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Abstract. Let A, Ay, ..., Ay be events in some probability space. Tdygproximate
inclusion-exclusion problendue to Linial and Nisan (1990), is to estim&g A U- - -UA]
givenPr[Nies Al for all |S| < k. Kahn et al. (1996) solve this problem optimally for e&ch
We study the following more general question: g\ ;.5 Ai] for all |S| < k, estimate

Pr [thenumberof events amondy, . . ., A, that hold is inZ],

whereZ C {0,1,...,n}is a given set. (In the Linial-Nisan probled,= {1,...,n}.) We
solve this general problem for &landk, giving an algorithm that runs in polynomial time
and achieves an approximation error that is essentiallynaht We prove this optimal error
to be 29K*/" for k above a certain threshold, a®q1) otherwise.

As part of our solution, we determine, for every predidate {0,1,...,n} — {0,1}
and everye € [1/2",1/3], the least degree dg@p) of a polynomial that approximatds
pointwise withine. Namely, we show that de(P) = @(deg/3(D) + w/nlog(l/e)) , Where
deg 5(D) is well-known for eaclD. Previously, the answer for vanishiagvas known only
for D = OR (Kahn et al., 1996). We construct the approximating patgial explicitly for
everyD ande.

Our proof departs considerably from Linial and Nisan (198J Kahn et al. (1996).
Its key ingredient is thépproximatiopOrthogonality Principle,a certain equivalence of
approximation and orthogonality in a Euclidean space,ngeroved by the author in the
context of quantum lower bounds (Sherstov 2007). Our patyiabconstructions feature
new uses of the Chebyshev polynomials.

*This work has been previously published as Technical Reédr-07-34 (July 24, 2007) of the
Dept. of Computer Sciences, The University of Texas at Austi

ISSN 1433-8092



1 Introduction

Let Aq, Ay, ..., Ay be events in a probability space. The well-known inclusion-
exclusion principle allows one to compute the probabilityAe U - - - U A, using
the probabilities of various intersections&f, Ay, .. ., An:

PriALU--UA] = > PIIAT= > PIIA N AL+ > PIIANANA] -
i i<] i<j<k

+(=1)"Pr[AL N --- N AL

A moment’s reflection reveals that knowledgeeskryterm in this summation is
necessary in general for an exact answer. In this lightnatsiral to wonder if one
can closely approximater[|_ Aj] using the probabilities of intersections of up to
k events, wher& < n. This problem, due to Linial and Nisan [10], is known as
approximate inclusion-exclusiorinial and Nisan studied this question and gave
near-tight bounds on the least approximation error as atifum&. A follow-up
article by Kahn, Linial, and Samorodnitsky [5] improved siedoounds to optimal.

While A; U --- U A, is an important event, it is certainly not the only one of
interest. For example, we might be interested in

Pr [ most of the eventdy, A,, . . ., A, hold ]
or
Pr [ an odd number of events from amoAg, A, .. ., A, hold ]

More generally, we might like to know the likelihood that themberof events
that hold is in a given subset 3,1, ...,n}. Formally, letD : {0,1,...,n} — {0, 1}
be an arbitrary predicate. Consider

Pr[ DO[AL] +---+1[A)]) =1], (1.1)
where as usual

def |1 A holds
I[A] =
(Al {0 otherwise

As before, we would like to estimate (1.1) to optimal errovegi the values of
Pr[Nics Ai] for all S with |S| < k. This new problem is a natural generalization
of approximate inclusion-exclusion. Yet the methods ofidliand Nisan [10] and
Kahn et al. [5] do not cover this broader question.



We solve this problem completely for evelbyandk. More precisely, we give
an algorithm that, for everp andk, runs in polynomial time and achieves an
approximation error that is essentially optimal. Before sta&te our results, we
introduce some helpful notation.

1.1 Notation

LetD:{0,1,...,n} — {0, 1} be an arbitrary predicate. Define
to(D) €{0,1,....[n/2]},
t1(D) € {0,1,...,[n/2]}

to be the smallest integers such tlRats constant in the rangéd(D), n — £1(D)].
The figure below illustrates this definition for a typical gieateD:

14(D) 1,(D)
D

The key point is thafo(D) + £1(D) is large if and only ifD changes value near the
middle of the range. We need another definition.

Definition 1.1. LetD : {0,1,...,n} — {0, 1} and 0< k < n. Define
6" (D, K)

' sup [pr[DalAd +--+1[AD =1] - Pr[DO[B] +-+-+1[B]) = 1]

where the supremum is taken over all probability spagésand £2,, over all
eventsAy, ..., Ay in 21, and over all eventB;, ..., B, in &, such that

ﬂ Bil for |S| < k.

ieS

=Pr

Pr
: P,

A0

ieS

In words, the quantitg*(D, k) in the above definition is the least error achievable in
approximatingPr[D(I[A4]+- - -+1[An]) = 1]in principle, information-theoretically,
if unlimited computing power is available.
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1.2 Main Result

The first question we settle is precisely how laigeneeds to be for a good
approximation to eveaxist We prove:

Theorem 1.2 (Existence of a good approximation)LetD: {0,1,...,n} — {0, 1}.
Put¢ = £o(D) + £1(D). Then

o(1) if  k<o(vni),
FOK=1 .
2-6(1/n) if ® (Vnt) < k< ©(n).

Theorem 1.2 tells us that a good approximation exists if arg b k > & (Vnt),
wherel = {y(D) + ¢1(D). We now give an fiicient way to actuallyconstructthe
near-optimal approximation for any givéhandk.

Theorem 1.3 (Hficient approximation sgheme).Let D:{0,1,....,n} —» {0,1}.
Put¢ = £o(D) + £4(D). Then for every k= ® (Vn¢) there are reals

ag, a, - - -, &,
computable in timgoly(n), such that

PrDU[A] +-+1[AD) =1] - Y a > Pr[ﬂﬁql
j J

k
< 2—®(k2/n)
j=0  S:S|=j ieS

forany events A..., A, in any probability space.

Theorem 1.3 gives the desired approximation algorithm. Asee, it is not even
necessary to know the individual probabilities[Nics Ail; it suffices to know the

k+ 1 sums
ﬂml (i=01....K.

ieS

Z Pr
SiSI=j
This solves the generalized inclusierclusion problem for all predicates. In
actuality, our proof works fomarbitrary Boolean functions, not just predicates.
Specifically, fixf : {0, 1}" — {0, 1} and suppose we wish to approximate

Prf(I[Ad.....I[A]) = 1]

given Pr[Nies Al for all S with |S| < k. Let §*(f, k) be the best error achievable
information-theoretically. In the case of symmetric fuags, i.e.,f(X) = D(xq +

-+ -+ Xn) for some predicat®, this is precisely the setting of Theorems 1.2 and 1.3.
For arbitraryf, we obtain the following result:
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Theorem 1.4. Let f: {0,1}" — {0, 1} be arbitrary and0 < k < n. Then
o' (f,k) =2 rr;in||f = @loos

where the minimum is over multilinear polynomialsy, . . ., x,) of degree up to k

Thus, Theorem 1.4 solves the approximate inclysieiusion problem for any
whose approximability by polynomials is well understood.

1.3 Other Results

Approximate degree. As part of our proof, we have to show the following
result of independent interest. For a predicAte {0,1,...,n} — {0,1}, define

its e-approximate degreeleg (D) to be the smallest degree of a univariate real
polynomial p(t) such that

.....

This quantity is of inherent significance and has found wveriapplications in
theoretical computer science [5, 6,8-10, 13, 15, etc.jirenfrom approximation
algorithms and computational learning to complexity tiyedoreover, the main
result of this paper depends critically on tight estimateden, (D) for all D ande.
We prove:

Theorem 1.5 (Approximate degree of predicates)Let D: {0,1,...,n} — {0, 1}
be a nonconstant predicate. Let [1/2",1/3]. Then

deg(D) = & (VA(G(D) + (2(D)) + yinlog(¥/e)),

where the® notation suppressel®gn factors. Furthermore, the approximating
polynomial for each D and is given explicitly.

Theorem 1.5 is a broad generalization of two earlier resolthe literature.
The first of these is due to Paturi [12], who showed that

deg 5(D) = © (Vi(Go(D) + (a(D))) for all D.

Unfortunately, Paturi’s result and its proof give no ingigito the behavior of the
e-approximate degree for vanishiegThe other relevant result is due to Kahn et
al. [5], who conducted an in-depth study of the predidate OR, defined as usual
by OR({) =1 i > 1. Kahn et al. showed that

deg(OR) = ®(y/nlog(T/e)) (1/2" < e < 1/3),



where the® notation hides log factors. Thus, our work generalizes the results of
Paturi and Kahn et al. teverypredicate aneéveryerror ratee € [1/2",1/3].

Theorem 1.5 has another, more revealing and estheticaBsilg interpreta-
tion. In view of Paturi’s work, it can be restated as:

deg(D) = 6 (deg5(D) + nlog(T/e))  (1/2" < e<1/3),

where D is nonconstant. In words, past a certain threshold, therdipee of
the e-approximate degree onis the same for all nonconstant predicates. This
threshold varies from one predicate to another and equaldetree required for a
L-approximation.

Agnostic learning. The proof technique of our main result additionally gives
new lower bounds foagnostic learning. The agnostic model, due to Kearns et
al. [7], is perhaps the most realistic abstraction of leagni Designing ficient
algorithms in this model, even for the simplest conceptsgas is notoriously
difficult. Nevertheless, progress on proving lower bounds hes laéen scarce.
Some recent lower bounds are [9, 17].

A summary of this model is as follows. L&t be a concept class, i.e., some
set of Boolean function§0, 1}" — {0, 1}. There is an unknown distribution on
{0, 1}" x {0, 1}, and the learner receives training examples

(60, 5 @), (x@,5@), ., (X, ),

independent and identically distributed according tbet

def
t = Pr [f(X) =
opt < max{ P 109 =41}
be the error of the functiori* € % that best agrees with the training data. The
learner needs to produce a hypothdsis {0,1}" — {0, 1} that agrees with the
training data almost as well d3:

o [h09 = 4] > opt— ¢,
wheree is an error parameter fixed in advance. As usual, the goal isdoh
efficiently.

A natural approach to learning in this and other models isatsicler only
those hypotheses that depend on few variables. One tedtssaal hypothesis
against the training data and outputs the one with the lesst dhis technique is
attractive in that the resulting hypothesis space is smdlleell-structured, making
it possible to diciently identify the best approximation to the observedchasies.

5



The central question then becomes, what advantage ovasmagdessing can
such hypotheses guarantee? We prove that, when learningedyim functions,
one is forced to use hypotheses that depend on many variadllesthers will
generally work no better than random guessing.

Theorem 1.6 (Lower bound for agnostic learning).Let D: {0,1,...,n} — {0, 1}

be a predicate and (k) def D(Xy + --- + Xn). Lete > 0 be an arbitrary constant.
Then there is a distribution on {0, 1}" x {0, 1} such that

Pr [f(X)=y]>1-
L=yl >1-e

and

1
Pr [9(X) =y] = =
or [0 = vl = 3

for everyg : {0,1}" — {0,1} that depends on at most\m({o(D) + ¢1(D))
variables, where & c(¢) is a constant.

We also show that the bound on the number of variables in Enedr.6 is
optimal to within a multiplicative constant (see Theorem)5.Prior to our work,
Tarui and Tsukiji [17] obtained the special case of Theoreénfar f = OR. No
other lower bounds for symmetric functions were previoksigwn.

To place Theorem 1.6 in the framework of agnostic learnirapsider any
concept clas¥ that contains many symmetric functions. For example, wedcou
fix a symmetric functionf : {0, 1}" — {0, 1} and consider the concept clagsof
(zn”) functions, each being a copy 6fapplied to a separate setmf/ariables from
amongxy, Xo, ..., Xon -

C = {f(Xp Xigo - %) T L<iz<iz<---<in<2n).

Theorem 1.6 now supplies scenarios weememember ofg matches the training
data almost perfectly (to within argy> 0), and yet every hypothesis that depends
on few variables is completely useless (i.e., as good a®pnamgliessing).

1.4 Our Techniques

The proof of our main result takes inspiration from the ef¢gaapers of Linial
and Nisan [10] and Kahn et al. [5], who have studied the speeaseD = OR
Namely, we adopt the high-level strategy of these workschvig to reduce the
original problem via linear-programming duality to a questin approximation
theory. Implementing this strategy, however, requires aed/istronger techniques.
As we will shortly explain, our proof is a substantial depegtfrom [5, 10].
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First of all, the linear-programming reduction in [5, 10]edonot extend from
D = OR to arbitrary predicates. To overcome thigfidulty, we start with a
different and more versatile tool, tA@proximatiofOrthogonality Principle This
principle gives a certain equivalence between approxonaind orthogonality in
a Euclidean space and has been recently proved by the adfjdn[the context
of qguantum lower bounds. With some work, this yields the réelsieduction from
the original problem to a question in approximation thednyaddition, the proof
turns out simpler and more modular than in [5, 10].

To complete the solution, we must still answer the resultjogstion in ap-
proximation theory. This amounts to determining, for eaddjcateD and each
€ € [1/2",1/3], the least degree of a polynomial that approximddepointwise
within €, and then constructing such a polynomial explicitly. Preegig, such a
construction was known only fd» = OR (Kahn et al. [5]). We solve the general
case by combining interpolation techniques with a new uséhefChebyshev
polynomials.

It may seem that Theorem 1.5, the backbone of this paper|dshaue a more
intuitive and more elementary proof. However, the simpleais that come to mind
turn out to be useless, as we now discuss.

e An obvious approach is to start with Paturi}sapproximating polynomial
p(t) for the given predicat®(t) and boost its accuracy by composing it with
another polynomialg(t). Let € € (0, 1/3) be the desired accuracy. For this
approach to workg(t) must satisfy:

a-4idcted  afpi)ct-cid

Up to translatioyscaling, this is equivalent to requiring trgit) approximate
the sign function withire on the interval 1, -1+ o] U [1,1 — a] for some
constantx € (0,1). Eremenko and Yuditskii [4] show that the least degree
of such a polynomiaty(t) is ®(log(1/¢)). Taking p(t) to be Paturi’'s approx-
imating polynomial for the given predicaf®, we see that the composition
p(q(t)) has degree

® (V{Zo(D) + f1(D)) log(1/e)).

This is much worse than the optimal bound that we achievegham

® (Vn{Zo(D) + a(D)) + +nlog(T/e)).

e Another tempting strategy is to view a given predicBte {0,1,...,n} —
{0,1} as a continuous (piecewise-linear) function onnj0and then apply



D. Jackson’s fundamental theorems on uniform approximatidnfortu-
nately, the continuous approximation problem is very hardnefor the
following simple predicate:

Indeed, are-approximating polynomial for this continuous functiorelgs
(after translation and scaling) arapproximating polynomial of the same
degree foitx| on [-1, 1]. In his classical work, S.N. Bernstein [2] proves that
the latter polynomial requires degrég1/¢). In particular, this approach
is entirely useless once < ©(1/n). Yet the predicate in question has an
approximator of degre®(4/n), as we show. Clearly, the key is to exploit
the discrete nature of the problem: we are merely seekingarmaimation
over the finite set of pointg, 1, .. ., n}, rather than the entire interval,[q.

We conclude with a broader view of this work. What might be omon to
approximate inclusion-exclusion, agnostic learning, gmantum communication?
These subjects seem quitdfdrent at first. One contribution of our paper is to
show that, as far as symmetric functions are concernede tiese problems are
fundamentally the same mathematical question! Namelygtiestion is how well
a given predicate can be approximated by a univariate poljadaof low degree.
We illustrate this equivalence in the following diagram,igthshows the skeleton
of our proofs:

Quantum lower bounds
for all predicates
(Sherstov 2007b)

Approximate inclusion/
exclusion for all predicates
(this paper)

agnostic learning
(this paper)

/

auxiliary work 1/3-approximation | Degree/Discrepancy

of predicates Theorem (Sherstov 2007a)
(Paturi 1992)

auxiliary work

eps—approximation
of predicates,eps —=0
(this paper)

Approximation/Orthogonality Principle
(Sherstov 2007b)




The three ovals across the top correspond to the main résutigrom this paper,
one from [15]). The arrows show dependencies in the prooftiatvidrings the
three subjects together is the Approximatiorthogonality Principle, reviewed in
detail in Section 2.2.

1.5 Organization

We start with a thorough review of technical preliminariesSection 2. We next
study the approximation of Boolean predicates by real pmiyials in Section 3.
Armed with this approximation result, we prove our main tfeeo in Section 4.
Finally, Section 5 reinterprets our technique to give loweunds for agnostic
learning.

2 Preliminaries

This section provides relevant technical background. rAsieme remarks on
notation (Section 2.1), we discuss the Approximatianthogonality Principle and
give its proof for the reader’'s convenience (Section 2.2cti®n 2.3 concludes
with some fundamental results about the approximation afl&mn functions by
polynomials.

2.1 General

A Boolean functionis a mapping{0,1}" — {0,1}. A predicateis a mapping
{0,1,...,n} — {0, 1}. The notation Ijj] stands for the s€fl, 2,...,n}. The symbol
Py stands for the set of all univariate real polynomials of degip tdk. For a finite
setX and a functionp : X — R, we define

¢l = maxig(o.

We now recall the Fourier transform @@, 1}". Consider the vector space of
functions{0, 1}" — R, equipped with the inner product

ef 1
(g = 2 > 109909,

x€{0,1)"

ForS C [n], defineys : {0, 1}" — {-1, +1} by

¥s0) = (~DZex.



Then{ys}scn is an orthonormal basis for the inner product space in quesAs
a result, every functiori : {0, 1}" — R has a uniquéourier representation

109 = ) f(S)xsM,

Scn]

wheref(S) €' (f, ys). The realsf(S) are called théourier cogficients of f

2.2 The Approximation/Orthogonality Principle

Crucial to our work is thé\pproximatiopOrthogonality Principlerecently proved
by the author [15] in the context of quantum lower bounds. sTphiinciple
establishes a certain equivalence between approximatidnoehogonality in a
Euclidean space.

We start with some notation from [15], which will be usefutdbghout this
paper. LetX be a finite set. Consid&X, the linear space of all function$ — R.
Recall the notation

def
e = maxig(x)I.
XeX
Then R%, || - |l.) is a real normed linear space.

Definition 2.1 (Best error). For f : X — R and® C RX, let

* def .
e(f,o) = ¢€gr];g®llf ~ Plleo.

In words,e*(f, @) is the best error in an approximation by a linear combination
of functions in®. Since span®) has finite dimension, a best approximationfto
out of span®) always exists [14, Thm. 1.1], justifying our use of “min”stead of
“inf” in the above definition.

We now introduce a closely related quantigy( f, @), that measures how well
f correlates with a real function that is orthogonal to alibof

Definition 2.2 (Modulus of orthogonality, Sherstov [15]). Let X be a finite set,
f : X = R, and® c RX. Themodulus of orthogonalitgf f with respect tab is:

y(f,o) & mflx{z f(x)zﬁ(x)} : (2.1)

xeX

where the maximum is taken over @l: X — R such that},.x [(x)| < 1 and
> wex @ (x) = 0 for all ¢ € ©.
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The maximization in (2.1) is over a nonempty set that costain= 0. Also, the

use of “max” instead of “sup” is legitimate because (2.1) mazes a continuous
function over a compact set. To summarize, the modulus dfogdnality is a
well-defined nonnegative real number for every functionX — R.

Theorem 2.3 (Approximation/Orthogonality Principle, Sherstov [15]). Let X
be a finite setd c RX, and f: X —» R. Then

€ (f, ) = y*(f, D).

Proof. Let ¢1,...,¢k : X — R be a basis for spaf®). Our first observation
is that e*(f, @) is the optimum of the following linear program in the vatiedb
€,Q1,...,0Ak

minimize: €
subject to:

<€ for eachx € X,

k
(0 - ) aigi(¥)
i=1

ai €R for eachi,

e>0.

Standard manipulations reveal the dual:

maximize: Z,Bxf(x)
xeX
subject to:
DBd<y,
xeX
Z Bxdi(X) =0 for eachi,
xeX
Bx €R for eachx € X.

Both programs are clearly feasible and thus have the sanedipiimum. We have
already observed that the optimum of first progrard ($, ®). Sincegq, ¢», . . ., ok
form a basis for spady), the optimum of the second program is by definition
y*(f, D). m|
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2.3 Approximation by Polynomials

Let f : {0,1}" — R. As we saw in Section 2.1, any such functiédnhas an
exactrepresentation as a linear combinationyef whereS c [n]. A fundamental
guestion to ask is how closelfy can beapproximatedby a linear combination of
functionsys with |S| small.

Definition 2.4 (Approximate degree of functions).Let f : {0, 1}" — R ande > 0.
The e-approximate degredeg.(f) of f is the minimum integek, O < k < n, for
which there exist® € span({ys}si<k) with

f(x) - <e
Xgpo%l (X -9 <e
We will be primarily interested in the approximate degreeBoblean func-
tions. As a first observation, dgd) = deg(—f) for all such functions and all
e > 0. Second, degf) is not substantially fiected by the choice of a constant
€ € (0,1/2). More precisely, we have:

Proposition 2.5 (Folklore). Let f : {0, 1}" — {0, 1} be arbitrary, e a constant with
O0<e<1/2. Then

deg(f) = ©(deg,5(f)).

Proof (folklore). Assume thate < 1/3; the cases € (1/3,1/2) has a closely

analogous proof, and we omit it. Lét def deg3(f). We have to show that
deg(f) = O(K). For this, fixg € span({xs}si<k) With maxo1jn | f (X)—¢(X)| < 1/3.
By basic approximation theory (see Rivlin [14, Cor. 1.4.1lj¥re exists a univariate
polynomial p of degreeO(1/¢) with

(-3a)cted  p(3g)en-eied
Then clearlyp(¢(X)) is the sought approximator df O

In view of Proposition 2.5, the convention is to work with degf) by default.
Determining this quantity for a given Boolean functibrcan be dfficult. There is,
however, a family of Boolean functions whose approximaigrele is analytically
manageable. This is the family efmmetridBoolean functions, i.e., functionfs:
{0, 1}" — {0, 1} whose value is uniquely determined ky+ - - - + X,. Equivalently,
a Boolean functiorf is symmetric if and only if

f(X1, X2, ..., Xn) = F(Xo()s Xo(2)s - - - 5 Xor(n))

12



for all inputsx € {0, 1}" and all permutations- : [n] — [n]. Note that there is a
one-to-one correspondence between predicates and syimBedtean functions.
Namely, one associates a predicBtavith the symmetric function

F0) L'D(xg + -+ + Xn).
To carry our discussion further, we extend the notion of agipnation to predi-
cates.

Definition 2.6 (Approximate degree of predicates).For a predicateD
{0,1,...,n} — {0, 1}, define itse-approximate degredeq. (D) to be the minimum
degree of a univariate real polynomialvith

.....

Analyzing the approximate degree of predicates is a muclplsimask and,
indeed, a basic question in approximation theory. It isafee fortunate that the
e-approximate degree of a symmetric function is the same es-#pproximate
degree of its associated predicate. This equivalence igikiag thesymmetrization
argumentof Minsky and Papert [11]. Before we can state this theorera, w
introduce some important notation.

Definition 2.7. For f : {0,1})" — {0,1} andD : {0,1,...,n} — {0, 1}, define

def

e (f, {xshsik) = min max  |f(X) - ¢(X)|,
s gespar({yshsik)  X€(0L"
* def . . .
e€(D,Py) = min “max  |D(i) - p(i)I.
pePx i=0,1,...,n

Definition 2.7 merely instantiates the symbdl¢, ®) from Section 2.2 to the
special caseg = f and¢ = D. We have:

Proposition 2.8 (Symmetrization argument, Minsky and Pape [11]). Let f:
{0,1}" — {0,1} be a symmetric Boolean function. Let D be the predicate with
f(X) = D(Xg + -+ + Xn). Then

e (f, lxshsie) = € (D, Py forallk=0,1,....n.  (2.2)

In particular,

deg(f) = deg(D) forall e > 0. (2.3)
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Proof sketch (Minsky and Papert [11])t is clear that (2.2) implies (2.3), so we
focus on the former. Sinc&(x) = D(X; + - - - + Xn), we immediately have

€' (f, {xshsk) < €(D, Py),

and it remains to prove the reverse inequality. &ix span(ys}si<k) for which
ll¢p — fllo = € (f, {xsksi<k). Defineg” : {0,1})" — R by

, def 1
P = o ZS: P(Xr(1)s Xr(2)s - - - » Xor(n))-
€Sy
On the one hand,
If —¢'llo <IIf — @l = € (F, {xshsi<k)- (2.4)

On the other hand, one can use the uniqueness of the Foymieseatation to show
that

¢'(X) = p(Xa + -+ + Xn)
for somep € Py. But then
If = ¢llo = IID - plleo > €"(D, Py). (2.5)
The sought conclusion follows from (2.4) and (2.5). ]
Using Proposition 2.8 and tools from approximation theBaturi [12] gave an

asymptotically tight estimate of dgg(f) for every symmetric Boolean functioh
The estimates are in terms of the quantitigd) and#,(f), defined next.

Definition 2.9 (Razborov [13]). LetD : {0,1,...,n} — {0, 1}. Define
to(D) € {0,1,...,[n/2]},
t1(D) € {0,1,...,[n/2]}

to be the smallest integers such tBes constant in the rangé{(D), n—¢1(D)]. For
a symmetric functiorf : {0, 1}" — {0, 1}, definefy(f) = £o(D) andf1(f) = ¢1(D),
whereD is the predicate for whicli(x) = D(X1 + - - - + Xp).

See Section 1 for a pictorial illustration of this definitiolVe are ready to state
Paturi’'s fundamental theorem.

Theorem 2.10 (Paturi [12]). Let f : {0,1}" — {0, 1} be a symmetric function.

Then
degys(f) = © (Vn(to(T) + &a(f)) .

In words, Theorem 2.10 states that %}approximate degree Q(+/n) for every
nonconstant predicate, and is higher for those predichte€hange value near the
middle of the rang¢0, 1, ..., n}.
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3 Best Approximation by Polynomials

This section marks the beginning of our proof. The goal hete determine, within
a logarithmic factor, the approximate degree of every magdi Specifically, we
prove the following theorem:

Theorem 1.5(Restated from p. 4)Let D: {0,1,...,n} — {0, 1} be a nonconstant
predicate. Lek € [1/2",1/3]. Then

deg(D) = & (Vn(to(D) + 2(D)) + vlog(Y/e)),

where the® notation suppressel®gn factors. Furthermore, the approximating
polynomial for each D and is given explicitly.

We prove the upper and lower bounds in this result separatelyemma 3.4 and
Lemma 3.6, in the two subsections that follow.

3.1 Upper Bound on the Approximate Degree

Our construction makes heavy use of the Chebyshev polytamidiich is not
surprising given their fundamental role in approximati@he other key ingredient
in our proof isinterpolation, which here amounts to multiplying an imperfect
approximatorp(t) by another polynomiatj(t) that zeroes oup’s mistakes. This
interpolation technique is well-known [1, 5] and is vital@gploiting the discrete
character of the problem: we are interested in approximaticer the discrete set
of points{0, 1, ..., n} rather than the more fiicult continuous setting, [@]. Kahn
et al. [5], who obtained the special case of Theorem 1.®fer OR, also used the
Chebyshev polynomials and interpolation, although in a#mand much dferent
way.

We start by recalling a few properties of the Chebyshev pmtyials, whose
proofs can be found in any standard textbook on approximatieory, e.g., [3,14].

Fact 3.1 (Chebyshev polynomials).The d" Chebyshev polynomial,4ft), has
degree d and satisfies the following properties:

Ta() =1 (3.1)
Ta(®) < 1 (-1<t<1) (3.2)
T,() > d? (t>1) (3.3)
Ta(L+06) > 5-20V® (0<6<1/2) (3.4)
2<Tra(1+ %) <7 @ 1) (3.5)
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At the heart of our construction is the following technicatima.

Lemma 3.2. Let{ > 0, A > 1, and d> 1 be integers witf + A < n/2. Then there
is an (explicitly given) polynomial(p) of degree at mo22(d-+1)vn(¢ + A)/A with

pn-0)=1

and
Ip) <29  forte[0,n\(n—¢—A,n=C+A).

Proof. Let

p() = TN%} (n—;—A)'

One readily verifies the following properties pf:

p1([0,n—¢—-A]) € [-1,1] by (3.2);
pu([n—¢—-A,n]) €[1,7] by (3.1), (3.3), (3.5);
/ 1 .
pi(t) > 7T A fort>n-¢-A by (3.3); (3.6)
A . o
pi(n=¢)—pi(n—¢—-A) > 7T A by previous line;
A o

pi(n—=£¢+A)—pi(n—-¢) > 7T A likewise.

Now consider the polynomial
2
oalt) (pl(t) - gl(n - 5)) '
In view of (3.6), this new polynomial satisfies
p2(n-¢) =0
and
2
pz(t)e[m,l] for te[O,nN\(n—=¢—-A,n—{+A).
Finally, let
def A?
= T 1+ — - .
pa(t) [sgd%_m)ge +A)w ( + 64 + M) pZ(t))

Using (3.4) and the properties @b, one sees thap(t) = ps(t)/ps(n — ¢) is the
desired polynomial. O
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There are a large number of distinct predicates®a, . . ., n}. To simplify the
analysis, we would like to work with a small family of prediea that have simple
structure yet allow us tofeciently express any other predicate. A natural choice is
the family of predicates EXACIfor ¢ = 0,1,...,n, where

1 ift=¢,
EXACT,(t) &' ' _
0 otherwise.

For a moment, we shall focus on an explicit construction fAET,.

Lemma 3.3. Let0 < £ < n/2. Then for any < 1/3,

deg (EXACT/,) = deq(EXACTh-¢) = O( v/n(¢ + 1)logn + +/nlog(1/€) log n) .

Proof. The first equality in the statement of the lemma is obvioud,\&e concen-
trate on the second. We may assume that n/log?n and log(Ze) < n/logn,
since otherwise the claim is trivial. Set

N Fog(l/f)w d %" 3ATlogn.
logn

Our assumptions abodtande imply thatf + A <« n/2, and thus Lemma 3.2 is
applicable. Denote bp(t) the polynomial constructed in Lemma 3.2. Let

q) % [ @-(-c+i).
=01 (1)
i

We claim that the polynomial

def 1
re) = - p(t)q(t
O = =g PO
is the sought approximation to EXAGT,. Indeed, it is easy to verify thaft) has
the desired degree. Fbe {0,1,....nf\{n—¢—-(A-1),...,n—£+ (A - 1)},

1
Ir(t) = EXACTn_e(t)] = r(t)] < n?@-). > <€

Sincer(t) = EXACT,_(t) for all remainingt, the proof is complete. O

We now prove the sought upper bound for an arbitrary pregliogtrepeatedly
applying Lemma 3.3.
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Lemma 3.4 (Upper bound on the approximate degree)Let D: {0,1,...,n} —
{0, 1}. Then for any < 1/3,

deg/(D) < O(+/n(¢o(D) + £1(D)) logn + y/nlog(1/€) logn).

Moreover, the approximating polynomial is given explicitl

Proof. Without loss of generality, we can assume tBdfn/2]) = 0 (otherwise,
work with the negation oD). For¢ = 0,1,...,n, let p,(t) denote the poly-
nomial that approximates EXAGTE) pointwise to withine/n, as constructed in

Lemma 3.3. Put det
e
pe) = D ped).
£:D()=1

Then clearlyp(t) approximatesD pointwise to withine. It remains to place an
upper bound on the degree jf

deg (D) < degp
<, pax {degpd  +  max {degpn}
t<[nj21’ e>Inj21

< O((+/nto(D) + Vntx(D))logn + /nlog(n/e)logn)
< O(+/n(£o(D) + £2(D)) logn + ~/nlog(1/€) logn).

where the third inequality follows by Lemma 3.3. O

3.2 Lower Bound on the Approximate Degree

Our lower bounds follow by a reduction to EXAG,Tthe simplest nonconstant
predicate, for which Kahn et al. [5] have already proven httigwer bound.

Theorem 3.5 (Kahn, Linial, and Samorodnitsky [5, Thm. 2.1 anl its proof]).
Let0 < k < n— 1. Then for every polynomial p of degreg k

.....

Theorem 3.5 has the following immediate corollary:
Corollary 3.5.1. Let2-9("o9n < ¢ < 1/3. Then

nlog(1/e)
logn |

deg (EXACTp) > Q

18



We are now in a position to prove the desired lower bound orafigFoximate
degree of any given predicate.

Lemma 3.6 (Lower bound on the approximate degree)LetD: {0,1,...,n} —
{0, 1} be a nonconstant predicate. Then BP9 < ¢ < 1/3,

JA(zo(D) + (D)) + \/mi)g—;/e)]

Proof. In view of Paturi’s result (Theorem 2.10), itffices to show that

nlog(1/e)
7 /W] . 3.7)

Abbreviate? = ¢£y(D). We can assume thdt < n/5 since otherwise the claim
follows trivially from Theorem 2.10. Consider the preded&XACTy on |n/5]

bits. By Corollary 3.5.1,
/n Iog(l/e)] (3.8)
logn

EXACTo(t) = (1 - 2D(¢)) - D(t + € — 1) + D(¢),

deg(D) > Q

deg(D) > Q

deg (EXACTyp) > Q

On the other hand,

so that
deg (EXACTy) < deg (D). (3.9)

Equations (3.8) and (3.9) imply (3.7), thereby completing proof. O

4 Approximating a Function of Events

We now turn to the proof of our main results, Theorems 1.2 aBdHix an arbitrary
function f : {0, 1})" — {0, 1}. For eventsA,, ..., A, in a probability space?, let

J [0 A

x:f(x)=1 i:x,=0 i:x=1

PrIf(An....A)] = Pr

Suppose thaPr[Nics Ai] is given for eachS with |S| < k. Our goal here is show
how to use this information tafkciently construct a near-optimal approximation to
Pr[f(A4,...,Ay)]. Ourdiscussion will revolve around the quantty f, k), defined
next.
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Definition 4.1. Let f : {0,1}" — {0, 1} and 0< k < n. Define

s (5K L sup {;E[f(Al,...,N)]—;E[f(Bl,...,Bn)]},

where the supremum is taken over all probability spagésand &7,, over all
eventsAy, ..., A, in &1, and over all eventBy, ..., B, in %5, such that

21|

ieS

= Pr
Py

ﬂ Bil for |S| < k. (4.1)

ieS

In words, 6*(f, K) is the best error achievable in approximatig f(Aq, ..., An)]

in principle, information-theoretically, if unlimited oaputing power is available.
For a symmetric functionf(x) = D(x; + --- + X), the notation we have

established in this section relates as follows to the rmiatf the Introduction:

Pr{f(As.....A)] = Pr[D([Ag] +--- + I[A)]) = 1],
5*(f,K) = 6*(D, K).

We need the more general notation because much of the dewetn this section
takes place in the setting of arbitrary functiohs {0, 1}" — {0, 1}, even though
our ultimate results are faymmetricfunctions. This approach makes the proof
cleaner and more modular, in addition to yielding partiagufes fornonsymmetric
functions.

Our immediate goal is to understand the quantitative behaofis*(f, k). To
this end, we will show that the arbitrary probability spadeshe definition of
6*(f,K) can in fact be restricted to probability distributions {@n1}".

Definition 4.2 (Induced distribution). Let E4, ..., E; be events in a probability
spaceZ. Thedistribution on{0, 1}" induced by, E,,..., E, is defined as

ﬂEi ﬂEi

i:x=0 ix=1

ux) % pr

Proposition 4.3. Let B, ..., E, be events in a probability spac#. Letu be the
distribution on{0, 1}" induced by, Ey, ..., E,. Then for everyy : {0,1}" —
{0,1},

Prlg(Ex..... En] = E [o(0)]
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Proof:

Ei Ei
i:x=0 ix=1

Pr[g(El, ey En)]

> g0 -Pr = > g0u(x)
}n

xe{0, 1) x€(0,1
E [g(x)]. o
X~p

At this point, we are ready to simplif§*(f, k) as promised. For a s&C [n],
define ANLx : {0, 1}" — {0, 1} by

def
ANDs(9 = A\ x =[x
ieS ieS

In particular, ANLQy = 1.
Lemma4.4. Let f:{0,1)" — {0,1} andO < k < n. Then

o (f,Kk) = m%x{XINEa[f(x)] - XINE'B[f(x)]}, (4.2)

where the maximum is taken over all probability distribosar, 8 on {0, 1}" such
that Ex.o[AND s(X)] = Ex-s[ANDs(X)] for |S| < k.

Proof. Fix probability spaces#;, &%,, events Ay,..., Ay in £, and events
Bi,...,Bn in &, such that (4.1) holds. Let andp be the distributions on
{0, 1}" induced by 221, A;,...,Ay and &,, By, ..., B,, respectively. Then by
Proposition 4.3,

E L1091 - E 1Y)

;E[f(Ala---,An)] - zg[f(Bl,---,Bn)]

and

E [AND(x)

E[ANDs(9] for S| <k
X~

Letting 6 stand for the right-hand side of (4.2), we conclude #iéf, k) < 6.

It remains to show thai*(f, k) > 6. Given a probability distributiop on {0, 1}",
there is an obvious discrete probability spageand eventEy,.. ., E, in it that
induceu: simply let 2 = {0, 1}" with E; defined to be the event that= 1, where
x € {0,1}" is distributed according t@. This allows us to reverse the argument of
the previous paragraph (again using Proposition 4.3) and #hats*(f, k) > 6. O

With 6*(f, k) thus simplified, we relate it to a quantity that is easy tineste.
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Theorem 1.4(Restated from p. 4)Let f : {0,1})" — {0, 1} be arbitrary and0 <
k< n. Then
6 (f,Kk) = 2€(f, D),

where® = {ANDs : |S| < k}.

Proof. In view of the ApproximatiofOrthogonality Principle (Theorem 2.3), it
sufices to prove that
o (f,K) = 2y*(f, D).

The remainder of the proof is establishes this equality.
To rephrase Lemma 4.4,

xe{0,1}"

5*(f,k)=rggx{ > [a(X)—B(X)]f(X)}, (4.3)

where the maximum is over distributionsandg on {0, 1}" such that

Z [@(X) - B)]ANDs(X) =0  for|S| < k.
xe{0,1}"

Let a, 8 be distributions for which the maximum is attained in (4.8gttingy =
(@ —B)/2, we see thap ;.o 10 W (X)] < 1 and thusi*(f, k) < 2y*(f, D).

It remains to show thag*(f, ®) < 6*(f,k)/2. Suppose first thag*(f, ®) = 0.
Sinces*(f, k) = 0 always and*(f, k) < 2y*(f, ®) = 0 by the first part of the proof,
the theorem is true in this case.

Finally, suppose thay*(f,®) > 0 and lety be a real function for which the
maximum is achieved in (2.1). Then necessapily. o1y [¥(X)| = 1. Sincey is
orthogonal to the constant functioneld, we also have e 10 ¥(X) = 0. The last
two sentences allow us to write

<
<

1
v = 5(0/ - p)s

wherea andg are suitable probability distributions ovgd, 1}". Then (4.3) shows
thaty*(f, ®) < 6*(f,Kk)/2, as desired. O

Theorem 1.4, which we have just proved, is the crux of our raent. It
shows thats*(f, k) measures how welf can be approximated by a multivariate
polynomial inxy, ..., X, of degreek. Observe that Theorem 1.4 holds fevery
function f : {0,1}" — {0,1}. For the special case of symmetric functions, we
have already obtained (Section 3) tight estimates of thedsesr achievable by a
polynomial of a given degrele By combining these estimates with Theorem 1.4,
we now prove the main result of the paper.
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Theorem 4.5 (Restatement of Theorems 1.2 and 1.3)et f: {0, 1}" — {0, 1} be
a nonconstant symmetric function. Rut £o(f) + ¢1(f). Then

§*(f,K) = O(1) if  k<®©(Vnt),

5°(F,K) e [2‘®(k2'39"), 2‘@’(#29”)] it ©(Vclogn) <k < O(M).

Furthermore, for every k= ®(\/n_flog n), there are reals g ay, ..., a, COM-
putable in timepoly(n), such that

k
Pr[f(Al,,An)] - Zaj Z or [ﬂA'l
0 s

ISl=j ieS

K2
< 2_0( nlogn )

for any events 4. .., A, in any probability space?.

Proof. By hypothesisf(x) = D(x1 + - - - + X,) for a suitable nonconstant predicate
D:{0,1,...,n} > {0, 1}. Put® = {ANDs : |S| < k}. We have:

6" (f,K) =2€"(f, D) by Theorem 1.4
=26 (f, {xshsi<) since span®) = span(xs}sj<k)
=2€"(D, Py) by Proposition 2.8 (4.4)

By Theorem 2.10 and Lemmas 3.4 and 3.6,

0(1) it  k<o(vn),
€'(D,Py) € Zlogn 2
2‘9( n ),2‘®(n'°9n)] if  ©(VnZlogn) < k< ©(n).

In view of (4.4), this proves the claim regardiay f, k).

We now turn to the claim regardingp, a1, ...,ax. Fork > @(Wlog n),
Lemma 3.4 gives an explicit univariate polynomg#t) of degree at modt such
that

2
[f(X) — p(Xg + -+ + Xn)| < 2_6(%”) for all x € {0, 1}". (4.5)

Fix a probability space? and eventd\y,..., A, init. Let u be the distribution on
{0, 1}" induced byZ, Ay, ..., An. We claim that the quantity

E[ROa+ -+ %)
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is the desired approximator Bf[f(A4,..., An)]. Indeed,

K K
ElpCa+-+x)] = E>a>[][x] = ZajZ'?[l—lml
oH 20 5 ies =0 5= lies
Prog.4.3 k aj Z Pr [ﬂpql,
20 55j  lies

where the realsg, ay, . . ., a are uniquely determined by the polynomglitself
explicitly given. It is also clear thatg, ay,...,ax can be computed from the
codficients ofp in time poly(n). Thus, the quantitfy.,[p(x1 + - - - + X5)] has the
desired representation. It remains to verify that it apjmnatesPr[f(A4,..., Ayl
as claimed:

Prop. 4.3

PrIF(Av.... A)] = E[pOa -+ + xn)l\ EL100 = PO+ + )]

(4.5) 2_@( K2 )

< nlogn . O

5 Lower Bounds for Agnostic Learning

We now use the proof technique of the previous section tarohtw lower bounds
for agnostic learning (Theorem 1.6). The following defmitformalizes the object
of our study.

Definition 5.1. Let f : {0, 1}" — {0, 1} and 0< k < n. Define

e = max pr 1109 -1},

where the maximum is taken over all distributiohever{0, 1}" x {0, 1} such that

1
Sl =91 =3 (5.1)

for everyg : {0,1}" — {0, 1} that depends ok or fewer variables.

Observe that the maximization in Definition 5.1 is over a mopty compact
set that contains the uniform distribution. Our goal willtbeshow that

I (f, © (Vn(to(f) + &u(1))) > 1- €

for every symmetric functiorf and every constart > 0. In other words, even
though the training examples agree witto within €, no hypothesis that depends
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on few variables can match the data better than random. @uiegy will be to
relatel™(f, k) to the best error and modulus of orthogonality, quantiti@svhich
have developed considerable intuition.

Lemma 5.2. Let A be a distribution o0, 1}" x {0, 1}. Then for every f. {0, 1}" —
{0, 1},

LI =0l= Pry=01+ 3 (1062)- A% 0D ().

xe{0,1}"

Proof:
(X’F;)I;A[f(X) =yl= (x,Fy))r%[f(X) =y =01+ (x,Fy))r%[f(X) =y=1l
= > A% 0)(1- () + Y A Df(¥)
= 3% 1) = A% 0)f () + > (% 0)

= > (A% 1) = A 0)f() + Pr [y=0] O
= (Xy)~1

We are now in a position to expreB¥(f, k) in terms of a quantity that is easy
to estimate.

Theorem 5.3. Let f: {0,1})" — {0,1} and0 < k < n. Then
* l *
r“(f,k) = Ste (f, D),

where® = {ys : |S| < k}.

Proof. By the ApproximatiofOrthogonality Principle (Theorem 2.3), itffices to
show that

r“(f,k) = % +v*(f, D).
Let A be a distribution orf0, 1}" x {0, 1} for which (5.1) holds. Setting = 0 gives:

1
Pr =0]==.
(X’y)d[y ] >

Lemma 5.2 now yields the following convenient characteidraof I'*(f, k):
. 1
r“(f,k) = > + mlax{le(/l(x, 1) - a(x 0))f(x)},
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where the maximum is over all distributionson {0, 1}™ x {0, 1} such that

D A1) = A% 0)g(x) = 0

for every functiong : {0,1}" — {0, 1} that depends ok or fewer variables. With
this new characterization, it is notfficult to show thal™*(f,k) = 1/2 + v*(f, ®).
The argument is closely analogous to the one we gave in Timebi4, and we do
not repeat it here. O

Theorem 5.3 is the backbone of this section and holds fotrarpifunctions.
In view of Paturi's work, it yields our sought result for syratric functions.
Theorem 1.6(Restated from p. 6)Let D : {0,1,...,n} — {0,1} be a predicate
and f(x) def D(x; + - -+ + Xn). Lete > 0 be an arbitrary constant. Then there is a
distribution 1 on {0, 1} x {0, 1} such that

Pr [f(X)=y]l>1-¢€
JPr [F09 =4]

and 1
Pr [9(X) =y] = =
or [0 = vl = 3

for everyg : {0,1}" — {0,1} that depends on at mostvn({o(D) + ¢1(D))
variables, where & c(¢) is a constant.

Proof. In view of Theorem 5.3, we need only show that
1
€(f,®) > 56

where® = {ys : |S| < c/n(lo(f) + £1(f))} for a suitably small constat But this
is immediate from Proposition 2.5 and Paturi’s result (Tee02.10). ]

Theorem 1.6 is best possible, as we now show.

Theorem 5.4 (On the tightness of Thm. 1.6).Let f : {0,1}" — {0,1} be a
symmetric function and € (0, 1/2) be a given constant. Ldtbe a distribution on
{0, 1}" x {0, 1} with

1
Pr [9(X) =y] = =
o 90) =yl =5

for everyg : {0,1)" — {0,1} that depends on at most gﬁ(fo(f)+€1(f))
variables, where G= C(¢) is a large enough constant. Then

Pr [f(X)=y]<1l-€
(x,yw[ () =yl €
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Proof. To rephrase the theorem, we need to show that
r(f,ky<1l-e

wherek = C +/n(€o(f) + £1(f)). In view of Theorem 5.3, this is equivalent to

e'(f, st ISI<k) < % —€

The latter is certainly true for a large enough const@nby Proposition 2.5 and
Paturi’s result (Theorem 2.10). O

Remark5.5. Let f be an arbitrary symmetric function. Theorem 5.4 tells us tha
if all hypotheses that depend on at mst © (/n(¢o(f) + £1(T)) ) variables have
zero advantage over random guessing, then the funétitself cannot be digh-
accuracyclassifier. What if we additionally know that all hypotheskat depend
on at mosK variables, where

K> @( n(to(f) + 51(f)))’

have zero advantage over random guessing? It turns outrthhisi case, the
function f itself cannot have considerabdalvantageover random guessing (let
alone be ahigh-accuracyclassifier). The proof is entirely analogous to that of
Theorem 5.4, except in place of Paturi’'s result we would useanr near-tight
bounds on the approximate degree (Theorem 1.5) that wottkeibtoader range
[1/2",1/3]. Such statements seem to be of lesser interest, and we dormatlébe
them into theorems.
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