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Abstract

We assume the existence of a function f that is computable in polynomial time but

its inverse function is not computable in randomized average-case polynomial time.

The cryptographic setting is, however, different: even for a weak one-way function,

every possible adversary should fail on a polynomial fraction of inputs. Nevertheless,

we show how to construct an infinitely-often one-way function based on f .

1 Introduction

One-way functions are one of the main cryptographic primitives. However, no reasonable
complexity assumption (such as, say, P 6= NP or AvgP 6= DistNP) is known that would
imply the existence of one-way functions. In particular, the three obstacles that prevent
using Levin’s average-case complexity notions in the cryptographic setting, are

1. A successful cryptographic adversary may err on a polynomial fraction of inputs [Gol01,
Definition 2.2.2], while in the average-case setting this is not enough to solve a problem:
if one spends exponential time on these inputs, the average-case complexity is not
polynomial [Lev86, BT06].

2. The (polynomially samplable) probability distribution for the cryptographic setting is
taken over function inputs, while in the average-case setting it is taken over the outputs
(i.e., the instances of the search problem of computing the inverse function): see, e.g.,
[Imp95, Lev03]. Note that a polynomially samplable distribution on the outputs is
not necessarily dominated by the distribution induced by a polynomially samplable
distribution on the inputs.
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3. To solve a problem in the average-case, one should solve it on all input lengths, while in
the cryptographic case a successful adversary is allowed to solve it just on an infinite
number of input lengths. We do not know if this definitional discrepancy can be
overcome, and follow the average-case tradition in this work. Thus the function that
we obtain is hard to invert only on an infinite number of (rather than on almost all)
input lengths.

In this paper we address item 1 of the above list: we prove that average-case hardness
of inverting a function implies cryptographic hardness of inverting a related function on an
infinite number of input lengths. Namely, we show how to pad any function so that we can
use any polynomial-time algorithm that inverts the padded function with any noticeable
probability of success for inverting the padded function (as well as the original non-padded
function) in polynomial-time on the average. The reduction essentially uses the fact that
the two concepts use a similarly defined set of input lengths, thus we do not resolve item 3.
We do not attempt to resolve item 2 either.

Our method uses the following simple idea of the proof of [Imp95, Proposition 3] for an
algorithm that fails on an o(1) fraction of inputs of the same length, if one pads the input, the
failure probability decreases. Bogdanov and Trevisan use this idea to prove that the existence
of an algorithm that fails on a 1

n
fraction of inputs for a version of the bounded halting

problem implies the average-case easiness of all NP languages on polynomially samplable
distributions. We adapt this method for the problem of inverting a function. Instead of
taking a particular function we show how to modify any function to fit it. Note that a
straightforward approach of applying the argument to a (DistNP-hard) search version of
the bounded halting problem fails because for the (cryptographic) problem of inverting a
function one needs a (polynomially samplable) probability distribution on inputs of this
function and not on its outputs.

Organization of the paper. In Sect. 2 we define rigorously the notions we use. In Sect. 3
we prove the main result.

2 Preliminaries

2.1 Average-case complexity

In this subsection we define the core notions of the average-case complexity. We basically
follow [BT06] (techinically, [BT06] allows distributions that are defined not on every input
length, but it does not make any difference for us).

Definition 2.1. An ensemble of distributions is a collection D = {Dn}
∞
n=1 where

Dn : {0, 1}n → R+ is a distribution on inputs of length n (i.e.,
∑

a∈{0,1}n Dn(a) = 1).

Definition 2.2. A function f : {0, 1}∗ → 2{0,1}∗ is called polynomially verifiable if every
string in its output is polynomially bounded in the length of the input and there exists a
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polynomial-time computable function v such that

∀x, y ∈ {0, 1}∗ v(x, y) = 1 ⇐⇒ y ∈ f(x).

Definition 2.3. A distributed search problem (f, D) consists of a polynomially verifiable
function f : {0, 1}∗ → 2{0,1}∗ and an ensemble of distributions D.

Remark 2.1. Bogdanov and Trevisan [BT06] consider search algorithms for NP languages
instead of formally defining distributed search problems, though these approaches are obvi-
ously equivalent.

We follow Impagliazzo [Imp95] and Bogdanov and Trevisan [BT06] in defining average-
case polynomial-time algorithms as polynomial-time algorithms that are allowed to “give
up” (by outputting a special symbol ⊥).

Definition 2.4 (cf. [BT06, Definition 4.2]). A distributed search problem (f, D) can be
solved in polynomial time on the average if there exists an algorithm A(x, δ) such that

• A runs in time polynomial in |x| and 1
δ

for any x in the support of D and any positive δ;

• if f(x) 6= ∅, then A(x, δ) ∈ f(x) ∪ {⊥};

• Prx←Dn
{A(x, δ) =⊥} ≤ δ.

Definition 2.5. Complexity class FAvgP consists of all distributed search problems that
can be solved in polynomial time on the average.

Definition 2.6 (cf. [BT06, Definition 4.3]). A distributed search problem (f, D) can be
solved in randomized polynomial time on the average if there exists a randomized algorithm
A(x, δ) such that

• A runs in time polynomial in |x| and 1
δ

for any x in the support of D and any positive δ;

• if f(x) 6= ∅, then Pr{A(x, δ) /∈ f(x) ∪ {⊥}} ≤ 1
4

where the probability is taken over
the random bits of A;

• Prx←Dn
{Pr{A(x, δ) = ⊥} ≥ 1

4
} ≤ δ where the inner probability is taken over the

random bits of A.

Definition 2.7. Complexity class FAvgBPP consists of all distributed search problems
that can be solved in randomized polynomial time.

The following definition of a (deterministic) reduction is a special case of randomized
heuristic search reduction [BT06, 5.1.1]. While FAvgBPP might not be closed under these
randomized reductions, it is closed under the deterministic ones. In this paper we use only
deterministic reductions.
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Definition 2.8. Consider two distributed search problems (f, D) and (f ′, D′). We say that
(f, D) reduces to (f ′, D′), if there are polynomial-time computable functions h, g such that
the two following statements hold:

• f(x) 6= ∅ =⇒ f ′(h(x)) 6= ∅;

• y ∈ f ′(h(x)) =⇒ g(y) ∈ f(x) for any y and x with D|x|(x) > 0;

• there is a polynomial p(n) such that
∑

h(x)=x′, |x|=n

Dn(x) ≤ p(n) · D′|x′|(x
′)

for any x′.

(The last condition is called the domination condition.) We now formally verify that
both FAvgP and FAvgBPP are closed under such reductions.

Lemma 2.1. If a problem (f, D) is reducible to a problem (f ′, D′), then (f ′, D′) ∈ FAvgP

implies (f, D) ∈ FAvgP.

Proof. Let A′(y, δ) be an average-case polynomial-time algorithm for the problem (f ′, D′).
Define A(x, δ) = g(A′(h(x), δ

p(|x|)
)) (we assume g(⊥) =⊥). Clearly, the algorithm A is poly-

nomial in |x| and in 1
δ

and does not output wrong answers when f(x) 6= ∅. Let q be a
polynomial such that maxx∈{0,1}n |h(x)| ≤ q(n). The probability of the “give up” answer can
be estimated as

Pr
x←Dn

{A(x, δ) =⊥} =
∑

A′(h(x), δ
p(n)q(n)

)=⊥

Dn(x) ≤
∑

A′(y, δ
p(n)q(n)

)=⊥

p(n)D′|y|(y) ≤

p(n)q(n)
δ

p(n)q(n)
= δ.

Lemma 2.2. If a problem (f, D) is reducible to a problem (f ′, D′) then (f ′, D′) ∈ FAvgBPP

implies (f, D) ∈ FAvgBPP.

Proof. The construction of the new algorithm A and the verification of the probability of
the “give up” answer is similar to the deterministic case (Lemma 2.1):

Pr
x←Dn

{Pr{A(x, δ) =⊥} ≥
1

4
} =

∑

Pr{A′(h(x), δ
p(n)q(n)

)=⊥}≥ 1
4

Dn(x)

≤
∑

Pr{A′(y, δ
p(n)q(n)

)≥ 1
4
}=⊥

p(n)D′|y|(y) ≤ p(n)q(n)
δ

p(n)q(n)
= δ.

The additional condition can also be easily verified:

Pr{A(x, δ) /∈ f(x) ∪ {⊥}} ≤ Pr{A′(h(x),
δ

p(n)q(n)
) /∈ f ′(h(x)) ∪ {⊥}} ≤

1

4
.
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2.2 Infinitely-often one-way functions

In this section we define infinitely-often one-way functions1 that differ from “standard” one-
way functions in that they are hard only on an infinite number of (rather than on almost
all) input lengths. In other words, in a contrast to, e.g., [Gol01, Definition 2.2.1] we require
the adversary to invert the function on all sufficiently large input lengths to violate the one-
wayness condition, while in the “classical” definition it is enough to invert it on an infinite
number of input lengths.

Definition 2.9. A polynomial-time computable function f : {0, 1}∗ → {0, 1}∗ is a strong i.o.-
one-way function if for any polynomial p(n) and any randomized polynomial-time algorithm
B,

∀N ∃n>N Pr{B(f(x)) ∈ f−1(f(x))} <
1

p(n)

where the probability is taken over x uniformly distributed on {0, 1}n and over the random
bits used by B.

Remark 2.2. We adjust the definition of weak one-way functions similarly (cf. [Gol01,
Definition 2.2.2] for “ordinary” one-way functions).

Definition 2.10. A polynomial-time computable function f : {0, 1}∗ → {0, 1}∗ is a weak i.o.-
one-way function if there exists polynomial p(n) such that for any randomized polynomial-
time algorithm B

∀N ∃n>N Pr{B(f(x)) /∈ f−1(f(x))} >
1

p(n)

where the probability is taken over x uniformly distributed on {0, 1}n and over the random
bits used by B.

Theorem 2.1. The existence of weak i.o.-one-way functions implies the existence of strong
i.o.-one-way functions.

Proof. The proof repeats the proof of [Gol01, Theorem 2.3.2] (for “ordinary” one-way func-
tions) literally.

3 Main result

3.1 Proof strategy

We assume the existence of a length-preserving function f : {0, 1}∗ → {0, 1}∗ such that the
search problem of inverting f on the distribution resulting from the uniform distribution on
the inputs of f cannot be solved in randomized polynomial time on average. We will show
how to modify f so that it becomes i.o.-one-way.

1The term was suggested to us by an anonymous referee of ECCC.
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The main idea of the proof is to supply the original function with padding. Namely, we
define a new function fp(x, y) on pairs of strings that applies f to its first argument and
replaces the second argument by 1|y|. Note that the probability of an input fp(x, y) does not
depend on the length of padding (the probability is exactly 2−|f(x)|). By the definition of the
randomized average-case polynomial algorithm it is required to solve much more instances
at higher lengths (the probability of error is a constant), and padding allows us to put the
instances of smaller lengths into higher lengths.

We show that the problem of inverting f is average-case reducible to the problem of
inverting fp. Indeed, to invert f on the string y it is sufficient to invert fp on the pair (y, 1).
To verify the domination condition we have to specify an economic encoding of the pairs
(to satisfy this condition, we are allowed to increase the string length only by a logarithmic
number). The details of the encoding are given in the next section.

Suppose that there is a randomized polynomial-time algorithm B that inverts fp with
1/n error: Pr{B(fp(x)) ∈ f−1

p (fp(x))} ≥ 1 − 1
n

where the probability is taken both by x
and by the random choices of B. We now define a randomized average-case polynomial-
time algorithm A(x, δ) that inverts fp. The paradigm is: increase the padding of the input

x 7→ x1d
1
δ
e and then use B. Since the probability of the input does not depend on the length

of padding, the probability of error of A is at most 1
n+ 1

δ

≤ δ. Thus, inverting fp, and, by the

reduction above, inverting f , is randomized average-case tractable, which contradicts the
assumption.

3.2 Proof details

Throughout this section log denotes the binary logarithm. For a string x, we denote the
binary representation of its length |x| (as a string) by |x|2.

Definition 3.1. We say that a string x ∈ {0, 1}∗ is correct if

• x contains at least one occurrence of 0; let xk = 0 be the first such occurrence;

• |x| ≥ 2k − 1;

• the substring xk+1..x2k−1 is the binary representation of the number l such that |x| ≥
2k + l − 1.

For a correct x, its main part is the substring x2k..x2k+l−1, and its padding is the suffix
x2k+l..x|x|.

Definition 3.2. Let π : {0, 1}∗ → {0, 1}∗ be a function that maps a string x to the correct
string π(x) with the main part x and the empty padding, i.e., π(x) = 1dlog |x|e0|x|2x.

Remark 3.1. Note that π is injective.

Definition 3.3. Let f : {0, 1}∗ → {0, 1}∗ be a length-preserving function. We then define
a new (also length-preserving) function fp as follows: if there are y and z such that x =
1dlog |z|e0|z|2zy, then fp(x) = 1dlog |z|e0|z|2f(z)1|y|, otherwise fp(x) = x.
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Definition 3.4. For any length-preserving function g, the distribution Ug is generated as
the output of the function g whose inputs are sampled according to the uniform distribution
U , i.e.,

Ug(y) =
∑

g(x)=y

2−|x| = |g−1(y)| · 2−|y|.

Lemma 3.1. If x = 1dlog |z|e0|z|2z1t, then Ufp(x) = |f−1(z)| · 2−|z|−2dlog |z|e−1 = Ufp(x1s) for
any s ≥ 0. If x is a correct string whose padding contains zeroes, then Ufp(x) = 0. If a
string x is incorrect, then Ufp(x) = 2−|x|.

Proof. In the first case one has to sum up the probabilities for different original paddings.
The other two cases are trivial.

Lemma 3.2. For any length-preserving function f , the problem (f−1, Uf) is reducible to
(f−1

p , Ufp).

Proof. To satisfy Definition 2.8, assume

h(x) = π(x),

g(y) =

{

x, if y = π(x),

y, otherwise,

p(n) = 2n3.

If f is invertible on x, then fp is invertible on π(x). If fp is invertible on π(x), then
g(f−1

p (π(x))) ∈ f−1(x). If f is not invertible on x, then trivially Uf (x) = 0. Let n = |x|.
Finally, if x′ = π(x), then by Lemma 3.1

Ufp(x′) = |f−1(x)| · 2−n−2dlog ne−1 ≥
1

2n3
· |f−1(x)|2−n =

1

p(n)
Uf

n (x) =
1

p(n)

∑

π(y)=x′

Uf
n (y).

The last equality holds since π is injective. (If x′ cannot be represented as π(x), the
domination condition is trivially satisfied.)

Theorem 3.1. Let f be a length-preserving polynomial-time computable function. If there
exists a randomized polynomial-time algorithm B such that for a constant c > 0 and every
integer n Pr

x←U
fp
n ,r←Us(n)

{B(x) ∈ f−1
p (x)} ≥ 1− 1

nc , where r is the string of random bits used

by the algorithm B, s(n) is a polynomial, then (f−1
p , U

fp
n ) ∈ FAvgBPP.

Proof. Since one can verify the answer of B, we assume that either B correctly inverts fp or
gives up. We also assume that when B returns an element of f−1

p (x), it chooses one without
zeroes in its padding.

We first prove that

Pr
x←U

fp
n

{

Pr
r←Us(n)

{B(x) /∈ f−1
p (x)} ≥

1

4

}

≤
4

nc
. (3.1)
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Indeed, if this inequality is incorrect, then

Pr
x←U

fp
n ,r←Us(n)

{B(x) /∈ f−1
p (x)} =

∑

x∈{0,1}n

Ufp

n (x) · Pr
r←Us(n)

{B(x) /∈ f−1
p (x)} ≥

∑

x∈{0,1}n

Prr←Us(n)
{B(x)/∈f−1

p (x)}≥ 1
4

Ufp

n (x) · Pr
r←Us(n)

{B(x) /∈ f−1
p (x)} >

1

4
·

4

nc
=

1

nc
,

which contradicts the assumption about B.
The new algorithm A(x, δ) performs as follows. If x is an incorrect string, then A(x, δ) :=

x. If x is a correct string with padding without zeros (note that if the padding contains zeros,
then Ufp(x) = 0), then we pad x and run B. More precisely, let |x| = n, ∆ = d(4

δ
)1/ce , N =

n+∆. Define σ(x) = x1∆. If B(σ(x)) =⊥ then A(x, δ) =⊥, otherwise A(x, δ)1∆ = B(σ(x)),
i.e., A strips ∆ trailing 1’s of B’s answer and outputs the result.

Then

Pr
x←U

fp
n

{

Pr
r←Us(N)

{A(x, δ) /∈ f−1
p (x)} ≥

1

4

}

≤

Pr
x←U

fp
n

{

Pr
r←Us(N)

{B(σ(x)) /∈ f−1
p (σ(x))} ≥

1

4

}

Lemma 3.1
=

Pr
y←U

fp
N

{

∃x(x ∈ {0, 1}n ∧ y = σ(x)) ∧ Pr
r←Us(N)

{B(y) /∈ f−1
p (y)} ≥

1

4

}

≤

Pr
y←U

fp
N

{

Pr
r←Us(N)

{B(y) /∈ f−1
p (y)} ≥

1

4

}

(3.1)

≤
4

N c
< δ.

Corollary 3.1. Let f be a length-preserving polynomial-time computable function. If the
problem (f−1, Uf

n ) /∈ FAvgBPP, then for any randomized polynomial-time algorithm B and
for any constant c > 0, there exist infinitely many n ∈ N such that Prx←Un,r←Us(n)

{B(fp(x)) ∈

f−1
p (fp(x))} < 1 − 1

nc .

Proof. By Theorem 3.1, Lemma 3.2, and Lemma 2.2.

Using Theorem 2.1 one gets

Corollary 3.2. If there exists a length-preserving polynomial-time computable function
f that cannot be inverted in randomized average-case polynomial time (i.e., (f−1, Uf ) /∈
FAvgBPP), then there exists a length-preserving strong i.o.-one-way function.
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