evaluates to the functionf on every point in
Kn. In particular, below we will be thinking of monomials inF[x] as functions fromFn → F.

4.1 Extracting Monomials in Linear-Invariant Families

For a polynomialf =
∑

d cdx
d, we refer to the support off to be the set of monomialscdxd with cd 6= 0.

For a monomialm = xd, we denote the degree of the monomial bydeg(m) =
∑n

i=1 di. Our first lemma
asserts that in a linear-invariant family mappingFn to F, every monomial in the support of a function in the
family also belongs to the family.

Lemma 4.2 [Monomial extraction lemma] For every functionf : Fn → F, every monomial in the support
of f is contained inL-SPAN(f).

Proof: We prove the lemma by proving the following claim about univariate polynomials, and then using
induction on the number of variables.
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Claim 4.3 Letf(x) =
∑q−1

k=0 fi · xi
n wherefi ∈ F[x1, . . . , xn−1] for i ∈ {0, . . . , q − 1} andq = |F|. Then

for every suchk ∈ {0, . . . , q − 1}, fk · xk
n ∈ L-SPAN(f).

Proof: Note that fork = 0, f0 = f(x1, . . . , xn−1, 0) which is obviously in L-SPAN(f). So fix k ∈
{1, . . . , q − 1}. Now let f̃ = f − f0 =

∑q−1
i=1 fi · xi

n. Note that sincef̃ ∈ L-SPAN(f), it suffices
to show thatfk · xk

n ∈ L-SPAN(f̃). Fix a primitive elementα ∈ F − {0}. We claim thatfk · xk
n =

−∑q−1
j=1 α−kj f̃(x1, . . . , xn−1, α

jxn), which immediately impliesfk · xk
n ∈ L-SPAN(f̃). To verify the

claim, we work on the RHS:

−
q−1
∑

j=1

α−kj f̃(x1, . . . , xn−1, α
jxn) = −

q−1
∑

j=1

α−kj
q−1
∑

i=1

fi · (αjxn)i

= −
q−1
∑

i=1

fi · xi
n ·





q−1
∑

j=1

α(i−k)j





But the inside term is of the form
∑q−1

j=1 βj which is zero for everyβ ∈ F−{1}, and equals−1 whenβ = 1.

We conclude that the above expression simplifies tofk · xk
n. This concludes the proof of Claim 4.3.

We now conclude the proof of the lemma with a simple inductiveargument. Letf =
∑

d cdx
d. Fix a vector

e such thatce 6= 0. We will show thatcexe is in L-SPAN(f). To do so let

hi =
∑

d1,...,di

cd1,...,di,ei+1,...,en

i
∏

j=1

x
dj

j

n
∏

j=i+1

x
ej

j .

Note thathn = f andh0 = cex
e is the monomial of interest to us. From Claim 4.3 we get that for everyi,

hi is in L-SPAN(hi+1) and thus in L-SPAN(f). For i = 0, this yields the lemma.

4.2 The spread of monomials in linear-/affine-invariant families

The main lemma is a general lemma that asserts that the presence of a single monomial in a family implies
the presence of other monomials, with “smaller” degrees in asomewhat technical sense. We follow the
lemma up with a corollary that describes some of the ways in which the lemma will be used later. Before
presenting the lemma we present a simple useful proposition.

Proposition 4.4 Let x and z be disjoint sets of variables. If a monomialm = xd has the monomial
m′ = xe · ze′ it its linear (affine) span, then the monomialm · zf has the monomialm′ · ze′+f it its linear
(resp. affine) span.

Proof: We prove the proposition for the case of affine spans. The linear case is similar.

Let n denote the dimension ofx andn′ denote the dimension ofz. By the fact thatm′ is in the affine span of
m we get thatm′ = xe · ze′ =

∑`
i=1 ci(Aix + bi)

d for some finite sequence{(ci, Ai,bi)}`
i=1 with ci ∈ F,

Ai ∈ F(n+n′)×n andbi ∈ Fn+n′
. For everyi ∈ [`], let A′

i ∈ F(n+n′)×(n+n′) be given by

A′
i =

(

Ai

∣

∣

∣

∣

0
In′

)

,
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and letb′
i = bi. Note that

∑̀

i=1

ciA
′
i(x, z + b′

i)
〈d,f〉 =

∑̀

i=1

ci(Aix + bi)
d · zf = xe · ze′ · zf .

Thus we have that the monomialxd · zf has the monomialxe · ze′+f it its affine span.

Proposition 4.5 Letm,m′ ∈ F[x] ⊆ F[x, y] be such thatm′ ∈ A-SPAN(m). Thenydeg(m)−deg(m′) · m′ ∈
L-SPAN(m).

Proof: Let d = deg(m) andd′ = deg(m′). Let m′ =
∑`

i=1 cim(Aix + bi). Then
∑`

i=1 cim(Aix + biy)
is a homogenous polynomialf(x, y) of degreed. Furthermoref(x, 1) = m′. If follows that f(x, y) =
yd−d′ · m′. To see this, letf(x, y) =

∑d
i=0 fi(x)yi wherefi is a homogenous polynomial of degreed − i.

Thenf(x, 1) =
∑d

i=0 fi(x). Note that iffi(x) 6= 0, then there are no cancellations from the any of the
otherfj(x)’s since these polynomials have disjoint support. Thus it follows thatfi(x) = 0 for i 6= d − d′

andfd−d′(x) = m′, thus yielding the proposition.

We now present the main lemma of this section. To motivate thelemma, we first give an example. Consider
the linear span of the monomialx5 ∈ F[x, y]. If the characteristicp of F is greater that5 (or if p = 3), then
L-SPAN(x5) = SPAN({x5, x4y, x3y2, x2y3, xy4, y5}). On the other hand, ifF is of characteristic5, the
L-SPAN(x5) = SPAN({x5, y5}). If F is of characteristic2, then L-SPAN(x5) = SPAN({x5, x4y, xy4, y5}).
The lemma below attempts to capture some of this diversity.

Lemma 4.6 (Monomial Spread Lemma)Letd = 〈d1, . . . , dn〉 ∈ {0, . . . , q−1}n ande = 〈e1, . . . , en〉 ∈
{0, . . . , q−1}n. For i ∈ [n] andj ∈ {0, . . . , s−1} let dij andeij be the unique integers from{0, . . . , p−1}
such thatdi =

∑s−1
j=0 dijp

j andei =
∑s−1

j=0 eijp
j. Letm be the monomialxd and letm′ = xe. If for every

j ∈ {0, . . . , s − 1} it is the case that
∑n

i=1 eij ≤
∑n

i=1 dij , then the following hold:

1. m′ ∈ A-SPAN(m).

2. yf−deg(m′)+deg(m) · m′ ∈ L-SPAN(yf · m) for every non-negativef .

Proof: We only prove Part (2). The affine case follows by settingy = 1 in the proof below. Alternately, one
can make the general observation that if a monomialyam′ is contained in L-SPAN(m) for m,m′ ∈ F[x],
thenm′ is contained in A-SPAN(m). Applying this observation to the conclusion from Part (2) of the lemma
(with f = 0) yields Part (1).

We start with a simple claim that deals with the special case of the span of bivariate monomials. The lemma
then follows by a simple induction using this claim.

Claim 4.7 Letk ∈ {0, . . . , q−1} andk0, . . . , ks−1 ∈ {0, . . . , p−1} be such thatk =
∑s−1

j=0 kjp
j . Let` be

a non-negative integer and letj0 ∈ {0, . . . , s−1} be such thatkj0 > 0. Then, the monomialy`+pj0 ·xk−pj0

is contained inL-SPAN
(

y` · xk
)

.

Proof: Let M(x, y) = y` ·xk. We show below thatM(x+ y, y) has the monomialM(x, y) · (y/x)p
j0 in its

support. The claim then follows by Lemma 4.2.
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For a monomialy`
∏s

j=1 xaj ·pj−1
, we say that

∑

j aj is its pseudo-degree. Then note thatM(x + y, y) =
M(x, y) +

∑

j∈[s] kj · M(x, y) · (y/x)pj−1 + M ′(x, y) whereM ′(x, y) is a polynomial of pseudo-degree
less than(

∑s
j=1 kj) − 1. Thus the coefficient ofM(x, y)(y/x)pj0−1 in M(x + y, y) is exactlykj0 which is

non-zero ifkj0 6= 0.

We now move to the proof of the lemma. We prove this lemma by induction on
∑

i,j |dij −eij|. We consider
two cases:

CASE 1: ∃j s.t.
∑

i dij >
∑

i eij : Let ` ∈ {0, . . . , s − 1} be such that
∑

i di` >
∑

i ei` and letk ∈ [n]
be such thatdk` > ek`. Let d̃ij be given as follows:d̃k` = dk` − 1 and d̃ij = dij otherwise. Letd̃i =
∑s−1

j=0 d̃ijp
j. By Claim 4.7 we have that the monomialyf+p` · xd̃k

k is in the linear span ofyfxdk

k and so

(using Proposition 4.4)yf+p`−1∏

i x
d̃i

i is in the linear span ofyf
∏

i x
di

i . By induction we also have that
yf+deg(m)−deg(m′)xe is in the linear span ofyf+pj−1

xd. Putting the two together we get the lemma in this
case.

CASE 2: ∃k1, k2, ` s.t. dk1` > ek1` anddk2` < ek2`: Now defined̃ to bed̃k1` = dk1` − 1, d̃k2` = dk2` + 1
and d̃ij = dij otherwise. Again, let̃di =

∑s−1
j=0 d̃ijp

j. Applying Claim 4.7 tox = xk1 andy = xk2, we

now have that the monomialx
d̃k1
k1

· x
d̃k2
k2

is contained in the linear span ofx
dk1
k1

· x
dk2
k2

. It follows (using

Proposition 4.4) thatyf ·∏n
i=1 xd̃i

i is in the linear span ofyfxd. Again, by induction, it also follows that

yf+deg(m)−deg(m′) ·xe′ is in the linear span ofyfxd̃ We conclude thatyf+deg(m)−deg(m′) ·m′ is in the linear
span ofyf · m. This yields the lemma statement for this case.

The lemma now follows since the two cases above are exhaustive.

In the following corollary we describe some of the special cases that are used in later sections.

Corollary 4.8 The following statements are true:

1. If e1, . . . , en are non-negative integers such thaten−1 + en < p then the monomialxe1
1 · · · xen

n is in
the linear span of the monomialxe1

1 · · · xen−2

n−2 · xen−1+en

n−1 .

2. If q/p ≤ d < q andf is an arbitrary integer then the monomialxq/pyf+d−q/p is in the linear span of
xdyf . andxq/p is in the affine span ofxd.

3. If d1 + · · ·+ dn ≥ q/p andf ≥ 0, then the monomialye+fx
q/p
1 is in the linear span ofyfxd1

1 · · · xdn
n

for e = d1 + · · · dn − q/p, andx
q/p
1 is in the affine span ofxd1

1 · · · xdn
n .

Proof: We prove only the containments in the linear span. The affine part can be obtained by settingy = 1
in the proofs.

1. Part 1 is obtained as follows. Letdi = ei for i ∈ [n − 2] anddn−1 = en−1 + en anddn = 0. Let
dijs be the unique integers such thatdi =

∑s
j=1 dijp

j−1, and leteij be defined analogously fromei.
Finally letf = f ′ = 0. Then it is clear thateij = dij except possibly wheni ∈ {n− 1, n} andj = 1.
In these cases we havedn−1,1 = en−1 + en anden−1,1 = en−1 anden,1 = en, which also satisfies
dn−1,1 + dn,1 ≤ en−1,1 + en,1. Also note thatf ′ = f +

∑s
j=1 pj−1

∑n
i=1(dij − eij) = 0. Thus, by

Lemma 4.6, we have thatxe1
1 · · · xen

n is in the linear span of the monomialxe1
1 · · · xen−2

n−2 · xen−1+en

n−1 .
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2. For Part 2, we use Lemma 4.6 withd1j such thatd =
∑s

j=1 d1jp
j−1 ande1j = 0 except whenj = s

in which casee1s = 1. Sinced ≥ q/p we haved1s ≥ 1 = e1s, satisfying the condition of the
corollary.

3. For Part 3, assumed1 ≥ d2 ≥ · · · ≥ dn. Let k ≥ 1 be the smallest index such thatq
p ≤∑k

i=1 di < q.
(Note that such ak exists since eitherq/p ≤ d1 < q in which casek = 1, or di < q/p for everyi
and so for the firstk such that

∑k
i=1 di ≥ q/p, this sum is also less than2q/p.) Let e =

∑k
i=1 di.

Consider the linear transformation that setsx1, · · · , xk to x1 andxk+1, · · · , xn to y. This shows that
the monomialm1 = x1

ey
�n

i=1 dn−e+f is in L-SPAN(yfxd1
1 · · · xdn

n ). Applying, Part 2 tom1 we get
this part.

Lemma 4.9 Let m ∈ F[x, y] be a monomial of degreed. Let ` = bd/qc. Then
∏`

i=1 x
q/p
i is contained

in A-SPAN(m), Furthermore,{yd1 · m′|m′ ∈ A-SPAN(
∏`

i=1 x
q/p
i ), d1 + deg(m′) ≡ d mod (q − 1)} is

contained inL-SPAN(m).

Proof: We prove only the containment for the assertion about A-SPAN(m) and the containment in the linear
span follows using Proposition 4.5.
Let m = xd1

1 · · · xdn
n and letd1 ≥ d2 ≥ · · · ≥ dn. Partition the variablesxi into blocks where the total

degree of the variables within each block (except at most one) is at leastq/p and less thanq. The number
of full blocks (ones of total degree at leastq/p) is at least̀ . Inductively, with` applications of Part 3 of

Corollary 4.8 (and using Proposition 4.4), we get that
∏`

i=1 x
q
p

i is in A-SPAN(xd).

We also prove a characterization of affine-invariant families over prime fields, showing that a family of
functions over a prime field is affine-invariant if and if onlyit forms a “Generalized Reed-Muller code”.

Corollary 4.10 F is an affine invariant family mappingFn
p → Fp if and only if there exists an integerd

such thatF is the family of all polynomials overFp in n-variables of degree at mostd.

Proof: It is obvious that the set of degreed polynomials form an affine-invariant family, giving one di-
rection. For the other direction, letd be the maximum degree of any polynomial inF , and letm be the
monomial of degreed in the support of this polynomial. Then by the Monomial extraction lemmam ∈ F .
Furthermore, using the affine part of Lemma 4.6 (withs = 1) we see that every monomialxe of degree at
mostd is contained inF . We conclude that every polynomial of degreed is in F . Finally, F contains no
other functions (since the highest degree of any polynomialin F is d). We conclude thatF is the set of
polynomials of degreed, as asserted.

5 Bounding the Locality of Characterization for Aff/Lin

In this section we prove Theorems 2.10 and 2.11 for the special case whenK = F. In the process we give
upper and lower bounds on the locality of formal characterizations of affine-invariant and linear-invariant
families, in terms of the degree patterns of the monomials intheir support.
Our (upper bounds on) characterizations are obtained by considering the values of a given function on some
small dimensional subspace and verifying that these valuesagree with the values of some function in the
family. Keeping this in mind, we define the restriction of a function family to a smaller dimension.
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Definition 5.1 (Projections of function families) For positive integers̀ andn, and for a linear-invariant
family of functionsF ⊆ {Kn → F}, the `-dimensional restriction (extension) ofF , denotedF|` is the
familyF|` = {f ◦ L|f ∈ F , L : K` → Kn linear }.

Note that we don’t insist that̀≤ n and indeed the definition above makes sense also in this case.However
in all our usage below, we think of` ≤ n.

For affine-invariant families our characterizations depend simply on the maximum degree of functions in the
family. For linear invariant functions this is no longer true. For instance, the family of functions supported
on all monomials inx1, . . . , xn of degree3 mod 4 over F5 has a 2-local characterization even though it
contains polynomials of degreeΩ(n). For linear-invariant families, the characterizations depend on a more
refined parameter that we define next.

Definition 5.2 For a linear invariant familyF properly contained in{Fn → F}, let dlin(F), the linear-
invariance degreeof F , be the largest integerd such thatF contains a monomialm1 of degreed, while
there also exists a monomialm2 6∈ F of degreed′ for somed′ > 0 with d′ ≡ d( mod q − 1).

5.1 Upper bounds on locality of characterizations

The next lemma is the crux of our characterizations for linear-invariant as well as affine-invariant families.

Lemma 5.3 . LetF ⊆ {Fn → F} be a linear-invariant family of linear-invariance degreedlin(F) = d.

Supposef : Fn → F is not in F . Then, ifn ≥ 1 +
(

2
p · (d + q)

)

, then there exists a linear function

L : Fn−1 → Fn such thatf ◦ L 6∈ F|n−1.

Proof: Let m = xd1
1 · · · xdn

n be a monomial of maximal degree in the support off that is not contained in
F . We show that there is a linear mapL : Fn−1 → Fn such thatm ◦ L is not inF|n−1. We consider two
cases:

Case 1:There exist distinct indicesi, j such thatdi + dj < p: Without loss of generality assumei = n − 1

andj = n. Let m′ be the monomialm′ = xd1
1 · · · xdn−2

n−2 · xdn−1+dn

n−1 . First note by the Monomial Spread
Lemma (in particular, by Part 1 of Corollary 4.8) thatm ∈ L-SPAN(m′). Som′ 6∈ F and hencem′ 6∈ F|n−1.

We claim that for some choice ofα, β ∈ F, the mapLα,β(x1, . . . , xn−1) = 〈x1, . . . , xn−2, αxn−1, βxn−1〉
leaves the monomialm′ with non-zero support inf ◦Lα,β, which would suffice to prove the lemma (in this
case).

To see this, letci be the coefficient of the monomialxd1
1 · · · xdn−2

n−2 · xi
n−1x

dn−1+dn−i
n in f . Let h(x, y) =

∑dn−1+dn

i=0 cix
iydn−1+dn−i. It can be verified that the coefficient ofm′ in f ◦ Lα,β is exactlyh(α, β).

Furthermore,h(α, β) is a non-zero polynomial since the coefficientcdn−1 is the coefficient ofm in f which
is non-zero. Thus there must existα, β such thath(α, β) 6= 0 and this yields the claim.

Case 2: For every pair of distincti, j, di + dj ≥ p. Let e denote the degree ofm. For everyt, we have
d2t−1 + d2t ≥ p, and soe, the total degree ofm, is at leastpbn/2c ≥ d + q.

We first note that no monomialm′ of degreee or e− (q− 1) is inF . Otherwise the linear-invariance degree
of F would be the degree ofm′. For example, ifm′ has degreee − (q − 1) > d, thenm′ satisfies the role
of the monomialm1 in the definition of the linear-invariance degree andm of degreee = e − (q − 1)(
mod q − 1) satisfies the role ofm2 in the definition of linear-invariance degree thereby yielding dlin(F) =
e − (q − 1) > d. So we concludem′ can not be inF .
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But now consider the linear mapLα,β as in the previous case, i.e.,Lα,β(x1, . . . , xn−1) = 〈x1, . . . , xn−2, αxn−1, βxn−1〉.
Let m′ be the monomialxd1

1 · · · xdn−2

n−2 · xf
n−1 wheref = dn−1 + dn if dn−1 + dn < q andf = dn−1 + dn −

(q − 1) otherwise. The degree ofm′ is thuse or e− (q − 1). We claim that for someα, β, the coefficient of
m′ is non-zero inf ◦ Lα,β and this will yield the lemma in this case.

To verify the claim, note that the coefficient ofm′ in f ◦ Lα,β is exactly h′(α, β) where h′(x, y) =
∑min{q−1,dn+dn−1}

i=0 cix
iydn+dn−1−i andci is the coefficient of the monomialxd1

1 · · · xdn−2
n−2 ·xi

n−1x
dn+dn−1−i
n

in f . Again, we haveh′(x, y) is not identically zero (the coefficientcdn−1 is non-zero) and so there exists

α, β such thath′(α, β) 6= 0.

We can now give a characterization for linear-invariant families.

Lemma 5.4 Let F be a linear invariant family, properly contained in{Fn → F}, of linear-invariance

degreedmax. ThenF has aq`-local formal characterization for̀ = 2(d+q)
p .

Proof: We claim that the characterization is simply the one thatf ∈ F if and only if f ◦ L is in F|` for
every linear mapL : F` → Fn.

It is easy to verify that (if this indeed characterizes the family correctly) this is aq`-local formal characteri-
zation. We analyze the correctness below.

In one direction, it is obvious that everyf ∈ F andL : F` → Fn satisfiesf ◦L ∈ F|`. The other direction is
a simple induction based on Lemma 5.3. Fixf 6∈ F . Let m be any integer betweeǹ+ 1 andn. Assume by
induction onn−m that there a linear mapLm : Fm → Fn such thatf ◦Lm 6∈ F|m. Now we prove that there
is a mapLm−1 : Fm−1 → Fn such thatf ◦Lm−1 6∈ F|m−1. SinceF is linear-invariant, so isF|m. Also the
linear-invariance degree ofF|m is at mostdmax. By Lemma 5.3 there is a linear mapL : Fm−1 → Fm such
that(f ◦ Lm) ◦ L 6∈ (F|m)|m−1 = F|m−1. Thusf ◦ Lm−1 6∈ F|m−1 for Lm−1 = Lm ◦ L. We conclude
that the linear mapL` : F` → Fn derived from settingm = ` + 1, satisfiesf ◦ L` 6∈ F|`.

Immediately, we also get a characterization for affine-invariant families (since every affine invariant family
with polynomials of degree at mostdmax is also a linear-invariant family of linear-invariance degree at most
dmax).

Lemma 5.5 LetF be a proper subset of{Fn → F} and letdmax denote the maximum degree of any function

in F . ThenF has aq`-local formal characterization for̀ ≤ 2(d+q)
p .

5.2 Lower bounds on locality of characterizations for affine-invariant families

We now turn to proving lower bounds on the locality of constraints (and thus characterizations) in affine-
invariant families. The lower bound is eventually derived from the study of Generalized Reed-Muller codes
where it is known that the family of polynomials of degreed has noqbd/qc-local characterizations. Specifi-
cally we have:

Lemma 5.6 ([14, 8]) F = A-SPAN(
∏d

i=1 xi) has noqbd/qc-local constraints.

Proof: Note that every monomialxe of degree at mostd is contained inF . Supposee = 〈e1, . . . , en〉 then
we can substitutexj for ej variables in

∏

i xi for everyj, and substitute1 for the remaining variables to
get an affine transormation that transforms

∏d
i=1 xi to xe. Thus the familyF1 of d-variate polynomials of

degree at mostd is contained inF .

21



We can now invoke well-known results from the study of the “Generalized Reed-Muller codes”, in par-
ticular [14, Theorem 5] (see also [8, Theorems 2.2.1 and 2.6.2]), which state that the class of degreed
polynomials ind variables have no constraints of localityqbd/qc. In other wordsF1 has noqbd/qc-local

constraints. Using Claim 5.8 we get thatF also has noqb
d
q
c-local constraints.

We are now ready to prove lower bounds on the locality of constraints in affine-invariant families.

Lemma 5.7 LetF be an affine invariant family properly contained in{Fn → F} containing a polynomial
of degreed. ThenF has noq`-local constraints for̀ ≤ (d − q2)/q2.

Proof: Before proving the lower bound, we provide generic conditions under which the absence of local
constraints in one family of functions imply the absence of local constraints in another family.

Claim 5.8 LetF1 andF2 be non-trivial families of functions fromFn → F. SupposeF1 has nok-local
constraints. Then, if there exists a functiong : Fn → Fn such that for everyf ∈ F1 it is the case that
f ◦ g ∈ F2, thenF2 also has nok-local constraints. In particular, ifF1 ⊆ F2 thenF2 has nok-local
constraints.

Proof: SupposeF2 has ak-local constraint of the form〈x1, . . . , xk;S〉 wherexi ∈ Fn andS is a proper
subset ofFk. (I.e., f ∈ F2 implies 〈f(x1), . . . , f(xk)〉 ∈ S for every f ∈ F2.) Then we can useg
to translate this into the constraint〈g(x1), . . . , g(xk);S〉 for F1 (since〈h(g(x1)), . . . , h(g(xk))〉 ∈ S for
everyh ∈ F1), which would be a contradiction.

In particular, ifF1 ⊆ F2, then using the identity functiong(x) = x, we get thatF2 has nok-local con-
straints.

We now apply Claim 5.8 to the conclusion of Lemma 5.6 to derivea lower bound on the constraints of a
family of functions that is slightly more convenient for us to work with.

Claim 5.9 The familyF = A-SPAN(
∏d

i=1 x
q

p

i ) has noqbd/qc-local constraints.

Proof: By Lemma 5.6 we have thatF1 = A-SPAN(
∏d

i=1 xi) has noqbd/qc-local constraints. Letg(x1, . . . , xn) =

〈xq/p
1 , . . . , x

q/p
n 〉. Note thatg−1(x1, . . . , xn) = 〈xp

1, . . . , x
p
n〉. Note that for everyn×n matrixA and vector

b ∈ Fn, we haveAg(x) + b = g(g−1(A)x + g−1(b)) (whereg−1(A) simply appliesg−1 to every column
of A). This implies that everyf ∈ F1 = A-SPAN(

∏

i xi) satisfiesf ◦ g ∈ F . So we can apply Claim 5.8 to
conclude thatF also has noqbd/qc-local constraints.

We ready to prove Lemma 5.7. Recall that we are given a familyF with some monomial, saym1, of degree
d. By Lemma 4.9 the monomialm1 hasF1 =

∏`
i=1 x

q/p
i in its affine span for̀ = bd/qc. By Claim 5.9,

we have thatF1 has noqb`/qc-local constraints. SinceF ⊃ F1, we can now apply Claim 5.8 again (with the
identity functiong) to conclude thatF has noqb`/qc-local constraints either. The lemma follows using the
fact thatbbd/qc/qc ≥ (d − q2)/q2.

22



5.3 Lower bounds for Linear-Invariant Families

In this section we provide lower bounds on the locality of characterizations of linear-invariant families,
based on their “linear-invariance degree” (see Definition 5.2). As shown in Section 5.1, this parameter also
yields upper bounds and thus together we find that this parameter governs (in some weak sense, since the
bounds are far apart) the locality of characterizations forlinear-invariant families.

In order to understand the locality of characterizations, we introduce the notion of a constraint on a family
F1 relative to a familyF2.

Definition 5.10 For familiesF1,F2 ⊆ {Fn → F}, withF1 ( F2, we say that a constraintC is a constraint
onF1 relative toF2 if every functionf ∈ F1 satisfiesC and there exists a functiong ∈ F2 that does not
satisfyC.

The following straightforward fact explains the relevanceof constraints relative to other families when
analyzing characterizations.

Proposition 5.11 If C1, . . . , Cm form a characterization ofF1, then for every familyF2 ) F1, there exists
an indexj such that the constraintCj is a constraint onF1 relative toF2.

In what follows, we will consider a familyF of linear invariance degreed. We will construct familiesF1 and
F2 related tod such thatF1 has no constraints of small locality relative toF2. We will then use reductions
to tranfer this result to showing thatF has no constraints of small locality relative to some familyF3 which
will yield a lower bound on the locality of its characterizations.

Throughout this section we will consider functions fromFn+1 → F, and we will associate them with
polynomials fromF[x, y] wherex = 〈x1, . . . , xn〉 is a collection ofn variables.

For a set of functionsG ⊆ {Fm → F}, let SPAN(G) denote the span of the functions inG, i.e., SPAN(G) =
{
∑t

i=1 αigi|αi ∈ F, gi ∈ G}.

Lemma 5.12 Letd and` be positive integers and letF1 = SPAN({yd1 ·m|m ∈ A-SPAN(
∏`

i=1 x
q/p
i ), d1 +

deg(m) ≡ d mod (q − 1), 1 ≤ d1 ≤ q − 1}). LetF2 = SPAN{m|m monomial inF[x, y],deg(m) ≡ d
mod (q − 1),degy(m) ≥ 1}, be the collection of all polynomials supported on monomials of degreed

mod (q − 1), with positive degree iny. ThenF1 has no constraints of localityqb`/qc relative toF2.

Proof: Note by the definitions ofF1 andF2 thatF1 ⊆ F2. (In particular the degree iny of every monomial
in the support ofF1 is positive.) IfF1 = F2 then the claim is trivial since there can be no function in
F2 −F1 and so none violating any given constraint. So assumeF1 ( F2.

Let C = (z1, . . . , zk;S), whereS, be a constraint onF1 relative toF2. We will show thatk ≥ q`/q. To
show this we will map (most points of)Fn+1 to Fn in a way that maps homogenous polynomials of positive
degree iny to generic polynomials overx.

For a pointz = 〈x1, . . . , xn, y〉 ∈ Fn+1, let π(z) = 〈x1/y, . . . , xn/y〉 if y 6= 0 and some special symbol⊥
if y = 0.

Note that for any functionf ∈ F2 and pointz ∈ Fn+1, f(z) = 0 if π(z) = ⊥. Further, note that if
π(z1) = π(z2) then there exists aλ ∈ F − {0} such thatz2 = λz1 andf(z2) = λdf(z1). We use these
observations to “simplify” the constraintC while maintaining the property that it remains a constrainton
F1 relative toF2.

23



First note that we can assume w.l.o.g. thatπ(zi) 6= ⊥ for everyi ∈ [k]. To see this, supposeπ(zk) = ⊥.
Then it can be verified that the constraintC ′ = (z1, . . . , zk−1;S

′) is a constraint onF1 relative toF2, where
S′ = {〈α1, . . . , αk−1〉|〈α1, . . . , αk−1, 0〉 ∈ S}. (We omit the simple verification steps.)

Next, we also note that we can assume thatπ(zi)’s are all distinct for distincti ∈ [k]. Again to see this,
supposeπ(zk−1) = π(zk). Then it must be thatzk = λzk−1. Once again it can be verified that the constraint
C ′ = (z1, . . . , zk−1;S

′) is a constraint onF ′
1 relative toF2, whereS′ = {〈α1, . . . , αk−1〉|〈α1, . . . , αk−1, λ

dαk−1〉 ∈
S}. (Again, we omit the simple verification steps.)

Note that in the “simplification” process above, we may have potentially lost the property thatS 6= Fk. But
we note that the fact thatC is a constraint onF1 relative toF2 impliesS 6= Fk as follows: SupposeC is
violated by some functiong ∈ F2. Then we have that〈g(z1), . . . , g(zk)〉 6∈ S and soS 6= Fk.

So we may now assume that theπ(zi)’s are distinct elements ofFn and thatS 6= Fk. Letzi = 〈xi1, . . . , xin, yi〉.
Now consider the constraintC ′ = (π(z1), . . . , π(zk), S′), for S′ = {〈α1/y

d
1 , . . . , αk/y

d
k〉|〈α1, . . . , αk〉 ∈

S}. SinceS 6= Fk, we also haveS′ 6= Fk. We claim thatC ′ is a k-local constraint on the family

A-SPAN(
∏`

i=1 x
q/p
i ). To verify this claim, we need to show that everyf ∈ A-SPAN(

∏`
i=1 x

q/p
i ) satisfies

〈f(π(zi)), . . . , f(π(zk)〉 ∈ S′.

Consider the following map from polynomials inF[x] to F2, where a monomialm ∈ F[x] is mapped to
the monomialm̂ = m · yi wherei ∈ [q − 1] is chosen so thatdeg(m) + i = d mod (q − 1). This
map can be extended linearly to every polynomialF[x] mapping the polynomialp to p̂. Note that since
functionally yj(q−1)+i = yi we can w.l.o.g. think of the monomial̂m as having degree≥ d. In particular
for monomials from A-SPAN(

∏`
i=1 x

q/p
i ) the corresponding monomial has degree exactlyd. Thus, for any

function f ∈ A-SPAN(
∏`

i=1 x
q/p
i ), the corresponding function̂f ∈ F1. Thus we have that̂f satisfies the

constraintC, i.e.,〈f̂(z1), . . . , f̂(zk)〉 ∈ S. By the definition ofπ andf̂ , we have that̂f(zi) = yd
i ·f(π(zi)).

Thus〈yd
1 · f(π(z1)), . . . , y

d
k · f(π(zk))〉 ∈ S and so Thus〈f(π(z1)), . . . , f(π(zk))〉 ∈ S′.

ThusC ′ is a non-trivial constraint on A-SPAN(
∏`

i=1 x
q/p
i ) and so, by Claim 5.9k > qb`/qc.

Lemma 5.13 LetF ( {Fn+1 → F} be a family of linear invariance degreed. ThenF has no characteri-
zations of localityq(d−q2)/q2

.

Proof: Let m ∈ F ⊂ F[x, y] be a monomial of degreed. Let m′ ∈ F[x, y] be a monomial of degreed′ ≡ d
mod (q − 1) such thatm′ 6∈ F . (Such monomials exists, by the definition of linear-invariance degree.)
Assume without loss of generality thatdegy(m

′) > 0 (since we could rename variables to achieve this).

Let ` = bd/qc. LetF1 andF2 be as in Lemma 5.12, so thatF1 has no constraints of localityqb`/qc relative
toF2. Note first that by Lemma 4.9 we have thatF1 is contained in L-SPAN(m) ⊆ F .

LetF3 = F + F2 consist of all functions{αf + βg|f ∈ F , g ∈ F2, α, β ∈ F}.

Note thatF ( F3. The containment is by definition, while the propriety of thecontainment follows from
the fact thatm′ ∈ F3 −F .

We now claim thatF has noqb`/qc-local constraints relative toF3 and this (combined with Proposition
5.11) yields the lemma.

SupposeC = (z1, . . . , zk;S) is a constraint onF relative toF3. Without loss of generality, we can assume
thatS is aF-linear subspace ofFk (sinceF is a linear subspace) [3]. On the one hand, sinceF1 ⊆ F we
have thatC is also a constraint onF1. We now claim thatC is actually a constraint onF1 relative toF2.
Now let h = αf + βg ∈ F3 not satisfyC, wheref ∈ F andg ∈ F2. Let vf = 〈f(z1), . . . , f(zk)〉,
vg = 〈g(z1), . . . , g(zk)〉, andvh = 〈h(z1), . . . , h(zk)〉. Then we havevh = αvf + βvg. On the one hand,
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we havevf ∈ S (sincef ∈ F) and on the other, we havevh 6∈ S. SinceS is a linear subspace, it must be
thatvg 6∈ S. Thusg ∈ F2 violatesC and soC is a constraint onF1 relative toF2. By Claim 5.9 we have
k > qb`/qc.

5.4 Testing Linear Invariant Families

The formal characterization described in Section 5.1 can immediately be turned into an affine invariant
characterization for affine-invariant families. Coupled with Theorem 2.9 this leads immediately to a tester
for affine-invariant families. However the characterization does not immediately lead to a tester for linear-
invariant families, since these characterizations are notnecessarily 2-ary independent. In this section we fix
this gap.
We start with a definition that isolates a seemingly problematic subclass of linear-invariant families, where
the characterizations are necessarily not 2-ary independent.

Definition 5.14 A linear invariant familyF ⊆ {Fn → F} is said to beprojective if, for every pair of
monomialsxd andxe with

∑n
i=1 di ≡

∑n
i=1 ei mod (q − 1), it is the case thatxd is in the support ofF

if and only ifxe is in the support ofF .

Projective families have a very simple local formal characterization, which is unfortunately not 2-ary inde-
pendent, as described below.

Proposition 5.15 A familyF is projective if and only if there exists a set of monomialsS ⊆ {x0, x1, . . . , xq−1}
on a single variablex such that the following holds:f ∈ F if and only if for every1-dimensional linear
functionL : F → Fn, the support off ◦ L is contained inS.

Proof: Let D be the set of degrees of monomials in the support ofF reduced moduloq − 1 (i.e., to the set
{1, . . . , q − 1}, except if the monomialx0 is in the support ofF , in which case we include0 in the setD).
Let S = {xi|i ∈ D}.
On the one hand, it is clear that that iff ∈ F thenf ◦ L has its support inS for every linear function
L : F → Fn. For the reverse direction, we reason as in the proof of Case 2of Lemma 5.3. Letf be
a polynomial not inF and letm be a monomial of maximal degree in the support off that is not inF .
Suppose the degree ofm is d. By the definition of projective families, we have thatd mod (q − 1) 6∈ D.
We first note that there is a linear functionLn : Fn−1 → Fn such thatf ◦ Ln has a monomial in its support
of degreed or d − (q − 1). In either case the degree of this monomial (modulo(q − 1)) is not inD. We
continue this way to find a sequence of linear functionsLi : Fi−1 → Fi such that forL = Ln ◦ · · · ◦L2 it is
the case thatf ◦ L has a monomial in its support of degree not inD.

Even though projective families do not have a 2-ary independent linear characterization, they turn out to
have a simple local test: Namely pick a random lineL : F → Fn and verifyf ◦ L has its support inS.
We won’t prove the correctness of this test right now (it willfollow from the general case). Instead we
turn to showing that every linear invariant family can be written as the sum of a nice family (with a 2-ary
independent formal characterization) and a projective family and this ends up leading to a test.

Lemma 5.16 LetF be a linear-invariant family of linear invariance degreed. Then there exists a linear-
invariant familyF1 containing polynomials of degree at mostd, and a projective familyF2 such thatF =
F1 + F2. Furthermore given an oracle to a functionf : Fn → F one can construct an oracle for a
functiong : Fn → F where the oracle forg makesq oracle calls tof , such thatg ∈ F1 if f ∈ F and
δ(f,F) ≤ δ(g,F1).
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Proof: The first part follows from the definition of linear invariance degree. LetD ⊆ {1, . . . , q − 1} be
given byD = {i|∃ monomialm ∈ F with deg(m) > d anddeg(m) ≡ i mod (q − 1)}. Let F1 be the
span of the set of monomials inF of degree at mostd. Let F2 be the span of set of the monomialsm′ of
degreedeg(m′) ≡ i mod (q − 1) for somei ∈ D. By the definition of linear-invariance degree, we have
that every monomialm′ of degreedeg(m′) ≡ i mod (q − 1) for somei ∈ D is contained inF and so
F2 ⊆ F2. It thus follows thatF = F1 + F2.

For the second part, we defineg : Fn → F as follows. Givenα = 〈α1, . . . , αn〉 ∈ Fn, Let fα(t) = f(t · α).
Further, letc0, . . . .cq−1 be such thatfα(t) =

∑q−1
i=0 cit

i. Finally let f̃α(t) =
∑

i6∈D cit
i. We defineg(α) =

f̃α(1). Note by the definition ofg that computingg at any point only requiresq oracle calls to the oracle for
f .

We claim thatf − g ∈ F2. This is verified by noting that for linear functionsL : F → Fn, the function
(f − g) ◦ L has all of its support on monomials with degree inD. (For instance ifL(t) = t · α, then
(f − g) ◦ L = fα(t) − f̃α(t) =

∑

i∈D cit
i.) By Proposition 5.15, it follows thatf − g ∈ F2.

It is immediate thatδ(f,F) = δ(g,F) ≤ δ(g,F1). To see that iff ∈ F theng ∈ F1, note thatg ◦L always
has its monomials from{0, . . . , q−1}−D. Applying Proposition 5.15, we find thatg ∈ F ′ whereF ′ is the
projective space consisting of the span of monomials whose degree, moduloq− 1, is in {0, . . . , q− 1}−D.
But sinceg ∈ F and the only monomials inF whose degree moduloq − 1 is not inD, are those of degree
at mostd, we conclude thatg is of degree at mostd and henceg ∈ F1.

Finally we use a simple proposition that can be used to give 2-ary independent localy characterizations for
family F1 above.

Proposition 5.17 Let F ⊆ F ′ have ak1-local formal characterization. Furthermore supposeF ′ has a
2-ary independentk2-local formal characterization. ThenF has ak1 + k2-local 2-ary independent formal
characterization.

Proof: Let m, `1, . . . , `k1 , V describe the characterization ofF i.e.,f ∈ F iff for every x1, . . . , xm ∈ Kn it
is the case that〈f(y1), . . . , f(yk1)〉 ∈ V for yi = `i(x1, . . . , xm).

Similarly letm′, `′1, . . . , `
′
k2

, V ′ denote the characterization ofF ′.

Then we claim that the characterizationm′ + m, ˜̀′
1, . . . ,

˜̀′
k2

, ˜̀
1, . . . , ˜̀

k1 , Ṽ forms a2-ary independent char-
acterization ofF , where

• ˜̀′
i(z1, . . . , zm′ , x1, . . . , xm) = `′i(z1, . . . , zm′),

• ˜̀
i(z1, . . . , zm′ , x1, . . . , xm) = `i(x1, . . . , xm),

• and〈a1, . . . , ak2 , b1, . . . , bk1〉 ∈ Ṽ if and only if 〈a1, . . . , ak2〉 ∈ V ′ and〈b1, . . . , bk1〉 ∈ V .

The claim is immediate: On the one hand, iff 6∈ F then there must existx1, . . . , xm such that〈f(y1) . . . , f(yk1)〉 6∈
V and thus for everyz1, . . . , zm′ 〈f(y′1), . . . , f(y′k2

), f(y1), . . . , f(yk1)〉 6∈ Ṽ , whereyi = `i(x1, . . . , xm)
andy′i = `′i(z1, . . . , zm′). On the other hand iff ∈ F thenf is also inF ′ and so for everyx1, . . . , xm, z1, . . . , zm′

we have〈f(y′1), . . . , f(y′k2
), f(y1), . . . , f(yk1)〉 ∈ Ṽ . Finally, it is straightforward to verify that̀̃′1 is lin-

early independent of all the other linear functions: it is independent of̀̃ ′i by th 2-ary independence of the
characterization ofF ′; and it is independent of̀̃i since it operates on a disjoint set of formal variables.

Putting all the ingredients together we get:
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Lemma 5.18 Let F ⊆ {Fn → F} be a linear-invariant family of linear-invariance degreed. Then it is
k′ = 2q · q2(d+q)/p-locally testable. Specifically, there isk′-query local test that accepts members ofF with

probability 1 and rejects functions that areδ-far fromF with probabilitymin
{

δ
2 , q2

(2k′+q)(k′+q)

}

.

Proof: By Lemma 5.16 there exists a linear-invariant familyF1 of polynomials of degree at mostd and a
projective familyF2 such thatF = F1 + F2.
Since the linear invariance degree ofF1 is at mostd, it has, by Lemma 5.4 aq2(d+q)/p-local formal char-
acterization. SinceF1 is contained in the family of degreed polynomials it also has a 2-ary independent
(in fact, affine)q2(d+q)/p-local formal constraint (now using the fact that any constraint on the family of
degreed polynomials is a constraint onF1 and using Lemma 5.4 again to see that the family of degreed
polynomials has an affine invariantq2(d+q)/p-local constraint). Using Proposition 5.17, we conclude thatF1

has a2q2(d+q)/p-local 2-ary independent formal characterization. By Theorem 2.9, we have thatF1 has a
k1 = 2q2(d+q)/p-local test that accepts members ofF1 and rejects a member that isδ-far with probability

min
{

δ
2 , 1

(2k1+1)(k1+1)

}

.

We now describe the test for membership inF . Given oracle access to a functionf , we invoke Lemma 5.16
to get oracle access to the functiong such thatδ(f,F) ≤ δ(g,F1) and such thatf ∈ F impliesg ∈ F1. We
test ifg ∈ F1 using the test forF1 from the previous paragraph. This test makesq ·k1 queries into the oracle
for f (to simulate thek1 queries tog). If f ∈ F theng ∈ F1 and this test accepts with probability1. If f is

δ-far fromF , theng is alsoδ-far fromF1 and so the test rejects with probabilitymin
{

δ
2 , 1

(2k1+1)(k1+1)

}

.

The lemma follows usingk′ = qk1.

5.5 Summarizing: Constraints, Characterizations and Tests

The lemmas proved in the earlier parts of this section combine to prove Theorems 2.10 and Theorems 2.11
for the special case whenK = F. Specifically, we get that affine invariant families have local formal
characterizations and local tests if and only if they have a single local constraints. For linear invariant
families we get the same conclusion under the stronger hypothesis that they have a local characterization.
For the sake of completeness we include a formal statement and proof below.

Theorem 5.19 If F ⊆ {Fn → F} is an affine-invariant family with ak-local constraint, then it has a
k′ = (q2k)q

2
-local formal affine characterization, whereq = |F|. FurthermoreF is k′-locally testable

where the test accepts members ofF with probability1 and rejects functions that areδ-far with probability

min
{

δ
2 , 1

(2k′+1)(k′+1)

}

.

Proof: By Lemma 5.7 we have that ifF has ak-local constraint then every function ofF has degree
d < q2 + q2 logq k. Now, from Lemma 5.5 we have that if every function inF is a polynomial of degree
at mostd, thenF has ak′ = q2(d+q)/p local formal characterization. Combining the two bounds with
some crude manipulations, we get thatk′ ≤ (q2k)q

2
. Since every formal characterization of an affine

invariant family can be converted into an affine formal characterization, and hence a 2-ary independent
formal characterization, with the same locality, we can nowapply Theorem 2.9 to conclude thatF is k′-
locally testable.

Similarly, by combining Lemmas 5.13, 5.4, and 5.18, we also get an analogous theorem for linear-invariant
families where the hypothesis ofk-local constraint is replaced by the hypothesis of ak-local characterization,
and the parameter of interest in the proof is now the linear-invariance degree ofF .
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Theorem 5.20 If F ⊆ {Fn → F} is a linear-invariant family with ak-local characterization then it has a
k′ = (q2k)q

2
-local formal characterization forq = |F|. FurthermoreF is k0-locally testable fork0 = 2qk′

where the test accepts members ofF with probability1 and rejects functions that areδ-far with probability

min
{

δ
2 , q2

(2k0+q)(k0+q)

}

.

Proof: By Lemma 5.13, we have that the linear-invariance degree ofF is at mostd < q2 + q2 logq k. By

Lemma 5.4, we have thatF has ak′ = q2(d+q)/p-local formal characterization. It follows thatk′ ≤ (q2k)q
2
.

Finally, by Lemma 5.18, we have thatF is k0 = 2qk′-locally testable.

6 Function Families over Extension Fields

In this section we now generalize our study of function families to the case of general fieldsK and F

with K ⊇ F. We extend the results from Sections 4 and 5 to this setting. Throughout the section we let
q = |F| = ps andQ = |K| = qt (though sometimes we will repeat this fact, for redundancy).

We start by describing a basis for functions fromKn to F that extends the role played by monomials in the
case of functions fromFn to F. Two well-known functions mappingK to F are the “Trace” function, which
we will denoteTrace0(·), and the “Norm” function. The standard Trace function is given byTrace0(x) =
x+xq + · · ·+xqt−1

. The Norm functionN(x) is given byN(x) = x1+q+···+qt−1
. We wish to find a “basis”

of all functions that map fromKn to F, we need a family which generalizes both these families, hopefully
in a nice algebraic way. We describe such a generalization below. We refer to the functions we work with
as the ‘Traces of monomials”. (We are not aware of previous use of this family.)

Definition 6.1 For a vectord = 〈d1, . . . , dn〉 of non-negative integers, letb(d) denote the smallest positive
integerb such thatdi · qb ≡ di mod (Q − 1) for everyi ∈ [n]. Note thatb ≤ t. We say thatc ∈ K is
d-admissible ifcqb(d) = c. For a vectord andd-admissible coefficientc ∈ K, the Trace of the monomial
m = c · xd, denotedTrace(m), is the polynomialm + mq + · · · + mqb−1 for b = b(d).

In what follows it is critical that we do not confuse the monomial Trace functionTrace(m) : Kn → F from
the functionTrace0 ◦ m : Kn → F. Whereas the latter is more commonly studied, it is the former that
is central to this section. For example, overK = F16 andF = F2, Trace(x3) = x3 + x6 + x12 + x9,
Trace(y5) = y5 + y10, andTrace(x3y5) = x3y5 + x6y10 + x12y5 + x9y10.

In the definition above, we were careful with the coefficientsof the monomials in the argument of the Trace
function. This is important since the functionTrace(αxd) could be linearly independent (overF) of the
functionTrace(βxd). However, for admissible coefficients,Trace(αxd) andTrace(βxd) generate the same
linear span, as we show below. (This proposition simplifies our life later, by letting us ignore the coefficients
of the monomials in our basis functions.)

Proposition 6.2 For a vectord = 〈d1, . . . , dn〉 of non-negative integers andd-admissible coefficients
α, β ∈ K∗, it is the case thatTrace(αxd) ∈ L-SPAN(Trace(βxd)).

Proof: Let b = b(d). Note that admissibility ofα, β implies that they are contained in the fieldL = Fqb

(sinceαqb

= α andβqb

= β). LetS denote the set of coefficientsS = {γ|Trace(γxd) ∈ L-SPAN(Trace(βxd)).
We will prove the proposition by provingS = L.
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First note that since the monomial-Trace function is additive, and the linear span of any set is closed under
addition, we get thatS is closed under addition.

Now we turn to its multiplicative properties. To do so, we need to understandb = bd. Notice thatqt − 1
dividesdi · (qb − 1) for everyi. So if we lete = gcd(d1, . . . , dn), we have thatqt − 1 dividese · (qb − 1)
and furthermoreb is the smallest positive integer that has this property. Letω be a primitive(qt − 1)th root
of unity in K. Then, by the fact thatb is the smallest integer such thatqt − 1 dividese · (qb − 1), we have
thatL is the smallest subfield ofK that containsωe. We claim that ifτ ∈ S, thenτ · ωe ∈ S. To see this,
let a1, . . . , an be integers such thate =

∑n
i=1 aidi. Then note thatTrace(τ(ωa1x1)

d1 · · · (ωanxn)dn) ∈
L-SPAN(Trace(τxd)) and so we haveτωe ∈ S. We thus conclude thatS is closed under addition, and
under multiplication byωe. It follows thatS = L.

Thus from now on, whenever we refer to monomials, we may ignore the leading coefficient, since any
admissible coefficient is equivalent to the coefficient1. The central nature of the trace of monomials is
explained by the following proposition.

Proposition 6.3 Every functionf : Kn → F can be described by a set of monomialsM such thatf(x) =
∑

m∈M Trace(m).

Proof: Let f(x) =
∑

d cdx
d. We prove the lemma by induction on the size of the support off . Let e be

a vector such thatce 6= 0. Then we note thatc(q·e) mod (Q−1) = cq
e. This is so sincef(x)q = f(x) (since

f(x) ∈ F. Furthermore,f(x)q = (
∑

d cdx
d)q =

∑

d cq
d
xqd mod (Q−1). By considering the coefficient of

cq·e mod (Q−1) we getc(q·e) mod (Q−1) = cq
e. Note further that sinceqb(e)e ≡ e mod (Q − 1) it follows

that cqb(e)

e = ce and soce is e-admissible. It follows that if we subtractTrace(cex
e) from f(x) we get a

function on a smaller support. We conclude thatf can be decomposed into a sum of traces of monomials.

In what follows, we start by giving an extraction lemma for linear-invariant families of function mapping
Kn to F, which shows that the trace of any monomial that is in the support of a function in the family is also
in the family. We then use this, along with standard monomial“spread” properties to give upper bounds
(see Section 6.2) and lower bounds (Sections 6.3 and 6.4) on the constraints and characterizations of affine-
invariant and linear-invariant families mappingKn to F. In Section 6.5 we use the characterizations to build
a tester for the linear-invariant case. The resulting theorems are summarized in Section 6.6.

6.1 Extracting Traces of Monomials

For a set of functionsS ⊆ {Kn → F}, recall the notions of SPAN(S) = SPANF(S) and L-SPAN(S) and
A-SPAN(S) (see Definition 4.1 in Section 4 for the formal definitions). These notions will be used in this
and subsequent sections.

Lemma 6.4 (Trace of Monomial Extraction Lemma) Let f : Kn → F. Then for every monomialm in
the support off , we haveTrace(m) ∈ L-SPAN(f).

Proof: Let m be a monomial in the support off . Let m = cxe wheree = 〈e1, · · · , en〉 andc ∈ K is
e-admissible. Letb = b(e), so thatTrace(m) = m + mq + · · · + mqb−1

. We wish to showTrace(m) ∈
L-SPAN(f).
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We first claim that we can assume w.l.o.g. thatei 6= 0 for everyi ∈ [n]. If not, and supposeen = 0, then

we are done by induction on the number of variables, sinceg(x1, . . . , xn−1)
4
=f(x1, . . . , xn−1, 0) has the

feature thatm is in the support ofg andg depends on fewer variables. SoTrace(m) ∈ L-SPAN(g) and
g ∈ L-SPAN(f) yielding Trace(m) ∈ L-SPAN(f).
Next we claim that we can assume that for everyi ∈ [n] and for every monomialcdxd in the support off ,
it is the case thatdi 6= 0. We prove this by induction oni. Assume the statement is true forj ∈ [i] (i.e.,
dj 6= 0 for everyj ∈ [i] and every monomialxd with non-zero coefficient inf ). Now consider the function
f̃(x1, . . . , xn) = f(x1, . . . , xn) − f(x1, . . . , xi, 0, xi+2, . . . , xn). f̃ now has no support on monomials of
the formxd with dj = 0 for any j ∈ [i + 1]. But m is still in the support off̃ and f̃ ∈ L-SPAN(f). So
provingTrace(m) ∈ L-SPAN(f̃) suffices to proveTrace(m) ∈ L-SPAN(f).
Finally we get to the real case: We now have a monomialm = cxe in the support off . For every monomial
cdx

d in the support off and everyi ∈ [n] we havedi 6= 0. We’d like to showTrace(m) ∈ L-SPAN(f).
Let f =

∑

d cdx
d. Let K∗ = K − {0}. Consider the following expression.

g(x) =

b−1
∑

s=0

∑

〈α1,...,αn〉∈(K∗)n

(α1)
−e1·qs · · · (αn)−en·qs

f(α−1
1 x1, , · · · , α−1

n xn).

We claim thatg(x) ∈ L-SPAN(f) and thatg(x) = (−1)n · Trace(cex
e) thereby showing thatTrace(m) ∈

L-SPAN(f).
For the first part, it is obvious thatg(x) is in L-SPANK(f), but this is not what we want. We need to
show thatg(x) ∈ L-SPANF(f). To see this we use the property of the monomialm0 = xe. Note that

Trace(m0) = m0 + mq
0 + · · · + mqb−1

0 sinceb = b(e) is independent ofc. Note that

g(x) =
∑

α∈(K∗)n

Trace(m0(α)) · f(α−1
1 x1, α

−1
2 x2, · · · , α−1

n xn).

SinceTrace(m0) mapsKn to F, we have that the expression forg forms anF-linear combination off
applied toK-linear transforms of the vectorx. By definition of L-SPAN we haveg ∈ L-SPANF(f).
Next to see thatg(x) = (−1)n Trace(cex

e), we writeg(x) =
∑b−1

s=0 gs(x), wheregs(x) =
∑

α∈(K∗)n m0(α)q
s ·

f(α−1
1 x1, · · · , α−1

n xn). We claim thatgs(x) = (−1)ncqs·em0(x)q
s

= cqs

e m0(x)q
s

and this impliesg(x) =
Trace(m). But then the identitygs(x) = (−1)ncqs·em0(x)q

s
, follows easily from the Fourier Transform.

Specifically:

gs(x) =
∑

α∈(K∗)n

αqs·e · f(α−1
1 x1, · · · , α−1

n xn)

=
∑

α∈(K∗)n

αqs·e ·
∑

d

cdα−dxd

=
∑

d

cdx
d
∑

α∈(K∗)n

αqs·e−d

=
∑

d

cdx
d

n
∏

i=1





∑

αi∈K∗

α
(qs·ei−di)
i



 .

Now the summation
∑

αi∈K∗ α
(qs·ei−di)
i equals−1 if qsei = di and0 otherwise. So the final quantity above

equals(−1)ncqsex
qse as desired.
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6.2 Upper bounds on the characterizations of linear-invariant families

In this section we give characterizations, and thus upper bounds on the locality of characterizations, of
affine-invariant and linear-invariant families mappingKn to F. As in the case whenK = F, the affine-
invariance locality is a function of the degree of the highest degree polynomial contained in the family
under consideration. In the linear-invariant case we need to extend the notion of the linear-invariance degree
and we do so below.

Definition 6.5 For a linear invariant familyF properly contained in{Kn → F}, let dlin(F), the linear-
invariance degreeof F , be the largest integerd such thatF contains a monomialm1 of degreed in its
support, while there also exists a monomialm2 that is not in the support ofF , whose degree isd′ for some
d′ > 0 with d′ ≡ d mod (Q − 1), whereQ = |K|.

To get an upper bound, we first give a simple monomial spread lemma for functions fromKn to F.

Lemma 6.6 Let m = xd be a monomial withdn−1 < p anddn = 0. For i ∈ {0, . . . , dn−1}, let m̃ be the
monomialxd1

1 · · · xdn−2

n−2 · xi
n−1 · x

dn−1−i
n . Then the functionTrace(m̃) ∈ L-SPAN(Trace(m)).

Proof: Let f(x) = Trace(m(x)). Note that sincedn−1 < p ≤ q, we have thatqt−1dn−1 < qt and sob(d)
must equalt. ThusTrace(m(x)) = Trace0(m(x)). So we need to showTrace(m̃) ∈ L-SPAN(Trace0(m)).

Now considerf̃(x) = f(x1, . . . , xn−2, xn−1+xn, 0) ∈ L-SPAN(f). We havef̃(x) =
∑t−1

`=0

∑dn−1

i=0

(dn−1

i

)

(xd1
1 · · · xdn−2

n−2

xi
n−1 · x

dn−1−i
n )q

`
. We note that the coefficient of̃m in this expression is exactly

(dn−1

i

)

which is non-zero.

It follows from the monomial extraction lemma thatm̃ is in L-SPAN(f̃) ⊆ L-SPAN(f).

The following lemma now shows that one can project non-members of a familyF to smaller dimensional
subspaces while preserving non-membership inF .

Lemma 6.7 Let F ⊆ {Kn → F} be a linear-invariant family of linear-invariance degreedlin(F) = d.

Supposef : Kn → F is not inF . Then, ifn ≥ 1 +
(

2(d+Q)
p

)

, then there exists a linear functionL :

Kn−1 → Kn such thatf ◦ L 6∈ F|n−1.

Proof: The proof is exactly the same as that of Lemma 5.3 with notational changes. We include it below for
completeness.

Let m = xd1
1 · · · xdn

n be a monomial of maximal degree in the support off that is not contained in the
support ofF . We show that there is a linear mapL : Kn−1 → Kn such thatm ◦ L is not in the support of
F|n−1. We consider two cases:

Case 1:There exist distinct indicesi, j such thatdi + dj < p: Without loss of generality assumei = n − 1

andj = n. Note first that for the the monomialm′ = xd1
1 · · · xdn−2

n−2 · xdn−1+dn

n−1 , we have, by Lemma 6.6,
Trace(m′) 6∈ F (and henceTrace(m′) 6∈ F|n−1). We claim that for some choice ofα, β ∈ F, the map
Lα,β(x1, . . . , xn−1) = 〈x1, . . . , xn−2, αxn−1, βxn−1〉 leaves the monomialm′ with non-zero support in
f ◦ Lα,β, which would suffice to prove the lemma (in this case).

To see this, letci be the coefficient of the monomialxd1
1 · · · xdn−2

n−2 · xi
n−1x

dn−1+dn−i
n in f . Let h(x, y) =

∑dn−1+dn

i=0 cix
iydn−1+dn−i. It can be verified that the coefficient ofm′ in f ◦ Lα,β is exactlyh(α, β).

Furthermore,h(α, β) is a non-zero polynomial since the coefficientcdn−1 is the coefficient ofm in f which
is non-zero. Thus there must existα, β ∈ K such thath(α, β) 6= 0 and this yields the claim.
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Case 2: For every pair of distincti, j, di + dj ≥ p. Let e denote the degree ofm. For everyt, we have
d2t−1 + d2t ≥ p, and soe, the total degree ofm, is at leastpbn/2c ≥ d + Q.

We first note that no monomialm′ of degreee or e− (Q−1) is inF . Otherwise the linear-invariance degree
of F would be the degree ofm′. For example, ifm′ has degreee − (Q − 1) > d, thenm′ satisfies the role
of the monomialm1 in the definition of the linear-invariance degree andm of degreee = e − (Q − 1)(
mod Q− 1) satisfies the role ofm2 in the definition of linear-invariance degree thereby yielding dlin(F) =
e − (Q − 1) > d. So we concludem′ can not be inF .

But now consider the linear mapLα,β as in the previous case, i.e.,Lα,β(x1, . . . , xn−1) = 〈x1, . . . , xn−2, αxn−1, βxn−1〉.
Let m′ be the monomialxd1

1 · · · xdn−2

n−2 · xf
n−1 where f = dn−1 + dn if dn−1 + dn < Q and f =

dn−1 + dn − (Q − 1) otherwise. The degree ofm′ is thuse or e − (Q − 1). We claim that for some
α, β, the coefficient ofm′ is non-zero inf ◦ Lα,β and this will yield the lemma in this case.

To verify the claim, note that the coefficient ofm′ in f ◦ Lα,β is exactly h′(α, β) where h′(x, y) =
∑min{Q−1,dn+dn−1}

i=0 cix
iydn+dn−1−i andci is the coefficient of the monomialxd1

1 · · · xdn−2
n−2 ·xi

n−1x
dn+dn−1−i
n

in f . Again, we haveh′(x, y) is not identically zero (the coefficientcdn−1 is non-zero) and so there exists

α, β such thath′(α, β) 6= 0.

We are now ready to give the characterization for linear-invariant families.

Lemma 6.8 Let F be a linear invariant family, properly contained in{Kn → F}, of linear-invariance
degreed. ThenF has a(Q)`-local formal characterization for̀ = 2(d+Q)

p .

Proof: We claim that the characterization is simply the thatf ∈ F if and only if f ◦ L is in F|` for every
linear mapL : K` → Kn.

It is again easy to verify that, if correct, this is indeed aq`-local formal characterization. We analyze the
correctness below.

In one direction, it is obvious that everyf ∈ F andL : K` → Kn satisfiesf ◦ L ∈ F|`. The other
direction is a simple induction based on Lemma 5.3. Fixf 6∈ F . Let m be any integer betweeǹ+ 1 and
n. Assume by induction onn − m that there a linear mapLm : Km → Kn such thatf ◦ Lm 6∈ F|m.
Now we prove that there is a mapLm−1 : Km−1 → Kn such thatf ◦ Lm−1 6∈ F|m−1. SinceF is linear-
invariant, so isF|m. Also the linear-invariance degree ofF|m is at mostdmax. By Lemma 5.3 there is a
linear mapL : Km−1 → Km such that(f ◦Lm) ◦L 6∈ (F|m)|m−1 = F|m−1. Thusf ◦Lm−1 6∈ F|m−1 for
Lm−1 = Lm ◦ L. We conclude that the linear mapL` : K` → Kn derived from settingm = ` + 1, satisfies
f ◦ L` 6∈ F|`.

Again, using the fact that the maximum total degree of a polynomial in the familyF is an upper bound on
the linear-invariance degree ofF , we also get the following corollary for affine-invariant families.

Lemma 6.9 LetF be a proper subset of{Kn → F} and letd denote the maximum degree of any function

in F . ThenF has aQ`-local formal characterization for̀ ≤ 2(d+Q)
p .

6.3 Lower bounds on the locality of constraints for Affine Invariant Families

We now move to lower bounds on the locality of constraints foraffine-invariant families. Our starting
point is Claim 5.9 which shows that the family A-SPANK(

∏`
i=1 x

Q/p
i ⊆ {Kn → K} has noQb`/Qc-local
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constraints. We start with a simple proposition that turns this into a lower bound on a family mappingKn

to F. First we recall some definitions.

Recall thatTrace0 : K → F denotes the standard trace function given byTrace0(x) =
∑

i = 0t−1xqi
. We

extend this to functions and function families as follows. For f : Kn → K, Trace0(f) is the function that
mapsx ∈ Kn to Trace0(f(x)). ForF ⊆ {Kn → K}, let Trace0(F) = {Trace0(f)|f ∈ F}.

We also extend the notion of the trace of monomials to functions and function families. We say that a
monomialcxe is admissible ifc is e-admissible. For a functionf : Kn → K which is the sum of admissible
monomials, we defineTrace(f) to be the sum of the traces of the monomials in its support. Finally, for a
function familyF , we letTrace(F) = {Trace(f)|f ∈ F}.

The following proposition relatesTrace0(F) to Trace(F).

Proposition 6.10 For a linear-invariant familyF ⊆ {Kn → K}, Trace0(F) ⊆ Trace(F).

Proof: Note that it suffices to show thatTrace0(m) ∈ Trace(F) for every monomialm ∈ F . Letm = cxd

and letb = b(d). Note thatTrace0(m) = Trace(m′) wherem′ = c′xd andc′ = c+cqb
+cq2b

+ · · ·+cqt−b
.

In particular note that(c′)q
b

= c′ and soc′ is d-admissible. Also note thatm′ is an admissible monomial
and a member ofF and soTrace(m) ∈ Trace(F). We thus conclude thatTrace0(m) ∈ Trace(F). The
proposition follows.

The next proposition shows that a lower bound on the localityof (relative) constraints for a familyF ⊆
{Kn → K} also yields a lower bound forTrace0(F).

Proposition 6.11 LetF1,F2 ⊆ {Kn → K}. If F1 has nok-local constraints relative toF2, thenTrace0(F1)
has nok-local constraints relative toTrace0(F2).

Proof: Let C = (x1, . . . ,xk, S) with S ( Fk be a constraint onTrace0(F1) relative toTrace0(F2). Then
we claim thatC ′ = (x1, . . . ,xk, S

′), whereS′ = {〈α1, . . . , αk〉 ∈ Kk | 〈Trace0(α1), . . . ,Trace0(αk)〉 ∈
S}, is a constraint onF1 relative toF2. We omit the straightforward verification steps.

The above propositions immediately give a family of affine invariant functions with no constraints of small
locality.

Lemma 6.12 For every`, the familyA-SPAN(Trace(
∏`

i=1 x
Q/p
i )) has no constraints of localityQb`/Qc.

Proof: Follows immediately by combining Claim 5.9 with Propositions 6.10 and 6.11.

We now turn to the task of showing that a family with some high degree monomial also contains other high
degree monomials. We don’t provide a very general lemma, butrather one that is sufficient for our purposes.

Lemma 6.13 For every vectord = 〈d1, . . . , dn〉 of non-negative integers and indexi ∈ [n], the monomial
Trace(xe) ∈ A-SPAN(Trace(xd)), wheree = 〈e1, . . . , en〉 is given byei = Q/p, and ej = dj for
j ∈ [n] − {i}, provideddi ≥ Q/p.

Proof: For notational simplicity we assumei = 1.

Let b = b(d). Note that sincee1 = Q/p, we have that the smallest integerb′ such thateb′
1 ≡ e1 mod (Q−1)

is t and thusTrace(xe) = Trace0(x
e). Our goal is thus to show thatTrace0(x

e) is in the affine span of
Trace(xd). If d1 = Q/p, then this is trivial, and so assumed1 > Q/p.
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We claim that, for someγ ∈ K, the monomialxe has a non-zero coefficient in the polynomialg(x) =
Trace(〈x1 + γ, x2, . . . , xn〉d). Assuming this claim, using the fact thatg(x) ∈ A-SPAN(Trace(xd)) and
that every monomialm in the support ofg(x) is in A-SPAN(g), we get that for some admissibleβ ∈ K∗,
Trace(β · xe) is in A-SPAN(Trace(xd)). Combining with Proposition 6.2 we see that we can drop the
coefficientβ and get thatTrace(xe) is also in A-SPAN(Trace(xd)). It thus suffices to prove the claim.
Note that

g(x) = Trace





(

d1
∑

i=0

(

d1

i

)

γd1−1xi
1

)

·
n
∏

j=2

x
dj

j





=
b−1
∑

`=0

(

d1
∑

i=0

(

d1

i

)q`

γq`·(d1−i)xi·q`

1

)

·
n
∏

j=2

x
dj ·q`

j

To determine the coefficient ofxe in the above expression, letS = {(i, `)|0 ≤ i < b, i · q` = Q/p
mod (Q − 1) anddj · q` = dj mod (Q − 1), ∀j ∈ {2, . . . , n}}. Then the coefficient ofxe in g(x) is
∑

(i,`)∈S

(d1

i

)

· γq`·(d1−i) = γ−Q/p ·∑(i,`)∈S

(d1

i

)

· γq`·d1. This coefficient is itself a polynomial inγ and

we prove that it is a non-zero polynomial. To see this we focuson the coefficient ofγd1 . Note that, by
the definition of the indexb (andTrace(xd)), the only index̀ for which q` · d1 = d1( mod Q − 1) (and
q` ·dj = dj( mod Q−1) for all otherj’s) is ` = 0. Furthermore, the onlyi for which i · q0 = Q/p is Q/p.
Thus the pair(Q/p, 0) is the unique pair inS that contributes to the coefficient ofγd

1 in the expression above
and this coefficient is

( d1

Q/p

)

which can be verified to be non-zero. Thus the coefficient ofxe is a non-zero
polynomial inγ and thus there exists aγ for which this coefficient is non-zero. This proves the claim, and
hence the lemma.

The two lemmas above can be combined to derive a lower bound onthe locality of constraints for any
affine-invariant family containing any high-degree polynomial, as shown next.

Lemma 6.14 If an affine-invariant familyF ( {Kn → F} contains a polynomial of degreed, then it has
no constraints of localityQ(d−Q2)/Q2

.

Proof: Fix a monomialm such thatTrace(m) is in F and the degree ofm is d. Partition the variables
in x so that the degree ofm in each block,except at most one, is betweenQ/p andQ − 1 (again this can
be done by putting variables of degree greater thanQ/p into blocks of their own, and greedily packing the
remaining variables into blocks till a block size exceedsQ/p). The number of blocks is thus strictly greater
thand/Q. Now replace all variables in blocki by the variablexi to get a new monomialm′ = xd such that
Trace(m′) ∈ F and the degree of at leastQ/p variables inm′ is at leastQ/p. Applying Lemma 6.13 to these

variables in turn shows thatTrace(
∏`

i=1 x
Q/p
i ) is contained inF for ` = bd/Qc. Applying Lemma 6.12 we

conclude thatF has noQ(d−Q2)/Q2
-local constraints.

6.4 Lower Bound in the Linear Invariant Case

We now give a lower bound for the the case of linear-invariantfamilies. We do so by reducing to the lower
bound for functions fromKn → K.

Lemma 6.15 Let d ∈ (Z+)n, i ∈ [n], and letf be a non-negative integer, such thatdi ≥ Q/p. Lete be
given byej = dj , except whenj = i in which caseei = Q/p. Thenxe · yf+di−Q/p ∈ L-SPAN(xd · yf ).
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Proof: Similar to the proof of Lemma 6.13.

Lemma 6.16 . LetF ( {Kn → F} be a linear invariant family of linear invariance degreed. ThenF does
not have aQ(d−Q2)/Q2

-local characterization.

Proof: We proceed as in the proof of Lemma 5.13. Letm ∈ K[x] be a monomial of degreed such that
Trace(m) ∈ F . Let m′ be a monomial of degreed′ ≡ d mod (Q − 1) such thatTrace(m′) 6∈ F . Let
x1 be a variable of positive degree inm′. Then note that the monomial̃m = m′y/x1 ∈ K[x, y] also
satisfiesTrace(m̃) 6∈ F (sincem̃ is in the linear span of̃m). Since the degree iny of m̃ is 1, we have that
Trace(m̃) = Trace0(m̃). We now usem andm̃ to get a lower bound on the characterization ofF .

Let ` = bd/Qc. Let F1 = SPAN({yd1 · m1|m1 monomial in ∈ A-SPAN(
∏`

i=1 x
q/p
i ), d1 + deg(m1) ≡ d

mod (q − 1), 1 ≤ d1 ≤ q − 1}). LetF2 = SPAN{m2|m2 monomial inF[x, y],deg(m2) ≡ d mod (q −
1),degy(m2) ≥ 1}, be the collection of all polynomials supported on monomials of degreed mod (q−1),
with positive degree iny. Recall, by Lemma 5.12, thatF1 has no constraints of localityQb`/Qc relative
to F2. By Propositions 6.10 and 6.11, we also have thatTrace(F1) has no constraints of localityQb`/Qc

relative toTrace0(F2). Furthermore, sinceTrace0(m̃) ∈ Trace0(F2), we have thatTrace0(F2) is not
containedF . Thus it suffices to show thatTrace(F1) is contained inF .

For this part, we proceed as in the proof of Lemma 6.14. We collect the variables ofx in blocks with each
block having degree betweenQ/p andQ in m. By identifying the variables within a block with copies of
a single variable, we get a monomialm1 of degree betweenQ/p andQ in at least` variables such that
Trace(m1) ∈ F . Repeatedly applying Lemma 6.13 to it, we get that for every monomialm2 ∈ Trace(F1),
Trace(m2) ∈ F , and thusTrace(F1) ⊆ F .

It follows thatF has no constraints of localityQb`/Qc relative toF + Trace0(m̃) and hence does not have
aQb`/Qc-local characterization. The lemma follows by noting thatb`/Qc = bq/Q2c ≥ (d − Q2)/Q2.

6.5 Testing for linear invariant families

We conclude, as in Section 5.4, by giving a testing theorem for linear-invariant families. Again we remark
that the test does not follow immediately from the characterization results, since the characterization are not
necessarily 2-ary independent.

However, it follows directly from the results of Section 5.4, and the characterization of Section 6.2, that
every linear invariant family of linear invariance degreed is Q2(d+Q)/p-locally testable. Specifically we
note that:

• Definition 5.14 of “projective” families is still applicable to families mappingKn → F, being subsets
of {Kn → K}.

• Proposition 5.15 characterizing projective families still applies.

• Lemma 5.16 giving a decomposition of every linear invariantfamily F into the sum of a familyF1

of bounded degree and a projective familyF2, along with a local reduction to compute a functiong
whose distance fromF1 estimates the distance off from F , also still applies.

• The familyF1 derived in the previous step does have a 2-ary independent local formal characterization
and thus a local test.
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Putting that above observations together, as in the proof ofLemma 5.18 we get:

Lemma 6.17 LetF ⊆ {Kn → F} be a linear-invariant family with ak-local characterization. Then has a
k′ = 2Q · (Q2k)Q

2
-local test that accepts members ofF with probability1, while rejectingδ-far members

with probability at leastmin
{

δ
2 , Q2

(2k′+Q)(k′+Q)

}

.

6.6 Putting the results together

Combining Lemmas 6.14 and 6.9 and Theorem 2.9 we get a proof ofTheorem 2.10.

Similarly, by combining Lemmas 6.16, 6.8, and 6.17, we get a proof of Theorem 2.11.
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Part III

7 A non-trivial local formal characterization

In this section we consider a set of polynomials, of potentially very large degrees, which is affine invariant.
We show that this set has a formal characterization of very small locality.

Let Fd
q [x1, . . . , xn] denote the space of polynomials of degree at mostd in n variables overFq. Forq = ps,

let F
char,d
q [x1, . . . , xn] be the space of functions

{f ∈ Fq[x1, . . . , xn]|∃g ∈ Fd
q [z11, . . . , zsn] s.t.f(x1, . . . , xn) = g(x1, x

p
1, . . . , x

ps−1

1 , x2, . . . , x
ps−1

n )}.

Whend = 1, andg is homogenous, then we get the class of linearized polynomials. Extending this terrible
nomenclature, we refer to elements ofF

char,d
q [x] asd-ized polynomials. We claim below that the property of

being ad-ized polynomial is locally testable with(d + 2)-local tests.

Theorem 7.1 For q = pm with p being prime and for an integerd ≤ p−2, the family ofd-ized polynomials
has a(d+2)-local formal affine characterization. Specifically a function f : Fn

q → Fq is ad-ized polynomial

if and only if∀x,y ∈ Fn
q ,
∑d+1

i=0 αi,df(x + iy) = 0, whereαi,d = (−1)i
(

d+1
i

)

.

We remark that the degree of ad-ized polynomial overpm may be as high asd · ps−1 and so the characteri-
zation can be quite local even when the polynomial has high degree. To prove Theorem 7.1 we use heavily
the characterization from [18, 9] that for a prime fieldFp, a functiong : Fn

p → Fp is a degreed polynomial

if and only if
∑d+1

i=0 αig(x + iy) = 0 for everyx,y ∈ Fn
p .

To translate results aboutFp to results aboutFq for q = pm, we use the following correspondence fromFq

to Fm
p using linearized polynomials. (For this part we also use thefact thatFp is contained inFq, given by

the solutions of the equationxp − x = 0.)

Proposition 7.2 There exist mapsb : Fq → Fm
p andb−1 : Fm

p → Fq satisfying:

• For everyβ ∈ Fq, β = b−1(b(β)).

• b = 〈b1, . . . , bm〉, wherebi : Fq → Fq is a linearized polynomial (i.e., a polynomial of the form
bi(x) =

∑m−1
j=0 cijx

pj
) with its image beingFp. In particular, thebi’s are Fp-linear maps.

• b−1 is anFp-linear map. In particular,b−1(0) = 0.

We extend the mapsb and b−1 to apply to vectors inFn
q and Fmn

q using the extensionb(x1, . . . , xn) =
〈b(x1), . . . , b(xn)〉, andb−1 being its inverse. Using these maps we can create an alternate characterization
of thed-ized polynomials.

Lemma 7.3 f : Fm
q → Fq is ad-ized polynomial if and only if there exists polynomialsg1, . . . , gm : Fmn

p →
Fp of degree at mostd such thatf(x) = b−1(g1(b(x)), . . . , gm(b(x))).
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Proof: We start with the forward direction, i.e., Assume suchg1, . . . , gm exist and prove thatf is d-ized in
such a case.

For both parts it is useful to see a “more” explicit version ofb−1. Sinceb−1 is linear, we have that there
existsw1, . . . , wm ∈ Fq such thatb−1(α1, . . . , αm) =

∑m
i=1 αiwi (for all α1, . . . , αm ∈ Fp). Using this

we see thatf(x) = b−1(g1(b(x)), . . . , gm(b(x))) =
∑m

i=1 gi(b(x))wi. But b(x) is just a collection ofmn

linear forms inx1, . . . , x
pm−1

1 , . . . , xpm−1

n , andgi is a degreed polynomial in its arguments, and so their
composition is degreed-ized polynomial inx. Thus we get eachgi(b(x)) is ad-ized polynomial inx and
sof , which is a linear combination of such polynomials, is also ad-ized polynomial.

For the other direction, assumef is d-ized. Sof(x1, . . . , xn) = g(x1, . . . , x
pm−1

1 , . . . , xpm−1

n ) for some
degreed polynomialg. Note that

gi(y) = bi(f(b−1(y)))

= bi(f(
∑

j

y1jwj , . . . ,
∑

j

ynjwj))

= bi






g











∑

j

y1jwj



 , . . . ,





∑

j

y1jwj





pm−1

, . . . ,





∑

j

ynjwj





pm−1












= bi(g̃(y1, . . . , ymn))

for some degreed polynomial inmn variables with coefficients fromFq. (For the last step we use the fact
thatyp

i = yi whenyi ∈ Fp.) Finally we use the fact that we are only interested in the evaluations of̃g over
elements ofFmn

p . Note thatbi(g̃) has the same degree asg̃ in this case, sincebi is Fp-linear (and so for a

monomial of the formc ·∏ y
ejk

jk , we havebi(c ·
∏

y
ejk

jk ) = bi(c) ·
∏

y
ejk

jk ).

We are now ready to prove Theorem 7.1.

Proof: We prove the forward direction first. Supposef ∈ F
char,d
q [x]. We wish to show that for everyx,y ∈

Fn
q ,
∑d+1

i=0 αif(x + iy) = 0. By Lemma 7.3 we have that there exist degreed polynomialsg1, . . . , gm :
Fmn

p → Fp such thatf(x) = b−1(g1(b(x)), . . . , gm(b(x))). So we have

d+1
∑

i=0

αif(x + iy)

=

d+1
∑

i=0

αib
−1(g1(b(x + iy)), . . . , gm(b(x + iy)))

= b−1

(

d+1
∑

i=0

αig1(b(x + iy)), . . . ,

d+1
∑

i=0

αigm(b(x + iy))

)

(By the linearity ofb−1)

= b−1

(

d+1
∑

i=0

αig1(b(x) + ib(y)), . . . ,

d+1
∑

i=0

αigm(b(x) + ib(y))

)

(By the linearity ofb)

= b−1(0, . . . , 0) (By [18])

= 0 (By linearity of b−1)
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Now for the reverse direction, supposef : Fn
q → Fq satisfies

∑d+1
i=0 αif(x + iy) = 0 for everyx,y ∈ Fn

q .
Consider the functiongi : Fmn

p → Fp given bygi(z = 〈z11, . . . , zmn〉) = bi(f(b−1(z))). We now note that
for any pairu,v ∈ Fmn

p , we have

d+1
∑

j=0

αjgi(u + jv) =

d+1
∑

j=0

αjbi(f(b−1(u + jv)))

= bi





d+1
∑

j=0

αjf(b−1(u + jv))





= bi





d+1
∑

j=0

αjf(b−1(u) + jb−1(v))





= bi(0)

= 0

We conclude thatgi is a degreed polynomial for everyi ∈ [m]. But now sincef(x)b−1(g1(x), . . . , gm(x)),
we conclude thatf must also be ad-ized polynomial.
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