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Abstract. Let A1,A2, . . . ,An be events in some probability space. Theapproximate
inclusion-exclusion problem,due to Linial and Nisan (1990), is to estimatePr[A1∪· · ·∪An]
givenPr[

⋂

i∈S Ai ] for all |S| 6 k. Kahn et al. (1996) solve this problem optimally for eachk.
We study the following more general question: givenPr[

⋂

i∈S Ai ] for all |S| 6 k, estimate

Pr
[

thenumberof events amongA1, . . . ,An that hold is inZ
]

,

whereZ ⊆ {0, 1, . . . , n} is a given set. (In the Linial-Nisan problem,Z = {1, . . . , n}.) We
solve this general problem for allZ andk, giving an algorithm that runs in polynomial time
and achieves an approximation error that is essentially optimal. We prove this optimal error
to be 2−Θ̃(k2/n) for k above a certain threshold, andΘ(1) otherwise.

As part of our solution, we determine, for every predicateD : {0, 1, . . . , n} → {0, 1}
and everyε ∈ [1/2n, 1/3], the least degree degε(D) of a polynomial that approximatesD
pointwise withinε. Namely, we show that degε(D) = Θ̃

(

deg1/3(D) +
√

n log(1/ε)
)

, where
deg1/3(D) is well-known for eachD.Previously, the answer for vanishingε was known only
for D = OR (Kahn et al., 1996). We construct the approximating polynomial explicitly for
everyD andε.

Our proof departs considerably from Linial and Nisan (1990)and Kahn et al. (1996).
Its key ingredient is theApproximation/Orthogonality Principle,a certain equivalence of
approximation and orthogonality in a Euclidean space, recently proved by the author in the
context of quantum lower bounds (Sherstov 2007). Our polynomial constructions feature
new uses of the Chebyshev polynomials.

∗This work has been previously published as Technical Report#TR-07-34 (July 24, 2007) of the
Dept. of Computer Sciences, The University of Texas at Austin.

Electronic Colloquium on Computational Complexity, Report No. 116 (2007)

ISSN 1433-8092




1 Introduction

Let A1,A2, . . . ,An be events in a probability space. The well-known inclusion-
exclusion principle allows one to compute the probability of A1 ∪ · · · ∪ An using
the probabilities of various intersections ofA1,A2, . . . ,An:

Pr[A1 ∪ · · · ∪ An] =
∑

i

Pr[Ai ] −
∑

i< j

Pr[Ai ∩ A j ] +
∑

i< j<k

Pr[Ai ∩ A j ∩ Ak] − · · ·

+(−1)n Pr[A1 ∩ · · · ∩ An].

A moment’s reflection reveals that knowledge ofeveryterm in this summation is
necessary in general for an exact answer. In this light, it isnatural to wonder if one
can closely approximatePr[

⋃

Ai ] using the probabilities of intersections of up to
k events, wherek � n. This problem, due to Linial and Nisan [10], is known as
approximate inclusion-exclusion.Linial and Nisan studied this question and gave
near-tight bounds on the least approximation error as a function k. A follow-up
article by Kahn, Linial, and Samorodnitsky [5] improved those bounds to optimal.

While A1 ∪ · · · ∪ An is an important event, it is certainly not the only one of
interest. For example, we might be interested in

Pr
[

most of the eventsA1,A2, . . . ,An hold
]

,

or

Pr
[

an odd number of events from amongA1,A2, . . . ,An hold
]

.

More generally, we might like to know the likelihood that thenumberof events
that hold is in a given subset of{0, 1, . . . , n}. Formally, letD : {0, 1, . . . , n} → {0, 1}
be an arbitrary predicate. Consider

Pr
[

D(I [A1] + · · · + I [An]) = 1
]

, (1.1)

where as usual

I [Ai ]
def
=















1 Ai holds

0 otherwise.

As before, we would like to estimate (1.1) to optimal error given the values of
Pr[

⋂

i∈S Ai ] for all S with |S| 6 k. This new problem is a natural generalization
of approximate inclusion-exclusion. Yet the methods of Linial and Nisan [10] and
Kahn et al. [5] do not cover this broader question.
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We solve this problem completely for everyD andk. More precisely, we give
an algorithm that, for everyD and k, runs in polynomial time and achieves an
approximation error that is essentially optimal. Before westate our results, we
introduce some helpful notation.

1.1 Notation

Let D : {0, 1, . . . , n} → {0, 1} be an arbitrary predicate. Define

`0(D) ∈ {0, 1, . . . , bn/2c},
`1(D) ∈ {0, 1, . . . , dn/2e}

to be the smallest integers such thatD is constant in the range [`0(D), n − `1(D)].
The figure below illustrates this definition for a typical predicateD:

1

n/2 n0     1     2 

l0(   )D l (   )D1

D

The key point is that̀0(D) + `1(D) is large if and only ifD changes value near the
middle of the range. We need another definition.

Definition 1.1. Let D : {0, 1, . . . , n} → {0, 1} and 06 k 6 n. Define

δ∗(D, k)

def
= sup

∣

∣

∣

∣

∣

Pr
P1

[

D(I [A1] + · · · + I [An]) = 1
]

− Pr
P2

[

D(I [B1] + · · · + I [Bn]) = 1
]

∣

∣

∣

∣

∣

,

where the supremum is taken over all probability spacesP1 and P2, over all
eventsA1, . . . ,An in P1, and over all eventsB1, . . . , Bn in P2, such that

Pr
P1















⋂

i∈S
Ai















= Pr
P2















⋂

i∈S
Bi















for |S| 6 k.

In words, the quantityδ∗(D, k) in the above definition is the least error achievable in
approximatingPr[D(I [A1]+· · ·+I [An]) = 1] in principle, information-theoretically,
if unlimited computing power is available.
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1.2 Main Result

The first question we settle is precisely how largek needs to be for a good
approximation to evenexist. We prove:

Theorem 1.2 (Existence of a good approximation).Let D : {0, 1, . . . , n} → {0, 1}.
Put ` = `0(D) + `1(D). Then

δ∗(D, k) =























Θ(1) if k 6 Θ
(√

n`
)

,

2−Θ̃(k2/n) if Θ̃
(√

n`
)

6 k 6 Θ(n).

Theorem 1.2 tells us that a good approximation exists if and only if k > Θ̃
(√

n`
)

,

where` = `0(D) + `1(D). We now give an efficient way to actuallyconstructthe
near-optimal approximation for any givenD andk.

Theorem 1.3 (Efficient approximation scheme).Let D : {0, 1, . . . , n} → {0, 1}.
Put ` = `0(D) + `1(D). Then for every k> Θ̃

(√
n`

)

there are reals

a0, a1, . . . , ak,

computable in timepoly(n), such that
∣

∣

∣

∣

∣

∣

∣

∣

Pr
[

D(I [A1] + · · · + I [An]) = 1
]

−
k

∑

j=0

a j

∑

S:|S|= j

Pr















⋂

i∈S
Ai















∣

∣

∣

∣

∣

∣

∣

∣

6 2−Θ̃(k2/n)

for any events A1, . . . ,An in any probability space.

Theorem 1.3 gives the desired approximation algorithm. As we see, it is not even
necessary to know the individual probabilitiesPr[

⋂

i∈S Ai]; it suffices to know the
k+ 1 sums

∑

S:|S|= j

Pr















⋂

i∈S
Ai















( j = 0, 1, . . . , k).

This solves the generalized inclusion/exclusion problem for all predicates. In
actuality, our proof works forarbitrary Boolean functions, not just predicates.
Specifically, fix f : {0, 1}n→ {0, 1} and suppose we wish to approximate

Pr
[

f (I [A1], . . . , I [An]) = 1
]

given Pr[
⋂

i∈S Ai ] for all S with |S| 6 k. Let δ∗( f , k) be the best error achievable
information-theoretically. In the case of symmetric functions, i.e., f (x) ≡ D(x1 +

· · ·+ xn) for some predicateD, this is precisely the setting of Theorems 1.2 and 1.3.
For arbitrary f , we obtain the following result:
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Theorem 1.4. Let f : {0, 1}n→ {0, 1} be arbitrary and0 6 k 6 n. Then

δ∗( f , k) = 2 min
φ
‖ f − φ‖∞,

where the minimum is over multilinear polynomialsφ(x1, . . . , xn) of degree up to k.

Thus, Theorem 1.4 solves the approximate inclusion/exclusion problem for anyf
whose approximability by polynomials is well understood.

1.3 Other Results

Approximate degree. As part of our proof, we have to show the following
result of independent interest. For a predicateD : {0, 1, . . . , n} → {0, 1}, define
its ε-approximate degreedegε(D) to be the smallest degree of a univariate real
polynomialp(t) such that

max
t=0,1,...,n

|D(t) − p(t)| 6 ε.

This quantity is of inherent significance and has found various applications in
theoretical computer science [5, 6, 8–10, 13, 15, etc.], ranging from approximation
algorithms and computational learning to complexity theory. Moreover, the main
result of this paper depends critically on tight estimates of degε(D) for all D andε.
We prove:

Theorem 1.5 (Approximate degree of predicates).Let D : {0, 1, . . . , n} → {0, 1}
be a nonconstant predicate. Letε ∈ [1/2n, 1/3]. Then

degε(D) = Θ̃
(√

n(`0(D) + `1(D)) +
√

n log(1/ε)
)

,

where theΘ̃ notation suppresseslogn factors. Furthermore, the approximating
polynomial for each D andε is given explicitly.

Theorem 1.5 is a broad generalization of two earlier resultsin the literature.
The first of these is due to Paturi [12], who showed that

deg1/3(D) = Θ
(√

n(`0(D) + `1(D))
)

for all D.

Unfortunately, Paturi’s result and its proof give no insight into the behavior of the
ε-approximate degree for vanishingε. The other relevant result is due to Kahn et
al. [5], who conducted an in-depth study of the predicateD = OR, defined as usual
by OR(i) = 1⇔ i > 1. Kahn et al. showed that

degε(OR)= Θ̃
(
√

n log(1/ε)
)

(1/2n
6 ε 6 1/3),
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where theΘ̃ notation hides logn factors. Thus, our work generalizes the results of
Paturi and Kahn et al. toeverypredicate andeveryerror rateε ∈ [1/2n, 1/3].

Theorem 1.5 has another, more revealing and esthetically pleasing interpreta-
tion. In view of Paturi’s work, it can be restated as:

degε(D) = Θ̃
(

deg1/3(D) +
√

n log(1/ε)
)

(1/2n
6 ε 6 1/3),

whereD is nonconstant. In words, past a certain threshold, the dependence of
the ε-approximate degree onε is the same for all nonconstant predicates. This
threshold varies from one predicate to another and equals the degree required for a
1
3-approximation.

Agnostic learning. The proof technique of our main result additionally gives
new lower bounds foragnostic learning.The agnostic model, due to Kearns et
al. [7], is perhaps the most realistic abstraction of learning. Designing efficient
algorithms in this model, even for the simplest concept classes, is notoriously
difficult. Nevertheless, progress on proving lower bounds has also been scarce.
Some recent lower bounds are [9,17].

A summary of this model is as follows. LetC be a concept class, i.e., some
set of Boolean functions{0, 1}n → {0, 1}. There is an unknown distributionλ on
{0, 1}n × {0, 1}, and the learner receives training examples

(

x(1), y(1)
)

,
(

x(2), y(2)
)

, . . . ,
(

x(m), y(m)
)

,

independent and identically distributed according toλ. Let

opt
def
= max

f∈C

{

Pr
(x,y)∼λ

[ f (x) = y]

}

be the error of the functionf ∗ ∈ C that best agrees with the training data. The
learner needs to produce a hypothesish : {0, 1}n → {0, 1} that agrees with the
training data almost as well asf ∗:

Pr
(x,y)∼λ

[h(x) = y] > opt − ε,

whereε is an error parameter fixed in advance. As usual, the goal is tofind h
efficiently.

A natural approach to learning in this and other models is to consider only
those hypotheses that depend on few variables. One tests each such hypothesis
against the training data and outputs the one with the least error. This technique is
attractive in that the resulting hypothesis space is small and well-structured, making
it possible to efficiently identify the best approximation to the observed examples.
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The central question then becomes, what advantage over random guessing can
such hypotheses guarantee? We prove that, when learning symmetric functions,
one is forced to use hypotheses that depend on many variables: all others will
generally work no better than random guessing.

Theorem 1.6 (Lower bound for agnostic learning).Let D : {0, 1, . . . , n} → {0, 1}
be a predicate and f(x)

def
= D(x1 + · · · + xn). Let ε > 0 be an arbitrary constant.

Then there is a distributionλ on {0, 1}n × {0, 1} such that

Pr
(x,y)∼λ

[ f (x) = y] > 1− ε

and

Pr
(x,y)∼λ

[g(x) = y] =
1
2

for every g : {0, 1}n → {0, 1} that depends on at most c
√

n(`0(D) + `1(D))
variables, where c= c(ε) is a constant.

We also show that the bound on the number of variables in Theorem 1.6 is
optimal to within a multiplicative constant (see Theorem 5.4). Prior to our work,
Tarui and Tsukiji [17] obtained the special case of Theorem 1.6 for f = OR. No
other lower bounds for symmetric functions were previouslyknown.

To place Theorem 1.6 in the framework of agnostic learning, consider any
concept classC that contains many symmetric functions. For example, we could
fix a symmetric functionf : {0, 1}n → {0, 1} and consider the concept classC of
(

2n
n

)

functions, each being a copy off applied to a separate set ofn variables from
amongx1, x2, . . . , x2n :

C =
{

f (xi1, xi2, . . . , xin) : 1 6 i1 < i2 < · · · < in 6 2n
}

.

Theorem 1.6 now supplies scenarios whensomemember ofC matches the training
data almost perfectly (to within anyε > 0), and yet every hypothesis that depends
on few variables is completely useless (i.e., as good as random guessing).

1.4 Our Techniques

The proof of our main result takes inspiration from the elegant papers of Linial
and Nisan [10] and Kahn et al. [5], who have studied the special caseD = OR.
Namely, we adopt the high-level strategy of these works, which is to reduce the
original problem via linear-programming duality to a question in approximation
theory. Implementing this strategy, however, requires newand stronger techniques.
As we will shortly explain, our proof is a substantial departure from [5,10].
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First of all, the linear-programming reduction in [5, 10] does not extend from
D = OR to arbitrary predicates. To overcome this difficulty, we start with a
different and more versatile tool, theApproximation/Orthogonality Principle. This
principle gives a certain equivalence between approximation and orthogonality in
a Euclidean space and has been recently proved by the author [15] in the context
of quantum lower bounds. With some work, this yields the desired reduction from
the original problem to a question in approximation theory.In addition, the proof
turns out simpler and more modular than in [5,10].

To complete the solution, we must still answer the resultingquestion in ap-
proximation theory. This amounts to determining, for each predicateD and each
ε ∈ [1/2n, 1/3], the least degree of a polynomial that approximatesD pointwise
within ε, and then constructing such a polynomial explicitly. Previously, such a
construction was known only forD = OR (Kahn et al. [5]). We solve the general
case by combining interpolation techniques with a new use ofthe Chebyshev
polynomials.

It may seem that Theorem 1.5, the backbone of this paper, should have a more
intuitive and more elementary proof. However, the simpler ideas that come to mind
turn out to be useless, as we now discuss.

• An obvious approach is to start with Paturi’s1
3-approximating polynomial

p(t) for the given predicateD(t) and boost its accuracy by composing it with
another polynomial,q(t). Let ε ∈ (0, 1/3) be the desired accuracy. For this
approach to work,q(t) must satisfy:

q
([

−1
3,

1
3

])

⊆ [−ε, ε], q
([

2
3,

4
3

])

⊆ [1 − ε, 1+ ε].

Up to translation/scaling, this is equivalent to requiring thatq(t) approximate
the sign function withinε on the interval [−1,−1+ α] ∪ [1, 1− α] for some
constantα ∈ (0, 1). Eremenko and Yuditskii [4] show that the least degree
of such a polynomialq(t) is Θ(log(1/ε)). Taking p(t) to be Paturi’s approx-
imating polynomial for the given predicateD, we see that the composition
p(q(t)) has degree

Θ
(√

n(`0(D) + `1(D)) log(1/ε)
)

.

This is much worse than the optimal bound that we achieve, namely,

Θ̃
(√

n(`0(D) + `1(D)) +
√

n log(1/ε)
)

.

• Another tempting strategy is to view a given predicateD : {0, 1, . . . , n} →
{0, 1} as a continuous (piecewise-linear) function on [0, n] and then apply
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D. Jackson’s fundamental theorems on uniform approximation. Unfortu-
nately, the continuous approximation problem is very hard even for the
following simple predicate:

D

n/2 n0     1     2 

1

Indeed, anε-approximating polynomial for this continuous function yields
(after translation and scaling) anε-approximating polynomial of the same
degree for|x| on [−1, 1]. In his classical work, S.N. Bernstein [2] proves that
the latter polynomial requires degreeΩ(1/ε). In particular, this approach
is entirely useless onceε 6 Θ(1/n). Yet the predicate in question has an
approximator of degreeΘ(

√
n), as we show. Clearly, the key is to exploit

the discrete nature of the problem: we are merely seeking an approximation
over the finite set of points{0, 1, . . . , n}, rather than the entire interval [0, n].

We conclude with a broader view of this work. What might be common to
approximate inclusion-exclusion, agnostic learning, andquantum communication?
These subjects seem quite different at first. One contribution of our paper is to
show that, as far as symmetric functions are concerned, these three problems are
fundamentally the same mathematical question! Namely, thequestion is how well
a given predicate can be approximated by a univariate polynomial of low degree.
We illustrate this equivalence in the following diagram, which shows the skeleton
of our proofs:

auxiliary work

for all predicates

(Sherstov 2007b)

Lower bounds for

agnostic learning

(this paper)

Degree/Discrepancy

Theorem (Sherstov 2007a)

exclusion for all predicates

Approximate inclusion/

(this paper)

1/3−approximation

of predicates

(Paturi 1992)

(Sherstov 2007b)

Approximation/Orthogonality Principle

eps 0

eps−approximation

(this paper)

of predicates,

auxiliary work

Quantum lower bounds
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The three ovals across the top correspond to the main results(two from this paper,
one from [15]). The arrows show dependencies in the proofs. What brings the
three subjects together is the Approximation/Orthogonality Principle, reviewed in
detail in Section 2.2.

1.5 Organization

We start with a thorough review of technical preliminaries in Section 2. We next
study the approximation of Boolean predicates by real polynomials in Section 3.
Armed with this approximation result, we prove our main theorem in Section 4.
Finally, Section 5 reinterprets our technique to give lowerbounds for agnostic
learning.

2 Preliminaries

This section provides relevant technical background. After some remarks on
notation (Section 2.1), we discuss the Approximation/Orthogonality Principle and
give its proof for the reader’s convenience (Section 2.2). Section 2.3 concludes
with some fundamental results about the approximation of Boolean functions by
polynomials.

2.1 General

A Boolean functionis a mapping{0, 1}n → {0, 1}. A predicate is a mapping
{0, 1, . . . , n} → {0, 1}. The notation [n] stands for the set{1, 2, . . . , n}. The symbol
Pk stands for the set of all univariate real polynomials of degree up tok. For a finite
setX and a functionφ : X→ R, we define

‖φ‖∞
def
= max

x∈X
|φ(x)|.

We now recall the Fourier transform on{0, 1}n. Consider the vector space of
functions{0, 1}n→ R, equipped with the inner product

〈 f , g〉 def
=

1
2n

∑

x∈{0,1}n
f (x)g(x).

For S ⊆ [n], defineχS : {0, 1}n→ {−1,+1} by

χS(x) = (−1)
∑

i∈S xi .
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Then{χS}S⊆[n] is an orthonormal basis for the inner product space in question. As
a result, every functionf : {0, 1}n→ R has a uniqueFourier representation

f (x) =
∑

S⊆[n]

f̂ (S)χS(x),

where f̂ (S)
def
= 〈 f , χS〉. The realsf̂ (S) are called theFourier coefficients of f.

2.2 The Approximation/Orthogonality Principle

Crucial to our work is theApproximation/Orthogonality Principle,recently proved
by the author [15] in the context of quantum lower bounds. This principle
establishes a certain equivalence between approximation and orthogonality in a
Euclidean space.

We start with some notation from [15], which will be useful throughout this
paper. LetX be a finite set. ConsiderRX, the linear space of all functionsX → R.
Recall the notation

‖φ‖∞
def
= max

x∈X
|φ(x)|.

Then (RX, ‖ · ‖∞) is a real normed linear space.

Definition 2.1 (Best error). For f : X→ R andΦ ⊆ RX, let

ε∗( f ,Φ)
def
= min

φ∈span(Φ)
‖ f − φ‖∞.

In words,ε∗( f ,Φ) is the best error in an approximation off by a linear combination
of functions inΦ. Since span(Φ) has finite dimension, a best approximation tof
out of span(Φ) always exists [14, Thm. I.1], justifying our use of “min” instead of
“inf” in the above definition.

We now introduce a closely related quantity,γ∗( f ,Φ), that measures how well
f correlates with a real function that is orthogonal to all ofΦ.

Definition 2.2 (Modulus of orthogonality, Sherstov [15]). Let X be a finite set,
f : X→ R, andΦ ⊆ RX. Themodulus of orthogonalityof f with respect toΦ is:

γ∗( f ,Φ)
def
= max

ψ















∑

x∈X
f (x)ψ(x)















, (2.1)

where the maximum is taken over allψ : X → R such that
∑

x∈X |ψ(x)| 6 1 and
∑

x∈X φ(x)ψ(x) = 0 for all φ ∈ Φ.
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The maximization in (2.1) is over a nonempty set that contains ψ = 0. Also, the
use of “max” instead of “sup” is legitimate because (2.1) maximizes a continuous
function over a compact set. To summarize, the modulus of orthogonality is a
well-defined nonnegative real number for every functionf : X→ R.

Theorem 2.3 (Approximation/Orthogonality Principle, Sherstov [15]). Let X
be a finite set,Φ ⊆ RX, and f : X→ R. Then

ε∗( f ,Φ) = γ∗( f ,Φ).

Proof. Let φ1, . . . , φk : X → R be a basis for span(Φ). Our first observation
is that ε∗( f ,Φ) is the optimum of the following linear program in the variables
ε, α1, . . . , αk:

minimize: ε

subject to:
∣

∣

∣

∣

∣

∣

∣

f (x) −
k

∑

i=1

αiφi(x)

∣

∣

∣

∣

∣

∣

∣

6 ε for eachx ∈ X,

αi ∈ R for eachi,

ε > 0.

Standard manipulations reveal the dual:

maximize:
∑

x∈X
βx f (x)

subject to:
∑

x∈X
|βx| 6 1,

∑

x∈X
βxφi(x) = 0 for eachi,

βx ∈ R for eachx ∈ X.

Both programs are clearly feasible and thus have the same finite optimum. We have
already observed that the optimum of first program isε∗( f ,Φ). Sinceφ1, φ2, . . . , φk

form a basis for span(Φ), the optimum of the second program is by definition
γ∗( f ,Φ). �
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2.3 Approximation by Polynomials

Let f : {0, 1}n → R. As we saw in Section 2.1, any such functionf has an
exactrepresentation as a linear combination ofχS, whereS ⊆ [n]. A fundamental
question to ask is how closelyf can beapproximatedby a linear combination of
functionsχS with |S| small.

Definition 2.4 (Approximate degree of functions).Let f : {0, 1}n→ R andε > 0.
The ε-approximate degreedegε( f ) of f is the minimum integerk, 0 6 k 6 n, for
which there existsφ ∈ span

({χS}|S|6k
)

with

max
x∈{0,1}n

| f (x) − φ(x)| 6 ε.

We will be primarily interested in the approximate degree ofBoolean func-
tions. As a first observation, degε( f ) = degε(¬ f ) for all such functions and all
ε > 0. Second, degε ( f ) is not substantially affected by the choice of a constant
ε ∈ (0, 1/2). More precisely, we have:

Proposition 2.5 (Folklore). Let f : {0, 1}n→ {0, 1} be arbitrary,ε a constant with
0 < ε < 1/2. Then

degε( f ) = Θ(deg1/3( f )).

Proof (folklore). Assume thatε 6 1/3; the caseε ∈ (1/3, 1/2) has a closely

analogous proof, and we omit it. Letk
def
= deg1/3( f ). We have to show that

degε( f ) = O(k). For this, fixφ ∈ span
({χS}|S|6k

)

with maxx∈{0,1}n | f (x)−φ(x)| 6 1/3.
By basic approximation theory (see Rivlin [14, Cor. 1.4.1]), there exists a univariate
polynomialp of degreeO(1/ε) with

p
([

−1
3,

1
3

])

⊆ [−ε, ε], p
([

2
3,

4
3

])

⊆ [1 − ε, 1+ ε].

Then clearlyp(φ(x)) is the sought approximator off . �

In view of Proposition 2.5, the convention is to work with deg1/3( f ) by default.
Determining this quantity for a given Boolean functionf can be difficult. There is,
however, a family of Boolean functions whose approximate degree is analytically
manageable. This is the family ofsymmetricBoolean functions, i.e., functionsf :
{0, 1}n→ {0, 1} whose value is uniquely determined byx1 + · · ·+ xn. Equivalently,
a Boolean functionf is symmetric if and only if

f (x1, x2, . . . , xn) = f (xσ(1), xσ(2), . . . , xσ(n))
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for all inputs x ∈ {0, 1}n and all permutationsσ : [n] → [n]. Note that there is a
one-to-one correspondence between predicates and symmetric Boolean functions.
Namely, one associates a predicateD with the symmetric function

f (x)
def
= D(x1 + · · · + xn).

To carry our discussion further, we extend the notion of approximation to predi-
cates.

Definition 2.6 (Approximate degree of predicates).For a predicateD :
{0, 1, . . . , n} → {0, 1}, define itsε-approximate degreedegε(D) to be the minimum
degree of a univariate real polynomialp with

max
i=0,1,...,n

|D(i) − p(i)| 6 ε.

Analyzing the approximate degree of predicates is a much simpler task and,
indeed, a basic question in approximation theory. It is therefore fortunate that the
ε-approximate degree of a symmetric function is the same as the ε-approximate
degree of its associated predicate. This equivalence is known as thesymmetrization
argumentof Minsky and Papert [11]. Before we can state this theorem, we
introduce some important notation.

Definition 2.7. For f : {0, 1}n→ {0, 1} andD : {0, 1, . . . , n} → {0, 1}, define

ε∗( f , {χS}|S|6k)
def
= min

φ∈span({χS}|S|6k)
max

x∈{0,1}n
| f (x) − φ(x)|,

ε∗(D,Pk)
def
= min

p∈Pk

max
i=0,1,...,n

|D(i) − p(i)|.

Definition 2.7 merely instantiates the symbolε∗(φ,Φ) from Section 2.2 to the
special casesφ = f andφ = D. We have:

Proposition 2.8 (Symmetrization argument, Minsky and Papert [11]). Let f :
{0, 1}n → {0, 1} be a symmetric Boolean function. Let D be the predicate with
f (x) ≡ D(x1 + · · · + xn). Then

ε∗( f , {χS}|S|6k) = ε∗(D,Pk) for all k = 0, 1, . . . , n. (2.2)

In particular,

degε( f ) = degε(D) for all ε > 0. (2.3)
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Proof sketch (Minsky and Papert [11]).It is clear that (2.2) implies (2.3), so we
focus on the former. Sincef (x) = D(x1 + · · · + xn), we immediately have

ε∗( f , {χS}|S|6k) 6 ε∗(D,Pk),

and it remains to prove the reverse inequality. Fixφ ∈ span({χS}|S|6k) for which
‖φ − f ‖∞ = ε∗( f , {χS}|S|6k). Defineφ′ : {0, 1}n→ R by

φ′(x)
def
=

1
n!

∑

σ∈Sn

φ(xσ(1), xσ(2), . . . , xσ(n)).

On the one hand,

‖ f − φ′‖∞ 6 ‖ f − φ‖∞ = ε∗( f , {χS}|S|6k). (2.4)

On the other hand, one can use the uniqueness of the Fourier representation to show
that

φ′(x) = p(x1 + · · · + xn)

for somep ∈ Pk. But then

‖ f − φ′‖∞ = ‖D − p‖∞ > ε∗(D,Pk). (2.5)

The sought conclusion follows from (2.4) and (2.5). �

Using Proposition 2.8 and tools from approximation theory,Paturi [12] gave an
asymptotically tight estimate of deg1/3( f ) for every symmetric Boolean functionf .
The estimates are in terms of the quantities`0( f ) and`1( f ), defined next.

Definition 2.9 (Razborov [13]). Let D : {0, 1, . . . , n} → {0, 1}. Define

`0(D) ∈ {0, 1, . . . , bn/2c},
`1(D) ∈ {0, 1, . . . , dn/2e}

to be the smallest integers such thatD is constant in the range [`0(D), n−`1(D)]. For
a symmetric functionf : {0, 1}n → {0, 1}, define`0( f ) = `0(D) and`1( f ) = `1(D),
whereD is the predicate for whichf (x) ≡ D(x1 + · · · + xn).

See Section 1 for a pictorial illustration of this definition. We are ready to state
Paturi’s fundamental theorem.

Theorem 2.10 (Paturi [12]). Let f : {0, 1}n → {0, 1} be a symmetric function.
Then

deg1/3( f ) = Θ
(√

n(`0( f ) + `1( f ))
)

.

In words, Theorem 2.10 states that the1
3-approximate degree isΩ(

√
n) for every

nonconstant predicate, and is higher for those predicates that change value near the
middle of the range{0, 1, . . . , n}.
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3 Best Approximation by Polynomials

This section marks the beginning of our proof. The goal here is to determine, within
a logarithmic factor, the approximate degree of every predicate. Specifically, we
prove the following theorem:

Theorem 1.5(Restated from p. 4).Let D : {0, 1, . . . , n} → {0, 1} be a nonconstant
predicate. Letε ∈ [1/2n, 1/3]. Then

degε(D) = Θ̃
(√

n(`0(D) + `1(D)) +
√

n log(1/ε)
)

,

where theΘ̃ notation suppresseslogn factors. Furthermore, the approximating
polynomial for each D andε is given explicitly.

We prove the upper and lower bounds in this result separately, as Lemma 3.4 and
Lemma 3.6, in the two subsections that follow.

3.1 Upper Bound on the Approximate Degree

Our construction makes heavy use of the Chebyshev polynomials, which is not
surprising given their fundamental role in approximation.The other key ingredient
in our proof is interpolation, which here amounts to multiplying an imperfect
approximatorp(t) by another polynomialq(t) that zeroes outp’s mistakes. This
interpolation technique is well-known [1, 5] and is vital toexploiting the discrete
character of the problem: we are interested in approximation over the discrete set
of points{0, 1, . . . , n} rather than the more difficult continuous setting, [0, n]. Kahn
et al. [5], who obtained the special case of Theorem 1.5 forD = OR, also used the
Chebyshev polynomials and interpolation, although in a simpler and much different
way.

We start by recalling a few properties of the Chebyshev polynomials, whose
proofs can be found in any standard textbook on approximation theory, e.g., [3,14].

Fact 3.1 (Chebyshev polynomials).The dth Chebyshev polynomial, Td(t), has
degree d and satisfies the following properties:

Td(1) = 1 (3.1)

|Td(t)| 6 1 (−1 6 t 6 1) (3.2)

T′d(t) > d2 (t > 1) (3.3)

Td(1+ δ) > 1
2 · 2

d
√

2δ (0 6 δ 6 1/2) (3.4)

2 6 Tdae
(

1+ 1
a2

)

6 7 (a > 1) (3.5)
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At the heart of our construction is the following technical lemma.

Lemma 3.2. Let ` > 0, ∆ > 1, and d> 1 be integers with̀ + ∆ 6 n/2. Then there
is an (explicitly given) polynomial p(t) of degree at most22(d+1)

√
n(` + ∆)/∆with

p(n− `) = 1

and
|p(t)| 6 2−d for t ∈ [0, n] \ (n− ` − ∆, n− ` + ∆).

Proof. Let

p1(t)
def
= T⌈√

n−`−∆
`+∆

⌉

( t
n− ` − ∆

)

.

One readily verifies the following properties ofp1:

p1([0, n− ` − ∆]) ⊆ [−1, 1] by (3.2);

p1([n− ` − ∆, n]) ⊆ [1, 7] by (3.1), (3.3), (3.5);

p′1(t) >
1

` + ∆
for t > n− ` − ∆ by (3.3);

p1(n− `) − p1(n− ` − ∆) >
∆

` + ∆
by previous line;

p1(n− ` + ∆) − p1(n− `) > ∆

` + ∆
likewise.











































































(3.6)

Now consider the polynomial

p2(t)
def
=

(

p1(t) − p1(n− `)
8

)2

.

In view of (3.6), this new polynomial satisfies

p2(n− `) = 0

and

p2(t) ∈
[

∆2

64(̀ + ∆)2
, 1

]

for t ∈ [0, n] \ (n− ` − ∆, n− ` + ∆).

Finally, let

p3(t)
def
= T⌈

8(d+1)(`+∆)√
2∆

⌉

(

1+
∆2

64(̀ + ∆)2
− p2(t)

)

.

Using (3.4) and the properties ofp2, one sees thatp(t) = p3(t)/p3(n − `) is the
desired polynomial. �

16



There are a large number of distinct predicates on{0, 1, . . . , n}. To simplify the
analysis, we would like to work with a small family of predicates that have simple
structure yet allow us to efficiently express any other predicate. A natural choice is
the family of predicates EXACT̀for ` = 0, 1, . . . , n, where

EXACT`(t)
def
=















1 if t = `,

0 otherwise.

For a moment, we shall focus on an explicit construction for EXACT`.

Lemma 3.3. Let0 6 ` 6 n/2. Then for anyε 6 1/3,

degε(EXACT`) = degε(EXACTn−`) = O
(√

n(` + 1) logn+
√

n log(1/ε) log n
)

.

Proof. The first equality in the statement of the lemma is obvious, and we concen-
trate on the second. We may assume that` 6 n/ log2 n and log(1/ε) 6 n/ logn,
since otherwise the claim is trivial. Set

∆
def
=

⌈

log(1/ε)
logn

⌉

, d
def
= 3∆ dlogne.

Our assumptions about` andε imply that ` + ∆ � n/2, and thus Lemma 3.2 is
applicable. Denote byp(t) the polynomial constructed in Lemma 3.2. Let

q(t)
def
=

∏

i=−(∆−1),...,(∆−1)
i,0

(t − (n− ` + i)).

We claim that the polynomial

r(t)
def
=

1
q(n− `) · p(t)q(t)

is the sought approximation to EXACTn−`. Indeed, it is easy to verify thatr(t) has
the desired degree. Fort ∈ {0, 1, . . . , n} \ {n− ` − (∆ − 1), . . . , n− ` + (∆ − 1)},

|r(t) − EXACTn−`(t)| = |r(t)| 6 n2(∆−1) · 1

2d
6 ε.

Sincer(t) = EXACTn−`(t) for all remainingt, the proof is complete. �

We now prove the sought upper bound for an arbitrary predicate by repeatedly
applying Lemma 3.3.
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Lemma 3.4 (Upper bound on the approximate degree).Let D : {0, 1, . . . , n} →
{0, 1}. Then for anyε 6 1/3,

degε(D) 6 O
( √

n(`0(D) + `1(D)) logn+
√

n log(1/ε) logn
)

.

Moreover, the approximating polynomial is given explicitly.

Proof. Without loss of generality, we can assume thatD(dn/2e) = 0 (otherwise,
work with the negation ofD). For ` = 0, 1, . . . , n, let p`(t) denote the poly-
nomial that approximates EXACT`(t) pointwise to withinε/n, as constructed in
Lemma 3.3. Put

p(t)
def
=

∑

` : D(`)=1

p`(t).

Then clearlyp(t) approximatesD pointwise to withinε. It remains to place an
upper bound on the degree ofp:

degε(D) 6 degp

6 max
` : D(`)=1,
`<dn/2e

{degp`} + max
` : D(`)=1,
`>dn/2e

{degpn−`}

6 O
(( √

n`0(D) +
√

n`1(D)
)

logn+
√

n log(n/ε) logn
)

6 O
(√

n(`0(D) + `1(D)) logn+
√

n log(1/ε) log n
)

,

where the third inequality follows by Lemma 3.3. �

3.2 Lower Bound on the Approximate Degree

Our lower bounds follow by a reduction to EXACT0, the simplest nonconstant
predicate, for which Kahn et al. [5] have already proven a tight lower bound.

Theorem 3.5 (Kahn, Linial, and Samorodnitsky [5, Thm. 2.1 and its proof]).
Let0 6 k 6 n− 1. Then for every polynomial p of degree k,

max
i=0,1,...,n

|EXACT0(i) − p(i)| > n−Θ(k2/n).

Theorem 3.5 has the following immediate corollary:

Corollary 3.5.1. Let2−Θ(n logn)
6 ε 6 1/3. Then

degε(EXACT0) > Ω

















√

n log(1/ε)
logn

















.
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We are now in a position to prove the desired lower bound on theapproximate
degree of any given predicate.

Lemma 3.6 (Lower bound on the approximate degree).Let D : {0, 1, . . . , n} →
{0, 1} be a nonconstant predicate. Then for2−Θ(n logn)

6 ε 6 1/3,

degε (D) > Ω

















√

n(`0(D) + `1(D)) +

√

n log(1/ε)
logn

















.

Proof. In view of Paturi’s result (Theorem 2.10), it suffices to show that

degε(D) > Ω

















√

n log(1/ε)
logn

















. (3.7)

Abbreviate` = `0(D). We can assume that` 6 n/5 since otherwise the claim
follows trivially from Theorem 2.10. Consider the predicate EXACT0 on bn/5c
bits. By Corollary 3.5.1,

degε(EXACT0) > Ω

















√

n log(1/ε)
logn

















(3.8)

On the other hand,

EXACT0(t) = (1− 2D(`)) · D(t + ` − 1)+ D(`),

so that
degε(EXACT0) 6 degε(D). (3.9)

Equations (3.8) and (3.9) imply (3.7), thereby completing the proof. �

4 Approximating a Function of Events

We now turn to the proof of our main results, Theorems 1.2 and 1.3. Fix an arbitrary
function f : {0, 1}n→ {0, 1}. For eventsA1, . . . ,An in a probability spaceP , let

Pr[ f (A1, . . . ,An)]
def
= Pr



















⋃

x: f (x)=1

















⋂

i:xi=0

Ai

⋂

i:xi=1

Ai



































.

Suppose thatPr[
⋂

i∈S Ai] is given for eachS with |S| 6 k. Our goal here is show
how to use this information to efficiently construct a near-optimal approximation to
Pr[ f (A1, . . . ,An)].Our discussion will revolve around the quantityδ∗( f , k), defined
next.
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Definition 4.1. Let f : {0, 1}n→ {0, 1} and 06 k 6 n. Define

δ∗( f , k)
def
= sup

{

Pr
P1

[ f (A1, . . . ,An)] − Pr
P2

[ f (B1, . . . , Bn)]

}

,

where the supremum is taken over all probability spacesP1 and P2, over all
eventsA1, . . . ,An in P1, and over all eventsB1, . . . , Bn in P2, such that

Pr
P1















⋂

i∈S
Ai















= Pr
P2















⋂

i∈S
Bi















for |S| 6 k. (4.1)

In words,δ∗( f , k) is the best error achievable in approximatingPr[ f (A1, . . . ,An)]
in principle, information-theoretically, if unlimited computing power is available.

For a symmetric functionf (x) ≡ D(x1 + · · · + xn), the notation we have
established in this section relates as follows to the notation of the Introduction:

Pr[ f (A1, . . . ,An)] = Pr
[

D(I [A1] + · · · + I [An]) = 1
]

,

δ∗( f , k) = δ∗(D, k).

We need the more general notation because much of the development in this section
takes place in the setting of arbitrary functionsf : {0, 1}n → {0, 1}, even though
our ultimate results are forsymmetricfunctions. This approach makes the proof
cleaner and more modular, in addition to yielding partial results fornonsymmetric
functions.

Our immediate goal is to understand the quantitative behavior of δ∗( f , k). To
this end, we will show that the arbitrary probability spacesin the definition of
δ∗( f , k) can in fact be restricted to probability distributions on{0, 1}n.

Definition 4.2 (Induced distribution). Let E1, . . . ,En be events in a probability
spaceP . Thedistribution on{0, 1}n induced byP ,E1, . . . ,En is defined as

µ(x)
def
= Pr

















⋂

i:xi=0

Ei

⋂

i:xi=1

Ei

















.

Proposition 4.3. Let E1, . . . ,En be events in a probability spaceP . Let µ be the
distribution on {0, 1}n induced byP ,E1, . . . ,En. Then for everyg : {0, 1}n →
{0, 1},

Pr[g(E1, . . . ,En)] = E
x∼µ

[g(x)].
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Proof:

Pr[g(E1, . . . ,En)] =
∑

x∈{0,1}n
g(x) · Pr

















⋂

i:xi=0

Ei

⋂

i:xi=1

Ei

















=
∑

x∈{0,1}n
g(x)µ(x)

= E
x∼µ

[g(x)]. �

At this point, we are ready to simplifyδ∗( f , k) as promised. For a setS ⊆ [n],
define ANDS : {0, 1}n→ {0, 1} by

ANDS(x)
def
=

∧

i∈S
xi =

∏

i∈S
xi .

In particular, AND∅ ≡ 1.

Lemma 4.4. Let f : {0, 1}n→ {0, 1} and0 6 k 6 n. Then

δ∗( f , k) = max
α,β

{

E
x∼α

[ f (x)] − E
x∼β

[ f (x)]

}

, (4.2)

where the maximum is taken over all probability distributions α, β on {0, 1}n such
that Ex∼α[ANDS(x)] = Ex∼β[ANDS(x)] for |S| 6 k.

Proof. Fix probability spacesP1,P2, events A1, . . . ,An in P1, and events
B1, . . . , Bn in P2, such that (4.1) holds. Letα and β be the distributions on
{0, 1}n induced byP1,A1, . . . ,An and P2, B1, . . . , Bn, respectively. Then by
Proposition 4.3,

E
x∼α

[ f (x)] − E
x∼β

[ f (x)] = Pr
P1

[ f (A1, . . . ,An)] − Pr
P2

[ f (B1, . . . , Bn)]

and

E
x∼α

[ANDS(x)] = E
x∼β

[ANDS(x)] for |S| 6 k.

Letting δ stand for the right-hand side of (4.2), we conclude thatδ∗( f , k) 6 δ.
It remains to show thatδ∗( f , k) > δ.Given a probability distributionµ on{0, 1}n,

there is an obvious discrete probability spaceP and eventsE1, . . . ,En in it that
induceµ: simply letP = {0, 1}n with Ei defined to be the event thatxi = 1, where
x ∈ {0, 1}n is distributed according toµ. This allows us to reverse the argument of
the previous paragraph (again using Proposition 4.3) and show thatδ∗( f , k) > δ. �

With δ∗( f , k) thus simplified, we relate it to a quantity that is easy to estimate.
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Theorem 1.4(Restated from p. 4).Let f : {0, 1}n → {0, 1} be arbitrary and0 6
k 6 n. Then

δ∗( f , k) = 2ε∗( f ,Φ),

whereΦ = {ANDS : |S| 6 k}.

Proof. In view of the Approximation/Orthogonality Principle (Theorem 2.3), it
suffices to prove that

δ∗( f , k) = 2γ∗( f ,Φ).

The remainder of the proof is establishes this equality.
To rephrase Lemma 4.4,

δ∗( f , k) = max
α,β



















∑

x∈{0,1}n
[α(x) − β(x)] f (x)



















, (4.3)

where the maximum is over distributionsα andβ on {0, 1}n such that
∑

x∈{0,1}n
[α(x) − β(x)] AND S(x) = 0 for |S| 6 k.

Let α, β be distributions for which the maximum is attained in (4.3).Settingψ =
(α − β)/2, we see that

∑

x∈{0,1}n |ψ(x)| 6 1 and thusδ∗( f , k) 6 2γ∗( f ,Φ).
It remains to show thatγ∗( f ,Φ) 6 δ∗( f , k)/2. Suppose first thatγ∗( f ,Φ) = 0.

Sinceδ∗( f , k) > 0 always andδ∗( f , k) 6 2γ∗( f ,Φ) = 0 by the first part of the proof,
the theorem is true in this case.

Finally, suppose thatγ∗( f ,Φ) > 0 and letψ be a real function for which the
maximum is achieved in (2.1). Then necessarily

∑

x∈{0,1}n |ψ(x)| = 1. Sinceψ is
orthogonal to the constant function 1∈ Φ, we also have

∑

x∈{0,1}n ψ(x) = 0. The last
two sentences allow us to write

ψ =
1
2

(α − β),

whereα andβ are suitable probability distributions over{0, 1}n. Then (4.3) shows
thatγ∗( f ,Φ) 6 δ∗( f , k)/2, as desired. �

Theorem 1.4, which we have just proved, is the crux of our argument. It
shows thatδ∗( f , k) measures how wellf can be approximated by a multivariate
polynomial in x1, . . . , xn of degreek. Observe that Theorem 1.4 holds forevery
function f : {0, 1}n → {0, 1}. For the special case of symmetric functions, we
have already obtained (Section 3) tight estimates of the best error achievable by a
polynomial of a given degreek. By combining these estimates with Theorem 1.4,
we now prove the main result of the paper.
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Theorem 4.5 (Restatement of Theorems 1.2 and 1.3).Let f : {0, 1}n→ {0, 1} be
a nonconstant symmetric function. Put` = `0( f ) + `1( f ). Then

δ∗( f , k) = Θ(1) if k 6 Θ
(√

n`
)

,

δ∗( f , k) ∈
[

2
−Θ

(

k2 logn
n

)

, 2
−Θ

(

k2
n logn

)
]

if Θ
(√

n` logn
)

6 k 6 Θ(n).

Furthermore, for every k> Θ
(√

n` logn
)

, there are reals a0, a1, . . . , ak, com-
putable in timepoly(n), such that

∣

∣

∣

∣

∣

∣

∣

∣

Pr[ f (A1, . . . ,An)] −
k

∑

j=0

a j

∑

S:|S|= j

Pr















⋂

i∈S
Ai















∣

∣

∣

∣

∣

∣

∣

∣

6 2
−Θ

(

k2
n logn

)

for any events A1, . . . ,An in any probability spaceP .

Proof. By hypothesis,f (x) ≡ D(x1 + · · · + xn) for a suitable nonconstant predicate
D : {0, 1, . . . , n} → {0, 1}. PutΦ = {ANDS : |S| 6 k}. We have:

δ∗( f , k) = 2ε∗( f ,Φ) by Theorem 1.4

= 2ε∗( f , {χS}|S|6k) since span(Φ) = span({χS}|S|6k)

= 2ε∗(D,Pk) by Proposition 2.8. (4.4)

By Theorem 2.10 and Lemmas 3.4 and 3.6,

ε∗(D,Pk) ∈



































Θ(1) if k 6 Θ
(√

n`
)

,

[

2
−Θ

(

k2 logn
n

)

, 2
−Θ

(

k2
n logn

)
]

if Θ
(√

n` logn
)

6 k 6 Θ(n).

In view of (4.4), this proves the claim regardingδ∗( f , k).
We now turn to the claim regardinga0, a1, . . . , ak. For k > Θ

(√
n` logn

)

,

Lemma 3.4 gives an explicit univariate polynomialp(t) of degree at mostk such
that

| f (x) − p(x1 + · · · + xn)| 6 2
−Θ

(

k2
n logn

)

for all x ∈ {0, 1}n. (4.5)

Fix a probability spaceP and eventsA1, . . . ,An in it. Let µ be the distribution on
{0, 1}n induced byP ,A1, . . . ,An. We claim that the quantity

E
x∼µ

[p(x1 + · · · + xn)]
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is the desired approximator ofPr[ f (A1, . . . ,An)]. Indeed,

E
x∼µ

[p(x1 + · · · + xn)] = E
x∼µ



















k
∑

j=0

a j

∑

|S|= j

∏

i∈S
xi



















=

k
∑

j=0

a j

∑

|S|= j

E
x∼µ















∏

i∈S
xi















Prop. 4.3
=

k
∑

j=0

a j

∑

|S|= j

Pr















⋂

i∈S
Ai















,

where the realsa0, a1, . . . , ak are uniquely determined by the polynomialp, itself
explicitly given. It is also clear thata0, a1, . . . , ak can be computed from the
coefficients ofp in time poly(n). Thus, the quantityEx∼µ[p(x1 + · · · + xn)] has the
desired representation. It remains to verify that it approximatesPr[ f (A1, . . . ,An)]
as claimed:
∣

∣

∣

∣

∣

Pr[ f (A1, . . . ,An)] − E
x∼µ

[p(x1 + · · · + xn)]
∣

∣

∣

∣

∣

Prop. 4.3
=

∣

∣

∣

∣

∣

E
x∼µ

[ f (x) − p(x1 + · · · + xn)]
∣

∣

∣

∣

∣

(4.5)
6 2

−Θ
(

k2
n logn

)

. �

5 Lower Bounds for Agnostic Learning

We now use the proof technique of the previous section to obtain new lower bounds
for agnostic learning (Theorem 1.6). The following definition formalizes the object
of our study.

Definition 5.1. Let f : {0, 1}n→ {0, 1} and 06 k 6 n. Define

Γ∗( f , k)
def
= max

λ

{

Pr
(x,y)∼λ

[ f (x) = y]

}

,

where the maximum is taken over all distributionsλ over{0, 1}n × {0, 1} such that

Pr
(x,y)∼λ

[g(x) = y] =
1
2

(5.1)

for everyg : {0, 1}n→ {0, 1} that depends onk or fewer variables.

Observe that the maximization in Definition 5.1 is over a nonempty compact
set that contains the uniform distribution. Our goal will beto show that

Γ∗
(

f , Θ
(√

n(`0( f ) + `1( f ))
))

> 1− ε

for every symmetric functionf and every constantε > 0. In other words, even
though the training examples agree withf to within ε, no hypothesis that depends
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on few variables can match the data better than random. Our strategy will be to
relateΓ∗( f , k) to the best error and modulus of orthogonality, quantitiesfor which
have developed considerable intuition.

Lemma 5.2. Letλ be a distribution on{0, 1}n× {0, 1}. Then for every f: {0, 1}n→
{0, 1},

Pr
(x,y)∼λ

[ f (x) = y] = Pr
(x,y)∼λ

[y = 0] +
∑

x∈{0,1}n
(λ(x, 1)− λ(x, 0)) f (x).

Proof:

Pr
(x,y)∼λ

[ f (x) = y] = Pr
(x,y)∼λ

[ f (x) = y = 0] + Pr
(x,y)∼λ

[ f (x) = y = 1]

=
∑

x

λ(x, 0)(1− f (x)) +
∑

x

λ(x, 1) f (x)

=
∑

x

(λ(x, 1)− λ(x, 0)) f (x) +
∑

x

λ(x, 0)

=
∑

x

(λ(x, 1)− λ(x, 0)) f (x) + Pr
(x,y)∼λ

[y = 0]. �

We are now in a position to expressΓ∗( f , k) in terms of a quantity that is easy
to estimate.

Theorem 5.3. Let f : {0, 1}n→ {0, 1} and0 6 k 6 n. Then

Γ∗( f , k) =
1
2
+ ε∗( f ,Φ),

whereΦ = {χS : |S| 6 k}.

Proof. By the Approximation/Orthogonality Principle (Theorem 2.3), it suffices to
show that

Γ∗( f , k) =
1
2
+ γ∗( f ,Φ).

Let λ be a distribution on{0, 1}n× {0, 1} for which (5.1) holds. Settingg = 0 gives:

Pr
(x,y)∼λ

[y = 0] =
1
2
.

Lemma 5.2 now yields the following convenient characterization of Γ∗( f , k):

Γ∗( f , k) =
1
2
+max

λ















∑

x

(λ(x, 1)− λ(x, 0)) f (x)















,
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where the maximum is over all distributionsλ on {0, 1}n × {0, 1} such that
∑

x

(λ(x, 1)− λ(x, 0))g(x) = 0

for every functiong : {0, 1}n → {0, 1} that depends onk or fewer variables. With
this new characterization, it is not difficult to show thatΓ∗( f , k) = 1/2 + γ∗( f ,Φ).
The argument is closely analogous to the one we gave in Theorem 1.4, and we do
not repeat it here. �

Theorem 5.3 is the backbone of this section and holds for arbitrary functions.
In view of Paturi’s work, it yields our sought result for symmetric functions.

Theorem 1.6(Restated from p. 6).Let D : {0, 1, . . . , n} → {0, 1} be a predicate

and f(x)
def
= D(x1 + · · · + xn). Let ε > 0 be an arbitrary constant. Then there is a

distributionλ on {0, 1}n × {0, 1} such that

Pr
(x,y)∼λ

[ f (x) = y] > 1− ε

and

Pr
(x,y)∼λ

[g(x) = y] =
1
2

for every g : {0, 1}n → {0, 1} that depends on at most c
√

n(`0(D) + `1(D))
variables, where c= c(ε) is a constant.

Proof. In view of Theorem 5.3, we need only show that

ε∗( f ,Φ) >
1
2
− ε,

whereΦ = {χS : |S| 6 c
√

n(`0( f ) + `1( f ))} for a suitably small constantc. But this
is immediate from Proposition 2.5 and Paturi’s result (Theorem 2.10). �

Theorem 1.6 is best possible, as we now show.

Theorem 5.4 (On the tightness of Thm. 1.6).Let f : {0, 1}n → {0, 1} be a
symmetric function andε ∈ (0, 1/2) be a given constant. Letλ be a distribution on
{0, 1}n × {0, 1} with

Pr
(x,y)∼λ

[g(x) = y] =
1
2

for every g : {0, 1}n → {0, 1} that depends on at most C
√

n(`0( f ) + `1( f ))
variables, where C= C(ε) is a large enough constant. Then

Pr
(x,y)∼λ

[ f (x) = y] 6 1− ε.
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Proof. To rephrase the theorem, we need to show that

Γ∗( f , k) 6 1− ε,

wherek = C
√

n(`0( f ) + `1( f )). In view of Theorem 5.3, this is equivalent to

ε∗
(

f , {χS : |S| 6 k}
)

6
1
2
− ε.

The latter is certainly true for a large enough constantC, by Proposition 2.5 and
Paturi’s result (Theorem 2.10). �

Remark5.5. Let f be an arbitrary symmetric function. Theorem 5.4 tells us that
if all hypotheses that depend on at mostk = Θ

(
√

n(`0( f ) + `1( f ))
)

variables have
zero advantage over random guessing, then the functionf itself cannot be ahigh-
accuracyclassifier. What if we additionally know that all hypothesesthat depend
on at mostK variables, where

K � Θ
( √

n(`0( f ) + `1( f ))
)

,

have zero advantage over random guessing? It turns out that in this case, the
function f itself cannot have considerableadvantageover random guessing (let
alone be ahigh-accuracyclassifier). The proof is entirely analogous to that of
Theorem 5.4, except in place of Paturi’s result we would use our our near-tight
bounds on the approximate degree (Theorem 1.5) that work in the broader range
[1/2n, 1/3]. Such statements seem to be of lesser interest, and we do not formulate
them into theorems.
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