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Abstract

In this paper we give the first deterministic polynomial time algorithm for testing
whether a diagonal depth-3 circuit C(x1, . . . , xn) (i.e. C is a sum of powers of linear
functions) is zero. We also prove an exponential lower bound showing that such a
circuit will compute determinant or permanent only if there are exponentially many
linear functions. Our techniques generalize to the following new results:

1. Suppose we are given a depth-3 circuit (over any field F) of the form:

C(x1, . . . , xn) :=

k
∑

i=1

`
ei,1

i,1 · · · `
ei,s

i,s

where, the `i,j ’s are linear functions living in F[x1, . . . , xn]. We can test whether
C is zero deterministically in poly (nk, max{(1 + ei,1) · · · (1 + ei,s) | 1 6 i 6 k})
field operations. This immediately gives a deterministic poly(nk2d) time identity
test for general depth-3 circuits of degree d.

2. We prove that if the above circuit C(x1, . . . , xn) computes the determinant (or

permanent) of an m × m formal matrix with a “small” s = o
(

m
log m

)

then

k = 2Ω(m). Our lower bounds work for all fields F. (Previous exponential lower
bounds for depth-3 only work for nonzero characteristic.)

3. We present applications of our ideas to depth-4 circuits and an exponentially
faster identity test for homogeneous diagonal circuits (deterministically in poly(n
k log(d)) field operations over finite fields).

1 Introduction

Identity Testing is the problem of checking whether a given arithmetic circuit C(x1, . . . , xn),
computing a polynomial over a field F, is the zero circuit. Ideally we would like to do
identity testing deterministically in time polynomial in the size of the circuit C but no
such algorithm is known. The simplest known general algorithm is randomized which
was discovered independently by Schwartz [Sch80] and Zippel [Zip79]: it evaluates the
given circuit at a random point and accepts if and only if the circuit evaluates to zero
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at that point. There are more involved randomized algorithms that use fewer random
bits [CK00, LV98, AB03]. Besides being a natural algebraic problem, special cases of
identity testing also appear in primality testing [AKS04], testing equivalence of read-once
branching programs [BCW80], graph matching problems [Lov79], interpolating sparse
multivariate polynomials [GKS90, CDGK91] and proving complexity theory results such
as IP=PSPACE [LFK92, Sha92], NP=PCP(O(log n), O(1)) [ALM+98, AS98]. Solving
identity testing becomes all the more important by the work of Impagliazzo and Kabanets
[IK04] who showed that – finding a deterministic algorithm for identity testing is, roughly,
equivalent to proving circuit lower bounds for NEXP.

In this paper we consider arithmetic circuits of depth 3 and solve the identity testing
problem for a natural restricted case (we call them diagonal circuits)– when the circuit
C(x1, . . . , xn) is a sum of powers of linear functions. Our basic technique is to express the
multiplication gate (a0 + a1x1 + · · · + anxn)d in a dual form:

∑

j

fj,1(x1) · · · fj,n(xn)

which can then be viewed as a circuit in which the variables x1, . . . , xn do not commute.
Thus, by the identity test for noncommutative formulas of Raz and Shpilka [RS05] we get
a deterministic polynomial time identity test for diagonal circuits. Also, the lower bounds
for pure circuits by Raz and Shpilka [RS05] apply and we get that a diagonal circuit can
compute determinant or permanent only if it is of exponential size. We show that the
identity test as well as the lower bounds generalize to depth-3 circuits of the form:

C(x1, . . . , xn) :=

k
∑

i=1

`
ei,1

i,1 · · · `
ei,s

i,s

over any field provided the max{(1+ei,1) · · · (1+ei,s) | 1 6 i 6 k} is at most a polynomial
in size(C). As an immediate corollary we get an identity test for general depth-3 circuits C
that runs in time poly(nk2d) where d is the maximum degree of the polynomial computed
by a multiplication gate in C. These results also generalize (to some extent) to depth-4
circuits. Our technique of computing the dual is a new way to unfold a multiplication gate
in an arithmetic circuit. This dual computation is faster than a brute-force expansion and
may have other applications. (Usage of the term “dual” is justified in Remark 18.)

1.1 Known Results

There are deterministic algorithms known for identity testing only over restricted classes
of arithmetic circuits. Raz and Shpilka [RS05] gave a deterministic polynomial time iden-
tity test for noncommutative arithmetic formulas. Dvir and Shpilka [DS05] attempted

a characterization of zero depth-3 circuits and obtained a poly(n, 2logk−1 d) time identity
test. Kayal and Saxena [KS07] used Chinese remaindering over local rings and gave a
poly(ndk) time identity test for depth-3 circuits which is clearly a polynomial time iden-
tity test if k, the top fanin of the circuit, is bounded. In this work we allow the top fanin
to be unbounded but impose the restriction that each multiplication gate has only “few”
distinct linear functions as input.

In this paper we also prove exponential lower bounds for computing determinant or
permanent by certain restricted depth-3 circuits. These restricted depth-3 circuits are the
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ones for which we give a deterministic polynomial time identity test. Grigoriev, Karpinski
and Razborov [GK98, GR00] have also shown such lower bounds for general depth-3
circuits but assuming a nonzero characteristic. Our lower bounds are new in the sense
that they hold over all fields. Raz [Raz04] has shown super-polynomial lower bounds on the
size of multi-linear formulas that compute determinant or permanent. Our lower bounds
apply to diagonal depth-3 circuits which can be viewed as an extreme case orthogonal
to that of multi-linear depth-3 circuits. There are many other lower bound results that
are quite incomparable to ours – exponential lower bound for determinant and permanent
on noncommutative formulas [Nis91]; exponential lower bound for symmetric polynomials
and iterated matrix product on homogeneous depth-3 circuits [NW97]; quadratic lower
bounds for determinant, symmetric polynomials and iterated matrix product on general
depth-3 circuits [SW01].

1.2 Definitions and Statement of Results

We will use poly(M,N) to refer to a real function in M and N whose value is upper
bounded by (MN)c1 for all M,N > c2 where c1, c2 > 0 are absolute constants. When
using poly(M,N) we will not specify the value of c1, c2 as our main interest in this paper
is only in their existence. We will use [n] to refer to the set {1, . . . , n}. We will denote the
characteristic of a field F (i.e. smallest integer t > 0 such that t = 0 in F or zero if there is
no such t) by char(F). An algebra R over a field F is simply a ring containing F. In this
paper only finite dimensional commutative algebras appear, i.e. there is an integer N > 0
and basis elements b1, . . . , bN ∈ R such that any element in R can be uniquely expressed
as

∑N
i=1 αibi with αi’s in F. We call N the dimension of the algebra R over F, denoted

by dim(R). It is a simple exercise to see that basic operations (e.g. multiplication of two
elements) in R can be done using poly(N) field operations (in F).

Our main concern in this paper are depth-3 circuits. For the purposes of identity
testing (also lower bounds for determinant and permanent) the hardest case is when the
circuit has an addition gate at the top. These circuits are called ΣΠΣ. It is clear that the
output of such a ΣΠΣ circuit C(x1, . . . , xn) would be:

k
∑

i=1

`i,1 · · · `i,di

where, the `i,j = (ai,j,0 + ai,j,1x1 + · · · + ai,j,nxn) are linear functions over a field F. We
call k the top fanin of C, di the degree of the i-th multiplication gate and d = maxi{di}
the degree of C. The size of the circuit C, size(C), is dominated by knd. It is easy to
see that by brute-force we can check whether a ΣΠΣ circuit C is a zero circuit in time
polynomial in k ·

(

n+d
d

)

but this is generally exponential in size(C).
In this paper we solve the case when each of the multiplication gates in a ΣΠΣ circuit

C(x1, . . . , xn) has only “few” distinct linear functions as input. For instance, when each
of the multiplication gates in C has only one distinct linear function as input then we call
C a diagonal circuit and it looks like:

C(x1, . . . , xn) =

k
∑

i=1

bi · `
di

i

where the bi’s are in F and the `i’s are linear functions.
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Example 1. A simple diagonal circuit that is zero over F3 is:

C(x, y) = 2x2 + 2y2 + x3 + 2y3 − (x + y)2 − (x − y)2 + (2x + y)3

In general, we assume that each of the multiplication gates in C has at most s distinct
linear functions as input and then the circuit looks like:

C(x1, . . . , xn) :=

k
∑

i=1

`
ei,1

i,1 · · · `
ei,s

i,s (1)

The identity test and lower bounds we give for such circuits are more interesting when
max{(1 + ei,1) · · · (1 + ei,s) | 1 6 i 6 k} is “small”, i.e. at most a polynomial in size(C).
Our first main theorem is:

Theorem 2. Over any field F, let C be a circuit given as in Equation (1). Then we can
deterministically check whether C is a zero circuit in poly(nk,max{(1 + ei,1) · · · (1 + ei,s)
| 1 6 i 6 k}) field operations.

Depending on how big are s and the degrees ei,j’s we get the following two immediate
corollaries. When s is really small, say a constant, we get:

Corollary 3. Over any field F, let C be a depth-3 circuit given as in Equation (1) with a
constant s. Then we can do identity testing in deterministic polynomial time (poly(nkds)
field operations).

For the largest s, i.e. s = d, we get the following result which is better than the
brute-force identity test.

Corollary 4. Over any field F, let C be a depth-3 circuit with n variables, top fanin k and
degree d. Then we can do identity testing deterministically in poly(nk2d) field operations.

The lower bounds that we get, basically show that if a depth-3 circuit computes deter-
minant (or permanent) then either some of the multiplication gates have “lots” of distinct
linear functions as inputs or the top fanin of the circuit is exponential. Our second main
theorem is:

Theorem 5. Over any field F, if the circuit in Equation (1) expresses the determinant

(or permanent) of a general m × m matrix with parameters s = o
(

m
log m

)

, n = m2 and

d = poly(m) then k = 2Ω(m).

As an immediate corollary we get the following nondiagonalization-of-determinant re-
sult.

Corollary 6. Over any field F, determinant (or permanent) cannot be expressed as a sum
of polynomially-many powers of linear functions.

The above two main theorems also generalize to depth-4 circuits of the form:

C(x1, . . . , xn) =
k

∑

i=1

L
ei,1

i,1 · · ·L
ei,s

i,s

where the Li,j’s are not linear functions but sums of univariate polynomials, i.e. for all
i ∈ [k], j ∈ [s]:

Li,j(x1, . . . , xn) = gi,j,1(x1) + · · · + gi,j,n(xn)

where gi,j,j′ ∈ F[xj′].
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1.3 Our Techniques

We use non-black-box methods, i.e. we heavily use the structure of the given circuit. We
use tools that previously have been used to understand noncommutative formulas, for
example by Nisan, Wigderson [Nis91, NW97], Raz and Shpilka [RS05]. We apply these
old tools in a nontrivial way to understand depth-3 and depth-4 (commutative) circuits.
For clarity let us present here the two old theorems in a form that we need.

A circuit D(x1, . . . , xn), over an algebra R over a field F, is called noncommutative
if each of its multiplication gate has ordered inputs and the variables x1, . . . , xn do not
commute, i.e. for all i 6= j, xi · xj 6= xj · xi. The output D(x1, . . . , xn) is a formal expres-
sion in the ring R{x1, . . . , xn} of polynomials over noncommutative variables x1, . . . , xn.
Clearly, any commutative circuit C(x1, . . . , xn) can be turned into a noncommutative cir-
cuit C̃(x1, . . . , xn) by imposing an order on the inputs to its multiplication gates and
assuming xi · xj 6= xj · xi for all i 6= j. But now circuits C and C̃ are computing differ-
ent polynomials and it may happen that C is a zero circuit but C̃ is a nonzero circuit.
However, if C̃ is a zero circuit then C is surely a zero circuit as well. A circuit is called a
formula if the fan-out of every gate in the circuit is at most one. Noncommutative for-
mulas are easier to analyze compared to the commutative ones and the following identity
test is relevant to us:

Theorem 7 (Theorem 2.5 of [RS05]). Let R be an algebra over a field F. Given a
noncommutative formula C(x1, . . . , xn) ∈ R{x1, . . . , xn} we can verify deterministically
in poly(size(C), dim(R)) field operations whether C is zero.

The second result relevant to us is a special case of Theorem 5.1 of [RS05] that proves
lower bounds for pure circuits using the partial derivative space (see the proof idea in
Lemma 5.3 of [RS05]).

Theorem 8 (by Theorem 5.1 of [RS05]). Let R be an algebra over a field F, r ∈ R \ {0},
r′ ∈ R and let det(x1,1, . . . , xn,n) denote the determinant of a formal n×n matrix ((xi,j)).
If det(x1,1, . . . , xn,n) · r − r′ can be expressed as a circuit:

C(x1,1, . . . , xn,n) =
k

∑

i=1

fi,1,1(x1,1) · · · fi,n,n(xn,n)

where, the fi,j1,j2’s are univariate polynomials over R. Then k ·dim(R) = 2Ω(n). A similar
lower bound holds for the permanent as well.

Our main contribution is a novel way to transform the multiplication gates of a depth-3
circuit, hence the overall circuit, to a form on which we can apply Theorems 7 and 8. Our
basic technique is to express the multiplication gate (a0 + a1x1 + · · · + anxn)d in a dual
form:

∑

j

fj,1(x1) · · · fj,n(xn)

where the fj,j′’s are univariate polynomials over F. Now this is a nice circuit as the
variables x1, . . . , xn in it are “separated” and we can invoke the known tricks. For example,
it can be viewed as a circuit in which the variables x1, . . . , xn do not commute, thus by
Theorem 7 we get a deterministic polynomial time identity test for diagonal circuits. Also,
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by the lower bounds of Theorem 8 we get that a diagonal circuit can compute determinant
or permanent only if it is of exponential size. These ideas easily generalize to circuits with
s > 1 in Equation (1) but then we work on larger algebras instead of working on the base
field F.

1.4 Organization

The paper is organized as follows. In section 2 we present our results for the basic case of
diagonal circuits over zero characteristic. In section 3 we show how to extend our results
to general circuits of Equation (1) over zero characteristic. In section 4 we extend the
previous results to nonzero characteristic, thus finishing the proof of our main Theorems
2 and 5. Finally, in section 5 we present some applications of our results to depth-4 circuit
identity testing and an exponentially faster identity test for homogeneous diagonal circuits
(deterministically in poly(nk log(d)) field operations over finite fields).

2 The Diagonal Depth-3 Circuits

The aim of this section is to define a dual expression for multiplication gates of the form
(a0 + a1x1 + · · · + anxn)d and use that form to give an identity test for diagonal circuits
and to prove lower bounds. We will assume throughout this section that the base field F

is of characteristic zero.

2.1 Dual of a Multiplication Gate

Given a multiplication gate (a0 + a1x1 + · · · + anxn)d we would like to express it as:

t
∑

i=1

fi,1(x1) · · · fi,n(xn)

where the fi,j’s are univariate polynomials over F and t = poly(dn). This expression with
variables x1, . . . , xn “separated” we call a dual of the multiplication gate. The following
lemma shows that such a dual is easily computable.

Lemma 9. Let a0, a1, . . . , an be in a field F of zero characteristic. Then we can compute
univariate polynomials fi,j’s in poly(nd) field operations such that for t = (nd + d + 1):

(a0 + a1x1 + · · · + anxn)d =
t

∑

i=1

fi,1(x1) · · · fi,n(xn)

Proof. We will prove this using the formal power series: exp(x) = 1 + x + x2

2! + · · · , where
exp(x) = ex and e is the base of natural logarithm. Define the degree d truncation of the

series to be Ed(x) = 1 + x + · · · + xd

d! . Observe that:

(d!)−1 · (a0 + a1x1 + · · · + anxn)d = coefficient of zd in exp ((a0 + a1x1 + · · · + anxn) · z)

= coefficient of zd in exp(a0z) · exp(a1x1z) · · · exp(anxnz)

= coefficient of zd in Ed(a0z) · Ed(a1x1z) · · ·Ed(anxnz)
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The product Ed(a0z) · Ed(a1x1z) · · ·Ed(anxnz) can be viewed as a univariate polynomial
in z of degree (nd + d). Hence, its coefficient of zd can be computed by evaluating the
polynomial at (nd + d + 1) distinct points α1, . . . , αnd+d+1 ∈ F (remember F is large
enough) and by interpolation we can compute β1, . . . , βnd+d+1 ∈ F such that:

coefficient of zd in Ed(a0z) · Ed(a1x1z) · · ·Ed(anxnz)

=

nd+d+1
∑

i=1

βi · Ed(a0αi) · Ed(a1αix1) · · ·Ed(anαixn)

This is the dual form of (a0 + a1x1 + · · · + anxn)d as required. It is routine to verify that
all the univariate polynomials Ed(·) in the above sum can be computed in poly(nd) field
operations.

Remark 10. The trick of looking at the coefficients of exp(g(x1, . . . , xn) · z) is originally
due to Newton and also occurs in [SW01] (proof of Theorem 5.3).

2.2 Identity Test and Lower Bounds

The dual form of multiplication gates obtained in Lemma 9 is easy to analyze and test for
zero. We give the ideas in the following theorem.

Theorem 11. Over zero characteristic, identity testing for diagonal circuits can be done
in deterministic polynomial time (poly(nkd) field operations).

Proof. Suppose we are given a diagonal circuit C:

C(x1, . . . , xn) =

k
∑

i=1

bi · `
di

i

Then by Lemma 9 we can compute the dual form of each of the k multiplication gates
such that:

C(x1, . . . , xn) =

k
∑

i=1

ndi+di+1
∑

j=1

fi,j,1(x1) · · · fi,j,n(xn) (2)

where the univariate polynomials fi,j,j′’s are of degree at most di.

Now observe that the variables in the circuit on the RHS of Equation (2) can be
assumed to be noncommutative without affecting the output, i.e. circuit C. Thus, if we
apply the identity testing algorithm of Theorem 7 to the circuit on the RHS of Equation
(2) we will correctly know whether C is zero or not. Hence, C can be verified for zeroness
in deterministic poly(nkd) field operations.

The noncommutative form of the circuit on the RHS of Equation (2) also gives us a
lower bound for determinant (and permanent) over diagonal circuits.

Theorem 12. Over zero characteristic, if a diagonal circuit expresses the determinant
(or permanent) of a formal m × m matrix with n = m2 variables and degree d = poly(m)
then the top fanin k = 2Ω(m).
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Proof. Suppose a diagonal circuit C computes the determinant of a general m×m matrix.
Then by Lemma 9 determinant is being computed by a circuit as given in Equation (2).
Now the exponential lower bound of Theorem 8 applies and we get that poly(ndk) = 2Ω(m)

implying k = 2Ω(m).

3 Extension to General Depth-3 Circuits

In this section we extend the results of the last section to general depth-3 circuits (with
some success). We now define a dual expression for multiplication gates of the form
`e1

1 · · · `es
s where the `i’s are linear functions in F[x1, . . . , xn]. The proof is along the same

lines as presented before but now we will work in algebras over F to get the dual form of
a general multiplication gate. Finally, we use that form to give identity test and prove
lower bounds. We will again assume throughout this section that the base field F is of
characteristic zero.

3.1 Dual of a Multiplication Gate

Given a multiplication gate `e1

1 · · · `es
s , where the `i’s are linear functions in F[x1, . . . , xn],

we would like to express it as an expression:

t
∑

i=1

fi,1(x1) · · · fi,n(xn)

where the fi,j’s are univariate polynomials over an F-algebra R (unlike the diagonal case
where we worked over F) and t = poly(nd) where d = (e1 + · · ·+ es). This expression with
variables x1, . . . , xn “separated” we call a dual of the multiplication gate. The following
lemma shows that such a dual is computable but we pay a price in terms of the dimension
of algebra R which is (e1 + 1) · · · (es + 1).

Lemma 13. Let `i = (ai,0 + ai,1x1 + · · · + ai,nxn), for all i ∈ [s], be linear functions over
a field F of zero characteristic and d = (e1 + · · · + es). Then we can compute univariate
polynomials fi,j’s over an algebra R := F[z1, . . . , zs]/(z

e1+1
1 , . . . , zes+1

s ) in poly(n, dim(R))
field operations such that for t = (nd + d + 1):

`e1

1 · · · `es
s · ze1

1 · · · zes
s =

t
∑

i=1

fi,1(x1) · · · fi,n(xn) over R

Proof. We will again prove this using the formal power series: exp(x) = 1 + x + x2

2! + · · · ,
where exp(x) = ex and e is the base of natural logarithm. Recall that the degree d
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truncation of the series is Ed(x) = 1 + x + · · · + xd

d! . Observe that:

(e1! · · · es!)
−1 · `e1

1 · · · `es
s

= coefficient of zdze1

1 · · · zes
s in exp(`1z1z) · · · exp(`szsz)

= coefficient of zdze1

1 · · · zes
s in exp(`1z1z + · · · + `szsz)

= coefficient of zdze1

1 · · · zes
s in exp ((a1,0z1 + · · · + as,0zs)z) · · ·

· · · exp ((a1,1z1 + · · · + as,1zs)x1z) · · · exp ((a1,nz1 + · · · + as,nzs)xnz)

= coefficient of zdze1

1 · · · zes
s in Ed ((a1,0z1 + · · · + as,0zs)z) · · ·

· · ·Ed ((a1,1z1 + · · · + as,1zs)x1z) · · ·Ed ((a1,nz1 + · · · + as,nzs)xnz) (3)

Note that the last product can be viewed as a univariate polynomial in z of degree (nd+d).
Hence, its coefficient of zd can be computed by evaluating the polynomial at (nd + d + 1)
distinct points α1, . . . , αnd+d+1 ∈ F (remember that F is large enough) and by interpolation
we can compute β1, . . . , βnd+d+1 ∈ F such that:

coefficient of zdze1

1 · · · zes
s in Ed ((a1,0z1 + · · · + as,0zs)z) · Ed ((a1,1z1 + · · · + as,1zs)x1z) · · ·

· · ·Ed ((a1,nz1 + · · · + as,nzs)xnz)

= coefficient of ze1

1 · · · zes
s in

nd+d+1
∑

i=1

βi · Ed ((a1,0z1 + · · · + as,0zs)αi) · · ·

· · ·Ed ((a1,1z1 + · · · + as,1zs)x1αi) · · ·Ed ((a1,nz1 + · · · + as,nzs)xnαi)

Notice that the monomials having nonzero coefficients in the above sum are of the form
zt1
1 · · · zts

s such that t1 + · · · + ts = d = e1 + · · · + es. Thus, if we look at the above sum
modulo the ideal (ze1+1

1 , . . . , zes+1
s ) then the surviving monomials zt1

1 · · · zts
s would be those

that have t1 6 e1, . . . , ts 6 es which together with t1 + · · ·+ ts = d = e1 + · · ·+es uniquely
determines the surviving monomial as ze1

1 · · · zes
s . Consequently, we can summarize the

above computations as:

(e1! · · · es!)
−1 · `e1

1 · · · `es
s · ze1

1 · · · zes
s

=
nd+d+1

∑

i=1

βi · Ed ((a1,0z1 + · · · + as,0zs)αi) · Ed ((a1,1z1 + · · · + as,1zs)x1αi) · · ·

· · ·Ed ((a1,nz1 + · · · + as,nzs)xnα1) over R

This is the dual form of `e1

1 · · · `es
s as required. Notice that there is a nonconstant factor

ze1

1 · · · zes
s appearing on the LHS but since this factor is a nonzero element of the algebra

R, the dual form will be good enough for our purposes. It is routine to verify that the
univariate polynomials Ed(·) over R in this sum can be computed in poly(n, dim(R)) field
operations and that the dimension of R is (e1 + 1) · · · (es + 1).

3.2 Identity Test and Lower Bounds

Suppose that we are given a general depth-3 circuit C over a field F of zero characteristic:

C(x1, . . . , xn) :=

k
∑

i=1

`
ei,1

i,1 · · · `
ei,s

i,s

9



We can now apply the dual form of Lemma 13 to each of the k multiplication gates and
work on a bigger algebra. We formalize this idea in the following theorems.

Theorem 14. Given a circuit C of degree d over a field F of zero characteristic:

C(x1, . . . , xn) =

k
∑

i=1

`
ei,1

i,1 · · · `
ei,s

i,s

where the `i,j’s are linear functions and (wlog) for all i, ei,1 6= 0. We can test whether
C is a zero circuit deterministically in poly (nk,max{(1 + ei,1) · · · (1 + ei,s) | 1 6 i 6 k})
field operations.

Proof. Let us apply the dual form of Lemma 13 to the i-th multiplication gate, of degree di,
and compute the univariate polynomials fi,j1,j2’s, for all 1 6 j1 6 ti = (ndi + di + 1) and

j2 ∈ [n], over the algebra Ri := F[zi,1, . . . , zi,s]/(z
ei,1+1
i,1 , . . . , z

ei,s+1
i,s ) in poly(n, dim(Ri))

field operations such that:

`
ei,1

i,1 · · · `
ei,s

i,s · z
ei,1

i,1 · · · z
ei,s

i,s =

ti
∑

j1=1

fi,j1,1(x1) · · · fi,j1,n(xn) over Ri (4)

With the aim of getting a dual form of the circuit C let us define a commutative algebra
R that contains the algebras corresponding to each multiplication gate, i.e. R1, . . . , Rk, as
“orthogonal” subalgebras and in which the following (k−1) relations hold: z

e1,1

1,1 · · · z
e1,s

1,s =

· · · = z
ek,1

k,1 · · · z
ek,s

k,s
. Explicitly, the algebra R is: F[zi,j | ∀i ∈ [k],∀j ∈ [s]]/I, where the

ideal I is generated by the following three sets of relations:

• z
ei,j+1
i,j = 0, for all i ∈ [k], j ∈ [s].

• zi,j · zi′,j′ = 0, whenever i 6= i′.

• z
ei,1

i,1 · · · z
ei,s

i,s = z
ei′,1

i′,1 · · · z
ei′,s

i′,s
, for all i, i′ ∈ [k].

Note that the first set of relations just make R1, . . . , Rk as subalgebras of R while the other
two sets impose relations on certain zero-divisors in R (ei,1 6= 0 implies that z

ei,1

i,1 · · · z
ei,s

i,s is
a zero-divisor of R). The second set of relations are put in so that the dimension of R gets
down to roughly sum of the dimensions of R1, . . . , Rk. Note that the dimension of R over
the base field F is exactly

∑k
i=1(1 + ei,1) · · · (1 + ei,s)− 2(k − 1) which is nonzero. Clearly

basic computations over R can be done in poly (k,max{(1 + ei,1) · · · (1 + ei,s) | 1 6 i 6 k})
field operations.

Now by using the third set of relations in R and summing up Equation (4) for all the
k multiplication gates, we get over the algebra R:

C(x1, . . . , xn) · z
e1,1

1,1 · · · z
e1,s

1,s

=

k
∑

i=1

`
ei,1

i,1 · · · `
ei,s

i,s · z
ei,1

i,1 · · · z
ei,s

i,s

=

k
∑

i=1

ti
∑

j1=1

fi,j1,1(x1) · · · fi,j1,n(xn) (5)
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This last expression can be viewed as a noncommutative formula in variables x1, . . . , xn

over the algebra R. Clearly, it is zero iff C(x1, . . . , xn) · z
e1,1

1,1 · · · z
e1,s

1,s is zero over R iff
C is zero over F. Thus, it is sufficient to test the circuit on the RHS of Equation (5) for
zeroness. This can be done by applying the identity testing algorithm of Theorem 7, now
working over the algebra R. Hence, we can deterministically verify whether C is zero in
poly(nk, dim(R)) field operations as required.

As happened in the case of diagonal circuits, the noncommutative form of the circuit
in Equation (5) leads to a lower bound for determinant (and permanent) over depth-3
circuits that have a “small” s.

Theorem 15. Over a field F of zero characteristic, if a depth-3 circuit C:

C(x1, . . . , xn) =
k

∑

i=1

`
ei,1

i,1 · · · `
ei,s

i,s

expresses the determinant (or permanent) of a formal m × m matrix with parameters

s = o
(

m
log m

)

, n = m2 and d = poly(m) then k = 2Ω(m).

Proof. Suppose the circuit C computes the determinant of a general m×m matrix. Recall
that C has a dual form as given in Equation (5). Thus, we can apply Theorem 8 to deduce
that poly(ndk, dim(R)) = 2Ω(m) implying:

poly (ndk,max{(1 + ei,1) · · · (1 + ei,s) | 1 6 i 6 k}) = 2Ω(m)

As the ei,j ’s are at most poly(m) the above implies poly(ndk,ms) = 2Ω(m) which using
the hypothesis further implies k = 2Ω(m).

4 Extension to the Nonzero Characteristic Case

In the last section we defined the dual form of a multiplication gate `e1

1 · · · `es
s , where the

`i’s are linear functions in x1, . . . , xn over a field F of zero characteristic. In this section we
will show how to obtain the dual form when the characteristic of F is a prime p > 1. Note
that over such a field the expressions used in the proof of Lemma 13 may not be defined,
because for example if p|d! then 1

d! is undefined in F. We will show that such issues can
be taken care of by a simple trick, thus finishing the proofs of our main Theorems 2 and
5.

For an m ∈ Z, let us define a function ιp(m) to be the largest integer t > 0 such that
pt|m. In general the base field F of characteristic p > 1, over which the input circuit does
computation, will look like:

F ∼= Fp(t1, . . . , tc)[u1, . . . , uc′ ]/(h1(u1, . . . , uc′), . . . , hc′′(u1, . . . , uc′)) (6)

where the hi’s are multivariate polynomials over Fp(t1, . . . , tc). But in this section we will
only describe a dual form working over F = Fp, as the techniques directly generalize to
fields of Equation (6).

11



Lemma 16. Let `i = (ai,0 + ai,1x1 + · · · + ai,nxn), for all i ∈ [s], be linear functions in
the field Fp and d = (e1 + · · · + es). Then we can compute univariate polynomials fi,j’s
over an algebra R := R0[z1, . . . , zs]/(z

e1+1
1 , . . . , zes+1

s ) in poly(n(1 + e1) · · · (1 + es)) field
operations such that:

`e1

1 · · · `es
s · ze1

1 · · · zes
s · pb =

t
∑

i=1

fi,1(x1) · · · fi,n(xn) over R

where R0 is the Galois ring Zpb+1[y]/(h(y)) (i.e. polynomial h(y) is irreducible modulo p)
and t, b and deg(h) are all at most poly(n(1 + e1) · · · (1 + es)).

Proof. We will imitate the proof of Lemma 13 and make changes to avoid dividing by p
in the field Fp. Note that the elements of Fp can be taken as {0, . . . , (p− 1)} and so there
is this natural embedding of Fp into Q. We can work in this embedding over Q and again

start from the formal power series: exp(x) = 1 + x + x2

2! + · · · , where exp(x) = ex and
e is the base of natural logarithm. Recall that the degree d truncation of the series is
Ed(x) = 1 + x + · · · + xd

d! . Observe that (over Q):

(e1! · · · es!)
−1 · `e1

1 · · · `es
s

= coefficient of zdze1

1 · · · zes
s in exp(`1z1z) · · · exp(`szsz)

= coefficient of zdze1

1 · · · zes
s in exp(`1z1z + · · · + `szsz)

= coefficient of zdze1

1 · · · zes
s in exp ((a1,0z1 + · · · + as,0zs)z) · · ·

· · · exp ((a1,1z1 + · · · + as,1zs)x1z) · · · exp ((a1,nz1 + · · · + as,nzs)xnz)

= coefficient of zdze1

1 · · · zes
s in Ed ((a1,0z1 + · · · + as,0zs)z) · · ·

· · ·Ed ((a1,1z1 + · · · + as,1zs)x1z) · · ·Ed ((a1,nz1 + · · · + as,nzs)xnz) (7)

Remember that in the above we are working over Q (treating all constants as living in Q),
now we want to return back to the field Fp. The easiest way to almost achieve this is by
clearing away factors of p in the denominators of Equation (7). To this effect, multiply
both sides of Equation (7) by p(n+1)v, where v = max{ιp(i!) | 1 6 i 6 d}, and remove
p from the denominator of the LHS and from the denominators of all the coefficients of
Ed(·) in the RHS of Equation (7). Rewriting the new expression (over Q) that is free of
p in the denominators, we have that for some nonnegative b that is at most poly(nd):

c · `e1

1 · · · `es
s · pb

= coefficient of zdze1

1 · · · zes
s in Ẽd ((a1,0z1 + · · · + as,0zs)z) · · ·

· · · Ẽd ((a1,1z1 + · · · + as,1zs)x1z) · · · Ẽd ((a1,nz1 + · · · + as,nzs)xnz)

where c ∈ Q is free of p in the numerator and the denominator, and coefficients of Ẽd(·)
are free of p in the denominators. Now we can reduce the above expression modulo
pb+1 and still get a meaningful expression as all the denominators are p-free and LHS is
nonzero (ofcourse if the input `i’s were nonzero). Next we just rerun the proof of Lemma
13 following Equation (3), over Zpb+1. We begin by extracting the coefficient of zd in
the above by interpolation. One issue that deserves mention here is that interpolation
requires evaluating the above product at (nd + d + 1) distinct points from the ring Zpb+1.
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If Zp is large enough then interpolation will work by just evaluating at points from Zp

and working over R0 := Zpb+1. If Zp is small then we need to go to a large enough
field extension of Fp, which can be done deterministically in poly(log(nd)) time [AL86],
and then our base ring is not Zpb+1 but R0 := Zpb+1[y]/(h(y)), where the polynomial
h(y) is irreducible modulo p (this makes R0 a Galois ring). Finally, by going over the
algebra R0[z1, . . . , zs]/(z

e1+1
1 , . . . , zes+1

s ) we get the expression for `e1

1 · · · `es
s · ze1

1 · · · zes
s · pb

as promised. It is routine to verify that all this can be done in poly(n(1 + e1) · · · (1 + es))
field operations.

The above proof together with the last section, essentially, give us a dual form for
multiplication gates of depth-3 circuits over any field F. This dual form, together with the
versions of Theorems 7 and 8 over Zpb+1, gives us our main Theorems 2 and 5.

5 Applications to Other Models

In this section we collect miscellaneous extensions of our identity test. The first extension
is to restricted depth-4 circuits. The second extension is a faster identity test for diagonal
circuits that runs in time poly(nk log(d)), i.e. exponentially faster in terms of the degree
of the circuit, over a finite field F.

5.1 Restricted Depth-4 Circuits

Suppose we are given a depth-4 circuit of the form:

C(x1, . . . , xn) =
k

∑

i=1

L
ei,1

i,1 · · ·L
ei,s

i,s (8)

where the Li,j’s are not linear functions but sums of univariate polynomials, i.e. for all
i ∈ [k], j ∈ [s]:

Li,j(x1, . . . , xn) = gi,j,1(x1) + · · · + gi,j,n(xn)

where the gi,j,j′’s are in F[xj′ ]. We will show in this section that our results of identity
testing and lower bounds hold for these circuits too. For these purposes it will be sufficient
to define the dual form of a multiplication gate of the form:

(g1,1(x1) + · · · + g1,n(xn))e1 · · · (gs,1(x1) + · · · + gs,n(xn))es (9)

Lemma 17. Let M(x1, . . . , xn) be the multiplication gate of Equation (9) over a field F of
zero characteristic and e = (e1 + · · · + es). Then we can compute univariate polynomials
fi,j’s over an algebra R := F[z1, . . . , zs]/(z

e1+1
1 , . . . , zes+1

s ) in poly(size(M), dim(R)) field
operations such that for t = (ne + 1):

M(x1, . . . , xn) · ze1

1 · · · zes
s =

t
∑

i=1

fi,1(x1) · · · fi,n(xn) over R

Remark 18. Note that we can informally describe the above equation as: a product-of-
sums-of-univariates can be written as a sum-of-products-of-univariates. This justifies our
continued usage of the phrase “dual form”.
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Proof. We will run through a part of the proof of Lemma 13 to demonstrate that it works
for the gate M too. Let L1, . . . , Ls be the factors of M (that are now not linear functions
but sums of univariate polynomials).

(e1! · · · es!)
−1 · M(x1, . . . , xn)

= coefficient of zeze1

1 · · · zes
s in exp(L1z1z) · · · exp(Lszsz)

= coefficient of zeze1

1 · · · zes
s in exp(L1z1z + · · · + Lszsz)

= coefficient of zeze1

1 · · · zes
s in exp ((g1,1z1 + · · · + gs,1zs)z) · · · exp ((g1,nz1 + · · · + gs,nzs)z)

= coefficient of zeze1

1 · · · zes
s in Ee ((g1,1z1 + · · · + gs,1zs)z) · · ·Ee ((g1,nz1 + · · · + gs,nzs)z)

Eventually, just like in Lemma 13 we get (putting e instead of d):

(e1! · · · es!)
−1 · Le1

1 · · ·Les
s · ze1

1 · · · zes
s

=
ne+1
∑

i=1

βi · Ee ((g1,1z1 + · · · + gs,1zs)αi) · · ·Ee ((g1,nz1 + · · · + gs,nzs)αi) over R

Remember that Ee ((g1,1z1 + · · · + gs,1zs)αi) is a univariate polynomial in R[x1] and so
on. Thus, this is a dual form of the multiplication gate M as the variables x1, . . . , xn

are “separated” in each summand of the above sum. It is routine to check that the
univariate polynomials Ee(·) over R in the above sum can be obtained deterministically
in poly(size(M), dim(R)) field operations.

Lemma 17 sets the stage for identity testing and proving lower bounds for the depth-4
circuits of Equation (8). We can use the dual form in a way analogous to previous sections
to get the following results:

Theorem 19. Over any field F, let C be a circuit given as in Equation (8). Then we can
deterministically check whether C is a zero circuit in poly(size(C),max{(1 + ei,1) · · · (1 +
ei,s) | 1 6 i 6 k}) field operations.

Theorem 20. Over any field F, if the circuit in Equation (8) expresses the determinant

(or permanent) of a formal m × m matrix with parameters s = o
(

m
log m

)

, n = m2 and

d = poly(m) then k = 2Ω(m).

Remark 21. Theorem 20 is not really new because if determinant can be expressed as:

C(x1, . . . , xn) =
k

∑

i=1

L
ei,1

i,1 · · ·L
ei,s

i,s

where the Li,j’s are a sum of univariate polynomials: gi,j,1(x1) + · · · + gi,j,n(xn). Then
we can drop the degree two and higher terms in the univariate polynomials gi,j1,j2’s, as
determinant is a multilinear polynomial, and then apply the lower bound of Theorem 5.

5.2 A Faster Identity Test for Diagonal Circuits

In this subsection we will show how we can make the identity test for homogeneous diagonal
circuits exponentially faster in the degree of the circuit. Unfortunately, we only know how
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to do this over a finite field F with an extra assumption that d < char(F) (we do believe
it should be possible to do this in general). The main idea to speed up the identity test
is that if the degree d of a diagonal circuit C is large compared to fanin k then C = 0
only in “trivial” ways. This is formalized by the following result (also see Theorem 2 of
[CSWM01]):

Theorem 22. Let F be a finite field with d < char(F). Suppose d > (k − 1) and
∑k

i=1 bi ·
`d
i = 0 where `i are linear forms over F and bi’s are not all zero elements of F. Then there

exist distinct i, j ∈ [k] and a c ∈ F such that `j = c · `i.

Proof. We sketch the proof of the contrapositive statement in brief.

Write `i as (aix1 + fi) where we assume wlog that ai 6= 0 and fi is a nonzero linear
form in F[x2, . . . , xn], for all i ∈ [k]. Then by the hypothesis:

k
∑

i=1

bi · (aix1 + fi)
d = 0

Define a k × (d + 1) matrix V having ad−j+1
i f j−1

i in the (i, j)-th position. Now observe
that the above equation implies the following matrix equation:

[b1 · · · bk] · V = 0

Since V is a Vandermonde matrix we deduce by our assumptions that its rows are linearly
independent over F. Hence, the above matrix equation implies that [b1 · · · bk] = 0 which
yields a contradiction.

The above classification easily gives us an exponential speed-up.

Theorem 23. Let F be a finite field with d < char(F). Given a diagonal circuit C(x1, . . . , xn)
=

∑k
i=1 bi · `

d
i , we can deterministically test it for zeroness in poly(nk log(d)) field opera-

tions.

Proof. We can assume wlog that the `i’s are nonzero and not multiples of each other
(otherwise we can simplify C and get a diagonal circuit with a smaller k). Now if d > (k−1)
then by Theorem 22: C = 0 iff bi = 0 for all i ∈ [k]. Thus, when d > (k − 1) we can check
C for zeroness in poly(nk log(d)) field operations.

So the nontrivial case is when d < (k − 1). In this case we can do identity testing (by
Theorem 2) in poly(nk) field operations.

Thus, in both the cases we can do identity testing in poly(nk log(d)) field operations.

Remark 24. The classification Theorem 22 is also true when char(F) = 0 and d > 0.
But the identity test in the proof of Theorem 23 needs to check whether an expression like
∑k

i=1 αd
i is zero (where the αi’s are in F). We do not know how to do this deterministically

in poly(k log(d)) field operations even for F = Q.
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6 Conclusion

In this work we gave a deterministic polynomial time identity test for depth-3 circuits that
are sums of powers of linear functions. Our basic idea was to define a dual operation on the
multiplication gates in a depth-3 circuit that converts a product gate into a sum of product
of univariate polynomials. This dual is efficiently computable when the multiplication gate
has “few” distinct linear functions as input. In the case of a general multiplication gate
of a depth-3 circuit of degree d the dual computation takes exponential time: poly(n2d).
This dual computation can be viewed as a new way to unfold a given depth-3 circuit better
than the direct brute-force expansion. We leave it as an open question to improve this
duality to solve the identity testing problem for general depth-3 circuits.

Kayal [Kay07] has observed that Theorems 2 and 5 can be obtained in an alternative
way using the space of partial derivatives first defined by Nisan and Wigderson [NW97].
The basic reason is that the space of partial derivatives of a diagonal circuit has “low”
rank and this can be exploited for doing identity testing and proving lower bounds. It
is not clear however, how to use this space of partial derivatives in the case of depth-4
circuits (to prove Theorem 19) that in general has “high” rank.
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