
Approximating Transitive Reductions for
Directed Networks

Piotr Berman∗ Bhaskar DasGupta† Marek Karpinski‡

Abstract

We consider minimum equivalent digraph (directed network) problem (also
known as the strong transitive reduction), its maximum optimization variant,
and some extensions of those two types of problems. We prove the existence
of polynomial time approximation algorithms with ratios 1.5 for all the mini-
mization problems and 2 for all the maximization problems. We establish also
approximation hardness result for those problems to within a constant even if
the length of cycles is bounded by 5.

1 Introduction

1.1 Definitions and Motivation

Finding a minimum equivalent digraph is a classical computational problem (cf. [14]).
Recently, several extensions of this problem were motivated by applications e.g. in
networks, visualisation processes, social sciences and systems molecular biology.

The statement of the equivalent digraph problem is simple. For a digraph G =

(V, E) the transitive closure of E is relation u
�

→ v (”E contains a path from u to v”).
In turn, A is an equivalent digraph for E if (a) A ⊆ E, (b) transitive closures of A

and E are the same.
To formulate an optimization problem, besides the definition of a valid solution

we need an objective function. We consider two versions: Min-ED, in which we
minimize |A|, and Max-ED, in which we maximize |E−A|. where A is an equivalent
digraph for E.

∗Department of Computer Science & Engineering, Pennsylvania State University, University
Park, PA 16802. Research partially done while visiting Dept. of Computer Science, University of
Bonn and supported by DFG grant Bo 56/174-1. Email: berman@cse.psu.edu

†Department of Computer Science, University of Illinois at Chicago, Chicago, IL 60607-7053. Sup-
ported by NSF grants DBI-0543365, IIS-0612044 and IIS-0346973. Email: dasgupta@cs.uic.edu

‡Department of Computer Science, University of Bonn, 53117 Bonn. Supported in part
by DFG grants, Procope grant 31022, and Hausdorff Center research grant EXC59-1. Email:
marek@cs.uni-bonn.de

1

Electronic Colloquium on Computational Complexity, Report No. 119 (2007)

ISSN 1433-8092

If we skip condition (a) we obtain transitive reduction problem which is optimally
solved by Aho et al. [1]. These names are a bit confusing because one would expect
a reduction to be a subset and an equivalent set to be unrestricted, but transitive
reduction was first discussed when the name minimum equivalent digraph was already
introduced [14]. This could motivate renaming the equivalent digraph as a strong
transitive reduction [15].

In the study of biological networks two types of interactions are considered. For
example, nodes can represent genes and an edge (u, v) means that gene u regulates
gene v. Without going into biological details, regulates may two different things: when
u is expressed, i.e. molecules of the protein coded by u are created, the expression
of v can be repressed or promoted. A path in this network is an indirect interaction,
and promoting a repressor represses, while repressing a repressor promotes (biologists
also use the term de-repression). Interactions of such two types can appear in other
contexts as well, including e.g. social networks. This motivates an extension of the
notion of a digraph and its transitive closure.

Moreover, for certain interactions we have direct evidence, so an instance descrip-
tion includes set D ⊂ E of edges which have to be present in every valid solution.
Formally, we define A to be a valid solution to instance (V, E, `, D) as follows:

① ` : E→ Z� ;

② a path P = (u�, u�, . . . , u�) has characteristic `(P) =
∑��� � `(u�� �, u�);

③ Closure�(E) = {(u, v, q) : ∃P in E from u to v and `(P) = q};

④ A is a p-ary transitive reduction of E with a required subset D if D ⊆ A ⊆ E

and Closure�(A) = Closure�(E).

Our two objective functions define optimization problems Min-TR� and Max-
TR� .

1.2 Earlier Results

The initial work on the minimum equivalent digraph by Moyles and Thomson [14]
described an efficient reduction to the case of strongly connected graphs and an exact
exponential time algorithm for the latter.

Several approximation algorithms for Min-ED were described, by Khuller et al.
[11], with approximation ratio 1.617+ε and claimed by Vetta [16] with approximation
ratio 1.5. The latter result seems to have some gaps in a correctness proof.

If edges have costs, we can minimize c(A) within factor 2 using an algorithm for
minimum cost rooted arborescence [6, 9] of Edmonds (who described it) and Karp
(who simplified it). We can obtain an equivalent digraph by fixing an arbitrary root
r ∈ V and taking the union of minimum costs in- and out- arborescence.

Albert et al. [2] showed how to convert an algorithm for Min-ED with approxi-
mation ratio r to an algorithm for Min-TR� with approximation ratio 3−2/r. They
have also shown a ratio 2 approximation for Min-TR� . Other heuristics for these
problems were investigated in [3, 8].

2

On the hardness side, Papadimitriou [15] indicates that the strong transitive re-
duction is NP-hard, Khuller et al. have proven it formally and they also showed its
MAX-SNP hardness. Motivated by their cycle contraction method in [11], they were
interested in the complexity of the problem when there is an upper bound γ on the
cycle length; in [10] they showed that Min-ED is polynomial with γ = 3, NP-hard
with γ = 5 and MAX-SNP-hard with γ = 17.

1.3 Results in this Paper

We show an approximation algorithm for Min-ED with ratio 1.5, We use a method
somewhat similar to that of Vetta [16], but our combinatorial lower bound makes
a more explicit use of the primal-dual formulation of Edmonds and Karp, and this
makes it much easier to justify edge selections within the promised approximation
ratio.1

Next, we show how to modify that algorithm to approximate Min-TR� within
ratio 1.5. Notice that one cannot use a method for Min-ED as a “black box” because
we need to control which edges we keep and which we delete.

We design an approximation algorithm with ratio 2 for Max-TR�. While it was
shown by Albert et al. [3] that a simple greedy algorithm, delete an unnecessary edge
as long as one exists, yields ration 3 approximation, it is easy to provide an example
of Max-ED instance with n nodes and 2n − 2 edges in which greedy removes only
one edge, and the optimum solution removes n − 2 edges. Other known algorithms
for Min-ED are not much better in the worst case when applied to Max-ED.

We show that for a prime p we can transform an equivalent digraph that con-
tains the required edges into a p-ary transitive reduction by a single edge insertion
per strongly connected component. Because every p-ary transitive reduction is also
an equivalent digraph, this transformation implies an approximation algorithms for
Min-TR� with ratio 1.5 and for Max-TR� with ratio 2 (we can compensate for an
insertion of a single edge, so the ratio does not change).

We simplify an approximation hardness proof for Min-ED (the proof applies to
Max-ED as well) and it is applicable even when γ, the maximum cycle length, is 5.
This leaves unresolved only the case of γ = 4.

1.4 Some Motivations and Applications

Application of Min-ED: Connectivity Requirements in Computer Net-
works. Khuller et al. [10] indicated applications of Min-ED to design of computer
networks that satisfy given connectivity requirements.

With preexisting sets of connections, this application motivates Min-TR� (cf. [12]).

Application of Min-TR�: Social Network Analysis and Visualization. Min-
TR� can be applied to social network analysis and visualization. For example, Dubois

1It appears that the approach of [16] contains some gaps. We will comment on the approach of
[16] again in Section 3.1.

3

and Cécile [5] applies Min-TR� to the publically available (and famous) social net-
work built upon interaction data from email boxes of Enron corporation to study
useful properties (such as scale-freeness) of such networks as well as help in the
visualization process. The approach employed in [5] is the straightforward greedy
approach which, as we have discussed, ha inferior performance, both for Min-TR�
and Max-TR�.

Application of Min-TR�: Inferring Biological Signal Transduction Net-
works. Most biological characteristics of a cell arise from complex interactions be-
tween its numerous constituents such as DNA, RNA, proteins and small molecules.
Cells use signaling pathways and regulatory mechanisms to coordinate multiple func-
tions, allowing them to respond to and adapt to an ever-changing environment.
Genome-wide experimental methods now identify interactions among thousands of
cellular components. Experimental information about the interactions in a given
signal transduction network can be direct, e.g. by observing a particular molecular
interaction in a special experiment, or indirect, e.g. when we influence a component
of the network and observe the impact on other components. To synthesize all this
information into a consistent network, we need to determine how the different in-
teractions suggested by experiments fit together. The Min-TR� problem allows to
determine the sparsest graph consistent with experimental observations and it is the
key part of the network synthesis procedure described in Figure 1 of Albert et al. [3].

1.5 Our Techniques

Approximation Algorithm for the Min Objective. We consider a natural
primal/dual IP formulation for Min-TR� that is a straightforward extension of a
primal/dual formulation of minimum cost rooted arborescence problem on directed
graphs (e.g., see [6, 9] or [13, Corollary 6.12]). This formulation introduces an in-
equality for every node set, but they exist for the analysis only. We keep only some
of the constraints and this gives a system whith a feasible integral solution L of the
dual which is not necessarily a feasible integral solution of the primal but nonethe-
less provides a lower bound on the optimal cost and can be computed in polynomial
time. This L is subsequently converted into a correct (primal) solution using a careful
DFS and amortized accounting—we are allowed to use 3 edges for every 2 edges of
L—to satisfy the remaining constraints. This yields an 1.5-approximation for Min-
TR� that improved the 1.78-approximation in [2] and an alternate 1.5-approximation
proof for Min-ED.

We also show an inherent limitation of our approach by showing an integrality
gap of the LP relaxation of the above IP to be of at least

�
� .

Approximation Algorithm for the Max Objective. For the Max-TR�, we
utilize the integrality of the polytope of the rooted arborescence problem to provide
a 2-approximation. We also observe that the integrality gap of the LP relaxation of
the IP formulation is at least 3/2.

The p-ary Case. We show that we can solve an instance of Min-TR�/Max-

4

TR� by solving a related instance of Min-TR�/Max-TR� and inserting a appro-
priately choses single edge. In conjuction with our above results, this leads to a
1.5-approximation for Min-TR� and 2-approximation for Max-TR� . This method
works only if p is prime.

Inapproximability. We show that both Min-ED and Max-ED are MAX-SNP-
hard even if all cycles are of length at most 5, rather then 17 that was assumed
in [11], Our improvement is obtained by reducing a very restricted version of the
Max-SAT (cf. [4]).

1.6 Notation

We use the following additional notations.

� G = (V, E) is the input digraph;

� ι(U) = {(u, v) ∈ E : u 6∈ U & v ∈ U};

� o(U) = {(u, v) ∈ E : u ∈ U & v 6∈ U};

� scc� (u) is the strongly connected component containing vertex u in the digraph
(V, A);

� T [u] is a the node set of the subtree with root u (of a rooted tree T).

2 A Primal-Dual Linear Programming Relaxation
of TR1

Moyles and Thompson [14] showed that Min-ED can be reduced in linear time to
the case when the input graph (V, E) is strongly connected, therefore we will assume
that (V, E) is already strongly connected. In Section 5 we will will use a similar result
obtained for Min-TR� in [2].

The minimum cost rooted arborescence problem on G is defined as follows. We
are given a weighted digraph G = (V, E) with a cost function c : E → R� and root
node r ∈ V. A valid solution is A ⊆ E such that in (V, A) there is a path from r to
every other node and we need to minimize c(A). A (possibly exponential-size) LP
formulation for this was provided by Edmonds and Karp and goes as follows. As in
any other edge/arc selection problems, we use the linear space with a coordinate for
each arc, so edge sets can be identified with 0-1 vectors, and for an arc e variable x�

describes whether we select e (x� = 1) or not (x� = 0). Then, the LP formulation is:

(primal P1)

mininize c · x subject to
x ≥ 0

ι(U) · x ≥ 1 for all U s.t. ∅ ⊂ U ⊂ V and r 6∈ U (2.1)

5

Edmonds [6] and Karp [9] showed that the above LP always has an integral optimal
solution and that we can find it in polynomial-time.

We can modify the above LP formulation to a LP formulation for Min-ED pro-
vided we set c(e) ≡ 1 and in (2.1) we remove “and r 6∈ U” from the condition. The
dual program of this LP can be constructed by having a vector y that has a coordi-
nate y� for every ∅ ⊂ U ⊂ V; both the primal and the dual is written down below
for clarity:

(primal P2) (dual D2)

mininize 1 · x subject to maximize 1 · y subject to

x ≥ 0 y ≥ 0

ι(U) · x ≥ 1 for all U s.t. ∅ ⊂ U ⊂ V
∑

�∈ ��� � y� ι(U) ≤ 1 for every e ∈ E

We can change P2 into the LP formulation for Max-ED by replacing the objective
to “maximize 1 · (1− x)”. and the dual is changed accordingly to reflect this change.

From now on, by a requirement we mean a set of edges R such that a valid solution
must intersect it; in LP formulation it means that we have a constraint Rx ≥ 1.

We can extend P2 to an LP formulation for TR� by adding one-edge requirements
{e} (and thus inequality x� ≥ 1) for each e ∈ D where D is the set of edges that have
to be present in a valid solution.

We can obtain a lower bound for solutions of P2 by solving P3, an IP obtained
from P2 by allowing only those requirements Rx ≥ 1 that for some node u satisfy
R ⊆ ι(u) or R ⊆ o(u). To find requirements of P3 efficiently, we first find strongly
connected components of V − {u}. Then,

(a) for every source component C have requirement ι(C) ⊂ o(u);
(b) for every sink component C have requirement o(C) ⊂ ι(u);
(c) if we have requirements R ⊂ R ′ we remove R ′.

It is easy to see that after (c) one-edge requirements are disjoint with other require-
ments, hence multi-edge requirements form a bipartite graph (in which connections
have the form of shared edges).

3 Minimization Algorithms

3.1 1.5-Approximation for Min-ED

Using DFS

One can find an equivalent digraph using depth first search starting at any root node
r. Because we operate in a strongly connected graph, only one root call of the depth
first search is required. This algorithm mimics Tarjan’s algorithm for finding strongly
connected components and biconnected components. As usual for depth first search,
the algorithm forms a spanning tree T in which we have an edge (u, v) if and only if
Dfs(u) made a call Dfs(v). The invariant is

(A) if Dfs(u) made a call Dfs(v) and Dfs(v) terminated then T [v] ⊂ scc�∪�(u).

6

Dfs(u)
{ Counter ←Counter+1

Number[u] ← LowDone[u] ← LowCanDo[u] ←Counter
for each edge (u, v) // scan the adjacency list of u

if Number[v] = 0
Insert(T, (u, v)) // (u, v) is a tree edge

Dfs(v)
if LowDone[u] > LowDone[v]

LowDone[u] ← LowDone[v]
if LowCanDo[u] > LowCanDo[v]

LowCanDo[u] ← LowCanDo[v]
LowEdge[u] ← LowEdge[v]

else if LowCanDo[u] > Number[v]
LowCanDo[u] ← Number[v]
LowEdge[u] ← (u, v)

// the final check: do we need another back edge?

if LowDone[u] = Number[u] and u 6= r

Insert(B,LowEdge[u]) // LowEdge[u] is a back edge

LowDone[u] ← LowCanDo[u]
}

T ← B ← ∅
for every node u

Number[u] ← 0
Counter ← 0
Dfs(r)

Figure 1: Dfs for finding an equivalent digraph of a strongly connected graph

(A) implies that (V, T ∪B) is strongly connected when Dfs(r) terminates. Moreover,
in any depth first search the arguments of calls that already have started and have not
terminated yet form a simple path starting at the root. By (A), every node already
visited is, in (V, T ∪ B), strongly connected to an ancestor who has not terminated.
Thus, (A) implies that the strongly connected components of (V, T ∪B) form a simple
path. This justifies our convention of using the term back edge for all non-tree edges.

To prove the invariant, we first observe that when Dfs(u) terminates then
LowCanDo[u] is the lowest number of an end of an edge that starts in T [u].

Application of (A) to each child of v shows that T [v] ⊂ scc�∪�(v) when we perform
the final check of Dfs(v).

If the condition of the final check is false, we already have a B edge from T [v]

to an ancestor of u, and thus we have a path from v to u in T ∪ B. Otherwise, we
attempt to insert such an edge. If LowCanDo[v] is “not good enough” then there
is no path from T [v] to u, a contradiction with the assumption that the graph is
strongly connected.

The actual algorithm is based on the above Dfs, but we also need to alter the set
of selected edges in some cases. We explain that below.

7

Objects, Credits, Debits

The initial solution L to the system P3 is divided into objects, strongly connected
components of (V, L). L-edges are either inside objects, or between objects. We
allocate L-edges to objects, and give 1.5 for each. In turn, an object has to pay for
solution edges that connect it, for a T-edge that enters this object and for a B-edge
that connects it to an ancestor. Each solution edge costs 1. Some object have enough
money to pay for all L-edges inside, so they become strongly connected, and two more
edges of the solution, to enter and to exit. We call them rich. Other objects are poor
and we have to handle them somehow.

Allocation of L-Edges to Objects

� L-edge inside object A: allocate to A;
� from object A: call the first L-edge primary, and the rest secondary;

– primary L-edge A→ B, |A| = 1: 1.5 to A;
– primary L-edge A→ B, |A| > 1: 1 to A, and 0.5 to B;
– secondary L-edge A → B (while there is a primary L-edge A → C): if

|A| > 1, 1.5 to B, otherwise 0.5 to each of A, B and C.

When is an Object A rich?

1. A is the root object, no payment for incoming and returning edges;
2. |A| ≥ 4: it needs at most L-edges inside, plus two edges, and it has at least

0.5|A| for these two edges;
3. if |A| > 1 and an L-edge exits A: it needs at most L-edges inside, plus two

edges, and it has at least (1 + 0.5|A|) for these two edges;
4. if |A| = 1, 3 and a secondary L-edge enters A;
5. if |A| = 1, 3 and a primary L-edge enters A from some D where |D| > 1.

To discuss a poor object A, we call it a path node, digons or a triangles when
|A| = 1, 2, or 3 respectively.

Guiding Dfs

For a rich object A, we decide at once to use L-edges inside A in our solution, and we
consider it in Dfs as a single node, with combined adjacency list. This makes point
(1) below moot. Otherwise, the preferences are in the order: (1) L-edges inside the
same object; (2) primary L-edges; (3) other edges.

Analyzing the Balance of Poor Objects

A poor object A has parent object C; Dfs enters A from C to node u ∈ A.
We say that A shares (the cost of a B-edge) if either a B-edge to an ancestor of C

is introduced by Dfs within a proper descendant D of A (A and D share the cost) or
Dfs from an element of A introduces a B-edge to a proper ancestor of C (A and C

share the cost). Path nodes and triangles that share have needs reduced to 1.5 and
4.5 respectively, hence they achieve balance.

8

Lo
w
E
dg

e[
u]

T [u]

secondary
L-edge in

o(T [u] ∪ {t})

gives 0.5 to u

u t

Case 1.1

Low

E
dge[u]

T [u]

/ / /C u t

Case 1.2

Figure 2: Illustrations for the cases of path nodes

Case 1: |A| = 1, A = {u}, A does not share.
Because we have requirements contained in ι(u) and in o(u), there exists L-edges

that enter and exit u. If an L-edge entering u is secondary or exits a multi-node
object, A is rich. Hence we assume a primary edge (t, u) from object {t}.

Case 1.1: C = {t}. Because A does not share, no edge to an ancestor of t is present
in B when the final check of Dfs(u) is performed, and thus T [u] is already strongly
connected. Dfs(u) inserts LowEdge[u]. Would this edge goes to a proper ancestor
of t, A would share (with {t}). Thus LowEdge[u] goes to {t} (see Fig. 2). Then
o(T [u]) ⊂ ι(u), hence o(T [u] ∪ {t}) ⊂ o(u), hence there must be an L-edge from t to
a node different than u, a secondary edge from t, which makes A rich.

Case 1.2: C 6= {t}. Initially we pay for C→ u and LowEdge[u].
This means that t will be visited later. Because A does not share, it neither helps

connecting T [u] (which is strongly connected), nor it helps connecting C with its
ancestor.

Thus it is OK when we delete T -edge C → u and we wait until t is visited in
the future. Then Dfs(t) introduces edge (t, u), paid by A using the money for the
deleted edge, and the cost of LowEdge[u] is shared by A and {t}.

Note that our actual algorithm differs from Dfs in two ways: ① Dfs(t) inserts
to B the primary edge exiting t without waiting for the results of its recursive calls,
and ② we insert this L-edge and delete a T edge. We will describe similar deviations
in the subsequent cases.

Case 2: |A| = 2, A = {u, v}. Dfs(u) starts with making the call Dfs(v).
We consider what happens when we execute the final check of Dfs(v). If an edge

to an ancestor of C is already introduced, A has to pay for T -edge C → u, for edge
(u, v) and it can “afford” to pay 1 for that B-edge (more than 0.5 for sharing the
cost).

If an edge to u is already introduced, A does not share its cost, while T [v]∪ {u} is
already strongly connected. At the end of Dfs(u), A can afford to pay for introducing
a B-edge.

Now we assume that no edge to a proper ancestor of v was introduced before the
final check of Dfs(v), and thus T [v] is already strongly connected. Thus Dfsv inserts
LowEdge[v] to B. If this edge goes to an ancestor of C, again, A pays for three
edges only.

9

Lo
w
Edg

e[
v]

L-edge
in

o(T [v] ∪
{u})

m
akes

A
rich

T [v]

A Cuv

Figure 3: Illustrations for the cases of digons (Case 2)

If LowEdge[v] goes to u, then o(T [v]) ⊂ ι(u), hence o(T [v] ∪ {u}) ⊂ o(u). This
means that the has to exists an L edge that exits u and does not go to v, and this
means that A is rich.

Case 3: |A| = 3, A = {u, v, w}. Triangles are subject of the following pre-processing.
If |V | > 3 and a triangle must contain two solution edges, we contract it to a single
node (this decreases the optimum cost by at least 2), find a solution and then we
replace it with the cycle of this triangle (increasing the solution cost by 3). Clearly,
this preserves approximation ratio 1.5. After the pre-processing a cycle of 3 nodes
contains at most one necessary edge (or V is a triangle).

We assume that (u, v, w) is an oriented cycle, so Dfs(u) starts with a call to
Dfs(v), which starts with a call to Dfs(w).

Case 3.1: A contains an endpoint of a primary L-edge. We can repeat the reasoning
of Case 1, assume that this is edge from a path node t etc.

Case 3.2: Assume that the solution remains strongly connected when we remove A.
We say that A is free. A has a surplus of 0.5 if we can traverse it as follows: from
V − A, two edges inside A, back to V − A, so the balance is 4.5 − 4 = 0.5. Below we
show that such traversal is possible unless A is rich or Case 3.1 applies.

If all edges (V − A)→ A enter through the same node, then an L-edge enters A,
and either A is rich or we have Case 3.1. Similarly, if all edges A → (V − A) exit
from the same node, A is rich.

If we can exit from node w, use the path (V − A) → u → v → w → (V − A).
Otherwise we can assume exits from both u and v.

If we can enter A at node v, use the path (V − A)→ v→ w→ u→ (V − A) and
if we can enter A at node w, use (V − A)→ w→ u→ v→ (V − A).

Case 3.3: In the remaining case, no L-edge enters or exits A, edges enter A at two
nodes, and exit at two nodes, A does not share and A is not free.

One conclusion is that Dfs(u) must visit other objects besides A. Therefore T [u]

has branches that extend beyond A. We will consider the structure of those branches.
A branch is completed when a B-edge to a proper ancestor of its first object is inserted;
this merges some scc’s, say D�, ..., D� into the ancestral scc, so it uses k + 1 edges
outside D�’s. If such a branch has a surplus we transfer 0.5 to A which completes its

10

accounting. Our goal is to show that such a surplus exists, or we can make A share,
or we can make A free.

Case 3.3.1: k > 2. Each D� has a “local surplus” of at least 0.5 after paying for the
incoming edge, and this includes the case of nodes of a digon; a digon has 3 and two
nodes. Thus we can pay for the last edge and the branch still has positive surplus.

Case 3.3.2: k = 2 and either D� or D� is rich. The accounting is the same as in
Case 3.3.1.

Case 3.3.3: D� is a path node, say t. Then there exists an L-edge (s, t) and because
A is not rich, s 6∈ A. Delete A → t and backtrack from t using L-edges until you
leave T [u] or you encounter a cycle object, say F.

If you leave T [u] while backtracking, replace C→ u with the edge that “left T [u]

backwards”. Because we removed edge A→ t, this improves the balance by 1.
If you reach a cycle object inside T [u] via a primary edge, we obtain a branch

that goes through rich F and t, so we have Case 3.3.1 or 3.3.2. If we reach F via a
secondary edge F→ s, s is “super rich” with 3 and it can transfer 0.5 to A.

Case 3.3.4: D� is a path node, say t, while D� is not. Because D� is not rich and
not a digon, it is a triangle. We repeat the reasoning of the previous case, while D�
becomes a free triangle.

Case 3.3.5: Remaining case: each branch either has a single scc D�, which is rich
(otherwise it is a free triangle), or two triangle scc’s, or two single-node scc’s that
together form a digon.

Case 3.3.5.1: Open case: there exists an edge between V − T [u] and T [u] − A. We
will analyze the case of an edge V − T [u]→ T [u] − A, the other case is symmetric.

It this edge enters some D�, then we insert it and delete two edges, C → A and
A→ D�.

If this edge enters some D� where D�, D� is a pair of triangles, we insert it, remove
C→ A, A→ D� and D� → D� and thus we make D� a free triangle, so restoring the
connections of A→ D� → D� will save an edge.

If this edge enters some D� = {t�} where D� = {t�} and {t�, t�} is a digon, we insert
this edge, remove A→ t� and t� → A and insert an edge (t�, s) for some s 6= t� . It is
not possible, exits from t� are restricted to t� , hence o({t�, t�}) ⊂ o(t�), so an L-edge
must exit the digon and the digon is rich and we can treat it like “entering D�”.

If s ∈ T [u], we can delete C → A and save. Otherwise the progress is in making
the set T [u] − A smaller.

Case 3.3.5.2: Closed case. The edges between V −T [u] and T [u] must include nodes
in A. We can free A: there must be at least two nodes in A that are entered by such
edges, otherwise the edge C→ A is an L-edge, Case 3.1. Similarly, there must be two
nodes in A from which such edges can exit. So we can repeat the reasoning of Case
3.2.

Remark 1. When we discuss sub-cases of Case 3.3, we assumed that the scc’s that
are coalesced when a branch is completed are of one of the “basic types”. Actually,
they can have a nested structure, following the recursive nature of Dfs. If this is
the case, we can identify an scc D� with its root object. If the root is rich, then D�

inherits the initial balance if the root, so it is rich. If the root is a triangle, D� inherits

11

its balance as well, additionally, making D� free has the same effect as having free
T [u], a subtree rooted by A that is discussed in those cases. Because we want to gain
by making a subtree rooted by a triangle free, we reduce the problem to that of a
smaller subtree with the same property.

The cases of path nodes, 3.3.3 and 3.3.4 are not altered if these path nodes are
roots of larger scc’s.

Finally, the open case with digon (3.3.5.1) has to be elaborated when we have an
edge from “outside” to the subtree rooted at D� = {t�}. We can follow the reasoning
of Case 2: after reaching t�, we proceed instantly to t� and re-launch Dfs(t�). If it
will produce a B-edge to T [t�], then the digon {t�, t�} gets a “free connection” and we
can balance it in the same way as a rich object 4 nodes.

If it will produce an edge somewhere else, the situation is equivalent to the one
we discussed, the digon together with attached subtrees either provides a new entry
to A or it can be detached from T [u], and we have progress in either case.
Remark 2. Vetta [16] uses a similar combinatorial lower bound but without a
formulation that we have got an L-edge inside every requirement contained in some
o(u) or ι(u). That results in a large number of cases to consider for the path nodes
and digons, making it hard to verify how resolution of some cases impacts consistency
of other cases. The second consequence is that in many situations, [16] indicates how
to make an edge replacement rather than to show existence of a lower bound edge.
However in Min-TR and Max-TR problems we have a class of edges that we are not
allowed to replace, so we have to use edge replacement only as “the last resort”.

3.2 Extending the Algorithm for Min-ED to Min-TR1

When the set of required edges is not empty, D 6= ∅, the approach in the previous
section has to be somewhat modified. First, we can do the following initial prepro-
cessing. If there is a cycle of D-edges we simplify the problem by replacing the cycle
with a single node. We do the same if there is a triangle that contains two D-edges,
as it was described for the necessary edges. When we construct combinatorial lower
bound L, we automatically get D ⊂ L. The difficulty is that in some cases the previous
algorithm can replace L edges.

It never happens with L-edges in paths and rich objects, so it suffices to consider
poor digons and triangles, and make necessary modification to our algorithm.

Digons with Required Edges

Because our algorithm can remove edges from digons, we want to avoid the pos-
sibility of digons that contain required (or necessary) edges. Therefore we alter the
method of obtaining the approximate (lower bound) solution L.

Suppose that we have a digon with required edge (u, v) and the other edge (v, u).
We collapse it to a single node t�� . Now we can have P3 constraints that are contained
in ι(t��) (and the symmetric case of o(t� ��)). If there is only one such constraint, we
increase the cost of satisfying it by 1.5 if the edge that is used enters node v.

The idea is that a solution in which edge (v, u) is not used corresponds to a
solution of the reduced problem in which constraint ι(t��)x ≥ 1 is satisfied with an
edge to node u, hence without increased cost, while the use of an “expensive” edge
corresponds to sharing the cost of (v, u) with constraint o(t��).

12

If we have multiple constraints contained in ι(t��) we could extract 0.5 with a
more careful analysis, so we can pay for (v, u). Otherwise, if we obtain a solution
with an expensive way of satisfying ι(t��)x ≥ 1 we transfer this 0.5 from this edge to
the digon to pay for (v, u).

The same happens for o(t��). Thus either we proceed with both edges of the
digon selected and paid for, or with a path (wt��w ′) that can be replaced with path
(wuvw ′). We never proceed with a digon object that has a required edge.

Triangles

Our method can be applied to triangles with small modifications. It is still the
case that when a triangle is free we can connect its nodes with the rest of the solution
using 4 edges, but the argument has to be a bit different in the presence of required
edges.

Thus suppose that we obtained a solution for the complement of a triangle A =

(u, v, w) in which edge (w, u) is required. If we cannot enter A through node v, v

has to be entered from inside A, hence every solution must have two edges inside A,
hence we would collapse A in the preprocessing. The case when there is no exit of
A from node u is symmetric. Thus we can enter A through v, traverse (v, w, u) and
exit through u. We say that A is free, and a free triangle has a surplus of 0.5.

We can summarize this section with the following theorem:

Theorem 1 There is a polynomial time algorithm that given an input graph (V, E)

and a set of required edges D ⊂ E produces a transitive reduction H such that D ⊆
H ⊆ E and |H| ≤ 1.5k − 1, where k is the size of an optimum solution.

The reason for −1 in the statement is that no edges are added for the root object in
L, and this object has at least 2 edges.

4 2-Approximation for Max-TR1

We formulate now a result on approximability of Max-TR� problem.

Theorem 2 There is a polynomial time algorithm that given an input graph (V, E)

and a set of required edges D ⊂ E produces a transitive reduction H such that D ⊆
H ⊆ E and |E−H| ≥ 0.5k+1, where k is the size of |E−H| for an optimum solution.

(In the proof, we add in parenthesis the parts needed to prove 0.5k + 1 bound
rather than 0.5k.) First, we determine the necessary edges: e is necessary if e ∈ D or
{e} = ι(S) for some node set S. (If there are any cycles of necessary edges, we replace
them with single nodes.)

We give a cost of 0 to the necessary edges and a cost of 1 for the remaining ones.
Remember the primal/dual formulations (in particular (P2) and (D2)) of Section 2.
We set x� = 1 if e is a necessary edge and x� = 0.5 otherwise. This is a valid solution
for the fractional relaxation of the problem as defined in (P1).

Now, pick any node r. (Make sure that no necessary edges enter e.) The out-
arborescence problem, as defined in Section 2, is to find a set of edges of minimum
cost that provides a path from r to every other node; edges of cost 0 can be used

13

in every solution. An optimum (integral) out-arborescence T can be computed in
polynomial time by the greedy heuristic in [9], this algorithm also provides a set of
cuts that forms a dual solution.

Suppose that m edges of cost 1 are not included in T , then no solution can delete
more than m edges (indeed, more than m − 1, to the cuts collected by the greedy
algorithm we can add ι(r)). Let us reduce the cost of edges in T to 0. Our fractional
solution is still valid for the in-arborescence, so we can find the in-arborescence with
at most m/2 edges that still have cost 1. Thus we delete at least m/2 edges, while
the upper bound is m (m − 1).

(To assure deletion of at least `/2 + 1 edges, where ` is the optimum number,
we can try in every possible way one initial deletion. If there optimum number of
deletions is k, we are left with approximating among k−1, we get an upper bound of
at least k − 1 with k edges left for possible deletions, so we delete at least k/2, plus
the initial 1.)

5 Approximating Min-TRp and Max-TRp

We will show how to transform our approximation algorithms for Min-TR� and Min-
TR� into approximation algorithms for Min-TR� and Max-TR� with ratios 1.5 and
2 respectively. In a nutshell, we can reduce the approximation in the general case
the case of a strongly connected graph, and in a strongly connected graph we will
show that a solution to Min-TR� (Max-TR�) can be transformed into a solution to
Min-TR� (Max-TR�) by adding a single edge, and in polynomial time we can find
that edge.

In turn, when we run approximation algorithms within strongly connected com-
ponents, we obtain the respective ratio even if we add one extra edge.

Let G be the input graph. The following proposition says that it suffices to restrict
our attention to strongly connected components of G2. (One should note that the
algorithm implicit in this Preposition runs in time proportional to p.)

Proposition 3 [2] Suppose that we can compute a ρ-approximation of TR� on each
strongly connected component of G for some ρ > 1. Then, we can also compute a
ρ-approximation of TR� on G.

The following characterization of scc’s of G appear in [2].

Lemma 4 [2] Every strongly connected component U ⊂ V is one of the following
two types:

(Multiple Parity Component) {q : (u, v, q) ∈ Closure�(E(U))} = Z� for any
two vertices u, v ∈ U;

(Single Parity Component) |{q : (u, v, q) ∈ Closure�(E(U))}| = 1 for any two
vertices u, v ∈ U.

2The authors in [2] prove their result only for Min-TRp, but the proofs work for Max-TRp as
well.

14

Based on the above lemma, we can use the following approach. Consider an
instance (V, E, `, D) of Min-TR� . For every strongly connected component U ⊂ V we
consider an induced instance of Min-TR�, (U, E(U), D∩U). We find an approximate
solution A� that contains an out-arborescence T� with root r. We label each node
u ∈ U with `(u) = `(P�) where P� is the unique path in T� from r to u.

Now for every (u, v) ∈ E(U) we check if `(v) = `(u) + `(u, v) mod p.
If this is true for every e ∈ E(U) then U is a single parity component. Otherwise,

we pick a single edge (u, v) violating the test and we insert it to A� , thus assuring
that (U, A�) becomes a multiple parity component.

6 Integrality Gap of the LP Formulation for TR1

We formulate now

Lemma 5 The LP formulation P2 for Min-ED and Max-ED has an integrality gap
of at least 4/3 and 3/2, respectively.

We use the same construction for Min-ED and Max-ED. Our graph will consist
of 2n nodes. We first define 2n + 2 nodes of the form (i, j) where 0 ≤ i < 2 and
0 ≤ i ≤ n. Later we will collapse together nodes (0, 0) and (1, 0) into node 0, as well
as nodes (0, n) and (1, n) into node n. We have two types of edges: ((i, j), (i, j + 1))

and ((i, j), (i± 1, j − 1)).
We get a fractional solution by giving coefficient 0.5 to every edge. We need to

show that U 6= V and U 6= ∅ implies |ι(U)| ≥ 2. Suppose {0, (0, 1), . . . , (0, n−1), n} ⊂
U; let j be the least number such that (1, j) 6∈ U; then ι(U) contains ((1, j− 1), (1, j))

and ((0, j+1), (1, j)). A symmetric argument holds if {0, (0, 1), . . . , (0, n−1), n} ⊂ U.
In the remaining case, edge disjoint paths (0, (i, 1), . . . , (i, n−1), n), i = 0, 1, contain
edges from ι(U).

The cost of this fractional solution is 2n (two edges from every of 2n nodes, times
0.5). We will show that the minimum integer solution costs d(8n−4)/3e. For this, it
suffices to show that no simple cycle in this graph has the length exceeding 4 nodes.

If no two consecutive edges in a cycle increase the value of the second coordinate,
no pair of edges increases the this value, so we have at most two such values, hence
at most 4 nodes. Alternatively, if a cycle has two such edges, say the path ((0, i −

1), (0, i), (0, i + 1)), it has to return without using edges that are incident to (0, i)

so it has to use ((0, i + 1), (1, i)) and ((1, i), (0, i − 1)), so it is a cycle of length 4,
((0, i − 1), (0, i), (0, i + 1), (1, i)).

Every edge of a minimum solution belongs to a simple cycle contained in that
solution; we can start with set {0} and extend it using an edge going from the current
set, and a simple cycle that contains that edge; if we add k edges to the solution we
add k − 1 nodes, and k ≤ 4; thus the average cost of adding a node must be at least
4/3 edges. This completes the proof for Min-ED.

When we analyze this example for Max-ED, fractional relaxation allows 2n dele-
tions while actually we can perform only

�
�n of them, so the ratio is 2

�
� =

�

� .

15

7 Approximation Hardness Results

We turn now to the approximation hardness of the above problems. The proof method
uses similar ideas to [11] and [7].

Theorem 6 Let k-problem be the problem restricted to graphs in which the longest
cycle has k edges. 5-Min-ED and 5-Max-ED are both MAX-SNP-hard.

Proof. We will use a single approximation reduction that reduces 2Reg-Max-SAT
to 5-Min-ED and 5-Max-ED.

In Max-SAT problem the input is a set S of disjunctions of literals, a valid
solution is an assignment of truth values (a mapping from variables to {0, 1}), and the
objective function is the number of clauses in S that are satisfied. 2Reg-Max-SAT
is Max-SAT restricted to sets of clauses in which every variable x occurs exactly
four times (of course, if it occurs at all), twice as literal x, twice as literal x. This
problem is MAX-SNP hard even if we impose another constraint, namely that each
clause has exactly three literals [4].

Consider an instance S of 2Reg-Max-SAT with n variables and m clauses. We
construct a graph with 1 + 6n + m nodes and 14n + m edges. One node is h, the
hub. For each clause c we have node c. For each variable x we have a gadget G� with
6 nodes, two switch nodes labeled x, two nodes that are occurrences of literal x and
two nodes that are occurrences of literal x.

We have the following edges: (h, x∗) for every switch node, (c, h) for every clause
node, (l, c) for every occurrence l of a literal in clause c, while each node gadget is
connected with 8 edges as shown in Fig. 4.

We will show that

① if we can satisfy k clauses, then we have a solution of Min-ED with 8n+2m−k

nodes, which is also a solution of Max-ED that deletes 6n − m + k edges;

② if we have a solution of Min-ED with 8n+2m−k edges, we can show a solution
of 2Reg-Max-SAT that satisfies k clauses.

To show ①, we take a truth assignment and form an edge set as follows: include
all edges from h to switch nodes (2n edges) and from clauses to h (m edges). For
a variable x assigned as true pick set A� of 6 edges forming two paths of the form
(x∗, x, x, c), where c is the clause where literal x occurs, and if x is assigned false, we
pick set A� of edges from the paths of the form (x∗, x, x, c) (6n edges). At this point,
the only nodes that are not on cycles including h are nodes of unsatisfied clauses,
so for each unsatisfied clause c we pick one of its literal occurrences, l and add edge
(l, c) (m − k edges).

To show ②, we take a solution D of Min-ED. D must contains all 2n + m edges
of the form (h, x∗) and (c, h). Let D� be the subset of D consisting of edges that are
incident to the literals of variable x and let C be the set of clause nodes.

Simple inspection of cases show that if |D� | = 6 then D� = A� or D� = A� .
If |D� | ≥ 8 we replace D� with A� and two edges x→ C.
If D� contains i edges to C, then |D� | ≥ 4 + i, because besides these edges D�

contains 4 edges to the literals of x. If i = 4 we are in the case already discussed.

16

h

x*

x

c

h

h

x*

x

c

hh

x

c

x

c

__

Figure 4: Illustration of our reduction. Marked edges are necessary. Dash-marked
edges show set A� that we can interpret it as x =true. If some i clause nodes are
not reached (i.e., the corresponding clause is not satisfied) then we need to add k

extra edges. Thus, k unsatisfied clauses correspond to 8n + m + k edges being used
(6n − k deleted) and k satisfied clauses correspond to 8n + 2m − k edges being used
(6n + m − k deleted).

If i = 3, suppose that a clause where x occurs has no incoming edge in D� ; we can
replace D� with A� plus one edge to a clause in which x occurs. If a clause where x

occurs has no incoming edge in D� , we perform a symmetric replacement of D� .
In the remaining case i� ≤ 2 and |D� | = 7, and we can perform a replacement as

in the case of i = 3.
After all these replacements, the size of A did not increase while each D� has the

form of A� or A� plus some edges to C. If A� ⊂ D� we assign x to true, otherwise to
false. Clearly, if the union of D� ’s has 6n + m − k edges, at most m − k clauses are
not satisfied by this truth assignment (those entered by “some other edges to C”), so
if |A| = 8n + 2m − k, at least k clauses are satisfied.

Berman et al. [4] have a randomized construction of 2Reg-Max-SAT instances
with 90n variables and 176n clauses for which it is NP-hard to tell if we can leave at
most εn clauses unsatisfied or at least (1 − ε)n. The above construction converts it
to graphs with (14× 90+ 176) edges in which it is NP-hard to tell if we need at least
(8 × 90 + 176 + 1 − ε)n edges or at most (8 × 90 + 176 + ε)n, which gives a bound
on approximability of Min-ED of 1 + 1/896, and 1 + 1/539 for Max-ED.

❑

Acknowledgments.

The authors thank Samir Khuller for useful discussions.

17

References

[1] A. Aho, M. R. Garey and J. D. Ullman. The transitive reduction of a directed
graph, SIAM Journal of Computing, 1 (2), pp. 131-137, 1972.

[2] R. Albert, B. DasGupta, R. Dondi and E. Sontag. Inferring (Biological) Signal
Transduction Networks via Transitive Reductions of Directed Graphs, to appear
in Algorithmica.

[3] R. Albert, B. DasGupta, R. Dondi, S. Kachalo, E. Sontag, A. Zelikovsky and K.
Westbrooks. A Novel Method for Signal Transduction Network Inference from
Indirect Experimental Evidence, Journal of Computational Biology, Volume 14,
Number 7, pp. 927-949, 2007.

[4] P. Berman, M. Karpinski and A. D. Scott. Approximation Hardness of Short
Symmetric Instances of MAX-3SAT, Electronic Colloquium on Computational
Complexity, Report TR03-049, 2003, available at http://eccc.hpi-web.de/

eccc-reports/2003/TR03-049/index.html.

[5] V. Dubois and C. Bothorel. Transitive reduction for social network analysis and
visualization, IEEE/WIC/ACM International Conference on Web Intelligence,
pp. 128 - 131, 2005.

[6] J. Edmonds. Optimum Branchings, Mathematics and the Decision Sciences, Part
1, G. B. Dantzig and A. F. Veinott Jr. (eds.), Amer. Math. Soc. Lectures Appl.
Math., 11, pp. 335-345, 1968.

[7] L. Engebretsen and M. Karpinski, TSP with bounded metrics, J. Comp. System
Scie. 72 (2006), pp 509-546.

[8] S. Kachalo, R. Zhang, E. Sontag, R. Albert and B. DasGupta, NET-
SYNTHESIS: A software for synthesis, inference and simplification of signal
transduction networks, to appear in Bioinformatics.

[9] R. M. Karp. A simple derivation of Edmonds’ algorithm for optimum branching,
Networks, 1, pp. 265-272, 1972.

[10] S. Khuller, B. Raghavachari and N. Young. Approximating the minimum equiv-
alent digraph, SIAM Journal of Computing, 24(4), pp. 859-872, 1995.

[11] S. Khuller, B. Raghavachari and N. Young. On strongly connected digraphs with
bounded cycle length, Discrete Applied Mathematics, 69 (3), pp. 281-289, 1996.

[12] S. Khuller, B. Raghavachari and A. Zhu. A uniform framework for approximating
weighted connectivity problems, 19th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 937-938, 1999.

[13] B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms,
Springer-Verlag, 2000.

18

[14] D.M. Moyles and G.L. Thompson, Finding a minimum equivalent of a digraph,
J. ACM 16(3), pp. 455-460, 1969.

[15] C. Papadimitriou, Computational Complexity, Addison-Wesley, New York, 1994,
page 212.

[16] A. Vetta. Approximating the minimum strongly connected subgraph via a match-
ing lower bound, 12th ACM-SIAM Symposium on Discrete Algorithms, pp. 417-
426, 2001.

19

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

