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Abstract

We present a greatly simplified proof of the length-space trade-off result for resolution in
Hertel and Pitassi (2007), and also prove a couple of other theorems in the same vein. We point
out two important ingredients needed for our proofs to work, and discuss possible conclusions to
be drawn regarding proving trade-off results for resolution. Our key trick is to look at formulas
of the type F = G∧H , where G and H are over disjoint sets of variables and have very different
length-space properties with respect to resolution. This trick is not present in the proof of Hertel
and Pitassi, and thus their techniques can likely be used to prove results not obtainable by our
methods.

In these notes, we present a simplification of the length-space trade-off result for resolution in [9]
(soon to appear together with [8] as [10]), and show how the same ideas can be used to prove other
related theorems. The simplified proof is given in Section 1. In Section 2 we prove two other trade-
off results of a similar flavour. We point out two key ingredients needed for our proofs to work in
Sections 3 and 4, and discuss possible conclusions to be drawn regarding proving trade-off results
for resolution. Finally, in Section 5 we mention a couple of open problems that seem both natural
and interesting in light of the preceding discussion. Definitions, notation and some previously known
results used are given in Appendix A for reference.

1 A Proof of Hertel and Pitassi’s Trade-off Result

Using the notation of Appendix A, the length-variable space trade-off theorem of Hertel and Pitassi
can be expressed as follows.

Theorem 1.1 ([9]). There is a family of CNF formulas {Fn}∞n=1 of size Θ
(

n3
)

such that:

• The minimal variable space of refuting Fn in resolution is VarSp(Fn ` 0) = Θ(n).

• Any resolution refutation π : Fn ` 0 in minimal variable space has length exp(Ω(n)).

• Adding just 3 extra units of storage, it is possible to obtain a resolution refutation π′ in variable
space VarSp(π′) = VarSp(Fn ` 0) + 3 = Θ(n) and length L(π′) = O(n3), i.e., linear in the
formula size.

We note that the CNF formulas used by Hertel and Pitassi, as well as those in our proof, have
clauses of width Θ(n).

The idea behind our simplified proof is as follows. Take formulas Gn that are really hard
for resolution and formulas Hm which have short refutations but require linear variable space,
and set Fn = Gn ∧ Hm for m chosen so that VarSp

(

Hm ` 0
)

is just a small constant larger
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than VarSp
(

Gn ` 0
)

. Then refutations in minimal variable space will have to take care of Gn, which
requires exponential length, but adding one or two literals to the memory we can attack Hm instead
in linear length. We write down the formal details for completeness.

Proof of Theorem 1.1. Let Gn be CNF formulas as in Theorem A.2 having size Θ(n), refutation
length L(Gn ` 0) = exp(Ω(n)) and refutation clause space Sp(Gn ` 0) = Θ(n). Let us define
g(n) = VarSp(Gn ` 0) to be the refutation variable space. We know that Ω(n) = g(n) = O

(

n2
)

.

Let Hm be the formulas

Hm = y1 ∧ ... ∧ ym ∧ (y1 ∨ ... ∨ ym) . (1)

It is not hard to see that there are resolution refutations π : Hm ` 0 in length L(π) = 2m + 1 and
variable space VarSp(π) = 2m, and that L(Hm ` 0) = 2m+1 and VarSp(Hm ` 0) = 2m are also the
lower bounds (all clauses must be used in any refutation, and the minimum space refutation must
start by downloading the wide clause and some unit clause, and then resolve).

Now define

Fn = Gn ∧ Hbg(n)/2c+1 (2)

where Gn and Hbg(n)/2c+1 have disjoint sets of variables. By Observation A.4, any resolution refuta-
tion of Fn refutes either Gn or Hbg(n)/2c+1. We have

VarSp
(

Hbg(n)/2c+1 ` 0
)

= 2 · (bg(n)/2c + 1) > g(n) = VarSp(Gn ` 0) , (3)

so a resolution refutation in minimal variable space must refute Gn in length exp(Ω(n)). However,
allowing at most two more literals in memory, the resolution refutation can disprove the formula
Hbg(n)/2c+1 instead in length linear in the (total) formula size.

Thus, we have a formula family {Fn}∞n=1 of size Ω(n) = S (Fn) = O
(

n2
)

refutable in length and
variable space both linear in the formula size, but where any minimum variable space refutation must
have length exp(Ω(n)). Adjusting the indices as needed, we get a formula family with a trade-off of
the form stated in Theorem 1.1 (or actually slightly stronger).

2 Some Other Trade-off Results for Resolution

Using a similar trick as in the previous section, we can prove the following length-clause space trade-
off.

Theorem 2.1. There is a family of k-CNF formulas {Fn}∞n=1 of size Θ
(

n3
)

such that:

• The minimal clause space of refuting Fn is Sp(Fn ` 0) = O(n).

• Any resolution refutation π : Fn ` 0 in minimal clause space must have length L(π) = exp(Ω(n)).

• There are resolution refutations π′ : Fn ` 0 in asymptotically minimal clause space Sp(π′) =
O

(

Sp(Fn ` 0)
)

and length L(π′) = O
(

n3
)

, i.e., linear in the formula size.

The same game can be played with refutation width as well.

Theorem 2.2. There is a family of k-CNF formulas {Fn}∞n=1 of size Θ
(

n3
)

such that:

• The minimal width of refuting Fn is W(Fn ` 0) = O(n).

• Any resolution refutation π : Fn ` 0 in minimal width must have length L(π) = exp(Ω(n)).

• There are refutations π′ : Fn ` 0 in width W(π′) = O
(

W(Fn ` 0)
)

and length L(π′) = O
(

n3
)

,
i.e., linear in the formula size.

We only present the proof of Theorem 2.1. Theorem 2.2 is proved in exactly the same manner.
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Proof of Theorem 2.1. Let Gn be a 3-CNF formula family as in Theorem A.2 having size Θ(n),
refutation length L(Gn ` 0) = exp(Θ(n)) and refutation clause space Sp(Gn ` 0) = Θ(n). Let Hm

be a 3-CNF formula family as in Theorem A.3 of size Θ
(

m3
)

such that L(Hm ` 0) = O
(

m3
)

and
Sp(Hm ` 0) = Θ(m). Define

g(n) = min
{

m |Sp(Hm ` 0) > Sp(Gn ` 0)
}

. (4)

Note that since Sp(Hm ` 0) = Ω(m) and Sp(Gn ` 0) = O(n), we know that g(n) = O(n).

Now as before let Fn = Gn ∧ Hg(n), where Gn and Hg(n) have disjoint sets of variables. By
Observation A.4, any resolution refutation of Fn is a refutation of either Gn or Hg(n). Since g(n)

has been chosen so that Sp
(

Hg(n) ` 0
)

> Sp(Gn ` 0), a refutation in minimal clause space has to
refute Gn, which requires exponential length. However, since g(n) = O(n), Theorem A.3 tells us that
there are refutations of Hg(n) in length O

(

n3
)

and clause space O(n).

3 Making the Main Trick Explicit

The proofs of the theorems in Sections 1 and 2 come very easily; in fact almost too easily. What is
it that makes this possible? In this and the next section, we want to highlight two key ingredients in
the constructions.

The common paradigm for the proofs of Theorems 1.1, 2.1 and 2.2 is as follows. We are given
two complexity measures M1 and M2 that we want to trade off against one another. We do this by
finding formulas Gn and Hm such that

• The formulas Gn are very hard with respect to the first resource measured by M1, while M2

(

Gn

)

is at most some (more or less trivial) upper bound,

• The formulas Hm are very easy with respect to M1, but there is some nontrivial lower bound
on the usage M2

(

Hm

)

of the second resource,

• The index m = m(n) is chosen so as to minimize M2

(

Hm(n)

)

−M2

(

Gn

)

> 0, i.e., so that Hm(n)

requires just a little bit more of the second resource than Gn.

Then for Fn = Gn∧Hm(n), if we demand that a resolution refutation π must use the minimal amount
of the second resource, it will have to use a large amount of the first resource. However, relaxing the
requirement on the second resource by the very small expression M2

(

Hm(n)

)

− M2

(

Gn

)

, we can get
a refutation π′ using small amounts of both resources.

Clearly, the formula families {Fn}∞n=1 that we get in this way are “redundant” in the sense
that each formula Fn is the conjunction of two formulas Gn and Hm which are themselves already
unsatisfiable.

Formally, we say that a formula F is minimally unsatisfiable if F is unsatisfiable, but removing
any clause C ∈ F , the remaining subformula F \ {C} is satisfiable. We note that if we would
add the requirement in Sections 1 and 2 that the formulas under consideration should be minimally
unsatisfiable, the proof idea outlined above fails completely. In contrast, the result in [9] seems to be
independent of any such conditions. What conclusions can be drawn from this?

On the one hand, trade-off results for minimally unsatisfiable formulas seem more interesting,
since they tell us something about a property that some natural formula family has, rather than
about some funny phenomena arising because we glue together two totally unrelated formulas.

On the other hand, one could argue that the main motivation for studying space is the connection
to memory requirements for proof search algorithms, for instance algorithms using clause learning.
And for such algorithms, a minimality condition might appear somewhat arbitrary. There are no
guarantees that “real-life” formulas will be minimally unsatisfiable, and most probably there is no
efficient way of testing this condition.1 So in practice, trade-off results for non-minimal formulas
might be just as interesting.

1The problem of deciding minimal unsatisfiability is NP-hard but not known to be in NP. Formally, a language L is
in the complexity class DP if and only if there are two languages L1 ∈ NP and L2 ∈ co-NP such that L = L1∩L2 [12].
minimal unsatisfiability is DP-complete [13], and it seems to be commonly believed that DP * NP ∪ co-NP.
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4 An Auxiliary Trick for Variable Space

A second important reason why our proof of Theorem 1.1 gives sharp results is that we are allowed
to use CNF formulas of growing width. It is precisely because of this that we can easily construct the
needed formulas Hm that are hard with respect to variable space but easy with respect to length. If we
would have to restrict ourselves to k-CNF formulas for k fixed, it becomes much more difficult to find
such examples. Although the formulas in Theorem A.3 could be plugged in to give a slightly weaker
trade-off, we are not aware of any family of k-CNF formulas that can provably give the very sharp
result in Theorem 1.1. (Note, however, that the formula families used in the proofs of Theorems 2.1
and 2.2 consist of k-CNF formulas).

This is not the only example of a space measure behaving badly for formulas of growing width.
Another example of this is the relationship between clause space and width. When clause space
began to be studied in the late 1990s, it was soon noted in several papers (for instance [1, 4, 15]) that
the lower bounds on refutation width and refutation space for different formula families coincided.
In [2], it was shown that this was not a coincidence, but that the minimal refutation clause space
upper-bounds the minimal refutation width by

Sp(F ` 0) ≥ W(F ` 0) − W
(

F
)

+ 3 , (5)

but it remained open whether space and width could be separated or the two measures were asymp-
totically the same. In [11], we proved that the inequality is asymptotically strict in the sense that
there are k-CNF formula families Fn with W(Fn ` 0) = O(1) but Sp(Fn ` 0) = Θ(log n).

However, if we are allowed to consider formulas of growing width, the fact that the inequality (5)
is not tight is entirely trivial (as was remarked in [11]). Namely, let us say that a CNF formula F is
k-wide if all clauses in F have size at least k. In [7], it was proved that for F a k-wide unsatisfiable
CNF formula it holds that Sp

(

F ` 0
)

≥ k + 2. So in order to get a formula family Fn such that

W(Fn ` 0) − W
(

Fn

)

= O(1) but Sp(Fn ` 0) = ω(1), just pick some suitable formulas {Fn}∞n=1 of
growing width.

In our opinion, these phenomena are clearly artificial. Since every CNF formula can be rewritten
as an equivalent k-CNF formula without increasing the size more than linearly, the right thing to do
when studying space measures in resolution seems to be to require that the formulas under study
should have constant width.

In the next and final section, we propose two slightly different trade-off problems, which are
phrased so as to circumvent the technical problems discussed above.

5 Two Open Trade-off Problems

In [5] it was shown that given a resolution refutation π of a k-CNF formula F in length L(π) = L,
there exists a refutation in width O

(√
n log L

)

, where n is the number of variables in F . However, the
refutation resulting from the proof is not the same π, but another refutation π′ which is potentially
exponentially longer than π. It would be interesting to know whether this increase in length is
necessary, i.e., whether there is a length-width trade-off, or whether the exponential blow-up is just
an artifact of the proof.

Open Problem 1. If F is a k-CNF formula over n variables refutable in length L, is it true that
there is always a refutation π of F in width W(π) = O

(√
n log L

)

with length no more than, say,
L(π) = O(L) or at most poly(L)? Or is there a formula family which necessarily exhibits a length-
width trade-off in the sense that there are short refutations and narrow refutations, but all narrow
refutations have a length blow-up (polynomial or superpolynomial)?

A similar question can be posed for clause space. Given a refutation in small space, we know
that there must exist a refutation in short length. This follows by applying the upper bound (5) on
width in terms of clause space, and then noting that narrow proofs are trivially short (for width w,
(2 ·#variables)w is an upper bound on the total number of distinct clauses). But again, the refutation
we end up with is not the same as that with which we started.

For concreteness, let us fix the space to be constant. If a polynomial-size k-CNF formula has a
refutation in constant clause space, then by the above reasoning it must be refutable in polynomial
length. But can we get a refutation which is both short and tight simultaneously?
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Open Problem 2. Given a family of polynomial-size k-CNF formulas {Fn}∞n=1 with refutation clause
space Sp(Fn ` 0) = O(1), are there refutations π : Fn ` 0 simultaneously in length L(π) = poly(n)
and clause space Sp(π) = O(1)?

Or can it be that restricting the space, we end up with really long refutations? It would be
interesting to know what holds in this case, and how it relates to the trade-off results for variable
space in [9].
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A Definitions, Notation and Some Useful Facts

A literal is either a propositional logic variable x or its negation x. We define x = x. A clause
C = a1∨ . . .∨ak is a set of literals. The width W(C) of a clause C is the number of literals appearing
in it. A clause containing at most k literals is called a k-clause. A CNF formula F = C1 ∧ . . .∧Cm is
a set of clauses. A k-CNF formula is a CNF formula consisting of k-clauses. We let Vars(C) denote
the set of variables in a clause C, and extend this notation to formulas by taking unions over clauses.
Also, the width W(F ) of a CNF formula F is the width of its largest clause.

As in [9], we use the “configuration-style” definition of resolution. We employ the standard
notation [n] = {1, 2, . . . , n}.

Definition A.1 (Resolution [1]). A clause configuration C is a set of clauses. A sequence of clause
configurations {C0, . . . , Cτ} is a resolution derivation from a CNF formula F if C0 = ∅ and for all
t ∈ [τ ], Ct is obtained from Ct−1 by one of the following rules:

Axiom Download Ct = Ct−1 ∪{C} for a clause C ∈ F (an axiom).

Erasure Ct = Ct−1 \ {C} for some clause C ∈ Ct−1.

Inference Ct = Ct−1 ∪{C ∨ D} for a clause C ∨ D inferred by the resolution rule from clauses
C ∨ x, D ∨ x ∈ Ct−1.

A resolution derivation π : F ` A of a clause A from a CNF formula F is a derivation {C0, . . . , Cτ}
such that A ∈ Cτ . A resolution refutation of F is a derivation π : F ` 0 of the empty clause 0 (the
clause with no literals) from F .

We are interested in the following complexity measures:

• The length L(π) of a derivation π is the number of distinct clauses in π.

• The width W(π) of a derivation π is the number of literals in the largest clause in π.

• The clause space Sp
(

π
)

of a resolution derivation π is the maximal number of clauses in any
clause configuration Ct ∈ π.

• The variable space VarSp
(

π
)

of a resolution derivation π is the maximal number of literals,
counted with repetitions, in any clause configuration Ct ∈ π.

The length of refuting F is L(F ` 0) = minπ:F`0

{

L(π)
}

, where the minimum is taken over all
resolution refutations of F . The width W(F ` 0), clause space Sp(F ` 0) and variable space
VarSp(F ` 0) of refuting F is defined wholly analogously.

We define the size S (F ) of a CNF formula F to be the numbers of literals in it, counted with
repetitions.

Note that if one wanted to be really precise, the size and space measures should probably measure
the number of bits needed rather than the number of literals. However, counting literals makes
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matters substantially cleaner, and the difference is at most a logarithmic factor anyway. Therefore,
counting literals seems to be the established way of measuring size and variable space.

It is easy to see that any CNF formula F over n variables is refutable in length exp(O(n)) and
width O(n). In [7] it was proved that the clause space of refuting F is upper-bounded by the formula
size. More precisely, the minimal clause space is at most the number of clauses, or the number of
variables, plus a small constant, or in formal notation Sp(F ` 0) ≤ min

{

|F |, |Vars(F )|
}

+ O(1).
We will need the fact that there are polynomial-size k-CNF formulas that are very hard with

respect to length, width and clause space, essentially meeting the upper bounds just stated.

Theorem A.2 ([1, 3, 4, 5, 15, 16]). There are arbitrarily large unsatisfiable 3-CNF formulas Fn

with Θ(n) clauses and Θ(n) variables for which it holds that L(Fn ` 0) = exp(Θ(n)), W(Fn ` 0) =
Θ(n) and Sp(Fn ` 0) = Θ(n).

Clearly, for these formulas Fn it also holds that Ω(n) = VarSp(Fn ` 0) = O
(

n2
)

. We note in
passing that the exact variable space complexity was mentioned as an open problem in [1], and to
the best of our knowledge this problem is still unsolved.

We will also need that there are formulas that are easy with respect to length but moderately
hard with respect to width and clause space.2

Theorem A.3 ([1, 6, 14]). There are arbitrarily large unsatisfiable 3-CNF formulas Fn in size
Θ

(

n3
)

with Θ
(

n3
)

clauses and Θ
(

n2
)

variables such that W(Fn ` 0) = Θ(n) and Sp(Fn ` 0) = Θ(n),

but there are resolution refutations πn : Fn ` 0 in length L(πn) = O
(

n3
)

, width W(πn) = O(n) and
clause space Sp(πn) = O(n).

Finally, we will use the following easy observation.

Observation A.4. Suppose that F = G ∧ H where G and H are unsatisfiable CNF formulas over
disjoint sets of variables. Then any resolution refutation π : F ` 0 must contain a refutation of either
G or H.

Proof. By induction, we can never resolve a clause derived from G with a clause derived from H ,
since the sets of variables of the two clauses are disjoint.
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