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Abstract

In this paper we show that lower bounds for bounded depth arithmetic circuits imply deran-
domization of polynomial identity testing for bounded depth arithmetic circuits. More formally,
if there exists an explicit polynomial f(x1, . . . , xm) that cannot be computed by a depth d arith-
metic circuit of small size then there exists an efficient deterministic algorithm to test whether a
given depth d−8 circuit is identically zero or not (assuming the individual degrees of the tested
circuit are not too high). In particular, if we are guaranteed that the tested circuit computes
a multilinear polynomial then we can perform the identity test efficiently. To the best of our
knowledge this is the first hardness-randomness tradeoff for bounded depth arithmetic circuits.

The above results are obtained using the the arithmetic Nisan-Wigderson generator of [KI04]
together with a new theorem on bounded depth circuits, which is the main technical contribution
of our work. This theorem deals with polynomial equations of the form P (x1, . . . , xn, y) ≡ 0 and
shows that if P has a circuit of depth d and size s and if the polynomial f(x1, . . . , xn) satisfies
P (x1, . . . , xn, f(x1, . . . , xn)) ≡ 0 then f has a circuit of depth d+3 and size O(s ·r+mr), where
m is the total degree of f and r is the degree of y in P .

In the other direction we observe that the methods of [KI04] imply that if we can derandomize
polynomial identity testing for bounded depth circuits then NEXP does not have bounded depth
arithmetic circuits. That is, either NEXP 6⊆ P/poly or the Permanent is not computable by
polynomial size bounded depth arithmetic circuits.
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1 Introduction

The role of randomness in computation is a fundamental question in Complexity Theory. Phrased
in its most general terms it asks “Do we really need random bits to do that?”, where ‘that’ can
be a probabilistic algorithm, interactive protocol, cryptographic application etc. When asking
this question in the setting of probabilistic polynomial time algorithms we are actually asking
whether BPP=P. In recent years there have been many works giving strong evidence that indeed
BPP=P in the form of Hardness-Randomness tradeoffs. These results prove that BPP=P (or some
weaker collapse) under the hypothesis that there exist ‘explicit’ boolean functions that cannot
be computed/approximated using small circuits. Since we believe that hard functions exist, we
also believe that BPP=P. A partial list of references on this topic includes [NW94, IW97, STV01,
ISW01, SU05].

One of the most natural problems in BPP is the problem of Polynomial Identity Testing (PIT)
(in fact, PIT belongs to the class coRP ⊆ BPP). In this problem we are given as input a polynomial,
represented in some succinct form (say by an arithmetic circuit or formula), and we are asked
whether it is the identically zero polynomial. Using the well-known Schwarz-Zippel Lemma [Sch80,
Zip79] it is known that evaluating the polynomial at a random point, chosen from a sufficiently
large set, is enough in order to determine, with high probability of success, whether the polynomial
is identically zero or not. The main question is whether there is an efficient deterministic algorithm
for PIT. This problem is considered as one of the central problems in the field of derandomization,
partially due to the large number of algorithmic problems that reduce to it (see [AB03, AKS04,
Lov79, MVV87, CRS95, LV98]).

In [KI04] Kabanets and Impagliazzo showed that the PIT problem described above can be
derandomized if we assume that there exists an explicit polynomial (say the Permanent) that
cannot be computed using a small arithmetic circuit. This result is purely arithmetic and does not
follow from previous work on boolean derandomization. The two main technical tools used to prove
this result are an arithmetic version of the Nisan-Wigderson Generator [NW94] and the polynomial
factorization algorithm of Kaltofen [Kal89]. It should be mentioned here that the ‘main’ result
of [KI04] was actually a theorem in the other direction: derandomizing PIT implies circuit lower
bounds. This showed that derandomizing PIT might be more difficult then once imagined, since it
seems that we are very far from proving explicit circuit lower bounds.

The apparent connection between PIT and circuit lower bounds suggests that it might be
beneficial to consider restricted versions of the PIT problem. A natural restriction would be to
assume that the input polynomial is given by a ‘simpler’ representation than a circuit (or even
a formula). Since we have lower bounds for restricted models we might be able to solve the PIT
versions for the same models. In [GKS90, BOT88, KS01] (and many other papers) deterministic PIT
algorithms for depth 2 arithmetic circuits were given. More recently, [RS05] gave a polynomial time
PIT algorithm for non-commutative formulas. In another line of work [DS06, KS07b, KS07a, AM07]
gave PIT algorithms for depth 3 circuits with bounded top fan-in. This should be compared to the
best lower bounds for depth 3 circuits which are exponentially large over finite fields [GK98, GR00]
and quadratic for characteristic zero fields [SW01]. For depth larger than 3, and fields other than
F2, the only lower bounds are slightly super-linear [BS83, Str73, Pud94, RS05, Raz07].

In this work we consider the problem of PIT for bounded depth arithmetic circuits. Roughly
speaking we show that a circuit lower bound for bounded depth arithmetic circuits would give
an efficient deterministic PIT algorithm for bounded depth circuits with a certain limitation on
their degrees (see the next section ‘our results’ for the precise formulation). This is an arithmetic
Hardness-Randomness result that further emphasizes the connection between lower bounds and
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derandomization. One could also hope that in the (near?) future we will succeed in proving
lower bounds for bounded depth arithmetic circuits and then, using this work, we would also have
unconditional deterministic PIT algorithms for circuits of the same kind.

In order to prove our results we combine the arithmetic Nisan-Wigderson Generator from [KI04]
together with a new theorem (Theorem 3.1) that bounds the bounded depth complexity of a
polynomial root y = f(x1, . . . , xn) of an equation P (x1, . . . , xn, y) ≡ 0 in term of the bounded
depth complexity of P . This theorem replaces the polynomial factorization algorithm of [Kal89] in
the proof of [KI04]. We note that the methods of [Kal89] does not seem to work in the bounded
depth case since the circuit for the root f(x) is always of large depth, even if P has a bounded
depth circuit.

1.1 Our results

We proceed by giving the definitions necessary to state our results formally. We start by defining
three variants of the PIT problem. The problems are ordered from the most general one to the
most restricted one. Our results will apply only to the last (most restricted) version but we give
all three definitions in order to give a clearer picture.

Problem 1. CPIT(F) - Circuit Polynomial Identity Testing Over F :

• Input: An arithmetic circuit C(x1, . . . , xn) of size poly(n) over a field F.

• Output: Does C(x) ≡ 0 ?

Problem 2. CPITd(F) - Depth d Circuit PIT Over F :

• Input: An arithmetic circuit C(x1, . . . , xn) of size poly(n) and depth d over a field F.

• Output: Does C(x) ≡ 0 ?

Problem 3. CPITd
r(F) - Depth d Circuit PIT Over F for polynomials with individual degrees at

most r:

• Input: An arithmetic circuit C(x1, . . . , xn) of size poly(n) and depth d over a field F computing
a polynomial with individual degrees at most r (possibly the zero polynomial).

• Output: Does C(x) ≡ 0 ?

When considering the uniform complexity of the above problems we restrict our attention to
finite fields and to the field of rational numbers Q. Elements in these fields can be represented using
finite bit strings and so the standard Turing machine model will be sufficient to describe algorithms
over these fields. This will save a bit on unimportant technicalities. When working over a finite
field Fpr , p prime, we will assume (as is done in [KI04]) that we have at our disposal an irreducible
polynomial of degree r over Fp.

Remark 1.1 (Syntactic vs. semantic restrictions). Notice that the definition of CPITd
r(F)

does not contain any syntactic restrictions on the circuit C. In particular, C can have intermediate
gates computing polynomials that have individual degrees larger than r, as long as the output has
individual degrees at most r. This can be thought of as a semantic restriction - applying only to the
output of the computation.
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Our PIT algorithms will assume that there exists some ‘explicit’ polynomial that is hard for
small circuits of bounded depth. To simplify some of the proofs we will assume that this polynomial
is also multilinear. We note that this requirement is not really needed since if we had a hard
polynomial which was not multilinear, but had say polynomial degree in each variable, we could
easily derive from it an explicit hard multilinear polynomial with only a polynomial deterioration in
the hardness parameters (we leave the details to the reader). The following two definitions capture
the notions of ‘explicitness’ and ‘hardness’ necessary to formulate our results.

Definition 1.2 (Explicit polynomial). Let F be a finite field or the field of rational numbers.
Let p̃ = {pm}∞m=1 be a sequence of multilinear polynomials such that pm ∈ F[x1, . . . , xm] for each
m. We say that the sequence p̃ is explicit if

1. All the coefficients of pm have size (in bits) polynomial in m.

2. There exists a Turing machine M that on input m runs in time 2O(m) and outputs a list (of
length 2m) of all the coefficients of pm(x).

Definition 1.3 (Hardness against circuits). Let F be a field and let E be an extension field
of F. Let p ∈ F[x1, . . . , xm] be some polynomial. We say that p is (s, d, E)-hard if p cannot be
computed by an arithmetic circuit of size s and depth d over the extension field E.

The next two theorems state our main result when the underlying field is Q (Theorem 1) and
over finite fields (Theorem 2). We note that the constant δ appearing in the two theorems can
be bounded explicitly by following the steps of the proof closely. A bound of δ ≤ 8 is easy to be
convinced of, though a tighter bound could be achieved under certain assumptions on the given
circuits.

Theorem 1. Let d be an integer, ε > 0 a real number. Suppose there exists an explicit sequence p̃ =
{pm}∞m=1 of multilinear polynomials such that for each m the polynomial pm belongs to Q[x1, . . . , xm]
and is (2mε

, d, Q)-hard. Then the problem CPITd′

polylog(n)(Q) can be solved deterministically in time

npolylog(n), where d′ = d − δ for some absolute constant δ.

Theorem 2. Let d be an integer, ε > 0 a real number, F a finite field. Suppose there exists an
explicit sequence p̃ = {pm}∞m=1 of multilinear polynomials such that for each m the polynomial pm

belongs to F[x1, . . . , xm] and is (2mε
, d, E)-hard for some finite extension E of F satisfying |E| > 2m.

Then the problem CPITd′

polylog(n)(F) can be solved deterministically in time npolylog(n), where d′ = d−δ
for some absolute constant δ.

Remark 1.4 (Higher individual degrees). We note that if we are satisfied with having sub-
exponential time deterministic PIT algorithms (this would be a weaker, but still highly interesting,
derandomization result) then we can replace CPITd′

polylog(n)(F) with CPITd′

no(1)(F) in the above theo-

rems. This follows by making a small modification to the proof, in a similar fashion to [KI04] (we
leave the details to the interested reader).

Finally, we observe that the bounded depth analog of Theorem 4.1 of [KI04] (stated below) also
holds.

Theorem (4.1 in [KI04]). The following three assumptions cannot be simultaneously true.

1. NEXP ⊆ P/poly,

2. Permanent is computable by polynomial size arithmetic circuits1 over Q,

1Actually [KI04] allow the circuits to have divisions, but our circuits do not use divisions.
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3. CPIT(Q) is in NSUBEXP.

The bounded depth analog of the theorem is given in the following observation.

Observation 1. The following three assumptions cannot be simultaneously true.

1. NEXP ⊆ P/poly,

2. Permanent is computable by polynomial size depth d arithmetic circuits over Q,

3. CPITd(Q) is in NSUBEXP.

1.2 Organization

In Section 2 we give notations and preliminary claims that will be used in later sections. Section 3
contains our main technical contribution: a ‘root finding’ theorem for bounded depth circuits.
Finally, in Section 4 we use this theorem to prove Theorems 1 and 2. A sketch of the proof of
Observation 1 is given in Section 5.

2 Preliminaries

2.1 Notations

We denote by [n] , {1, . . . , n}. Let p ∈ F[x1, . . . , xn] be a polynomial. We write deg(p) for the
total degree of p and degxi

(p) for the individual degree of p in the variable xi. We sometimes
write p(x) to denote p(x1, . . . , xn). In the same way, we sometimes denote a polynomial p ∈
F[x1, . . . , xn, y1, . . . , ys] by p(x, y). Let S ⊂ [n] be a set of size m > 0 and write S = {i1, . . . , im}
where i1 < . . . < im. Given a polynomial q ∈ F[y1, . . . , ym] and x = (x1, . . . , xn) we denote by q(x|S)
the restriction of q to the variables in S, namely q(x|S) , q(xi1 , . . . , xim). For a polynomial f(x) ∈
F[x1, . . . , xn] we denote by Hi[f ] the homogenous part of degree i of f and H≤i[f ] =

∑

j≤i Hj [f ].

2.2 Combinatorial Designs

We quote the standard result on the combinatorial designs of Nisan and Wigderson.

Lemma 2.1. [NW94] Let n, m be integers such that n < 2m. There exists a family of sets
S1, . . . , Sn ⊂ [l] such that

• l = O(m2/ log(n)).

• For each i ∈ [n], |Si| = m.

• For every 1 ≤ i < j ≤ n, |Si ∩ Sj | ≤ log(n).

Moreover, this family of sets can be computed deterministically in time poly(n, 2l).

2.3 The Schwartz-Zippel Lemma

The following generalization of the fundamental theorem of algebra is due to Schwartz and Zippel
[Sch80, Zip79].
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Lemma 2.2 (Schwartz-Zippel). Let F be a field and let f ∈ F[x1, . . . , xn] be a non zero polyno-
mial with degree at most r. Then, for any finite subset S ⊂ F we have

|{c ∈ Sn : f(c) = 0}| ≤ r · |S|n−1.

The Schwarts-Zippel Lemma gives a trivial (but not very efficient) deterministic PIT algorithm
for circuits. We call this algorithm the ‘brute force’ algorithm.

Algorithm 2.3. [Brute Force PIT] Given an arithmetic circuit C(x1, . . . , xn) over F and a bound
r on its degree we test whether C ≡ 0 as follows. We pick a set S ⊂ F of size r + 1 (if F is smaller
than r + 1 we allow S to be in some extension field). We then go over all assignments a ∈ Sn and
test if C(a) = 0. If all the tests returned zero then we say that C ≡ 0, otherwise we say that C 6≡ 0.

2.4 Computing the Homogenous Parts of a Circuit

The next lemma says that if f has a circuit of small size and depth then so do the polynomials
Hi[f ] (assuming the field is not too small).

Lemma 2.4. Let F be a field which has at least m + 1 distinct elements. Let f(x) ∈ F[x1, . . . , xn]
be a polynomial with deg(f) = m such that f has a circuit of size s and depth d. Then there exists
a circuit of size s′ = O(s ·m) and depth d′ = d+1 with m+1 outputs computing H0[f ], . . . , Hm[f ].

Proof. Let z be a new formal variable and define

g(x1, . . . , xn, z) = f(x1 · z, . . . , xn · z). (1)

Notice that

g(x, z) =
m

∑

i=0

Hi[f ] · zi. (2)

Computing all of the Hi[f ] is now done by treating g as a univariate polynomial in z and recovering
its ‘coefficients’ using evaluations on a large enough set of points. More formally, let c0, . . . , cm ∈ F

be m+1 distinct elements. Let Γ be an (m+1)×(m+1) matrix whose i′th row is (1, ci, c
2
i , . . . , c

m
i ).

Let α be the column vector (H0[f ], H1[f ], . . . , Hm[f ])t and β = (g(x, c0), g(x, c1), . . . , g(x, cm))t.
Using Eq. 2 we see that β = Γ ·α and so, since Γ is invertible, we have α = Γ−1 · β. Computing all
the entries of β (in parallel) can be done in depth d and size O(s · m) using the identity in Eq. 1.
Now, computing the entries of α can be done by adding another layer of addition gates computing
the linear transformation Γ−1. This increases the depth by one. Notice that if the top gate in the
original circuit was an addition gate than the depth doesn’t increase at all.

3 Roots of Equations With Polynomial Coefficients

The following theorem shows that a solution y = f(x1, . . . , xn) of a polynomial equation
P (x1, . . . , xn, y) = 0 cannot have bounded depth complexity significantly larger than that of P (x, y),
when the degree of the variable y in P is not too large.

Theorem 3.1. Let n, s, r, m, t, d be integers such that s ≥ n. Let F be a field which has at least
max{mt+1, r+1} elements. Let P (x, y) ∈ F[x1, . . . , xn, y] be a non-zero polynomial with deg(P ) ≤
t and degy(P ) ≤ r such that P has an arithmetic circuit of size s and depth d over F. Let
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f(x) ∈ F[x1, . . . , xn] be a polynomial with deg(f) = m such that P (x, f(x)) ≡ 0. Then f(x) can be
computed by a circuit of size s′ = poly(s, mr) and depth2 d′ = d + O(1) over F.

The heart of the proof of Theorem 3.1 is the following lemma which shows that (under certain
conditions on the derivative of P ) we can ‘approximate’ the polynomial root y = f(x) of the
equation P (x, y) = 0 using a polynomial in the coefficients of P . Each approximation gives the
monomials of f(x) up to some degree k plus some other monomials of higher degree than k (this
is the ‘error’ term). In the proof of Theorem 3.1 we will use only the last approximation (when
k = m) to derive a circuit for f(x). Notice that Lemma 3.2 does not give us any information about
the degree of the approximating polynomial. We will have to take care of this fact later, in the
proof of Theorem 3.1.

Lemma 3.2. Let F be a field, let P ∈ F[x1, . . . , xn, y] be such that degy(P ) = r and let f ∈

F[x1, . . . , xn] be such that P (x, f(x)) ≡ 0 and ∂P
∂y (0, f(0)) = ξ0 6= 0. Write P (x, y) =

∑r
i=0 Ci(x)·yi.

Then, for each k ≥ 0 there exists a polynomial Qk ∈ F[z0, . . . , zr] such that

H≤k[f(x)] ≡ H≤k[Qk(C0(x), . . . , Cr(x))].

We defer the proof of Lemma 3.2 to section 3.2 and proceed to give the proof of Theorem 3.1.

3.1 Proof of Theorem 3.1

We start with a simple claim regarding the complexity of computing the partial derivatives of P .

Claim 3.3. For every 1 ≤ j ≤ r the partial derivative ∂jP
∂yj (x, y) has an arithmetic circuit of size

O(s · r) and depth d + 3.

Proof. Write P (x, y) =
∑r

j=0 Cj(x) ·yj . Using the same trick as in the proof of Lemma 2.4 (namely,
evaluating P (x, ξ) for r + 1 values of ξ and interpolating) we get that there exists a circuit of size
O(s·r) and depth d+1 with r+1 outputs computing C0(x), . . . , Cr(x). Now, each partial derivative
is a linear combination of products Cj(x) · yi, and so we can compute them with an increase of at
most two in the depth of the circuit.

Part I - Preparations: Observing Claim 3.3 we can assume w.l.o.g that

∂P

∂y
(x, f(x)) 6≡ 0. (3)

otherwise we could replace P with the first P̃ = ∂jP
∂yj (x, y) such that P̃ (x, f(x)) = 0 and

∂P̃
∂y (x, f(x)) 6≡ 0. The loss in the size and depth incurred by Claim 3.3 is too small to be a

problem. Therefore, there exists a point x0 ∈ Fn such that ∂P
∂y (x0, f(x0)) 6= 0 (we use the fact that

|F| > t · m ≥ deg(P (x, f(x))). We can further assume w.l.o.g that x0 = 0, for Otherwise we could
prove the theorem for the polynomials P (x + x0, y) and f(x + x0), and translate the result back to
the original P and f (one can verify that the earlier condition, given by Eq. 3, on the derivative
not being identically zero is maintained by this transformation). To conclude, we are now in a
situation where

∂P

∂y
(0, f(0)) 6= 0. (4)

2Following the proof closely one can get an exact bound of d+3 on the depth of the circuit computing f(x). This
bound can be further reduced to d + 2 if the top-most gate in the circuit for P happens to be an addition gate.
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Part II - Using Lemma 3.2: Write

P (x, y) =
r

∑

j=0

Cj(x) · yj .

Applying Lemma 3.2 with k = m we get that there exists a polynomial Q ∈ F[z0, . . . , zr] such that

f(x) ≡ H≤m[f(x)] ≡ H≤m[Q(C0(x), . . . , Cr(x))]. (5)

Let z∗ = (C0(0), . . . , Cr(0)) and suppose deg(Q) = M . Let us define IM , {(α0, . . . , αr) ∈
Nr+1 |

∑

i αi ≤ M}. We can expand Q(z) around the point z∗ to get an expression of the form

Q(z) =
∑

α∈IM

Qα ·
r

∏

i=0

(zi − z∗i )αi .

Substituting zi = Ci(x) and using Eq. 5 we get

f(x) = H≤m





∑

α∈IM

Qα ·

r
∏

i=0

(Ci(x) − z∗i )αi



 . (6)

We now observe that for every 0 ≤ i ≤ r the polynomial Ci(x)−z∗i = Ci(x)−Ci(0) does not have a
constant term and so, if we take α = (α0, . . . , αr) with

∑

i αi > m the product
∏r

i=0(Ci(x)− z∗i )αi

will only contain monomials of degree larger than m. Following this observation we conclude that
we can ‘throw away’ all monomials of degree larger than m in the r.h.s of Eq. 6 and still have an
identity. Therefore,

f(x) = H≤m

[

∑

α∈Im

Qα ·
r

∏

i=0

(Ci(x) − z∗i )αi

]

. (7)

Part III - Finding a circuit for f(x): We will now use Eq. 7 to prove the existence of a small
bounded depth circuit for f(x). Following the above notations we denote by

Q̃(z) =
∑

α∈Im

Qα ·
r

∏

i=0

(zi − z∗i )αi

the ‘truncated’ version of Q. So f(x) is given by the homogenous parts of degree at most m in
the polynomial g(x) , Q̃(C0(x), . . . , Cr(x)). We can compute Q̃(z) using a depth 2 circuit of
size ≤ mr. Observing the proof of Claim 3.3 we also see that we can compute the polynomials
C0(x), . . . , Cr(x) with a circuit of depth d + O(1) and size O(s · r). Therefore, the polynomial g(x)
can be computed by a circuit of depth d+O(1) and size poly(s, mr). Using Lemma 2.4 we get that
f(x) can be computed by a circuit of size poly(s, mr) and depth d + O(1) (we use the fact that
|F| > t · m ≥ deg(g)).

3.2 Proof of Lemma 3.2

We will prove the lemma by induction on k. For k = 0 the lemma is trivial. Suppose that
we have proven the lemma for k − 1. That is, there exists a polynomial Qk−1(z) such that
H≤k−1[f(x)] = H≤k−1[Qk−1(C0(x), . . . , Cr(x))]. To simplify notations let us denote g(x) =
Qk−1(C0(x), . . . , Cr(x)).
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The following chain of polynomial identities is derived by throwing away (or modifying) terms
that have total degree larger than k and using the above information of f and g, in particular the
fact that H≤k−1[f(x)] = H≤k−1[g(x)] and that P (0, g(0)) = P (0, f(0)) = ξ0 6= 0 (the constant term
is the same in f and in g). Let us denote also fk = Hk[f ] and similarly for g.

0 ≡ H≤k [P (x, f(x))]

≡ H≤k [P (x, g(x) + {fk(x) − gk(x)}))]

≡ H≤k

[

r
∑

i=0

Ci(x) · (g(x) + {fk(x) − gk(x)})i

]

≡ H≤k

[

r
∑

i=0

Ci(x) · (g(x)i + i · {fk(x) − gk(x)} · g(x)i−1)

]

≡ H≤k [P (x, g(x))] + H≤k

[

{fk(x) − gk(x)} · P ′(x, g(x))
]

Notice now that the polynomial {fk(x) − gk(x)} · P ′(x, g(x)) contains only monomials of degree k
and above (if fk(x) ≡ gk(x) then there is nothing to prove) and that in order to get the homogenous
part of degree k we have to take the homogenous part of degree 0 in P ′(x, g(x)), which is given by
P ′(0, g(0)) = ξ0 6= 0 and multiply it by {fk(x)− gk(x)}. We can therefore continue the above chain
of identities as follows

... = H≤k [P (x, g(x))] + ξ0 · {fk(x) − gk(x)}

= H≤k [P (x, g(x))] + ξ0 · {H≤k[f(x)] − H≤k−1[f(x)] − H≤k[g(x)] + H≤k−1[g(x)]}

= H≤k [P (x, g(x))] + ξ0 · {H≤k[f(x)] − H≤k[g(x)]} .

Rearranging we get

H≤k[f(x)] = H≤k[g(x)] − H≤k [(1/ξ0) · P (x, g(x))]

= H≤k [g(x) − (1/ξ0) · P (x, g(x))] .

Notice that the polynomial g(x) − (1/ξ0) · P (x, g(x)) can be written as a polynomial in the Ci’s
and so we are done.

4 Identity Testing Using a Hard Polynomial

In this section we prove Theorem 1 and Theorem 2. Since the proofs are mostly identical we will
do them together (making sure to note all the places that are different). For the rest of this section
F will denote either a finite field or the field of rational numbers.

4.1 The main lemma

Lemma 4.1. Let n, r, s be integers and let f ∈ F[x1, . . . , xn] be a non zero polynomial with individual
degrees at most r that is computed by a size s ≥ n circuit of depth d. Let m ≤ (log(n))O(1) be an
integer and let S1, . . . , Sn ⊂ [l] be given by Lemma 2.1 so that l = (log(n))O(1), |Si| = m and
|Si ∩ Sj | ≤ log(n). Let p ∈ F[z1, . . . , zm] be a multilinear polynomial such that

F (y) = F (y1, . . . , yl) , f (p(y|S1), . . . , p(y|Sn)) ≡ 0.

Then p(z) can be computed by a circuit of size ≤ (s · mr)a and depth d + b over F, where a and b
are absolute constants. If F is finite then we also require that |F| ≥ n2.
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Proof. First notice that we can assume w.l.o.g that r < m, for otherwise the bound on the circuit
size for p becomes trivial, even for a depth 2 circuit. We start by defining the ‘hybrid’ polynomials:

F0(x, y) = f(x1, . . . , xn),

F1(x, y) = f(p(y|S1), x2, . . . , xn),

...

Fn(x, y) = f(p(y|S1), . . . , p(y|Sn)).

By our assumptions we have that F0(x, y) 6≡ 0 and Fn(x, y) ≡ 0. Therefore, there exists an index
0 ≤ i < n such that

Fi(x, y) 6≡ 0 and Fi+1(x, y) ≡ 0. (8)

We would like to fix all the variables xi+2, . . . , xn (if i < n−1) and the variables in {yj |j 6∈ Si+1}
to values in F such that the property given by Eq. 8 still holds for the restricted versions of Fi and
Fi+1. This is possible by Lemma 2.2 and using the bound |F| ≥ n2 > nrm ≥ deg(Fi) if F is finite.
Fixing the aforementioned variables leaves us with equations

f̃(q1(y|S1∩Si+1), . . . , qi(y|Si∩Si+1), xi+1) 6≡ 0

f̃(q1(y|S1∩Si+1), . . . , qi(y|Si∩Si+1), p(y|Si+1)) ≡ 0, (9)

where f̃ is simply f with the variables xi+2, . . . , xn fixed to some values and qj(y|Sj∩Si+1) are the
polynomials p(y|Sj ) after we fix the variables {yj |j 6∈ Si+1}. In order to simplify the notations for
the rest of the proof we rename our variables and rewrite Eq. 9 as follows:

g(z1, . . . , zm, w) 6≡ 0

g(z1, . . . , zm, p(z1, . . . , zm)) ≡ 0, (10)

where the polynomial g(z1, . . . , zm, w) is obtained by taking the expression

f̃(q1(y|S1∩Si+1), . . . , qi(y|Si∩Si+1), xi+1) (11)

and replacing xi+1 with w and the variables {yj |j ∈ Si+1} with {z1, . . . , zm} (maintaining their
relative order).

Our final step is to apply Theorem 3.1 on the polynomials g(z, w) and p(z) in order to show
that p(z) has a small circuit. Before doing so we will need to bound the size/depth of the circuit
computing g(z, w).

Claim 4.2. The polynomial g(z, w) can be computed by a circuit of size ≤ sa′
and depth d + b′ for

absolute constants a′ and b′.

Proof. Since g(z, w) has the same circuit complexity as the expression in Eq. 11 we will find a
circuit for that expression. The polynomials qj(y|Sj∩Si+1) are multilinear polynomials of at most
log(n) variables and as such can be computed by a depth two circuit of size ≤ n. Plugging these
circuits into the circuit for f (or actually to the restricted circuit for f̃), which is of size s and depth
d, gives the required circuit for g(z, w) (after renaming the variables).

Notice that degw(g) = degxi+1
(f) ≤ r. We can therefore use Theorem 3.1 to get that p(z) has

a circuit of depth d + b and size ≤ (s · mr)a. If F is finite then the conditions of Theorem 3.1 are
satisfied since |F| ≥ n2 > max{r + 1, deg(g) · deg(p) + 1}.

9



4.2 Proof of Theorems 1 and 2

The proof is divided into three parts: a description of the PIT algorithm, a proof of its correctness
and an analysis of its running time. Recall that in Theorem 2 we have an underlying finite field
F and a polynomial p ∈ F[z1, . . . , zm] which is hard even for circuits over some finite extension E

of F of size at least 2m. In order to simplify the notations we will assume for the remainder of
this section that F itself has size at least 2m. This will still imply the theorem since the question
whether a circuit is identically zero or not is unchanged when we work over an extension field.
Notice also that since in our proof m = polylog(n) the size of F is quasi-polynomial in n – the
number of inputs in the input polynomial.

The Algorithm: We are given a circuit C(x1, . . . , xn) of size s ≤ nc (for some constant c) and
depth d′ computing a polynomial f(x1, . . . , xn) with individual degrees at most r = polylog(n).
We fix A to be some large number to be determined later (in the analysis) and let m = d(A · r ·
log(n))3/εe = log(n)O(1) (recall that ε is such that pm is (2mε

, d, F)-hard). The algorithm proceeds
in the following four steps:

1. Construct a design S1, . . . , Sn ⊂ [l] as in Lemma 2.1 such that l = O(m2/ log(n)) = log(n)O(1),
|Si| = m and |Si ∩ Sj | ≤ log(n).

2. Construct a circuit of size 2m computing the polynomial pm(z1, . . . , zm) (this task is trivial
given the list of coefficients of pm).

3. Construct a circuit for the polynomial

F (y) = F (y1, . . . , yl) = f(pm(y|S1), . . . , pm(y|Sn))

by composing C with n copies of the circuit obtained for pm in the previous step.

4. Check if F (y) ≡ 0 using the brute force (BF) algorithm (Algorithm 2.3) providing a bound
of n · m · r on the degree of F (y). Return the answer of the BF algorithm.

Correctness: Clearly, if f ≡ 0 then the polynomial F constructed in step 3 is also zero, and so
the BF algorithm will return the correct answer, provided that the degree of F (y) is indeed at most
n · m · r. This is true since the degree of f is at most n · r and the degree of pm is at most m (it is
multilinear). Therefore it is enough to show that if f 6≡ 0 then F (y) 6≡ 0.

Suppose in contradiction that f 6≡ 0 and F (y) ≡ 0. By applying Lemma 4.1 (using the bound
|F| ≥ 2m ≥ n2) we get that pm can be computed by a circuit of size (s · mr)a and depth d′ + b

for absolute constants a and b. Setting A = a · c + 1 we have that sa ≤ na·c ≤ 2
a·c
A

mε/3
< 2mε/3

and that mr·a ≤ m
a
A
·mε/3

≤ 2mε/3·log(m) ≤ 2mε/2
, (using the inequality r ≤ 1

A · mε/3). Therefore the
total circuit size is bounded by (s ·mr)a ≤ 2mε

, which violates the lower bound assumption on pm,
provided that d′ + b ≤ d which will hold if we take the constant δ in the theorem to be equal to b.

Running time: Step 1. of the algorithm can be done in time poly(n, 2l) = npolylog(n) by
Lemma 2.1. Step 2. can be done in time 2O(m) = npolylog(n) since pm is weakly explicit. Step
3. can be done in time roughly n · 2m = npolylog(n). Step 4. takes (nmr + 1)m = npolylog(n)

evaluations of the circuit for F , each taking npolylog(n) time.
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5 Implications of Derandomizing CPITd(Q)

We now give a sketch of the proof of Observation 1. The proof is an exact analog of the Proof of
Theorem 4.1 of [KI04]. Their proof has the following structure (in brackets we give the modification
needed to prove the observation). Assume that NEXP ⊆ P/poly. Then by previous results (a
combination of [Tod91] and [IKW02]) we get that coNEXP ⊆ P0−1Perm, where 0 − 1Perm is the
(boolean) language (M, v) of all 0/1 matrices M and the value of their permanent v (given in
binary). We now want to show that if the other two conditions hold then P0−1Perm ⊆ NSUBNEXP.
Combining the two containments we get that coNEXP ⊆ NSUBNEXP, which is a contradiction as
a simple diagonalization shows.

Thus, to conclude the argument we need to show that if Permanent has polynomial size (depth
d) circuits and CPIT(Q) (CPITd(Q)) is in NSUBEXP, then P0−1Perm ⊆ NSUBNEXP. Indeed, if
the Permanent has polynomial size (depth d) circuits then we can guess such a circuit C. Now,
using the simple fact that the permanent of an k × k matrix for any k ≤ n can be computed by a
circuit for an n × n Permanent we can assume w.l.o.g. that we have a circuit Ck for every k ≤ n
that should compute the k × k Permanent. We now write the following identities.

C1(x) = x,

Ck(X
(k)) =

k
∑

i=1

x1,i · Ck−1(X
(k)
i ),

where X(k) = (xi,j)i,j∈[k] is a k×k matrix and X
(k)
i is its i-th minor along the first row (that is, the

matrix obtained from deleting the first row and the i-th column). It is clear that C = Cn computes
the Permanent if and only if all the equalities are satisfied. As C is a polynomial size (depth d)
circuit then so are each of the circuits

Ck(X
(k)) −

k
∑

i=1

x1,i · Ck−1(X
(k)
i )

(as the Permanent is an irreducible polynomial, we can assume w.l.o.g. that the top gate of the
circuit C is an addition gate and so the depth remains the same). Thus, by running our NSUBEXP
PIT algorithm we can verify that C indeed computes the Permanent. As we just gave a NSUBEXP
algorithm for computing the Permanent we get that P0−1Perm ⊆ NSUBNEXP, as required.
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