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Abstract

Thesign-rankof a real matrixM is the least rank of a matriR in which
every entry has the same sign as the corresponding enfity e determine
the sign-rank of every matrix of the fortd = [ D(IX A y|) ]x,. whereD :
{0,1,...,n} - {-1,+1} is given andx andy range ovef0, 1}". Specifically,
we prove that the sign-rank & equals 29, wherek is the number of times
D changes signif0, 1, ...,n}.

Put diferently, we prove an optimal lower bound on thounded-error
communication complexitgf every symmetric function, i.e., a function of
the form f(x,y) = D(]x A y|) for someD. The unbounded-error model is
essentially the most powerful of all models of communiaatiooth classical
and quantum), and proving lower bounds in it is a substactiallenge.
The only previous nontrivial lower bounds for this model eppin the
groundbreaking work of Forster (2001) and its extensions. cérollaries
to our result, we give new lower bounds for PAC learning andHoeshold-
of-majority circuits.

The technical content of our proof is diverse and featuradoe walks
on Z3, discrete approximation theory, the Fourier transformzgnlinear-
programming duality, and matrix analysis.
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1 Introduction

The unbounded-error model, due to Paturi and Simon [27],rishaand elegant
model of communication. Fix a functiofi : X x Y — {0,1}, whereX andY
are some finite sets. Alice receives an inpute X, Bob receivesy € Y, and
their objective is to computd(x, y). To this end, they exchange bits through a
shared communication channel according to a certain gtrate protocol, that
they establish ahead of time. Alice and Bob each have an itetirprivate source
of random bits which they can use in deciding what messagesrtd. Eventually,
Bob concludes this process by sending Alice a single bitckvig taken to be the
output of their joint computation.

Define the random variable(x, y) € {0, 1} as the output bit when the parties
receive inputx € X andy € Y. Alice and Bob'’s protocol is said toompute fif

PriP(x,y) = f(X,y)] > % foreachxe X, y € Y.

The above probability is, of course, over the private useanflom bits by Alice
and Bob. Thecostof a given protocol is the worst-case number of bits exchdnge
on any input &, y). Theunbounded-error communication complexifyf, denoted
U(f), is the least cost of a protocol that compufes

The unbounded-error model occupies a special place in tidy £f commu-
nication because it is more powerful than any other stangendel (deterministic,
nondeterministic, randomized, quantum with or withoutaegtement). More
precisely, the unbounded-error complexity{f) can be only negligibly greater
than the complexity off in any other model—and oftert) (f) is exponentially
smaller. We defer precise quantitative statements to @e&i2. The power
of the unbounded-error model resides in its very liberalcess criterion: it
sufices to produce the correct output with probability greabantl/2 (say, by
an exponentially small amount). This contrasts with alleotinodels, where the
correct output is expected with probability at leags.2

1.1 Motivation

The additional power of the unbounded-error model has theomee consequence
that proving communication lower bounds in it requires eichnd more creative
mathematical machinery. Furthermore, the resulting lobveunds will have

implications that other communication models could notdyieBefore we state
our results, we take a moment to thoroughly motivate our viagrkeviewing these

new possibilities unique to the unbounded-error model.



Circuit complexity. Recall that @hreshold gatey with Boolean inputsy, .. ., X,
is a function of the formy(x) = sigh@ix1 + - - - + an X, — 6), for some fixed reals
ai,...,an, 0. Thus, a threshold gate generalizes the famitiajority gate. A major
unsolved problem in computational complexity is to exhéiBoolean function
that requires a depth-2 threshold circuit of superpolyrdsize.

Communication complexity has been crucial to the progresthis problem.
Using randomized communication complexity, many expfigiictions have been
found [9, 24, 33, 34] that require depth-2 majority circuafsexponential size. Via
the reductions due to Goldman et al. [8], these lower bouen®in valid for the
broader class omajority-of-threshold circuits.This solves an important special
case of the general problem. The unbounded-error modedsalvother important
special case [6]: it supplies exponential lower boundsregttireshold-of-majority
circuits, i.e., circuits with a threshold gate at the top that receimgsits from
majority gates. To our knowledge, the unbounded-error mizdeurrently the
only means to prove lower bounds against threshold-of-ritjoircuits.

Sign-rank and rigidity.  Unlike other models of communication, the unbounded-
error model has a particularly natural matrix-analytiariotation. Fix a real matrix
M = [M;j] without zero entries. Thsign-rankof M, denoted dd{), is defined
as the least rank of a matrik = [A;] with M;;A; > 0 for all i, j. In other
words, sign-rank measures the sensitivity of the ranidefhen its entries undergo
sign-preserving perturbations. The sensitivity of ranensmportant and dlicult
subject in complexity theory. For example, much work hasi$ed on the closely
related concept ahatrix rigidity [12, 21].

On the surface, unbounded-error complexity and sign-raeknsunrelated. In
reality, they are equivalent notions! More specifically, fe X x Y — {0,1} be a
given function. Consider its communication mathik= [(=1) ®®],cx ,ev. Paturi
and Simon [27] showed that

U(f) = logdcM) + O(1).

Thus, unbounded-error complexity embodies a fundamentstepn from matrix
analysis, with close ties to complexity theory.

PAC learning. In a seminal paper [35], Valiant formulated thebably approx-
imately correct{PAC) model of learning, now the primary model in computadib
learning theory. LeC be a givenconcept classi.e., a set of functiong0, 1}" —
{0, 1}. The learner in this model receives training examples

(Xl’ f(X(l)))’ (XZ, f(X(Z))), M f(X(m))),



wheref e Cis an unknown function ang®, x@, ..., x™ ¢ {0,1}" are sampled
independently from some unknown distributienFor every choice of andy, the
learner must produce a hypothehis {0,1}" — {0, 1} that closely approximates
the unknown functionEy.,[h(X) # f(X)] < e. The objective is to findh efficiently.

Research has shown that PAC learning is surprisingfircdit. Indeed, the
problem remains unsolved for such natural concept class@&iN& formulas of
polynomial size and intersections of two halfspaces, wagehardness results and
lower bounds are abundant [4, 13, 14, 16-18]. There is, hewven important
case whenf@cient PAC learning is straightforward. Specifically, (&be a given
concept class. For notational convenience, view the fanstinC as mappings
{0,1}" — {-1,+1} rather than{0, 1}" — {0, 1}. The dimension complexitgf C,
denoted dat), is the least for which there are functions,, ..., ¢, : {0,1}" > R
such that everyf € C is expressible in the form

f(x) = sign@u¢1(x) + - - + ar¢r(x))

for some realsy, ..., a. There is a simple and well-known algorithm [15], based
on linear programming, that PAC lear@sin time polynomial in dag). To relate

this discussion to sign-rank (or equivalently, to unbouhdeor complexity), let

Mc &' [f(X)]fec. xeon be the characteristic matrix ¢f. A moment’s reflection

reveals that
dc(C) = dc(M¢),

i.e., the dimension complexity of a concept class is précite sign-rank of its
characteristic matrix.

Thus, the study of sign-rank yields nontrivial PAC learnialgorithms. In
particular, the best known algorithm for learning polynahsize DNF formulas
(Klivans & Servedio, 2001) was obtained precisely by plgcin 2 upper
bound on the dimension complexity of that concept class. theumore, this
dimension-complexity method actually represents thee sthtthe art in compu-
tational learning theory: whatever is known to kiciently PAC learnable has
low dimension complexity—with the only exception of lowgtee polynomials
over a finite field, which are trivial to learn but have high dimsion complexity
(Forster 2001). In summary, dimension complexity is an irtgg@ notion in
computational learning theory.



1.2 Our Result

As we have discussed, the unbounded-error model has imteealigplications
to circuit complexity, matrix analysis, and learning thgom addition to its
intrinsic appeal as a model of communication. Despite thigivation, progress
in understanding unbounded-error complexity has been almvdificult. It is
only recently that the first nontrivial lower bound was prov@&orster 2001) on
the unbounded-error complexity of an explicit function.réter’s proof has since
seen several extensions and refinements [6, 7, 20]. We a@naoe of any other
progress on unbounded-error complexity.

In this paper, we determine the unbounded-error compl@fity natural class
of functions that was beyond the reach of the existing tephes. Specifically, we
study functionsf : {0, 1}" — {0, 1} of the form

f(xy) = D(x A yl),

whereD : {0,1,...,n} — {0,1} is a given predicate. Abbreviaté(D) def u(f).
Prior to our work, Forster showed thit(D) = ®(n) for the parity predicate
D(t) = (t mod 2) The unbounded-error complexity of genef2 however, re-
mained unsettled.

We settle the unbounded-error complexityeokry D Let deg) stand for the
number of timed changes sign if0,1,...,n}, i.e.,

degD) %" |i=12...,n:D(i) % D(i - 1)}
We prove:

Theorem 1.1 (Main Result). Let D: {0, 1,...,n} — {0, 1} be given. Then

U(D) = 6(degD)).
where the® notation suppressedsgn factors.

As explained in Section 1.1, this result implies lower baufior PAC learning
and for threshold-of-majority circuits. Since they folldwom Theorem 1.1 as
immediate corollaries, we defer their statements and prtwthe final version of
the paper.

The upper bound in Theorem 1.1 has a short, first-principlesfpThe lower
bound, on the other hand, is rather nontrivial and has reduis to use a variety
of techniques (random walks Gff), discrete approximation theory, the Fourier
transform oriZ?, linear-programming duality, and matrix analysis). We d&scour
proof in greater detail next.
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Figure 1. Proof outline.

1.3 Our Techniques

Figure 1 schematically illustrates our proof. As a first step reduce the original
problem to one that is much smaller and more structured. ifgaly, we reduce
the overall task to analyzing what we cdnsepredicates. These are predicates
that change valu®(n) times and at roughly regular intervals. Such predicates
behave more predictably and are amenable to our methodseagearbitrary
predicates are not. The reduction works as follows. Underasumption that
a given predicatdd has complexityd(degD)), we use random walks oA} to
infer the existence of somdensepredicate with low complexity. The remaining
part of the paper proves that this is an impossibility, eeery dense predicate has
unbounded-error complexity(n).

This leaves us with the challenge of analyzing the sign-rafikF =
[(-1)PPD], the communication matrix of a given dense predicate. Tathis we
combine several distinct ideas. The first of these is Fdssjeneralized result [6].
Applied to our setting, it states that the sign-rankea$ proportional to the quantity

miny,, [Py, |
IPoF| ~



whereo denotes entrywise multiplication aifd= [Py, ] is any matrix whose entries
are positive and sum ta In other words, we need to prove the existence of a matrix
P with large entries that leads to a small spectral nippw F||.

To exhibit P with such properties, we ugmattern matrices These matrices
arose in two earlier works by the author [32, 34], where theyved useful in
obtaining strong lower bounds on communication. Their paepin this paper is
to reduce the search fé¥to a search for amooth orthogonalizing distributiofor
the predicateD. This informal term refers to a distribution ¢, 1}" that does not
put too little weight on any point (themoothpart) and under which~1)PCa++X)
is approximately orthogonal to all low-degree parity fuos (theorthogonalizing
part).

To find a smooth orthogonalizing distribution, we apply &n@rogramming
duality and work in the dual space instead. The dual problgnstout to be that of
bounding the advantage to which a low-degree univariatgnoohial can compute
D, in a certain technical sense. We reformulate this new quests a discrete
approximation problem and solve the latter from scratcingufundamentals of
approximation theory. Consolidating these various ingmed establishes our
main result.

Organization. Section 2 reviews the necessary technical backgroundioBes:t
opens the proof with the reduction to dense predicates.idBettsolves a certain
problem in discrete approximation. Section 5 translatesapproximation result,
via linear-programming duality and the Fourier transfointo an existence proof
of smooth orthogonalizing distributions for every densediate. Section 6
combines the above ingredients to give the final lower boandsnbounded-error
complexity.

2 Preliminaries

This section provides the necessary technical backgrowmdstart by describing
our notation and reviewing some standard preliminariesectisn 2.1. A detailed
review of the unbounded-error model of communicationfiered in Section 2.2,
along with relevant previous work. Finally, Section 2.3 mxaes an essential
ingredient of our proof, the pattern matrices.

2.1 Notation and Standard Preliminaries

A Boolean functionis a mappingX — {0, 1}, where X is a finite set. Typical
cases ar&X = {0,1}" andX = {0, 1}" x {0, 1}". The notation fi] stands for the set



{1,2,...,n}. Throughout this manuscript, “log” refers to the logarithonkiase 2
The symbol
Pk

refers to the family of all univariate polynomials of degagenostk.

For x € {0, )", we write

M E iix =1 = i+ X+ + .

Forx,y € {0, 1}", the notationx A y refers as usual to the component-wise AND of
x andy. In particular,|x A y| stands for the number of positions wherandy both
have a 1At several places in this manuscript, it will be importantdistinguish
between addition over the reals and addition over GH@)avoid any confusion,
we reserve the operaterfor the former andb for the latter.

Random walks ofZ} play an important role in this work. In particular, it will
be helpful to recall the following fact.

Proposition 2.1 (Folklore). For an integer T> 1, let by, by,..., bt € {0,1} be
independent random variables, each takinglomith probability p Then

1 1
E[bleabzea---eabT]:5—5(1—2p)T.

Proof. Straightforward by induction of. O

Predicates. A predicateis a mappingD : {0,1,...,n} — {0,1}. We say that
a value changeoccurs at index € {1,2,...,n} if D(t) # D(t — 1). The degree
of D, denoted dedd), is the total number of value changes Bf For example,
the familiar predicate PARITY] = (t mod 2) has degrem, whereas a constant
predicate has degree 0 is not hard to show that deDj is the least degree of a
real univariate polynomigb such that

sign((t)) = (-1)°©  fort=0,1,...,n,

hence the terrdegree Finally, given two predicate®,, D, : {0,1,...,n} — {0, 1},
their XOR is the predicat®; @ D, : {0,1,...,n} — {0, 1} defined by

ef

(D1® D)) L' Di(t) ® Da(t).



Matrices. The symbolR™" refers to the family of alm x n matrices with real
entries. Thei( j)th entry of a matrixA is denoted byA;;. We frequently use
“generic-entry” notation to specify a matrix succinctlyewrite A = [F(i, j)]i
to mean that that tha,(j)th entry ofA is given by the expressioR(i, j). In most
matrices that arise in this work, the exact ordering of thieroas (and rows) is
irrelevant. In such cases we describe a matrix by the notatio

[F@. Dier, jeos

wherel andJ are some index sets. In specifying matrices, we will use yhebs|
x for entries whose values are irrelevant, as in the proofseofiinas 3.2 and 3.5.
Recall that thespectral normof a matrixA € R™" is given by

def

Al max [|AX]2,

XeRM, |X|2=1
where]| - ||z is the Euclidean norm on vectors.

Fourier transform over ZJ. Consider the vector space of functio@s1}" — R,
equipped with the inner product

1
(o) € = > 190,

xe{0,1}"

ForS ¢ [nl], defineys : {0, 1}" — {1, +1} by xs(x) €' (~1)Zs*. Then{ys}scpy
is an orthonormal basis for the inner product space in quests a result, every
function f : {0, 1})" — R has a unigue representation of the form

)= Y f(S)xsM.

Scn]

wheref(S) d:ef<f,)(g>. The realsf(S) are called théourier cogficients of f The
following fact is immediate from the definition df(S):

Proposition 2.2. Let f: {0,1}" — R be given. Then

maxfS)< 4 3 1

Sclnl xe{0,1}n



Symmetric functions. Denote the group of permutations][ — [n] by Sy.
A function ¢ : {0,1}" — R is calledsymmetricif ¢(x) is uniquely determined
by x1 + - - - + X,. EQuivalently,¢ is symmetric if

P(X) = A(Xo(1)s - - - » Xor(n))

for everyx € {0,1}" and everyo € S,. Observe that for every : {0,1}" -» R
(symmetric or not), the derived function

def

1
doym() D ey Xot)

" o0€eS,

is symmetric. The symmetric functions ¢@, 1}" are intimately related to uni-
variate polynomials, as demonstrated by Minsky and Papsythmetrization
argument:

Proposition 2.3 (Minsky & Papert [22]). Let¢ : {0, 1}" — R be symmetric with
#(S) = 0for |S| > r. Then there is a polynomial ¢ P, with

#(X) = p(Xg + -+ + Xn) for all x € {0, 1}".

Minsky and Papert’s observation has seen numerous useslitetlature [1,25, 26].

2.2 The Unbounded-Error Model of Communication

We continue the review started in the Introduction.

Readers with background in communication complexity wittenthat the
unbounded-error model is exactly the same as phgate-coin randomized
model[19, Chap. 3], with one exception: in the latter case theeamranswer
is expected with probability at leasf2 whereas in the former case the success
probability need onlyexceedl/2 (say, by an exponentially small amount). This
difference has far-reaching implications. For example, thetfet the parties
in the unbounded-error model do not havestaared source of random bits is
crucial: allowing shared randomness would make the coritplekevery function
a constant, as one can easily verify. By contrast, intradushared randomness
into the randomized model has minimal impact on the comfylexfi any given
function [23].

As one might expect, the weaker success criterion in the wnmded-error
model has a drastic impact on the complexity of certain fonst For example,
the well-knowndisjointnesgunction onn-bit strings has complexit@(logn) in the

9



unbounded-error model arfé(n) in the randomized model [11, 29]. Furthermore,
explicit functions are known [2, 31] with unbounded-erromplexity O(log n) that
requireQ(4/n) communication in the randomized model to even achieverddya
2-V"/5 over random guessing.

More generally, the unbounded-error complexity of a fuoretf : X XY —
{0, 1} is never much more than its complexity in the other standaondets. For
example, it is not hard to see that

U(f) < min{N°(f), N1(f)} + O(1)
D(f) + O(1),

NN

whereD, N°, andN?! refer to communication complexity in traeterministic,0-
nondeterministicand Enondeterministianodels, respectively. Continuing,

U(f) < R]_/g(f) + O(l)
< O(RU(f) + log log X + [¥[]).

where Ry/3 and Rﬁ;{f refer to theprivate- and public-coin randomizednodels,
respectively. As a matter of fact, one can show that

U(f) < O(Qy5(f) +loglog [XI + Y1),

where Qj/S refers to thequantum model with prior entanglemenfn identical
inequality is clearly valid for the quantum modefithout prior entanglement.
See [3, 19] for rigorous definitions of these various modals;sole intention was
to point out that the unbounded-error model is at least agdoly

Unlike other models of communication complexity, the unibed-error
model has a particularly natural interpretation in masmalytic terms. Specifi-
cally, letM = [M;;] be a real matrix without zero entries. Define thign-rankof
M, denoted dd{1), by:

dc(M) gef mAin {rankA: M;;A;; >0 foralli, j}.

In words, dcM) is the least rank of a real matrik whose entries each have the
same sign as the corresponding entryMf A term equivalent to sign-rank is

dimension complexithence the notation dif). Paturi and Simon (1986) made
the following important observation.

Theorem 2.4 (Paturi and Simon [27, Thm. 2]).Let XY be finite sets and f
X x Y — {0, 1} a given function. Put M= [(=1)"®¥)],cx ev. Then

U(f) = logdcM) + O(L).

10



Paturi and Simon’s original observation concerixed Y = {0, 1}", but their proof
readily extends to arbitrary sets. In words, the unboureteak complexity of
a function essentially equals the logarithm of the sigrikrahits communication
matrix. This equivalence is very helpful: sometimes it isexwonvenient to reason
in terms of communication protocols, and sometimes theixifaimulation dfers
more insight.

The power of the unbounded-error model arguably makes inibet challeng-
ing model in which to prove communication lower bounds. Inrealthrough
result, Forster [5] has recently proved the first nontriiiaher bound in the
unbounded-error model for an explicit function. (By costrdnard functions have
long been known [3, 19] for all other communication model&grster’s proof
generalizes to yield the following result, which serves asuaial starting point for
our work.

Theorem 2.5 (Forster et al. [6, Thm. 3]). Let XY be finite sets and M=
[My, ]xex yev @ real matrix without zero entries. Then

VIXITY]

dc(M) > min| l.
M) M| g Y

We close this overview by discussing some closure propergé the
unbounded-error model. Given functiofisg : X x Y — {0, 1}, recall that their
XOR is the functionf @ g : X x Y — {0, 1} defined by

def
(fog)(xy) = f(xy)®g(xy).
We have:

Proposition 2.6 (Folklore). Let f,g : X x Y — {0, 1} be arbitrary. Then
U(fag) <U(f)+U(g).

Proof. Alice and Bob can evaluaté andg individually and output the XOR of
the two answers. It is straightforward to verify that thisagtgy is correct with
probability greater than/2. O

In what follows, we will be interested primarily in the conagilty of predicates
D:{0,1,...,n} — {0, 1}. Specifically, we defin&J (D) to be the unbounded-error
communication complexity of the functioh: {0, 1}" x {0, 1}" — {0, 1} given by

f(X y) = D(x A y)).

11



2.3 Pattern Matrices

An important ingredient of this work is a certain family oatenatrices that we call
pattern matricesThey arose in two earlier works by the author [32,34] and/@do
useful in obtaining strong lower bounds on communicatiorleRant definitions
and results from [32] follow.

Let t andn be positive integers with | n. Split [n] into t contiguous blocks,
each withn/t elements:

[n] ={1,2,...,?}u{?+1,...,?}u---u{@+1,...,n}.

Let V(n,t) denote the family of subsets C [n] that have exactly one element in
each of these blocks (in particuldy/| = t). Clearly,|'V(n,t)] = (n/t). For a bit
string x € {0, 1}" and a seV € V(n, t), define theprojection of x onto \by

def
Xlv = (Xil’ Xigs« o s Xh) € {0, 1}t’

wherei; < iy < --- < i are the elements &f.

Definition 2.7 (Pattern matrix). For¢ : {0,1}! — R, the (O, t, ¢)-pattern matrixis
the real matrixA given by

A= [¢(X|V ® w)]xe{o,l}n,(v,w)eq/(n,t)x{o,l}t :
In words, A is the matrix of size 2by 2(n/t)! whose rows are indexed by strings

x € {0, 1}", whose columns are indexed by paisy) € V(n, t)x{0, 1}!, and whose
entries are given by vu) = ¢(Xlv @ w).

The logic behind the term “pattern matrix” is as follows: agair arises from
repetitions of a pattern in the same way thaarises from applications af to
various subsets of the variables.

The author has recently conducted [32] a complete and egactral analysis
of pattern matrices. All we will need is the following expsam for their spectral
norm.

Theorem 2.8 (Sherstov [32, Thm. 4.3])Let¢ : {0,1}' — R be given. Let A be
the(n,t, ¢)-pattern matrix. Then

AL = f2m (?)t g@{@(sn (%)'S'/Z}.

12



3 Reduction to Dense Predicates

For a predicateD, recall thatU(D) denotes its unbounded-error communication
complexity. Let
U(n, k)

stand for the minimunJ (D) over all predicate® : {0,1,...,n} — {0, 1} with
degD) = k. In this notation, our ultimate goal will be to show tHa¢n, k) = Q(K).
This section takes a step in that direction. First, we redbedask of analyzing
U(n, k) to that of analyzindJ (n, [an]), wherea > 1/4. This focuses ourféorts on
high-degree predicates. We then further reduce the protasensepredicates,
i.e., high-degree predicates that change value at moreserdeen intervals in
{0,1,...,n}. These reductions are essential because dense predichte® lpeore
predictably and are much easier to analyze than arbitraggigmtes. Dense
predicates will be the focus of all later sections.

We start with some preparatory work (Section 3.1) and oltaimreductions
in the two subsections that follow (Sections 3.2 and 3.3).

3.1 Preliminary Notions

An obvious representation of a predicdde: {0,1,...,n} — {0,1} is the vector
(D(0), D(2), - - - , D(n)). Unfortunately, this representation is poorly suited to-ana
lyzing the number of value changesfWe therefore start by establishing a more
convenient representation. Fot 0, 1, ..., n, define the predicate

1 iftzi,
Ty & T
0 otherwise.

A moment's reflection reveals that every predicate{0,1,...,n} — {0, 1} can be
uniquely expressed in the form

D=(PT

ieS
forsome se6 C {0, 1, ..., n}. With this in mind, we define theharacteristic vector
of D to be the characteristic vector §fi.e., the vectop = (v, v1, . .., vn) given by

def |1 ifiesS,
v =
! 0 otherwise.

The advantage of this representation is that it allows ustweniently express the
number of value changes bBf

degD) = 1SN {L,....n} = v1 + -+ vn,

13



as one can easily verify.

We will make a few more simple but useful observationsDi{fand D, are
predicates with characteristic vectof® andv®, thenD; @ D, has characteristic
vectorv® @ v@. Finally, given a predicat® : {0,1,...,n} — {0, 1}, consider a
derived predicat®’ : {0,1,...,m} — {0, 1} given by

D/(t) = D(t + A),

wherem > 1 andA > 0 are fixed integers witm+ A < n. Then the characteristic
vectorsy andv’ of D andD’, respectively, are related as follows:

U, = (UO S UA>UA+L, " s UA+m) € {O’ l}m+l-

From the standpoint of communication complexidy, can be computed by hard-
wiring some inputs to a protocol fd:

D’(|X1X2 . Xm /\ yiyo. .. ym|)
= D(|X]_X2 N Xnﬂ.AOn_m_A /\ yiyz... ymlAOn_m_AD.

Therefore,
U(D’) < U(D).

3.2 Reduction from Arbitrary to High-Degree Predicates

We start with a technical lemma. Consider a Boolean vecter(vy, vy, ..., vn).
We show that there is a subvectoy, (i1, . .., vj) that is reasonably far from both
endpoints ob and yet contains many of the “1” bits presenbin

Lemma 3.1. Letv € {0, 1}", v # O". Put K 2 v1 + -+ - + vn. Then there are indices
i, jwith i < jsuch that

1 k
UEN 2 T2 T logm/k) (31)

and
minfi—1Ln—j}>j—1i. (3.2)

Proof. By symmetry, we can assume that+ vy + - -+ + vy > %k for some index
m< [n/2]. Leta € (O, %) be a parameter to be fixed later. Oet= O be the smallest
integer such that

vl+vz+---+vLm/2TJ<(l—a/)T(v1+vz+---+vm).
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Clearly,T > 1. Sincevy + vp + - - - + vpyor; < M/27, we further obtain

1+ log(n/k)
1<T<1+ 092 20) "

Now,

Ulmy27 J+1 + -0+ Uimy2T-1] = (Ul + -0+ ULm/ZT—lj) - (U]_ + -0+ ULm/ZTJ)

>(1-a)T L1 +vo+-+om)  <(1-@)T (v1+v2+-++0om)

> %a(l — )"k

> %a(l —a(T - 1)k
1 1+ Iog(n/k))

> —all-«a

2 log(2 - 2a) (33)

Seta = 0.23/(1 + log(n/K)), i = lm/2"] + 1, and j = [m/2T~1]. Then one easily
verifies (3.2), while (3.1) is immediate from (3.3). O

We are now ready to prove the desired reduction to high-eéegredicates.
Throughout this proof, we will freely use the preliminarytions of Section 3.1,
often without mention.

Lemma 3.2 (Reduction from arbitrary to high-degree predicaes). For all
integers nk with1 < k< n,

5 . 1
Uu(n, k) > G K m:rElnn {ﬁ U(m, [am‘l)},

,,,,,,

1/4<ax1

where

dgeft |1 K
|14 1+1log(n/K) |

Proof. Let D : {0,1,...,n} — {0,1} be any predicate with deDj = k. Letov =
(vo,v1, . ..,vn) be the characteristic vector &f. Apply Lemma 3.1 tods,...,vn)
and leti, j be the resulting indices K j). Put

mE i1

Sincev; + - -+ +vj > K, we have

K<mgn (3.4)



Define predicateD~ (™1 ... DO ... D™! each a mapping0,1,...,m —
{0, 1}, by:

D't)=D(t+i—-21+r) forr =—-(m-1),...,(m-1).

Then (3.2) shows that each each of these predicates can lptmarby taking a
protocol forD and fixing all but the firsin variables to appropriate values. Thus,

u(D) > U(D") forr = —-(m-1),...,(m-1). (3.5)

The characteristic vector @° is (+, v;, .. .,vj) for somex € {0, 1}, which means
that degD®) = vj + -+ + vj. If deg(D®) > m/2, then the theorem is true fd@ in
view of (3.4) and (3.5). Thus, we can assume the contrary:
1
K<0i+---+vj<§m. (3.6)
If we write the characteristic vectors BF (™1, .. D™ one after another as
row vectors, we obtain the following matrix

[« * * * £ e * * * vj

% % * * % .. % * Ui Uis1

* * * * * * U Vir1 Vjg2
A=| % v V41 Vg2 Vg3 -t Vj-3 Vj—2 Vj_1 U]
* Vj_p Vj-1  Uj * e * * * *
* Uj_1 U] * ® .. * * * *
T * * % .. % * % *

Let T be a suitably large integer to be named later, andi®tu®@, ..., u(™ be
independent random vectors, each selected uniformly frowng the rows ofA.
Put

u ® 00 e u?g...e um,
We will index the columns ofA and the components of all these vectors by
0,1,...,m (left to right). Let p, stand for the fraction of 1s in theh column
of A. Every column ofA, except the zeroth, containg...,v; and somen - 1
additional values. One infers from (3.6) that

K 3
—<p <= =1,...,m. .
<<y (r=1...m @.7)
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Therefore,

E[i+-+Wn| = Y E[U®)r & - & @D)]

1M 1D

= (% - :—ZL(l - 2pr)T) by Proposition 2.1
1 1
> Em(l— W) by (3.6), (3.7).
Fix T & [(In2)m/K]. Then by the last calculation, there is a vector=

(U, Ug, ..., Uy that satisfiesu; + --- + uy, > M/4 and is the XOR of som&
rows of A. In other words, there is a predica®® : {0,1,...,m} — {0,1}
that satisfies de@®) > m/4 and is the XOR of somd < g—';g predicates
from amongD~(™Y, ... D™ This completes the proof in view of (3.5) and
Proposition 2.6. O

3.3 Reduction from High-Degree to Dense Predicates

The proof of Lemma 3.2 made critical use of random walk$Gt}". The work in
this section also relies heavily on random walks, excepathjament is now more
involved. In particular, we will need the following lemmaathbounds the mixing
time of a random walk.

Lemma 3.3 (Razborov [28, Lem. 1}). Fix a probability distributionu on {0, 1}".
Let{vD, @, ..., v} be a basis fof0, 1}" as a vector space over GE). Put

p = min{u(©@), ue®), w0, ... w0}

Letu®, ..., u(™ be independent random vectors, each distributed according
Then for every € {0, 1}",

1
‘pr[u(l)@...@um” .

< 1
) ez-l-p-

We are ready to formally define dense predicates and givertimeiged reduction.

Definition 3.4 (Dense predicate).Let n,b be positive integers and > 0 a real
number. A predicat® is called 6, b, d)-denseif D is a predicatd0, 1,...,n} —
{0, 1} with characteristic vectowg, vy, . .., vn) satisfying
n
Urb+1 + Urb42 + - + U+1)p = d forallr=0,1,2,..., {BJ -1

1Razborov’s proof is in Russian. For an English translatsee Jukna [10, Lem. 24.3].

17



Lemma 3.5 (Reduction from high-degree to dense predicates)Let D :
{0,1,...,n} — {0,1} be a predicate witldegD) > %n. Let b be any integer with
1< b< 550 Then

b
u(d)> nlogn

u(D"),
where D is a certain(m, [log nib, Y—}mb)-dense predicate angé—on sm<n.

Proof. Let (vo,v1,...,uvn) be the characteristic vector &f. Apply Lemma 3.1 to
(v1,...,vn) and leti, £ be the resulting indices K ¢). It will be convenient to work
with a somewhat smaller subvecimcrj:‘ef (vi,...,vj), where we defing € {i,..., {}
to be the largest integer so thak (j—i+1). Sinceb < zt5n andvj +- - - +v¢ > 755N,
this gives:

vi+ e+ 0 > 5==N (3.8)

.. def . . . . .
Definingm =" j — i + 1, we infer thatzt;n < m < n, as desired. We view =

(vi,...,vj) as composed of consecutive blocks, eldfits long:
0= Vis -« Vicb-1 || Vibs -« - Vi1 oo o , . (3.9)

block 1 block 2 block m/b

Forr = 1,2,...,b, define therth layer ofv, denotedZ", to be the vector obtained
by taking therth component from each of the above blocks:

def
= (VieL4rs VieLibirs - - -5 Vj—ber) € {0, 1}m/b-

We say of a layerz that it is perfectif it does not have[logn] consecutive
components equal to. 0f more than 7—})0b of the layers are perfect, take’ to
be the predicate with characteristic vecty& - - - © vj_1,vj,...,vj). Clearly,D’" is
(m, [logn1b, %oob)-dense. Furthermoré)(D’) < U(D), by the same argument as
in Lemma 3.2. As a result, the theorem holds in this case.

Thus, we may assume that at Ieast—(%)b of the layers are not perfect. In
view of (3.8), at most (% 3—éo)b layers can be zero vectors. Therefo%b or more
layers are nonzerand not perfect. These are the only layers we will consider in
the remainder of the proof.

Define predicate® (M pD-(M20)  p-b PO pb .. D™ D™D eacha
mapping{0,1,...,m} — {0,1}, by D"(t) = D(t +i — 1 +r). These are a subset of
the predicates from the proof of Lemma 3.2, and again

U(D) > U(D") for eachr. (3.10)
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Writing the characteristic vectors of these predicates after another as row

vectors yields the following matri®:

B=
[ %

%k

%k

*

* * * * * block 1 | ]
* * * * | block1 | block2
block 1 | block 2 | block3 | --- | block® -2 [ block# — 1 | block ¥ | |,
block® —1 | block¥ | * s *
block § * * * * *

where the blocks refer to the partition in (3.9). Detbe a suitably large integer
to be named later, and letY, u®, ..., u(m be independent random vectors, each
selected uniformly from among the rowsBf Put

u

def

We will index the columns oB and the components af by 0,1,..., m (left to
right). Key to analyzing the distribution afis the following claim.

Claim 3.5.1. Let T > (m/b) Inn. LetA € {1,2,..., b} be such that the layer
Z% is nonzero and not perfect. Letes{0,b,2b,3b,...} be such that s

Pr [(U)S+A = (Wsibta = -+ = (U)st(flognl-1)b+a = 0] <

[lognlb < m. Then

2
—

Proof. Let B’ be the matrix whose columns are the following columns of

B: s+A,s+b+A,...,s+ ([logn] — 1)b + A, in that order. Since®

is nonzero and not perfect, it hflegn] + 1 consecutive components with
values either (0,...,0,1 or 1,0,0,...,0. ConsequentlyB’ must contain
one of the following submatrices, each of sigiegn] + 1) x [logn]:

[0
0
0

0
0
0

0 ---
0 ---
0 ---

0
0
0

0
0
1

0]
1

*
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The <b:Iaim now follows immediately from Lemma 3.3, sincd'@" +
el < 2/n. O

We now return to the proof of the lemma. FIx= [(m/b)Inn]. Lets = 0 and
apply Claim 3.5.1 with every € {1,2, ..., b} for which the layerZ® is nonzero
and not perfect. Since there are at Ie%b such choices fon, we conclude by
the union bound that
Pri(uy+ u)z+---+(u) < 1b<b2
1 2 [lognib 700 S n
The same calculation applies to the next seflofgnlb components ol (i.e.,
s = [lognlb), and so on. Applying a union bound across all theg€lognib)
calculations, we find that with probability

m 2
1- [lognlb (b' ﬁ) >0,

the predicate whose characteristic vectan is (m, [lognib, %oob)-dense. Fix any
such predicat®’. SinceD’ is the XOR ofT < (nlogn)/b predicates from among
D-(MD) . D™P the lemma follows by (3.10) and Proposition 2.6. O

4 A Lower Bound for Approximation by Polynomials

Crucial to our study of dense predicates are certain apmatidon problems to
which they give rise. Roughly speaking, the hardness of surchpproximation
problem for low-degree polynomials translates into the wamication hardness
of the associated predicate. This section carries out thiepiirt of the program,
namely, showing that the approximation task at hand is hardidw-degree
polynomials. We examine this question in its basic mathamlatorm, with no
extraneous considerations to obscure our view. How comeation fits in this
picture will become clear in the next two sections.
For a finite seiX c R, a functionf : X — R, and an integer > 0O, define

(6% L minmaxip(x) — f(X)I.
peP; xeX

In words, €*(f, X,r) is the least error (in the uniform sense) to which a degree-
r polynomial can approximatd on X. The following well-known fact from
approximation theory is useful in estimating this error.
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Fact 4.1 (see, e.g., [30, Thm. 1.15]Let X = {Xg, X2, ..., X-42} be a set of + 2
distinct reals. Let f: X — R be given. Putu(X) def (X=X)(X = %X2) -+ - (X = Xr12).
Then X

|SE2 16 (%) ()]
Y [/ ()]

e(f,Xr)=

To develop some intuition for the work in this section, cadesithe following
approximation problem. Let : {0,1,...,n} — {0, 1} be defined by

(09 = {1 if x = [n/2],

0 otherwise

It is well-known that any polynomial that approximatéswithin 1/3 has degree
Q(n). For example, this follows from work by Paturi [26]. The apgroation
problem of interest to us is similar, except that our poirdedinot be as evenly
spaced as,d, ..., n but rather may form clusters. As a result, Paturi’s resuits a
methods do not apply, and we approach this questifierdintly, using the first-
principles formula of Fact 4.1. Specifically, our main reésnlthis section is as
follows.

Lemma 4.2 (Inapproximability by low-degree polynomials). Let positive inte-
gers Ld and areal number B d be given. Letx; :i=1,...,L; j=1,...,d} be
a set of Ld distinct reals, wherej> [(i — 1)B, iB] and

IXij =X pl>1  for (i, )= (i, ) (4.1)

Let % € [3LB, 3LB]. Then any polynomial p with

l l 4d+1
p(Xo) = 1, Ip(xij)l < > (ﬁ) foralli, |

has degree at leag§L - 1)d.
Proof. Define f(X) by
f(x):{l if X = X,

0 if x = x for somei, j.
By symmetry, we can assume that € [sLB, 3LB]. Fix an integer/ < [4L] so
thatxg € [(£ — 1)B, ¢B]. Put

def

X {xjUfx;j:i=1...,2(-1; j=1,...,d}.
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With w(x) %' T,ex(x - ), Fact 4.1 implies that

1 minyex |’ (X)|
EFHXIX-2)2 — ———. 4.2
( )2 X w0 (0) (4.2)
We proceed to estimate the denominator and numerator f (#.2 = x;; for
somei, j, the lemma is vacuous. Thus, we can assume that the quantity

o6 = mi -
i=1,..., |2r{1)_1’|x0 Xl
j=1..d
satisfiess > 0. We have:
d 20-1 d 20-1 X0 - X
WOl = [ ][ ]ro-xil <6 1—“_[8{ - w
j=1 i=1 j=1 i=1
<li—f+1
d
<o-(0eB*h. (4.3)

On the other hand, everyj € X satisfies:

d
) 4.1)
Wi =[] x=xyl > s [ ] i-xpl
xeX\ (X /) =1 i=1..20-1
il <11 +1)
. d l_[ BWXH — Xi/j/|J
- =1 i=1...20-1 B
il -1 +1) R
oo B4\
> 5-(7) . (4.4)
Now (4.2) yields, in view of (4.3) and (4.4):
1/ 1 4d+1
(f,XIX|-2)= =|— ,
ctxm-as ()
which concludes the proof sing¥| > (3L - 1)d + 1. o

5 Smooth Orthogonalizing Distributions

We now transition to the final ingredient of our proainooth orthogonalizing
distributionsfor a given predicatd. This informal term refers to a distribution
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on {0, 1}" that does not put too little weight on any point (teeoothpart) and
under which £1)Pta+-+%) js approximately orthogonal to all low-degree parity
functionsys (the orthogonalizingpart). Our task is to establish the existence of
such distributions for every dense predicate. Crucial imuhdertaking will be the
inapproximability result that we proved in Section 4.

For a polynomialp, a predicate : {0,1,...,n} — {0, 1}, and a numbeN > O,
define theadvantageof p in computingD by

dv@.N,D) €' N min {(-1)POp(t - 0 1)PO p(t
advp.N.D) = N min {(-1)°Op(p)} + tz(; > (-1°0p(o).
This quantity is conceptually close to the correlationpaind D with respect the
binomial distribution. There is a substantiaffdrence, however: ip andD differ
in sign at some point, this causes a penalty term to be stdbttadNVe will be
interested in valuell > 1, when even a single error gfresults in a large penalty.
Define
adv (N, D) def mglx{adv(p, N, D)},

where the maximization is ovgy € P, with |p(t)] < 1 fort = 0,1,...,n. As we
now show, this quantity is closely related to smooth ortmadjiaing distributions
for D.

Theorem 5.1 (Smooth distributions vs. approximation by poynomials). Given
a predicate D: {0,1,...,n} — {0,1} and an integer r> 0. Then for every N> 1,
there is a distributionu on {0, 1}" such thatu(x) > ﬁ for each x and

1
D
‘I; |(~1)P6e 290 x5 (]| < Harg 2w (N — 1.D) for [S| <.

def

Proof. Putf(x) = (—1)P*1++X) and consider the following linear program:

variables: u(x) forall x; €

minimize: €

subjectto: | > u()f()xs(¥|<e forisi<r,
Xe{01j" (LP1)
D, H¥=1
xe{0,1}"
u(x) > L for eachx.
2'N
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It suffices to show that the optimum of this program is at rrﬁ-)ablvr(N -1,D).
For this, we pass to the dual:

variables: as (for |S| <r); & (forallx); A
.1 1
maximize: N (N-DA + on Z (A+ &)
xe{0,1}"
subject to: f(X) Z asys(X) = A+ & for all x,
ISisr (LP2)
Dlasl <1,
[S|<r
& 20 for all x,
A eR.

The dual programs (LP1) and (LP2) are both feasible and thus the same finite
optimum. Therefore, our task reduces to proving that theraph of (LP2) is at
most% adv (N — 1, D). Fix an optimal solution to (LP2). Then

) ) asys()=A+&  forallx (5.1)

|S|<r

since in case of a strict inequality \we could increase the corresponding variable
&x by a small amount to obtain a feasible solution with greasdwe. Furthermore,
we claim that

0.1}
x<(0.4) IS)<r

A= min {f(x) Z aSXS(x)}. (5.2)

Indeed, letm stand for the right-hand side of (5.2). Than< m because eacy
is nonnegative. It remains to show that= m. If we hadA < m, then (5.1) would
imply thatéx > m— A for all x. As a result, we could obtain a new feasible solution
& = éx+ (A—m)andA’ = m. This new solution satisfie§’ + &, = A + & for all x.
Moreover,A’ > A, which results in a greater objective value and yields th&es
contradiction. In summaryy = m.

In view of (5.1) and (5.2), the optimum of (LP2) is

1 : 1
N m¢ax{(N -1) mxln{ f(X)o(X)} + on ZX: f(x)qb(x)}, (5.3)
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where the maximization is over functiopof the form

$() = > asys(x),  where > las| <1 (5.4)

[Sl<r [SI<r
Fix ¢ that optimizes (5.3). By (5.4),

max {|¢(X
nax, {le(Q1} <

Put
bom) € 60y Xom)

0€S,
Since f is symmetric,¢ and¢sym have the same objective value in (5.3). By the
symmetrization argument (Proposition 2.3), there is aamate polynomiabp € P,
with
Psym(X) = P(XL + - + Xn) for all x € {0, 1}".

Fort=0,1,...,n,

PO =1p(Lx -+ 1+0+ -+ O)f < max {lésym()l} < max {i#(x)l} <1

ttimes

Replacingp(X) by p(x; + - - - + %) in (5.3), we see that the optimum of (LP2) is at
most

.....

where the maximization is overe P, with [p(t)] < 1fort =0, 1,...,n. This latter
quantity is adw(N - 1, D), by definition. O

Theorem 5.1 states that a smooth orthogonalizing distoibufor D exists
whenever low-degree polynomials have negligible advantiagcomputingD.
Accordingly, we proceed to examine the advantage achievapl low-degree
polynomials.

Lemma 5.2 (Each dense predicate induces a hard approximatoproblem).

Let D be an(n, B,2d + 1)-dense predicate, where B, d are positive integers.
Assume thaady (D, N) > n2-"/6 where r < degD) and N > 0 are given. Then
there are g]d distinct reals{x;; : i = 1,...,[§]; j = 1,...,d} and a polynomial
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p € P; such that:

x;j € [(i — 1)B,iB] foralli, j,
IXij — x| > 1 forall (i, j) # (', j'),
Ip(xij)l < V/N for all i, j,

p(x0) =1 for some ¥ € [2n, 3n].

Proof. Fix q € P, with |q(t)] < 1 fort =0,1,...,nand advq, D, N) = ady (D, N).
Fixke {0,1,...,n}with

.....

Since degf) < degD), the quantity(?)(—l)D(”q(t) is positive for at mosh values
oft=0,1,..., n. Therefore,

adv@, D,N) <n- g(—l)D(")q(k) <n- g

Recalling that adwf, D, N) > n2-"®, we infer thatin < k < 3n. Put

def
Iq(k)l

Takingxo &'k, we havein < xo < 2nandp(xo) = 1, as desired. It remains to find
the pointsx;;. For this, we need the following claim.

p(t) q().

Claim 5.2.1. Let a b be integers with & b and (@) # D(b). Then|p(&£)| <
4/n/N for somet € [a, b].

Proof. If gqvanishes at some point ig,[b], we are done. In the contrary case,
gis nonzero and has the same sign at every poird,diff [ which means that
either q(a)(-1)°@ < 0 or q(b)(-1)°® < 0. Since adwg, D,N) > 0, we

have:
{( ) (-1)PYq (t)} () (]

min{|q(@)l, lq(b)l} < N 20

n
<N e
< ¥ 9,

and hence migp(a)l, | p(b)l} < vn/N. o
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Consider any segment [¢ 1)B + 1,iB], for an integet with 1 < i < | g]. SinceD
is (n, B, 2d + 1)-dense, it changes value at leadttilnes in [( — 1)B + 1,iB]. As a
result, there are at leadtpairs of integersds, b1), ..., (ag, bq) with

D(a1) # D(b1), D(az) # D(b), ..., D(aqg) # D(bq)
and
(i-1)B+1l<a<bi<a<hby<---<ag<by<iB.
In view of Claim 5.2.1, this provides the desirdghoints in [ — 1)B+ 1,iB]. O

Our work in this and the previous section furnishes all thg kegredients
needed to deduce the existence of smooth orthogonalizgighditions for dense
predicates. Putting them together yields the main resuhisfsection:

Theorem 5.3 (Smooth orthogonalizing distributions for derse predicates).Let
D be an(n, B, 2d + 1)-dense predicate, where B, d are positive integers with Bn
and n3> 3B. Then there is a distributiop on {0, 1}" such that:

1 1
,Ll(X) = % W for each X
_ 1\D(X1+-+%n) —7n/6 n_d
B[22 s3] < 2 foris) < oo
Proof. Put N %" 3n4+15_|n view of Theorem 5.1, it dfices to show that

ady(D,N-1) < n2-"6 for all r < g—g. So assume, for the sake of contradiction,

that ady(D, N - 1) > n2™"6 for somer < 2. Since degD) > 4(2d + 1), we
haver < degD). Thus, Lemma 5.2 is applicable and yieI%% distinct reals

{xj:i=1...,5 j=1,...,dyand a polynomiap € P; such that:
xj € [(i - 1)B,iB] for all i, j,
I%j = Xl > 1 forall (i, j) # (", J'),
4d+1 .
POl < 5 (2) for alli, j,
p(xo) =1 for somexg € [2n, 3n].

Applying Lemma 4.2 withL def 8, we infer thatr > (%% - l) d, which yields

r> g—g since% > 3. We have reached the desired contradiction tog—g. |
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6 Proof of the Main Result

This section consolidates the preceding developmentsdatomain result, an
optimal lower bound on the unbounded-error communicatampexity of every
symmetric function. As outlined earlier, we will first soltieis problem for dense
predicates and then extend our work to the general case eiaetifuctions of
Section 3.

As a first step, we identify a pattern matrix inside the comitation matrix of
a given predicat®.

Lemma 6.1. Let D : {0,1,...,m} — {0,1} be a given predicate. Let F be

the (2v, v, f)-pattern matrix, where < m/4 and f(2) ' (~1)°(®. Then F is a

submatrix of

[(_1)D(IX/\yl)] )
Xe{0,1}M, ye{0,1j™

The author has proved an almost identical statement ireeavbrk [32, Lem. 6.1].
For the reader’s convenience, we reproduce that proof Withneeded adaptations
in Appendix A.

We are now ready to solve the problem for all dense predicates

Theorem 6.2 (Communication complexity of dense predicat¢sLeta > 0
be a syficiently small absolute constant. Let D be ém, b[logn], 7—(1)0b)-dense
predicate, wherg; n < m< n and b= [an/log? n]. Then

U(D)>Q($).

Proof. Throughout the proof we will, without mention, use the asgtiom thatn
is large enough. This will simplify the setting of paramstehe manipulation of
floors and ceilings, and generally make the proof easierlkoio

Fix an integer € [$m, 2m] with bflogn] | v. Clearly,» > 3b[logn]. Define
D’ :{0,1,...,v} — {0,1} by D’(t) = D(t). SinceD’ is (v, b[logn], 7—(1)0b)-dense,
Theorem 5.3 provides a distributignon {0, 1}* with

w2 > 270 2 "/sso0m for eachz € {0, 1)°, (6.1)
v

6-140Tlogn] (6.2)

E[2P@u@ns@] <2 forisi<
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Defined : {0, 1}’ — R by ¢(2) €' (~1)P(? 4(2). Restating (6.2),

1B(S)| < 2776 for |S| < (6.3)

v
6-140Tlogn]
Furthermore, Proposition 2.2 reveals that

max|¢(S)| < 27 (6.4)
Sclu]

Let A be the (2, v, 877¢)-pattern matrix. By (6.3), (6.4), and Theorem 2.8,
A < 47° 27" /12140110gn] (6.5)

By (6.1), every entry ofA has absolute value at least™1@ “"/3s00o:n. Combining
this observation with (6.5) and Theorem 2.5,

dcpr) > 2'/12140110gm ™ ""/35010gn_
Recall that > % m > Wlso n. Hence, for a suitably small constant> O,
dc(p) > 2%/ logn)

It remains to relate the sign-rank Afto the communication complexity &.

Let F be the (2, v, f)-pattern matrix, wherd () € (~1)P(@_ Then dcf) = dc(F)

becauseA andF have the same sign pattern. However, Lemma 6.1 statef tisat
a submatrix of the communication matrix bf namely,

def /1 \D(xAy))
M = [( 1) ]xe{o,l}m,ye{o,l}m'

Thus, dcM) > dc(F). Summarizing,
dc(M) > dc(F) = dc(A) > 2/ legn),
In view of Theorem 2.4, the proof is complete. O

The hard work is now behind us. What remains is to apply theataohs of
Section 3, in reverse order.

Corollary 6.2.1 (Communication complexity of high-degreepredicates). Let
D:{0,1,...,n} — {0,1} be a predicate witldegD) > 2n. Then

U(D)>Q( n )

log*n
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Proof. Immediate from Lemma 3.5 and Theorem 6.2. m]

Corollary 6.2.2 (Communication complexity of arbitrary pr edicates).Let D :
{0,1,...,n} — {0, 1} be a nonconstant predicate. Pufj:‘?{ deg@). Then

K
v > Q([1 + log(n/k)] log* n)'

Proof. Immediate from Lemma 3.2 and Corollary 6.2.1. O

At last, we arrive at the main result of this paper.
Theorem 1.1(Restated from p. 4)Let D: {0,1,...,n} — {0, 1} be given. Then

U(D) = 6(degD)).
where the® notation suppressedsgn factors.

Proof. The lower bound otJ (D) follows by Corollary 6.2.2. To prove the upper
bound, letp be a polynomial of degree ddg) with

sign(p(t)) = (-1)°®  fort=0,1,...,n.

Put
def def
M [P0 RE [pOags e+ )]

where the indices run as usual;y € {0,1}". Then My, Ry, > 0 for all x andy.
Therefore,

deg)
[

dc(M) < rankR) < Z

i=0
In view of Theorem 2.4, this completes the proof. ]

n) < 20(degD)logn).
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A Pattern Matrices Inside Communication Matrices
The purpose of this appendix is to prove Lemma 6.1, neededdtid 6.

Lemma 6.1(Restated from p. 28)Let D : {0,1,...,m} — {0, 1} be a given pred-

icate. Let F be thé2v, v, f)-pattern matrix, where < m/4 and f(2) &' (-1)P(2),

Then F is a submatrix of

—1)\D(xAy)
[( 1) ]xe{O,l}m, ye{o,1jm’ (A1)
Proof (adapted from Sherstov [32, Lem. 6.1By definition,
— [(=1PUxvew)
F= [( n=w ]xe{O,l}ZV, (Vw)eV(20,0)x{0,1)"
We will define one-to-one maps
a: {0,1% - (01",
B: V() x{0,1" — {0,1}™
such that
| Xv @ w | = |a(X) ABNV,w) | for all x,V, w. (A.2)

Obviously, this will mean thaf is a submatrix of (A.1).
As usual, let juxtaposition of bit strings stand for theimcatenation, e.g.,
(0,1)(1,0,1) = (0,1, 1,0, 1). With this convention, define by

def
a/(Xl, X2, ..., XZU) E (Xl, —1X1, X2, X2, ..., X2y, ﬂXQU) Om_4v.
Defineg by

BV,uw) &

wherei; < i» < --- < i, are the elements &f andy : Z x Z — {0, 1}* is given by

Y(iz, w1) y(iz, wa) -+ y(ipr wy) O™,

(1,0,0,0) ifaisodd,bis even,
def |(0,1,0,0) ifaisodd,bis odd,
y@b) = . -
(0,0,1,0) ifaisevenpiseven,
(0,0,0,1) ifaisevenbisodd.

It is now straightforward to verify (A.2).
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