
The Black-Box Query Complexity of Polynomial

Summation

Ali Juma∗

Department of Computer Science

University of Toronto

Toronto, Canada

ajuma@cs.toronto.edu

Valentine Kabanets†

School of Computing Science

Simon Fraser University

Vancouver, Canada

kabanets@cs.sfu.ca

Charles Rackoff

Department of Computer Science

University of Toronto

Toronto, Canada

rackoff@cs.toronto.edu

Amir Shpilka‡

Faculty of Computer Science

Technion

Haifa, Israel

shpilka@cs.technion.ac.il

October 11, 2007

Abstract

For any given Boolean formula φ(x1, . . . , xn), one can efficiently construct (using arithmeti-
zation) a low-degree polynomial p(x1, . . . , xn) that agrees with φ over all points in the Boolean
cube {0, 1}n; the constructed polynomial p can be interpreted as a polynomial over an arbitrary
field F. The problem #SAT (of counting the number of satisfying assignments of φ) thus re-
duces to the polynomial summation

∑

x∈{0,1}n p(x). Motivated by this connection, we study the

query complexity of the polynomial summation problem: Given (oracle access to) a polynomial
p(x1, . . . , xn), compute

∑

x∈{0,1}n p(x). Obviously, querying p at all 2n points in {0, 1}n suffices.

Is there a field F such that, for every polynomial p ∈ F[x1, . . . , xn], the sum
∑

x∈{0,1}n p(x) can
be computed using fewer than 2n queries from Fn? We show that the simple upper bound 2n

is in fact tight for any field F in the black-box model where one has only oracle access to the
polynomial p. We prove these lower bounds for the adaptive query model where the next query
can depend on the values of p at previously queried points. Our lower bounds hold even for
polynomials that have degree at most 2 in each variable. In contrast, for polynomials that have
degree at most 1 in each variable (i.e., multilinear polynomials), we observe that a single query
is sufficient over any field of characteristic other than 2. We also give query lower bounds for
certain extensions of the polynomial summation problem.

1 Introduction

One of the biggest challenges in complexity theory is to determine the circuit complexity of functions
such as SAT or Permanent. While both of these functions are commonly believed to require

∗Partially supported by an NSERC postgraduate scholarship.
†Part of this research was done while the author was a postdoctoral fellow at the University of California, San

Diego, supported by NSERC.
‡Part of the research was done while the author was a postdoctoral fellow at Harvard and M.I.T. Part of the

research was supported by the Israel Science Foundation (grant number 439/06).

1

Electronic Colloquium on Computational Complexity, Report No. 125 (2007)

ISSN 1433-8092

superpolynomial circuit complexity, not even superlinear lower bounds are known for the general
Boolean or arithmetic computational model; for restricted circuit models, superpolynomial lower
bounds for Permanent are known (for the most recent results see [Raz04] and the references
therein). Could it be that these problems have “small” (say, subexponential) circuit complexity?
If they do, what would these small circuits look like?

In this paper, we consider one natural approach to constructing small circuits for the problem
#SAT , and prove that (the most naive version of) this approach fails.

1.1 Circuits for #SAT

Recall that #SAT is the problem of computing the number of satisfying assignments to an input
Boolean formula, say given in a conjunctive normal form with each clause of size at most 3 (i.e.,
3-cnf). A possible approach to designing a small circuit for #SAT is as follows.

First, arithmetize the given Boolean formula φ(x1, . . . , xn); arithmetization is a standard tech-
nique that has been successfully applied in the design of efficient interactive proof systems for
such complexity classes as PSPACE and NEXP [LFKN92, Sha92, BFL91]. Arithmetizing a 3cnf
formula φ(x1, . . . , xn) is done inductively. For a variable x, the polynomial px is also x; for ¬x, the
polynomial p¬x is 1 − x. For a clause c = (`1 ∨ `2 ∨ `3) of literals `1, `2, `3, the polynomial pc is
1− (1−p`1)(1−p`2)(1−p`3). Finally, for the conjunction φ of clauses c1, . . . , cm, the polynomial pφ

is
∏m

i=1 pci . Thus we efficiently convert a given Boolean formula φ(x1, . . . , xn) into a multivariate
polynomial pφ(x1, . . . , xn) such that, for every b = (b1, . . . , bn) ∈ {0, 1}n, pφ(b) = 1 if b is a satisfying
assignment for φ, and pφ(b) = 0 otherwise.

We make several simple observations about the arithmetization. First, note that the arithme-
tization of a given 3cnf formula φ yields an arithmetic formula for pφ of size linear in the size of
φ. Also note that this arithmetic formula uses only constants 1 and −1, and so can be evaluated
over any field F; i.e., we can view the resulting polynomial pφ as a polynomial from F[x1, . . . , xn]
for any field F. Finally, note that the polynomial pφ has total degree at most linear in the size of
the formula φ.

Once we have the polynomial pφ, our task of counting the number of satisfying assignments of
the formula φ is reduced to that of the polynomial summation of pφ over all {0, 1} values for the
variables. Can this task be accomplished by circuits of subexponential size?

We do not know the answer to this question. The work on interactive proofs shows that an
unlimited-power prover can prove the value of this summation to a (probabilistic) polynomial time
verifier, and the verifier only has to evaluate pφ at one point. In fact, this proof system works even if
the polynomial is arbitrarily complex, as long as it is of low degree and the verifier has access to an
oracle for evaluating it. This suggests the question: can we replace interaction by nonuniformity?
Are there circuits with oracle access to an arbitrary low-degree polynomial in n variables, such that
the circuits have polynomial (in n) size and compute the sum of the polynomial over all 0, 1 values
of the variables?

Here we allow the circuits to evaluate an oracle polynomial over an arbitrary field F; as remarked
above, evaluation over any field is possible for polynomials obtained by arithmetizing 3cnf formulas.
For example, we can take F to be the field Q of rational numbers, and ask for the sum

∑

x∈{0,1}n p(x)
when a polynomial p(x1, . . . , xn) is viewed as a polynomial from Q[x1, . . . , xn]. Here the hope may
be that querying p at few “special” points in Qn (outside of the Boolean cube {0, 1}n) would suffice
for determining the sum

∑

x∈{0,1}n p(x). Is that possible? In general, is there a field F such that
querying p ∈ F[x1, . . . , xn] at significantly fewer than 2n points from Fn allows one to determine
the sum of p over the Boolean cube?

2

If the answer were “yes”, this could yield very special kinds of small circuits for #SAT . We
show here that the answer is “no”. In fact, 2n oracle queries are necessary over any field F.

1.2 Polynomial summation problem and our results

To obtain our negative results, we establish an exponential lower bound on the black-box query
complexity of the following problem.

Problem 1. Polynomial Summation Problem

Given: Oracle access to a multivariate polynomial p(x1, . . . , xn) over a field F.
Compute:

∑

x∈{0,1}n p(x).

We prove that the trivial upper bound of 2n queries is actually tight for any field F. In-
dependently from our work, this result was also proved by Scott Aaronson and Avi Wigderson
[S. Aaronson, personal communication, October 2007].

Theorem 2 (Main). Let F be any field. Let A be an algorithm that, after asking k (possibly
adaptive) queries to a given n-variate polynomial p(x1, . . . , xn) ∈ F[x1, . . . , xn] of degree at most 2
in each variable, outputs the value

∑

x∈{0,1}n p(x). Then k > 2n.

Our lower bound 2n holds even for polynomials of degree at most 2 in each variable. This should
be contrasted with the case of multilinear polynomials (of degree at most 1 in each variable), for
which we prove the following.

Observation 3. Let F be any field of characteristic other than 2. Let p(x1, . . . , xn) ∈ F[x1, . . . , xn]
be any multilinear polynomial. Then

∑

x∈{0,1}n

p(x) = 2n · p(1/2, . . . , 1/2).

Thus, going from input polynomials of degree at most 1 in each variable to those of degree
at most 2 in each variable produces an exponential jump in the query complexity of polynomial
summation.

Observe that if the polynomial pφ obtained by arithmetizing a Boolean formula φ were always
multilinear, then #SAT would be easily solvable in polynomial time, using Theorem 3. However,
even starting from a 3cnf φ where no variable occurs in more than three clauses, the best known
polynomial that can be efficiently obtained from φ is not multilinear, but rather of degree at most
2 in each variable. Getting degree at most 3 is straightforward, just by arithmetizing φ. With an
additional simple trick, we can achieve degree at most 2 in each variable; see Theorem 19 in the
Appendix for details.

Our proofs rely on some basic tools from linear algebra. For a large number of beautiful
applications of such tools to computer science and combinatorics, see [BF92, Juk01].

Remainder of the paper. Section 2 contains some basic facts of linear algebra. In Section 3,
we prove Theorem 3. Our main query complexity lower bounds (yielding Theorem 2) are proved in
Section 4. In Section 5, we consider an extension of our query model, and prove some lower bounds
for this extension. We conclude with open questions in Section 6.

3

2 Preliminaries

2.1 Notation

For a natural number n, we will often denote by [n] the set {1, . . . , n}. For a subset S ⊆ [n], we
denote by S̄ the complement of S in [n], i.e., S̄ = [n] \ S.

Let F be any field. We denote by char(F) the characteristic of F.

2.2 Linear algebra basics

We will need some basics of linear algebra (see, e.g., [Str88]). For two n-dimensional column vectors
u = (u1, . . . , un) and v = (v1, . . . , vn) from Fn, for some field F, their inner product1 is defined as
〈u, v〉 = uT v =

∑n
i=1 ui · vi, where uT denotes the transpose of u. More generally, given any

symmetric and invertible n× n matrix W ∈ Fn×n, the inner product of u and v with respect to W
is defined as 〈u, v〉W = uTWv; when W = I is the identity matrix, we obtain the original definition
of inner product.

Clearly for any vector u, and any linear combination
∑k

i=1 αi · v
i of vectors vi,

〈u,
k

∑

i=1

αi · v
i〉W =

k
∑

i=1

αi · 〈u, v
i〉W .

2.3 Polynomials

A monomial over F in variables x1, . . . , xn is the product m(x1, . . . , xn) =
∏n

i=1 x
di
i , where di > 0

is the degree of variable xi in the monomial m. A polynomial is a linear combination of distinct
monomials mj, i.e., p(x1, . . . , xn) =

∑k
j=1 cj · mj(x1, . . . , xn) for cj ∈ F. For each 1 6 i 6 n,

the degree of variable xi in the polynomial p is the maximal degree of xi over all monomials of
p. A monomial m(x1, . . . , xn) =

∏n
i=1 x

di
i is called multilinear if di 6 1 for every 1 6 i 6 n; note

that there are exactly 2n distinct multilinear monomials. A polynomial is multilinear if all of its
monomials are multilinear.

For every subset S ⊆ [n], we define the multilinear monomial mS =
∏

i∈S xi. We have the
following simple observations.

Lemma 4. Let S ⊆ [n] be arbitrary. Over the field of characteristic 2, we have

∑

b̄∈{0,1}n

mS(b̄) =

{

0 if S 6= [n]

1 if S = [n]
.

Proof. If for some i we have i 6∈ S, then
∑

b̄∈{0,1}n mS(b̄) = 2
∑

b̄∈{0,1}n−1 mS\{i}(b̄) ≡2 0.

Corollary 5. Let S, T ⊆ [n] be arbitrary. Over the field of characteristic 2, we have

∑

b̄∈{0,1}n

mS(b̄) ·mT (b̄) =

{

1 if S̄ ⊆ T

0 if S̄ 6⊆ T
.

Proof. First note that for b ∈ {0, 1}, we have b2 = b, and so mS(b̄) ·mT (b̄) = mS∪T (b̄). Next observe
that S ∪ T = [n] iff S̄ ⊆ T . The conclusion now follows from Lemma 4.

1More precisely, when char(F) > 0 this is not an inner product but rather just a bilinear map.

4

Over any field F of characteristic other than 2, simple linear transformations of variables can
take us between {0, 1}n and {1,−1}n. The mapping x 7→ 1 − 2x applied to each variable xi takes
us from {0, 1}n to {1,−1}n, and x 7→ (1− x)/2 takes us back. Since both of these transformations
are linear, they do not change the degree of any variable xi in a given polynomial p(x1, . . . , xn). In
particular, a multilinear polynomial will remain multilinear after such transformations.

For fields of characteristic other than 2, we re-define the polynomial summation problem as
follows.

Problem 6. Polynomial Summation Problem over fields of characteristic other than 2
Given: Oracle access to a multivariate polynomial p(x1, . . . , xn) over a field F with char(F) 6= 2.
Compute:

∑

x∈{1,−1}n p(x).

The advantage of working over {1,−1}n stems from the following.

Lemma 7. Let m(x1, . . . , xn) be a monomial such that the degree of some variable xi in m is
exactly 1. Over the field of characteristic other than 2, we have

∑

b̄∈{1,−1}n m(b̄) = 0.

Proof. Write m = xi ·m
′, where the monomial m′ does not contain xi. Then

∑

b̄∈{1,−1}n m(b̄) =
∑

a∈{1,−1}

∑

b̄′∈{1,−1}n−1 a ·m′(b̄′) =
∑

a∈{1,−1} a ·
∑

b̄′∈{1,−1}n−1 m′(b̄′) = 0.

Corollary 8. Let S, T ⊆ [n] be arbitrary. Over the field of characteristic other than 2, we have

∑

b̄∈{1,−1}n

mS(b̄) ·mT (b̄) =

{

0 if S 6= T

2n if S = T
.

Proof. If S 6= T , then the monomial mS ·mT will contain at least one variable of degree 1, and the
conclusion follows by Lemma 7. If S = T , then the monomial mS ·mT has degree 0 or 2 in each
variable, and hence it is equal to 1 at each point b̄ ∈ {1,−1}n.

3 The one-query upper bound for multilinear polynomials

Here we prove Observation 3 stated in the Introduction. For convenience, we re-state it below.

Observation 3. Let p(x1, . . . , xn) be any multilinear polynomial over a field of characteristic other
than 2. Then

1

2n

∑

b̄∈{0,1}n

p(b̄) = p(1/2, . . . , 1/2).

Proof. Let p =
∑k

j=1 cj ·mj for distinct multilinear monomials mj, where k = 2n. Then

1

2n

∑

b̄∈{0,1}n

p(b̄) = Exp[p],

where the expectation Exp is taken with respect to the uniform distribution on the Boolean cube
{0, 1}n. By linearity of expectation, Exp[p] =

∑k
j=1 cj · Exp[mj]. For each multilinear monomial

m = xd1

1 . . . xdn
n , where dj ∈ {0, 1}, Exp[m] =

∏n
j=1 Exp[x

dj

j]. For dj = 0, Exp[x
dj

j] = 1; for dj = 1,

Exp[x
dj

j] = 1/2. Hence, Exp[mj] = mj(1/2, . . . , 1/2), and so Exp[p] = p(1/2, . . . , 1/2).

5

An alternative proof is as follows. First, change from the domain {0, 1} to {1,−1} by ap-
plying the linear transformation x 7→ 1 − 2x to each variable of p. The resulting polynomial p′

remains multilinear. Since the sum over {1,−1}n of any non-constant multilinear monomial is 0
by Lemma 7, all but the constant monomial of p′ will disappear in polynomial summation. Thus,
∑

b̄∈{1,−1}n p′(b̄) = 2np′(0, . . . , 0). But, by the linear transformation x 7→ (1−x)/2 from the domain

{1,−1} to {0, 1}, we have p′(0, . . . , 0) = p(1/2, . . . , 1/2).

4 Lower bounds

4.1 The case of non-adaptive algorithms

Here we prove a lower bound for the polynomial summation problem for a special kind of non-
adaptive algorithms. This will be used in the next section for the case of general, adaptive algo-
rithms.

For a sequence Q of k points q1, . . . , qk from Fn, and a sequence R of k non-zero field ele-
ments r1, . . . , rk ∈ F, define the algorithm AQ,R as follows: Given oracle access to a polynomial

p(x1, . . . , xn), output
∑k

i=1 ri · p(qi).

Theorem 9. Let F be any field. Let Q = (q1, . . . , qk) ∈ (Fn)k and let R = (r1, . . . , rk) ∈ (F \ {0})k.
Suppose that

∑

b̄∈{0,1}n

m(b̄) =
k

∑

i=1

ri ·m(qi)

for every monomial m(x1, . . . , xn) of degree at most 2 in each variable. Then k > 2n.

Proof. First we introduce some notation. For every monomial m(x1, . . . , xn), let µm be the vector
of evaluations of m over the points in Q, i.e.,

µm = (m(q1), . . . ,m(qk)).

For each subset S ⊆ [n], let mS =
∏

i∈S xi, and let µS = µmS
.

We will show that the vectors µS, for S ⊆ [n], are linearly independent over F. Since there are
exactly 2n distinct subsets S ⊆ [n], we get that the dimension of each µS must be at least 2n, i.e.,
k > 2n.

Our proof of linear independence will be different for the case of fields of characteristic 2 and
those of characteristic other than 2. We first give a proof for the slightly simpler case of char(F) 6= 2.

By the discussion in Section 2.3, we can assume w.l.o.g. that

∑

b̄∈{1,−1}n

m(b̄) =

k
∑

i=1

ri ·m(qi)

for every monomial m(x1, . . . , xn) of degree at most 2 in each variable. Let W be the k×k diagonal
matrix with the vector R on the diagonal; note that W is symmetric and invertible (since all ri 6= 0).
For any multilinear monomials m and m′, we get from the assumption of the theorem and from
Corollary 8 that

〈µ, µ′〉W =

{

0 if m 6= m′

2n if m = m′
. (1)

6

Now we show that the vectors µS defined above are linearly independent. Suppose
∑

S⊆[n] αS ·
µS = 0, for some field elements αS ’s. Then for every T ⊆ {1, . . . , n}, we have

0 = 〈µT ,
∑

S⊆[n]

αS · µS〉W =
∑

S⊆[n]

αS · 〈µT , µS〉W = 2n · αT ,

where the last equality is by Equation (1). Since char(F) 6= 2, we conclude that all αT = 0. Hence
the vectors {µS}S⊆[n] are linearly independent.

Next we prove the linear independence for the case of char(F) = 2. Again, let W be the k × k
diagonal matrix with the vector R on the diagonal. Using the assumption of the theorem and
Corollary 5, we get that for any S, T ⊆ [n],

〈µS , µT 〉W =

{

1 if S̄ ⊆ T

0 if S̄ 6⊆ T
. (2)

Suppose
∑

S⊆[n] αS ·µS = 0, for some field elements αS ’s not all of which are zero. Let S0 ⊆ [n]
be any subset such that

1. αS0
6= 0, and

2. αS = 0 for every S such that S0 (S.

Note that such an S0 exists unless all αS = 0. Condition (2) means that αS can be nonzero only
for S = S0 or for S such that S0 6⊆ S. It follows that

0 = 〈µS̄0
,

∑

S⊆[n]

αS ·µS〉W =
∑

S⊆[n]

αS ·〈µS̄0
, µS〉W = αS0

·〈µS̄0
, µS0

〉W +
∑

S⊆[n]:S0 6⊆S

αS ·〈µS̄0
, µS〉W = αS0

,

where the last equality is by Equation (2). This contradicts our choice of αS0
6= 0. Hence we get

that all αS = 0 in this case as well.

4.2 The case of adaptive algorithms

In the previous subsection, we gave the lower bound 2n on the number k of queries that any
restricted algorithm AQ,C must make in order to solve polynomial summation for all n-variate
monomials of degree at most 2 in each variable. Here we prove the same lower bound for general
algorithms, but only in the case where the general algorithm is supposed to solve polynomial
summation for any polynomial of degree at most 2 in each variable.

Theorem 10. Let A be an algorithm that, after asking k queries to a given n-variate polynomial
p(x1, . . . , xn), outputs some value a. If k < 2n, then there will exist an n-variate polynomial p
of degree at most 2 in each variable such that the algorithm A makes a mistake on this p, i.e.,
∑

b̄∈{0,1}n p(b̄) 6= a.

The proof of this theorem will follow from the following lemma.

Lemma 11. Let A be an algorithm that, after asking k queries to a given n-variate polynomial
p ∈ F[x1, . . . , xn] of degree at most 2 in each variable, outputs

∑

b̄∈{0,1}n p(b̄). Then there exist

sequences Q = (q1, . . . , qk) ∈ (Fn)k and R = (r1, . . . , rk) ∈ Fk such that the algorithm AQ,R solves
the polynomial summation problem for all polynomials p ∈ F[x1, . . . , xn] of degree at most 2 in each
variable.

7

Proof. Let p(x1, . . . , xn) =
∑N

j=1 cj · mj(x1, . . . , xn), where cj’s are yet unspecified coefficients
and mj ’s are monomials of degree at most 2 in each variable; the number of these monomials is
N = 3n. For each query point q ∈ Fn used by the algorithm A on p, it gets as an answer the linear
combination of coefficients of p, namely,

∑N
j=1mj(q) · cj . The algorithm A may be adaptive and

choose its next query point depending on the answers it has received so far.
Imagine that each of the k queries asked by A is answered by 0. Let q1, . . . , qk ∈ Fn be the

sequence of queries asked by A in that case, and let a be the output produced by A. For each point
qi, 1 6 i 6 k, define the vector mqi = (m1(qi), . . . ,mN (qi)). Denoting the vector (c1, . . . , cN) by
c, we can write the answer p(qi) obtained by the algorithm A to its query qi as the inner product
〈mqi , c〉. On the other hand, the sum of p over the cube {0, 1}n is also a linear combination of the

coefficients of p, i.e.,
∑

b̄∈{0,1}n p(b̄) =
∑N

j=1 sj · cj for some field elements s1, . . . , sN . Denote the
vector (s1, . . . , sN) by s. Then the correct answer for polynomial summation of p can be written
as 〈s, c〉.

To summarize, after k queries the algorithm A knows k inner products 〈mqi , c〉, for 1 6 i 6 k,
and claims that the inner product 〈s, c〉 equals a. There are two cases to consider:

1. the vector s is not in the vector space spanned by mq1
, . . . ,mqk

, and

2. the vector s is in that vector space.

Without loss of generality we may assume that the vectors mq1
, . . . ,mqk

are linearly inde-
pendent. Otherwise, we can simply consider a smaller subset of linearly independent vectors
m′

1, . . . ,m
′
k′ corresponding to fewer queries q′1, . . . , q

′
k′ ; the inner products 〈m′

i, c〉 would also give
us the inner products 〈mq, c〉 for all vectors mq that are linear combinations of m′

js.
In Case 1, we know that the k+1 vectors s,mq1

, . . . ,mqk
are linearly independent. Let us write

these vectors as rows of a (k+ 1)×N matrix M . Let r = (a+ 1, 0, . . . , 0) be a (k+ 1)-dimensional
column vector with a+1 in the first coordinate and 0 in all the rest. Clearly, the system of equations
Mc = r in unknowns c1, . . . , cN will always have at least one solution (as the rows of M are linearly
independent). Such a solution determines an n-variate polynomial p of degree at most 2 in each
variable whose sum over the cube {0, 1}n is a + 1, but the algorithm A on input p will output
a 6= a+ 1. Hence this case cannot happen, and we are left with the second case.

In Case 2, we have k query points q1, . . . , qk such that s =
∑k

j=1 rj ·mqj for some sequence of
field elements r1, . . . , rk. Without loss of generality, we may assume that all rj 6= 0; otherwise, we
can consider the summation over only those j where rj 6= 0.

It follows that 〈s, c〉 =
∑k

j=1 rj·〈mqj , c〉 for every vector of coefficients c defining some polynomial
p. By the definition of 〈s, c〉 and 〈mqj , c〉, we have a fixed sequence R of queries q1, . . . , qk and a
fixed sequence C of field elements r1, . . . , rk such that, for every n-variate polynomial p of degree
at most 2 in each variable,

∑

b̄∈{0,1}n

p(b̄) =
k

∑

i=1

ri · p(qi),

as required.

Proof of Theorem 10. The proof is immediate from Lemma 11 and Theorem 9.

8

5 Allowing more non-uniformity

5.1 Polynomial summation with advice

Theorem 10 implies that there cannot be a family of polynomial-sized circuits solving the polynomial
summation problem in the black-box model. In this section, we relax our requirement somewhat.
More precisely, we allow a list of L algorithms A1, . . . , AL, for some finite L. The requirement now
is the following: For every low-degree polynomial p(x1, . . . , xn), there is at least one algorithm Ai

on the list such that Ai, with oracle access to p, correctly solves the polynomial summation problem
for that p.

Equivalently, this relaxation of the query model can be viewed as allowing a small amount of
advice that can depend on the input polynomial p. Namely, given p, we allow about logL bits of
advice that specify which of the L algorithms on the list should be used for this particular input
polynomial p.

How does the query complexity of polynomial summation change in this new model? We have
the following.

Theorem 12. Let F be any finite field. Suppose there is a list of L < |F| algorithms A1, . . . , AL

such that the following holds. For every polynomial p ∈ F[x1, . . . , xn] of degree at most 2 in each
variable, there is an algorithm Ai on the list that given oracle access to p, queries p (possibly
adaptively) at most k times and outputs

∑

b̄∈{0,1}n p(b̄). Then k > 2n.

Proof. Suppose k < 2n. Consider all possible sequences τ = ((q1, a1), . . . , (qk, ak)), where each
qi ∈ Fn and each ai ∈ F. We think of qis as oracle queries to a given polynomial, and ais as the
answers to these queries.

Fix an algorithm A = Ai from our list of algorithms. For each sequence τ , let Pτ be the set
of polynomials in F[x1, . . . , xn] of degree at most 2 in each variable such that, given oracle access
to any polynomial p ∈ Pτ , the algorithm A asks queries and receives answers as specified by the
sequence τ . After making these k queries, the algorithm A produces an answer a ∈ F, which is the
same for all polynomials p ∈ Pτ .

We will argue as in the proof of Lemma 11. Let p(x1, . . . , xn) =
∑N

j=1 cj ·mj(x1, . . . , xn), for
unspecified coefficients cj , where mj ’s are monomials of degree at most 2 in each variable, and
N = 3n. For each point qi, 1 6 i 6 k, define the vector mqi = (m1(qi), . . . ,mN (qi)). Denoting
the vector (c1, . . . , cN) by c, we can write the answer ai = p(qi) obtained by the algorithm A to its
query qi as 〈mqi , c〉. Also,

∑

b̄∈{0,1}n p(b̄) =
∑N

j=1 sj · cj for some s1, . . . , sN ∈ F. Denote the vector
(s1, . . . , sN) by s. Then the correct answer for the polynomial summation of p can be written
as 〈s, c〉. We also assume, without loss of generality, that the vectors mq1

, . . . ,mqk
are linearly

independent.
There are two cases to consider:

1. the vector s is not in the vector space spanned by mq1
, . . . ,mqk

, and

2. the vector s is in that vector space.

In the second case, we get (as in the proof of Lemma 11) the existence of a special non-
adaptive algorithm AQ,R, for some sequence R of k field elements, such that AQ,R solves polynomial
summation problem over F for all polynomials of degree at most 2 in each variable. This, however,
contradicts Theorem 9.

Thus, we must have the first case, where the vectors mq1
, . . . ,mqk

, s are linearly independent
over F. Setting up a system of linear equations as in the proof of Lemma 11, we have for every

9

α ∈ F that the following system of linear equations in unknowns c

〈mqj , c〉 = aj, 1 6 j 6 k

〈s, c〉 = α

has a solution space of dimensionN−(k+1), and in particular, the number of polynomials satisfying
the system of linear equations above is the same for every α ∈ F. The polynomials in Pτ where A’s
output a is correct are exactly all solutions to the above system of equations for α = a. So these
polynomials have weight exactly 1/|F| in the set Pτ .

Since the argument above holds for every choice of τ , we conclude that the set of polynomials
p ∈ F[x1, . . . , xn], of degree at most 2 in each variable, where A is correct has weight exactly 1/|F| in
the set of all polynomials in F[x1, . . . , xn] of degree at most 2 in each variable. Finally, the fraction
of polynomials in F[x1, . . . , xn] of degree at most 2 in each variable which are correctly solved by at
least one algorithm Aj , 1 6 j 6 L, is at most L/|F|, which is less than 1 by our choice of L. Hence
there is at least one polynomial p such that each algorithm Aj makes a mistake on this p.

Remark 13. Note that Theorem 12 is optimal in terms of the allowed value L. If L = |F|, then by
letting the ith algorithm output the ith element of the field F, we trivially obtain a list of algorithms
such that every polynomial summation instance is solved by one of the algorithms on our list.

5.2 Polynomial summation for a family of polynomials

Our motivation for studying the query complexity of polynomial summation was the connection
with #SAT . So, in reality, we are interested in the problem of polynomial summation for only
those polynomials that result from arithmetizing 3cnf formulas.

In this section, we consider the following way of representing a family of polynomials for which
we want to solve polynomial summation. The input is now a 2n-variate polynomial p of degree
at most 2 in each variable, over some field F. We view a {0, 1}-valued assignment to the first n
variables of such a polynomial as specifying (the arithmetization of) a propositional formula on n
variables. So, given a {0, 1}-valued assignment x̄ to the first n variables, we would like to sum p
over all {0, 1}-valued assignments to the remaining n variables.

In this model, we also allow some advice that may depend on the given 2n-variate polynomial
p. That is, we allow a list of L algorithms such that, for every 2n-variate polynomial p, at least
one of the algorithms on the list solves polynomial summation for each polynomial resulting from
p by fixing the first n variables to some {0, 1}-valued assignment.

We show that even given an exponential amount of advice, no algorithm can solve polynomial
summation with fewer than an exponential number of queries.

Theorem 14. Let F be any finite field. Suppose there is a list of L < |F|2
n/2

algorithms such that,
for every polynomial p ∈ F[x1, . . . xn, y1, . . . , yn] of degree at most 2 in each variable, there is at
least one algorithm on the list that given oracle access to p, and given any input x̄ ∈ {0, 1}n, makes
at most k (possibly adaptive) oracle queries and outputs

∑

ȳ∈{0,1}n p(x̄, ȳ). Then k > 2n/2.

The proof of this theorem will rely on the following generalization of Theorem 12.

Theorem 15. Let F be a finite field. Let m > 1 be any integer. Suppose there is a list of
L < |F|m algorithms A1, . . . , AL such that the following holds. For every m-tuple of polynomials
p1, . . . , pm ∈ F[x1, . . . , xn] of degree at most 2 in each variable, there is an algorithm Ai on the list
that given oracle access to p1, . . . , pm, queries each pj (possibly adaptively) at most k times and
outputs

∑

b̄∈{0,1}n pj(b̄), for every 1 6 j 6 m. Then k > 2n.

10

Proof. The proof is a straightforward extension of the proof of Theorem 12 to the case of m
polynomials, for an arbitrary m > 1.

Proof of Theorem 14. Assume towards a contradiction that k < 2n/2. We will express several n-
variate polynomials of degree at most 2 in each variable as a single 2n-variate polynomial of degree
at most 2 in each variable. For i ∈ N such that i < 2n, let ī = ī1 . . . īn denote the n-bit binary
representation of i in the {0, 1} basis. For any 2n/2 polynomials p0, p1, . . . , p2n/2−1 ∈ F[x1, . . . xn] of
degree at most two in each variable, we define a polynomial q ∈ F[x1, . . . xn, y1, . . . , yn] as follows:

q(x1, . . . , xn, y1, . . . , yn) =
2n/2−1
∑

i=0





∏

īk=1

xk









∏

īk=0

(1 − xk)



 pi(y1, . . . , yn).

Note that for all 0 6 i < 2n/2 and ȳ ∈ Fn, we have q(̄i1, ī2, . . . , īn, ȳ) = pi(ȳ). Also, note that q is
of degree at most two in each variable.

By assumption, there will exist an algorithm A on our list of L algorithms such that A, on a
Boolean assignment to x-s corresponding to i, makes at most k < 2n/2 queries to q, and correctly
computes the sum of pi over the Boolean cube. Observe that a single query to q can be evaluated
by querying each of the polynomials pj once. Thus, to compute the sum of pi over the Boolean
cube, we need to make at most k < 2n/2 queries to each pj. It follows that we can compute the
sum of every pj, 1 6 j 6 2n/2, over the Boolean cube, by making at most 2n/2 · k < 2n queries to
each pj. But this contradicts Theorem 15 for m = 2n/2.

5.3 The case of infinite fields

In the previous subsections, we considered a relaxation of the polynomial summation problem where
we allow a list of L algorithms. In the case of a finite field F, Theorem 12 is tight. In the case of
an infinite field F, it is intuitively obvious that no list of L algorithms should be able to solve the
polynomial summation problem over F for any finite value of L. Here we shall prove that this is
indeed the case, assuming a (very weak) restriction on algorithms.

Our restriction on algorithms (solving the polynomial summation problem) is that they “act in
a measurable way”, i.e., each step of the algorithm consists in computing some measurable function
of the input values and the values computed so far. Recall that a function g is called measurable if
for every measurable set B, we have that the set g−1(B) is also measurable. Here we shall consider
only the case of the field R of reals, with the measure being the standard Lebesgue measure (for a
background on measure theory see the excellent book of Rudin [Rud87]).

Next we describe more formally what we mean by an algorithm acting in a measurable way,
and show that, for every such algorithm A, the set of n-variate polynomials over R for which A
correctly solves the polynomial summation problem will be a measurable set.

Consider an algorithm A making k queries. Let q be its first query. For 1 6 i < k, let fi be the
function that, given the first i queries and the answers to them, computes the (i+ 1)st query. Let
fk be the function that, given the first k queries and the answers to them, outputs the final answer
(which is supposed to be equal to the summation of a given polynomial over the Boolean cube).
We say that such an algorithm A acts in a measurable way if all fis, 1 6 i 6 k, are measurable
functions.

Lemma 16. Let A be an algorithm that acts in a measurable way. Then the set of n-variate
polynomials over R for which A correctly solves the polynomial summation problem is measurable.

11

Proof. Suppose p is an n-variate polynomial over R that A is correct on. Then we have

1. p(q) = a1.

2. p(f1(q, a1)) = a2.

3. p(f2(q, a1, f1(q, a1), a2)) = a3.

. . .

k+1.
∑

x∈{0,1}n p(x) = fk(q, a1, . . . , ak).

Think of the polynomial p as a vector c of 3n coefficients. Each query qi gives rise to the vector
mqi (of values of all 3n monomials at the point qi) so that p(qi) = 〈mqi , c〉. Clearly, this inner
product is a measurable function of c and qi. Since a composition of finitely many measurable
functions is a measurable function, we conclude that in each step i, 1 6 i 6 k, algorithm A
computes some measurable function of the input p.

Also note that
∑

x∈{0,1}n p(x) can be written as 〈s, c〉 for some vector s. So the (k+1)st equation
can be re-written as 〈s, c〉 = fA(c), for some measurable function fA. So every coefficient vector c of
a polynomial on which A is correct must satisfy the equation g(c) = 0 for the measurable function
g defined as g(c) = fA(c) − 〈s, c〉. Thus, the set of polynomials c on which A is correct must be of
the form g−1({0}), which is a measurable set by definition.

Now we can state the following analogue of Theorem 12 for the case of F = R when we allow
only algorithms acting in a measurable way.

Theorem 17. Suppose there is a possibly infinite list of algorithms A1, . . . , Ai, . . . acting in a
measurable way such that the following holds. For every polynomial p ∈ R[x1, . . . , xn] of degree at
most 2 in each variable, there is an algorithm Ai on the list that given oracle access to p, queries
p (possibly adaptively) at most k times and outputs

∑

b̄∈{0,1}n p(b̄). Then k > 2n.

The proof of this theorem is similar to that of Theorem 12. For the proof, we will need a
probability distribution over all polynomials in R[x1, . . . , xn] of degree at most 2 in each variable.
Each such polynomial can be viewed as a vector of N = 3n coefficients.

It will be convenient for us to use a multidimensional Gaussian (or normal) distribution. For
a vector m ∈ Rd and a positive definite matrix Σ ∈ Rd×d, we say that a random vector X =
(X1, . . . ,Xd) is distributed according to a multivariate normal distribution N (m,Σ) if its density
function is

fX(x1, . . . , xd) =
1

(2π)d/2|Σ|1/2
e−

1

2
(x−m)T Σ−1(x−m), (3)

where x = (x1, . . . , xd), |Σ| is the determinant of Σ, and vT denotes the transpose of a column
vector v. Here m is the expected value of X, and Σ is the covariance matrix of the components Xi.

For us, the important basic property of a multivariate normal distribution is that it remains
normal (possibly with different expectation and covariance matrix) under linear transformations
and under conditioning. More precisely, we have the following fact (which can be found in most
textbooks treating multivariate normal distributions).

Fact 18. Let X = (X1, . . . ,Xd) be a random vector distributed according to a multivariate normal
distribution.

1. For an r × d nonzero matrix B, the random vector Y = BX is distributed according to a
normal distribution.

12

2. For 1 < t 6 d and a vector b ∈ Rd−t+1, the random vector (X1, . . . ,Xt−1) conditioned on
(Xt, . . . ,Xd) = b is distributed according to a normal distribution.

Now we can give the proof of Theorem 17.

Proof of Theorem 17. Consider the normal distribution (Gaussian measure) µ on R3n
(the space

of polynomials), with expectation 0 and the identity covariance matrix (i.e. m = 0 and Σ = I in
Equation (3)). For each algorithm Ai, let Pi be the set of polynomials for which Ai outputs the
correct answer. By Lemma 16, each Pi is measurable.

We will argue that µ(Pi) = 0 for every i. Suppose this is not the case. Assume without loss of
generality that µ(P1) = ε > 0. We shall focus on A1 from now on.

For simplicity of notation, denote A = A1 and P = P1. Let q1 be the first query asked by A.
Define Vα to be the set of polynomials p such that p(q1) = α; observe that Vα is an affine subspace
of the space R3n of co-dimension 1. Define Pα = P ∩ Vα. As µ is normal, we have from Fact 18
that µ|Vα is also normal (possibly with a different expectation and covariance matrix). We shall
abuse notation and denote by µ(Pα) the measure µ|Vα(Pα). Since

µ(P) =

∫

α
µ(Pα)dµ(α),

there must exist some α1 ∈ R such that µ(Pα1
) > ε. We shall restrict our attention to Pα1

.
In a similar fashion, we consider query q2 asked by A given the answer α1 to q1, and so on.

After k steps, we get a set Pα1,...,αk
of measure at least ε (inside a co-dimension k subspace Vα1,...,αk

of R3n) on which the output of A is fixed to some value α∗ ∈ R.
Suppose that k < 2n. Then, as in the proof of Theorem 12, we conclude that the vectors

mq1
, . . . ,mqk

, s are linearly independent over R. Recall that mqi = (m1(qi), . . . ,m3n(qi)) for all
3n monomials mj, and s is a vector such that for a polynomial p with the coefficient vector c,
〈s, c〉 =

∑

x∈{0,1}n p(x). As the answer of A is fixed on Pα1,...,αk
to the value α∗, it must be the case

that this set is contained in the set of solutions c of the following system of linear equations:

〈mqj , c〉 = αj , 1 6 j 6 k

〈s, c〉 = α∗

The first k equations mean that Pα1,...,αk
⊆ Vα1,...,αk

. By Fact 18, the vector of coefficients c ∈
Pα1,...,αk

is distributed according to the normal distribution µ|Vα1,...,αk
, and the random variable

〈s, c〉 is also distributed according to some normal distribution µ′. It follows that the measure of
vectors c ∈ Pα1,...,αk

such that 〈s, c〉 = α∗ is µ′({α∗}) = 0. But we argued earlier that the measure
of this set of polynomials must be at least ε > 0. A contradiction.

Thus, the measure of every set Pi is zero, and so the measure of the countable union of all Pis
is also zero. This means that there is a polynomial whose sum over the Boolean cube cannot be
computed by any of the algorithms on our list.

6 Open questions

Most of lower bounds in this paper were obtained by arguing the existence of a problematic poly-
nomial on which the query algorithm makes a mistake. However, such a polynomial will likely have
large circuit complexity. On the other hand, polynomials arising from Boolean formulas via arith-
metization have low arithmetic circuit complexity. Thus the main open question is to determine

13

the query complexity of polynomial summation for low-degree polynomials p that are computable
by small arithmetic formulas.

It is also an open question whether the result of Theorem 17 continues to hold if algorithms
are not restricted to act in a measurable way (although any reasonable model of computation is
”measurable”).

Acknowledgments We thank Dima Grigoriev and Russell Impagliazzo for helpful discussions.

References

[BF92] L. Babai and P. Frankl. Linear Algebra Methods in Combinatorics with Applications
to Geometry and Computer Science, Preliminary Version 2. Department of Computer
Science, The University of Chicago, 1992.

[BFL91] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-prover
interactive protocols. Computational Complexity, 1:3–40, 1991.

[Juk01] S. Jukna. Extremal Combinatorics. Texts in Theoretical Computer Science. Springer
Verlag, 2001.

[LFKN92] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof
systems. Journal of the Association for Computing Machinery, 39(4):859–868, 1992.

[Raz04] R. Raz. Multi-linear formulas for Permanent and Determinant are of super-polynomial
size. In Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Com-
puting, pages 633–641, 2004.

[Rud87] W. Rudin. Real and complex analysis, Third edition. McGraw-Hill Inc., 1987.

[Sha92] A. Shamir. IP=PSPACE. Journal of the Association for Computing Machinery,
39(4):869–877, 1992.

[Str88] G. Strang. Linear Algebra and Its Applications, Third Edition. Brooks/Cole, 1988.

A An omitted proof

Theorem 19. Let φ(x1, . . . , xn) be a cnf where each variable appears in at most 3 clauses. Then
there is a formula ψ(y1, . . . , y3n) that has the same number of satisfying assignments as φ, and
there is a polynomial p(y1, . . . , y3n) of degree at most 2 in each variable such that p and ψ agree on
the Boolean cube {0, 1}3n. Moreover, the polynomial p can be computed by an arithmetic circuit of
size polynomial in the size of φ.

Proof. Assume without loss of generality that each variable xi of φ occurs in exactly three clauses.
Replace the three occurrences of xi by three new variable x1

i , x
2
i , x

3
i . Apply this replacement proce-

dure to each variable xi of φ. Denote the resulting cnf by φ′. Add to φ′ the formula φ′′ that expresses
the condition that each triple of variables x1

i , x
2
i , x

3
i , for 1 6 i 6 n, are mutually equivalent, i.e.,

x1
i ↔ x2

i ↔ x3
i . The required formula ψ will be the conjunction φ′ ∧ φ′′.

To construct p, we first apply the standard arithmetization procedure (described in the Intro-
duction) to the formula φ′. This gives us a multilinear polynomial p′ since no variable of φ′ appears

14

in more than one clause. For each 1 6 i 6 n, define the multilinear polynomial pi(x
1
i , x

2
i , x

3
i) so

that it is equal to 1 on all binary triples (b1, b2, b3) where b1 = b2 = b3, and is equal to 0 on all other
binary triples. Such a polynomial is easily obtained as a multilinear extension of the underlying
Boolean function. Since each pi depends on only 3 variables, it will be computable by an arithmetic
formula of constant size. Finally, define p = p′ ·

∏n
i=1 pi. It is easy to see that p is the product of

two multilinear polynomials p′ and
∏n

i=1 pi, and so p has degree at most 2 in each variable. On the
other hand, by construction, p agrees with ψ over the Boolean cube.

15

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

	Introduction
	Circuits for #SAT
	Polynomial summation problem and our results

	Preliminaries
	Notation
	Linear algebra basics
	Polynomials

	The one-query upper bound for multilinear polynomials
	Lower bounds
	The case of non-adaptive algorithms
	The case of adaptive algorithms

	Allowing more non-uniformity
	Polynomial summation with advice
	Polynomial summation for a family of polynomials
	The case of infinite fields

	Open questions
	An omitted proof

