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Abstract

We show that tree-like OBDD proofs of unsatisfiability require an exponential increase (s 7→
2s

Ω(1)

) in proof size to simulate unrestricted resolution, and that unrestricted OBDD proofs of

unsatisfiability require an almost-exponential increase (s 7→ 22
(log s)Ω(1)

) in proof size to simulate
Res(O(log n)). The “OBDD proof system” that we consider has lines that are ordered binary
decision diagrams in the same variables as the input formula, and is allowed to combine two
previously derived OBDDs by any sound inference rule. In particular, this system abstracts
satisfiability algorithms based upon explicit construction of OBDDs and satisfiability algorithms
based upon symbolic quantifier elimination.

1 Introduction

A great amount of effort is put into developing algorithms for the Boolean satisfiability problem.
This is understandable; Boolean satisfiability is a flexible and expressive framework for formulating
computational problems from domains as diverse as optimization, planning and formal verification.
The Boolean satisfiability problem is NP -complete, so it is doubted that there is an algorithm for
efficiently solving all satisfiability instances. However, even if we cannot automatically solve all
instances of Boolean satisfiability efficiently, the more instances that can be solved automatically
and efficiently, the better.

Presently, the state-of-the-art satisfiability algorithms are variants DPLL search with clause
learning [32, 34, 18, 17]. All of these are implementations of propositional resolution [42], so we call
them resolution based solvers. Resolution based solvers have several inherent limitations, the most
famous being their need for exponential time to perform simple counting arguments such as “n+ 1
objects cannot be placed injectively into n holes” [21, 46, 14, 7, 39, 5]. Motivated by the weaknessses
of resolution-based solvers, a number of algorithms for solving Boolean satisfiability using ordered
binary decision diagrams have been proposed [10, 45, 19, 12, 13, 1, 36, 35, 3, 15, 38, 22, 4, 24].
These techniques show promising behavior on many benchmarks. Several of these algorithms
efficiently generate proofs of unsatisfiability for CNFs known to require exponential running times
for resolution based methods. The question we address in this paper is “For which satisfiability
instances are resolution-like techniques more efficent than OBDD-based approaches?”

At first thought, there should be no instances for which resolution does better than OBDD-
based methods: An OBDD-based technique known as symbolic quantifier elimination can efficiently
simulate resolution [4]. However, comparisons between software implementations of symbolic quan-
tifier elimination algorithms and resolution-based algorithms have revealed incomparable behav-
ior: There are satisfiability instances for which OBDD-based methods perform much better than
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resolution-based methods, but also instances for which resolution-based methods perform much
better than OBDD-based methods [38, 22]. The first main result of the paper suggests that the
inference structure of the OBDD derivations generated by these algorithms is partly to blame for
this failure to realize theoretical potential. DPLL with clause learning algorithms generate “DAG-
like” derivations whereas existing OBDD-based solvers using explicit construction and symbolic
quantifier elimination methods [19, 1, 38, 22, 44] construct “tree-like” derivations. We show that
tree-like OBDD derivations cannot efficiently simulate DAG-like resolution derivations.

Theorem 1 For infinitely many values of n, there exists a CNF φn in n variables such that φn

has a resolution refutation of size nO(1) but all tree-like OBDD refutations of φn have size at least
2nΩ(1)

.

The second question that we address in this paper is “Which propositional arguments can be
efficiently simulated by DAG-like OBDD methods?”. Not only can unrestricted OBDD proofs of
unsatisfiability efficiently simulate resolution proofs of unsatisfiability [4], they can simulate several
other interesting proof systems, such as Gaussian refutations over a finite field, and cutting planes
refutations with unary coefficients [4].

There are parallels between the efficiency of a propositional proof system, and the computa-
tional power of the circuits which may be used as lines of the proof system. It is known that there
are functions computable by (2+ dlog ne)-DNFs that cannot be computed by any OBDD of subex-
ponential size, cf. [33]. In light of the inability of OBDDs to efficiently simulate (2+dlog ne)-DNFs,
one might suspect that OBDD refutations cannot p-simulate propositional proofs that manipulate
(2 + dlog ne)-DNFs, ie. Res(k) (k-DNF resolution) with k = 2 + dlog ne [28]. The second main
result of the paper shows:

Theorem 2 For infinitely many values of n, there exists a CNF φn in n variables such that φn

has a Res(O(log n)) refutation of size nO(log n) but all OBDD refutations of φn have size at least

2nΩ(1)
.

1.1 Using OBDDs to solve Boolean satisfiability

An OBDD is a read-once branching program in which the variables appear according to a fixed
order along every path (ie. the nodes are arranged in levels, all nodes at a level query the same
variable, and each variable corresponds to at most one level) [10, 11, 33]. The ordering restriction
enforces canonicity: For each fixed ordering, the OBDD computing a Boolean function is unique
up to a linear-time computable normal form, cf. [33]. Because of this canonicity property, the
equality test for two Boolean functions represented as OBDDs is simply a check that their OBDDs
are identical. However, the choice of variable ordering can affect the size of the OBDD by an
exponential factor and choosing a suitable variable ordering for a task is of utmost importance.

Theorems 1 and 2 apply to any OBDD-based derivation system that manipulates OBDDs in
the same variables as the input formulas and applies sound inference rules. In particular, Theo-
rem 1 and Theorem 2 apply to the OBDD-derivations generated to two classes of OBDD-based
satisfiability algorithms, explicit construction and symbolic quantifier elimination. These results do
not clearly apply to a third class of OBDD-based satisfiability algorithms, “compressed resolution”
or “compressed search” techniques [12, 13, 35, 36, 37], as those techniques construct OBDDs in
variables different from those of the input CNF.

Explicit construction. In the literature, this is sometimes called the “OBDD apply” method.
In this method, a variable ordering is selected, the OBDD for the CNF with respect to that ordering
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is constructed, and it is checked whether this OBDD is the constant false [10]. There are two
opportunities for cleverness - the variable ordering used to construct the OBDDs, and the order in
which the clauses are joined together, cf. [45, 1, 22]. Empirical studies [45, 15] and a mathematical
analysis of the restricted algorithm in which the clauses are conjoined in the same order as the
input presentation [20] have suggested that this method is incomparable with resolution.

Symbolic quantifier elimination. This method extends the explicit construction method by
strategically eliminating variables via the application of existential quantifiers [19, 1, 38, 22, 44].
To determine if a CNF

∧m
i=1 Ci(~x) is satisfiable, rather than build an OBDD for

∧m
i=1 Ci(~x), it

suffices to build one for ∃~x
∧m

i=1Ci(~x). This is can be more efficient because it is often the case
that the OBDD for ∃~xF (~x, ~y) are significantly smaller than the OBDD for F (~x, ~y). One example
of this approach is to first heuristically partition the variables into sets X1, . . . Xk and the clauses
into sets A1, . . . Ak so that for each i = 1, . . . k, the variables of Xi do not appear in the clauses
belonging to sets Ai+1, . . . Ak, then construct the OBDD for the quantified Boolean formula:

∃Xk



. . .



∃X2



∃X1

∧

C∈A1

C(X1, . . . Xk)



 ∧
∧

C∈A2

C(X2, . . . Xk)



 . . .



 ∧
∧

C∈Ak

C(Xk)

1.2 Inference structure: Tree-like versus DAG-like derivations

The proofs of unsatisfiability that we consider in this article, be they OBDD derivations, resolution
derivations, or Res(O(log n)) derivations, proceed by starting with the clauses of the input CNF,
and repeatedly applying inference rules to derive new constraints, until a contradiction is obtained.
The expressions derived in this manner can be arranged in an acyclic graph, placing clauses from the
input CNF on the sources, and making the antecedents of the inference used to derive an expression
the parents of that expression in the DAG. Arbitrary derivations are said to be DAG-like, and a
derivation is said to be tree-like if the DAG is a directed tree. This is a natural distinction to make,
and some satisfiability algorithms generate DAG-like derivations whereas others generate tree-like
derivations.

Sometimes DAG-like derivations can be exponentially more efficient than tree-like derivations
(this is the case for resolution [8, 6]), but sometimes tree-like derivations can simulate DAG-like
derivations with only a polynomial increase in derivation size (this is the case for Frege deriva-
tions [25, 26]). One consequence of Theorem 1 is that DAG-like OBDD derivations can be expo-
nentially more succinct than tree-like OBDD derivations.

1.3 Comparison with previous work

In [20], Groote and Zantema prove that certain limited OBDD derivations cannot polynomially
simulate resolution refutations. Their results apply to the a system that builds an OBDD for the
input CNF by conjoining the clauses of the CNF in the order of the input listing (ie. to process
C1 ∧ (C2 ∧C3), an OBDD for C2 ∧C3 is built and then one for C1 ∧ (C2 ∧C3) is built). In fact, in
that paper they give a size lower bound for refutations of a formula of the form ¬x∧ (x∧ψ), which
is trivial to refute if the formula is processed as (¬x ∧ x) ∧ ψ. Theorem 1 strengthens their result
qualititatively by applying to methods that perform a preprocessing step to choose a more efficient
order for processing the clauses, and indeed, it applies to any tree-like method of constructing
OBDDs, even those using symbolic quantifier elimination.

Jan Kraj́ıček’s exponential lower bound for general OBDD refutations, as stated in [29], shows
that general OBDD refutations require an exponential increase in size to simulate Frege systems.
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However, the techniques of [29] can be applied to a slightly different CNF to show that OBDD
refutations require an almost-exponential increase in size to simulate a constant-depth Frege sys-
tem whose lines are depth-three formulas of the form “OR of ANDs of small ORs”. Theorem 2
qualitatively strengthens the result of [29] by showing that OBDD refuations require an almost-
exponential increase in size to simulate a constant-depth Frege system whose lines are depth-two
formulas of the form “ORs of small ANDs”. Similarly, Theorem 1, qualitatively strengthens the
result of [43] demonstrating exponential lower bounds for tree-like OBDD refutations, as the result
stated in [43] shows that tree-like OBDD systems cannot efficiently simulate Frege systems.

In [4], Atserias, Kolaitis, and Vardi formalized the OBDD-based propositional proof system
incorporating symbolic quantifier elimination, and proved that for each fixed variable ordering,
there is a CNF of size N that requires size 2NΩ(1)

to refute in the OBDD proof system using that
particular variable ordering. It turns out that the techniques of [4] can be used to show that for
each fixed variable ordering, there is a CNF with quasipolynomial size Res(O(log n)) refutation
that requires exponential size to refute with an OBDD refutation using that particular variable
ordering. Theorem 2 qualitatively strengthens their result by demonstrating a fixed CNF with
quasipolynomial size Res(O(log n)) refutations that requires exponential size to refute with OBDD
refutation using any possible variable ordering.

1.4 Outline of the paper and the proof techniques

We begin with a discussion of the basic OBDD, resolution and Res(k) refutation systems in Sec-
tion 2. Both Theorem 1 and Theorem 2 are proved by an indirect application of feasible interpo-
lation, which we recap in Section 3.

The high-level proof strategy is similar to that used in [29]: The core technique is a translation
that takes a CNF F and creates a new CNF “perm(Fm)”1 such that for any ordering of the
variables of perm(Fm), ≺, and any ordering of the variables of F , ≺∗, the existence of a small
OBDD refutation of perm(Fm) with respect to ≺ implies the existence of a small OBDD refutation
of F with respect to the order ≺∗ (Lemma 13). We then take standard CNFs F that are known to
require exponentially large tree-like OBDD refutations (general OBDD refutations) with a special
fixed variable ordering, and then apply Lemma 13 to show that perm(Fm) requires exponentially
large refutations with respect to any variable ordering.

Some care is needed to show that when there are small resolution (Res(O(log n))) refutations of
F , there are also small resolution (Res(O(log n))) refutations of perm(Fm). This is the difference be-
tween our our translation method and that used in [29]. Our translation is more “depth efficient” in
the sense that when F has a polynomial-size resolution refutation (of a certain form), perm(Fm) will
have a polynomial-size resolution refutation, and when F has a quasipolynomial size Res(O(log n))
refutation (of a certain form), perm(Fm) will have quasipolynomial size Res(O(log n)) refutation.
These properties do not hold for the translation of [29], as that translation increases refutation
depth.

The translation from F to perm(Fm) is presented in a sequence of steps in Section 4. Each
variable of F is replaced by a disjunction of m new variables, the new formula is converted to a
CNF by applying deMorgan’s law and the distributive rule, and the resulting CNF is permuted
according to small almost-universal family of permutations. With each step of the translation, we

1The notation perm(F m) is chosen because each variable of F is replaced by a disjunction of m new variables,
and then the CNF is permuted according to small almost-universal family of permutations, see Section 4. For the
purposes of this outline, the reader can think of it simply as “the translation of F”.
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show that if the initial CNF F has a resolution (Res(O(log n))) refutation that satisfies certain
properties, perm(Fm) has a resolution (Res(O(log n))) refutation that is not much larger.

The key “reordering lemma”, Lemma 13, is presented in Section 5. The intuition is as follows:
Suppose you have mn balls, with m in each of n distinct color classes, and they are arbitrarily
distributed in n bins, with each bin containing m balls. You wish to select some permutation of the
mn balls so that after renaming according to the permutation, each of the n bins now contains a ball
from each the n color classes. An average permutation would place m

n balls from a given color class
in a given bin. By taking m sufficiently large with respect to n, and applying a second-moment
calculation, you can guarantee that every bin contains at least one ball from every color class,
and you need only draw the permutation from a small almost-universal family of permutations.
This suffices to prove the reordering lemma because the color classes are simply the new variables
{yi,j | j ∈ [m]} that correspond to each variable xi of F , and the bins are simply the “blocks” of y
variables in positions 1 through m, m + 1 through 2m, etc, according to refutation order ≺ used
to refute perm(Fm). When xi occurs in position k according to ≺∗, we just apply the guaranteed
permutation and pick out some yi,j from the k’th block of yi,j variables.

We prove Theorem 1 in Section 6, and we prove Theorem 2 in Section 7. At this point,
we apply Lemma 14 to allow the application of previously established interpolation bounds for
particular CNFs, and then carefully inspect the known refutations of those CNFs to demonstrate
that the translation does not increase refutation size too much.

2 Background and notation

A literal is a variable or its negation. For a propositional variable x, we will write x0 to denote ¬x
and x1 to denote x. A term is a constant 0 or 1 or a conjunction of literals. Our convention is that
a term is specified as a set of literals, with 1 corresponding to the empty set and 0 to any literal
and its negation. We say that a term T contains a literal l if l ∈ T , and that a term T contains a
variable x if either x ∈ T or ¬x ∈ T . We will often identify literals with terms of size one, and will
write l instead of {l}. A DNF is a disjunction of terms, specified as a set of terms; we sometimes
write F =

∨

i Ti and sometimes write Ti ∈ F . A k-DNF is a DNF whose terms are each of size at
most k. A DNF is said to be positive if all of its terms contain only positive literals. A clause is
a 1-DNF, i.e. a disjunction of literals. The width of a clause C, written w(C), is the number of
literals appearing in C. The width of a set of clauses is the maximum width of any clause in the
set. The negative width of a clause C, written nw(C), is the number of negative literals appearing
in C. The negative width of a set of clauses is the maximum negative width of any clause in the set.
A CNF is a conjunction of clauses, specified as a set of clauses. A k-CNF is a CNF whose clauses
are each of width at most k. A Boolean circuit is a directed acyclic graph with a unique sink whose
source nodes are labeled with literals and whose internal nodes are partitioned into “AND gates”
and “OR gates”, and for a given setting to the variables, the output of the circuit is computed
in the usual manner. A Boolean formula is a circuit whose underlying DAG is a directed tree. A
Boolean circuit is said to be monotone if its source nodes are labeled only with positive literals.

A restriction ρ is a map from a set of variables to {0, 1, ∗}. For a formula F , the restriction
of F by ρ, F �ρ is defined as usual: We subtitute 0 for x with ρ(x) = 0, 1 for x with ρ(x) = 1,
and simplify only when a sub-expression has become explicitly constant. For any restriction ρ, let
dom(ρ) denote the set of variables to which ρ assigns the value 0 or 1.
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2.1 Ordered binary decision diagrams and satisfiability algorithms

Definition 2.1 (cf. [11, 33]) A binary decision diagram (also known as a branching program) is
a rooted, directed acyclic graph in which every nonterminal node u labeled by a variable xu and
has two out-arcs, one called tu and the other called fu. Sinks are labeled by Boolean values. The
function represented by a branching program is calculated by starting at the root and following a
path to the sink as follows: If the current node u is labeled by the variable xu, and xu is assigned the
value true, then follow the arc tu, otherwise follow the arc labeled fu. The value that the function
takes is the value labeled on the sink that is reached at the end of this process. The size of a binary
decision diagram is its number of nodes as a DAG. An ordered binary decision diagram (OBDD)
is a binary decision diagram in which: Along every path from the source to a sink, every variable
is queried at most once, and, there is fixed ordering so that along all paths from the source to a
sink, the variables are queried consistently with that order. When F is an OBDD, and π is a fixed
ordering of the variables used by F , F is said to be a π-OBDD if the variable ordering used by F
is consistent with π.

Definition 2.2 Let C be a set of clauses in variables from a set V . An OBDD derivation from
C with respect to a variable ordering � on V is a sequence of OBDDs F1, . . . , Fm so that each
OBDD is built from the variables of V with respect to the order �, and each Fi either is a clause
in C, or follows from the preceding F1, . . . Fi−1 by an application of the following inference rule: If
A and B are previously derived OBDDs, we may infer any OBDD C such that A ∧ B ⇒ C. For
a set of clauses C, an OBDD refutation of C is a derivation from C whose final line is the OBDD
“false”. The size of an OBDD refutation is the sum of the sizes of its OBDDs.

This inference rule is very powerful. However, because whether or not A ∧ B ⇒ C can be
decided in time polynomial in the sizes of OBDDs A, B and C (cf. [33]), the OBDD refutation
system is a refutation system in the sense of Cook and Reckhow [16].

OBDD based satisfiability algorithms based upon explicit construction and symbolic quantifier
elimination generate proofs of unsatisfiability by using far more restricted inference rules. Let A
and B be OBDDs in the variables V with ordering �, where ~x, ~y, ~z are tuples of variables from V :

Conjunction:
A(~x, ~y) B(~y, ~z)

A(~x, ~y) ∧B(~y, ~z)
Projection:

A(x, ~y)

∃xA(x, ~y)

The explicit construction method for solving satisfiability constructs OBDD derivations using only
the conjunction rule, and symbolic quantifier elimination methods use only the conjunction and
projection rules. Notice that each of these inference rules is a special case of the the OBDD system’s
one inference rule.

2.2 Resolution and Res(k)

Resolution is a refutation system for propositional logic. The input to a resolution refutation is a
set of clauses C; a resolution refutation consists of a derivation of the empty clause from the clauses
in C using only the resolution inference: A∨x ¬x∨B

A∨B . Notice that every line in a resolution refutation
is a clause. The Res(k) refutation system is a generalization of resolution that can reason using
k-DNFs.

Definition 2.3 [28] Res(k) is the refutation system whose lines are k-DNFs and whose inference
rules are given below (the variable set is {x1, . . . xn}, A, A∗, and B are k-DNF’s, with A ⊆ A∗,
1 ≤ j ≤ k, l is a literal, I1, . . . Ij ⊆ [n] with I = I1 ∪ · · · ∪ Ij, and |I| ≤ k, and J ⊆ I):
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Subsumption:
A

A∗ AND-introduction:
A ∨∧i∈I1

li · · · A ∨∧i∈Ij
li

A ∨∧i∈I li

Cut:
A ∨∧i∈I li B ∨∨i∈I ¬li

A ∨B AND-elimination:
A ∨∧i∈I li

A ∨∧i∈J li

Let C be a set of k-DNFs. A Res(k) derivation from C is a sequence of k-DNFs F1, . . . , Fm so
that each Fi either belongs to C or follows from the preceding lines by an application of one of the
inference rules. For a set of k-DNFs C, a Res(k) refutation of C is a derivation from C whose final
line is the empty clause. The size of a Res(k) refutation is the number of lines it contains.

3 Feasible interpolation

The lower bounds on OBDD refutation sizes that we prove are based upon feasible interpolation
results, which are in turn based upon communication complexity. This is a well-developed method
for analyzing the sizes of propositional proofs, cf. [23, 41, 9, 27].

Definition 3.1 (cf. [30]) Let m,n ∈ N be given and let R be a set. Let f : {0, 1}m×{0, 1}n → R be
a function of two Boolean inputs. A two-player communication protocol for f is a process in which
Player I has private access to x ∈ {0, 1}m, Player II has private access to y ∈ {0, 1}n, the players
proceed in turns sending binary strings to one another, and at the end, both players know the value
of f(x, y). The cost of a protocol is the maximum of the number of bits communicated between the
two players, taken over all possible settings of the inputs. The communication complexity of f is
the minimum cost of a two-player protocol that computes f .

Definition 3.2 Let n, s, t ∈ N be given. Let A ⊆ {0, 1}n ×{0, 1}s×{0, 1}t be given. The monotone
communication complexity of A, MCC(A), is the minimum communication between the two players
necessary to compute any of the following tasks, when Player I has access only to (u, yu) ∈ {0, 1}n×
{0, 1}s and Player II has access only to (v, zv) ∈ {0, 1}n × {0, 1}t:

1. Decide whether (u, yu, zv) ∈ A.

2. Decide whether (v, yu, zv) ∈ A.

3. If (u, yu, zv) ∈ A and (v, yu, zv) 6∈ A, either find i ≤ n such that ui = 1 and vi = 0, or, agree
that there exists u′ ≥ u such that (u′, yu, zv) 6∈ A.

Lemma 3 [29] Let n, s, t ∈ N be given, and let V be a set of n + s + t many variables paritioned
so that the first n variables are the x’s, the middle s variables are the y’s, and the last t variables
are the z’s. Let π be an ordering on the variables that places all y’s before all x’s and all x’s before
all z’s. Let P be a π-OBDD of size S, and let A = P−1(1). MCC(A) = O((log S)(log n))

We use the following monotone interpolation theorem.

Theorem 4 (cf. [29]) Let n, s, t ∈ N be given, and let V be a set of n + s + t many variables
paritioned so that the first n variables are the x’s, the middle s variables are the y’s, and the last t
variables are the z’s. Let π be a linear ordering on vars(F ) that is consistent with y < x < z. Let
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A1, . . . Am ⊆ {0, 1}n+s and B1, . . . Bl ⊆ {0, 1}n+t. Furthermore, suppose that the sets A1, . . . Am

satisfy the following monotonicity condition:



(u, yu) ∈
m
⋂

j=1

Aj



 ∧ (u ≤ u′) → (u′, yu) ∈
m
⋂

j=1

Aj

For each i ∈ [m] let Ãi = {(x, y, z) | (x, y) ∈ Ai} and for each j ∈ [m] let B̃j = {(x, y, z) | (x, z) ∈
Bj}. If there is an OBDD refutation of the sets Ã1, . . . Ãm, B̃1, . . . B̃l of size S then the two sets
U = {u ∈ {0, 1}n | ∃yu ∈ {0, 1}s, (u, yu) ∈ ⋂m

j=1Aj} and V = {v ∈ {0, 1}n | ∃zv ∈ {0, 1}t, (v, zv) ∈
⋂l

j=1Bj} can be separated by a monotone circuit of size at most SO(log n). Furthermore, if there is

a tree-like OBDD refutation of the sets Ã1, . . . Ãm, B̃1, . . . B̃l of size S then the two sets U = {u ∈
{0, 1}n | ∃yu ∈ {0, 1}s, (u, yu) ∈ ⋂m

j=1Aj} and V = {v ∈ {0, 1}n | ∃zv ∈ {0, 1}t, (v, zv) ∈ ⋂l
j=1Bj}

can be separated by a monotone formula of size at most SO(log n).

4 The translation

4.1 Blowing up a CNF

For the first stage of the translation, we substitute a disjunction of new variables for old variables,
and make repeated use of the deMorgan’s law and the distribution of ANDs across ORs: X ∨
¬ (Y ∨ Z) is equivalent to (X ∨ ¬Y ) ∧ (X ∨ ¬Z).

Definition 4.1 Let F be a CNF in variables x1, . . . xn, and let m ≥ 1 be an integer. The m-
th disjunctive blow-up of F , Fm, is the CNF on the new variables yi,j, with i ∈ [n] and j ∈
[m], constructed by substituting the disjunction

∨m
j=1 yi,j for each variable xi, and then applying

deMorgan’s law and the distributive law to convert the new formula into CNF form.

To make our arguments more uniform, we generalize the blowing-up construction.

Definition 4.2 Let F be a k0-DNF in variables {x1, . . . xn}. For each i = 1, . . . n, let Di be a k1-
DNF in variables {y1, . . . yN}. Let ΣD(F ) denote the set of (k0k1)-DNFs obtained by substituting
Di(~y) for each occurrence of xi, applying deMorgan’s law, and the distributive law.

In this article, we perform this transformation only when the formula F has a particular form.

Definition 4.3 Let F be a k-DNF. We say that F contains no negations in compound terms if all
terms of t ∈ F with |t| ≥ 2 are conjunctions of positive literals. We say that F has negative width
at most w if the number of terms containing negative literals is at most w.

Lemma 5 Let F be a k0-DNF in the variables {x1, . . . xn}, and, for each i = 1, . . . n, let Di be
a k1-DNF in variables {y1, . . . yN}. If no compound term of F contains a negative literal, then,
setting F0 to be the part of F containing all purely positive terms, and setting G0 to be the single
(k0k1)-DNF in ΣD(F0), we have that:

ΣD(F ) = {G0 ∨
∨

¬xi∈F

∨

l∈Ti

¬l | T ∈
∏

¬xi∈F1

Di}
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Corollary 6 Let F be a k0-DNF in {x1, . . . xn}, and, for each i = 1, . . . n, let Di be a positive
k1-DNF in variables {y1, . . . yN}. Suppose that F contains no negated literals in compound terms,
that each Di contains at most m many terms, and that F contains at most w many negated literals.

1. ΣD(F ) contains at most mw many (k0k1)-DNFs.

2. For every G ∈ ΣD(F ), G contains at most wk1 many negated literals.

3. For every G ∈ ΣD(F ), G contains no negated literals in compound terms.

Corollary 7 If F is a CNF in n variables with S many clauses, each of which has negative-width
at most w, then Fm contains at most mwS many clauses.

Definition 4.4 We say that a Res(k) refutation Γ is in no-compound-negation form if every line
of Γ contains no negations in compound terms. We say that Γ has negative width at most w if
every line of Γ has negative width at most w.

The following lemma follows from a standard “apply the translation and then clean-up the
inference steps” argument that is placed in the Appendix.

Lemma 8 (proof in the Appendix) Let F be a set of DNFs in the variables {x1, . . . xn}, and, for
each i = 1, . . . n, let Di be a positive k1-DNF in variables {y1, . . . yN}, such that each Di contains
at most m many terms. If F has a Res(k0) refutation of size S in non-compound-negation form,
and of negative width at most w, then ΣD(F) has a Res(k0k1) refutation of size at most 2mw+k0S.

Corollary 9 If F is a CNF in n variables with s many clauses, each of which has negative-width
at most w, and F has a Res(k) refutation of size S and negative width at most w, then Fm has a
Res(k) refutation of size at most 2mw+1S.

4.2 Permuting the variables

A standard trick for confounding OBDDs is to apply a permutation to the input variables. For
our purposes, it suffices to use permutations of one particular kind, essentially the almost-universal
hash functions of Carter and Wegman [47].

Definition 4.5 [47] Let t ∈ N be given. Let F = GF (2t). Define the set Πt to be the set of all
mappings given by x 7→ ax+ b with a, b ∈ F, a 6= 0

Lemma 10 [47] Let t ∈ N be given. |Πt| = 2t(2t − 1). Every mapping in Πt is a permutation
of [2t]. Furthermore, for each x1, x2, y1, y2 ∈ [2t] such that x1 6= x2 and y1 6= y2, Prf∈Πt

[f(x1) =
y1, f(x2) = y2] = 1

2t(2t−1) .

Definition 4.6 Let F be a CNF in the variables x1, . . . xn. Set t = dlog2 ne. Let xn+1, . . . x2t be
completely new variables. Use l = 2t many new variables, z1, . . . zl, to encode the permutations
of Π in some surjective fashion. The CNF perm(F ) is the CNF obtained as follows: For each
assignment to the z’s, α ∈ {0, 1}l, let π denote the permutation from Π encoded α. For every π
from Π and every clause

∨

i∈I x
εi

i from F , there is a clause
∨

i∈[l] z
1−αi

i ∨
∨

i∈I x
εi

π(i) in perm(F ).

For each xi and π ∈ Π, define π(xi) to be xπ(i).

9



Lemma 11 Let F be a CNF in n variables. The number of variables in perm(F ) is ≤ 2n+2 log n.
If F contains S many clauses, then perm(F ) contains at most 4n2S many clauses.

Lemma 12 If there is a size S resolution refutation of F then there is a resolution refutation of
perm(F ) of size < 6n2S.

Proof: For each value of ~z, there is a size S refutation of perm(F ) �~z. Therefore there is a size 2lS
derivation of the set of clauses {∨i z

vi

i | ~v ∈ {0, 1}l} from perm(F ). The resulting set of clauses is
the complete-tree contradictions on l many variables, and it is well-known that these CNFs have
resolution refutations of size at most 2l+1 − 1. Therefore the size of the refutation is at most
2lS + 2l+1 − 1 ≤ 2n2S + 4n2 − 1 < 6n2S.

Lemma 13 Let F be a CNF on the variables {x1, . . . xn}. Set t = dlog2 ne, set N = 2t. Let Γ be
an OBDD refutation of perm(F ), whose variable ordering on {x1, . . . xN} is v1, . . . vN . For every
π ∈ Πt, there is an OBDD refutation of F , in the variables {x1, . . . xn}, with size at most |Γ|, and
that uses a variable ordering consistent with π(v1), . . . π(vN ).

Proof: Let α be an assignment to ~z that selects the permutation π−1. We apply the restriction
α to Γ, and we see that the clauses of perm(F ) �α that survive are exactly the clauses of the
form

∨

i∈I x
εi

π−1(i)
where

∨

i∈I x
εi

i is a clause of F . We now rename the variables according to π:

Within each OBDD of the refutation, replace each query to xi by a query to xπ(i). Every OBDD
is now constructed according to the order π(v1), . . . π(vN ). For each

∨

i∈I x
εi

i in F , the OBDD for
∨

i∈I x
εi

π−1(i)
becomes the OBDD for

∨

i∈I x
εi

i . Proof structure is preserved because the relation

A ∧B ⇒ C between OBDDs is preserved under substitutions to the variables.

5 The reordering lemma

Lemma 14 (The reordering lemma) Let F be a CNF on the variables {x1, . . . xn}, let ≺ be a total

ordering of {x1, . . . xn}, and let m ∈ N be given so that 2n3

m + n2

mn−1 < 1. If there is an OBDD
refutation of the CNF perm(Fm) of size at most S, with respect to any ordering of the variables of
perm(Fm), then there is an OBDD refutation of F that uses the variable ordering ≺ and has size
at most S.

The proof of Lemma 14 uses the following standard consequence of Chebyshev’s inequality:

Lemma 15 (from Chebyshev’s Inequality, cf. [2]) Let X1, . . . Xt be 0/1 valued random variables,
and let Y =

∑t
i=1Xi.

Pr[Y = 0] ≤ V ar(Y )

(E[Y ])2
=

∑t
i=1 V ar(Xi) +

∑

i6=j Cov(Xi,Xj)

(E[Y ])2

≤
∑t

i=1E(Xi) +
∑

i6=j Cov(Xi,Xj)

(E[Y ])2
=

E[Y ] +
∑

i6=j Cov(Xi,Xj)

(E[Y ])2

10



Proof:(of Lemma 14) Rename the variables so that ≺ places them in the order x1, x2, . . . xn. Let
{yi,j | i ∈ [n], j ∈ [m]} denote vars(Fm). Set t = dlogmne and set N = 2t. Let wmn+1, . . . wN

denote the “padding variables” added to Fm to construct perm(Fm). Set V = {yi,j | i ∈ [n], j ∈
[m]} ∪ {wmn+1, . . . wN}. Let l = 2t, and let z1, . . . zl denote the variables of perm(F ) that select
the permutation.

Let Γ be a size S refutation of perm(Fm) with respect to some ordering of its variables. Let
v1, . . . vN be the variable ordering used by Γ as induced on V . We completely disregard the positions
of the z-variables in the ordering used by Γ, since we are going to fix them to 0/1 values.

Let r = N mod n. For each k = 1, . . . r, let Vk be the set of variables from V that are in
positions (k − 1)dN

n e + 1 through kdN
n e , according to the order v1, . . . vN . For for k = r + 1, . . . n,

let Vk be the set of variables from V that are in positions (k − 1)bN
n c + r + 1 through kbN

n c + r,
according to the order v1, . . . vN .

Choose π ∈ Π uniformly at random. For each i ∈ [n], j ∈ [m], k ∈ [n], let χk
i,j be the indicator

variable for the event that π−1(yi,j) ∈ Vk. By Lemma 10, χk
i,j has expectation |Vk|/N . For each

i ∈ [n], k ∈ [n], let Y k
i be the random variable of π defined by Y k

i =
∑m

j=1 χ
k
i,j = |{π−1(yi,j) ∈ Vk |

j ∈ [m]}|. The expectation of Y k
i is (m/N)|Vk|. We will use Lemma 15 to bound the probability

that Y k
i = 0. First we bound the covariance of the χk

i,j’s contributing to Y k
i . For j0, j1 ∈ [m] with

j0 6= j1:

Cov(χk
i,j0, χ

k
i,j1) = E[χk

i,j0 · χ
k
i,j1] − E[χk

i,j0]E[χk
i,j1]

=







∑

u,v∈Vk
u 6=v

Pr[π−1(yi,j0) = u, π−1(yi,j1) = v]






− (|Vk|/N)2

=
|Vk|(|Vk| − 1)

N(N − 1)
− (|Vk|/N)2 =

|Vk|
N

( |Vk| − 1

N − 1
− |Vk|

N

)

<
|Vk|2
N

(

1

N − 1
− 1

N

)

=
|Vk|2

N2(N − 1)
=

((m/N)|Vk|)2
m2(N − 1)

=

(

E[Y k
i ]
)2

m2(N − 1)

We can now apply Lemma 15 as follows:

Prπ[Y k
i = 0] ≤ 1

E[Y k
i ]

+
∑

j0,j1∈[m]
j0 6=j1

Cov(χk
i,j0
, χk

i,j1
)

(

E[Y k
i ]
)2 ≤ N

m|Vk|
+

m(m− 1)(E[Y k
i ])2

m2(N − 1)(E[Y k
i ])2

<
N

mbN/nc +
1

N − 1
≤ 2mn

m2
+

1

mn− 1
=

2n

m
+

1

mn− 1

Therefore, by the union bound, the probability that there exists an i ∈ [n] and k ∈ [n] with

|{π−1(yi,j) ∈ Vk | j ∈ [m]}| = 0 is at most 2n3

m + n2

mn−1 . By our choice of m, this is strictly less than

1, so there exists π ∈ Πt so that for all i ∈ [n] and all k ∈ [n], |{π−1(yi,j) ∈ Vk | j ∈ [m]}| ≥ 1. For
each i ∈ [n], let ji be the least element of {j ∈ [m] | π−1(yi,j) ∈ Vi}. For all 1 ≤ i < i′ ≤ n, because
π−1(yi,ji

) ∈ Vi and π−1(yi′,ji′
) ∈ Vi′ , yi,ji

precedes yi′,ji′
in the ordering π(v1), . . . π(vN ).

By Lemma 13, there is a size S OBDD refutation of Fm, in the variables {yi,j | i ∈ [n], j ∈ [m]},
with respect to an order consistent with π(v1), . . . π(vN ). Call this refutation Γ′. Let σ be the
substitution to {yi,j | i ∈ [n], j ∈ [m]} given by σ(yi,j) = xi, if j = ji, and σ(yi,j) = 0 otherwise.
Let Γ∗ be the result of applying σ to Γ′. Γ∗ is clearly an OBDD refutation of F , and because the
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order y1,j1, y2,j2, . . . yn,jn is consistent with the variable ordering of Γ′, Γ∗ is built according to the
order x1, x2, . . . xn - that is, the order ≺.

6 Tree-like OBDD refutations do not p-simulate DAG-like resolu-

tion refutations

The CNF that we use to separate unrestricted resolution from tree-like OBDD refutations is based
on the “pyramidal generation function”. This function was shown to require large monotone circuit
depth by Raz and McKensize [40], and later it was converted into CNF form by Bonet, Esteban,
Galesi and Johannsen to show that tree-like cutting planes cannot p-simulate unrestricted resolu-
tion [8].

Definition 6.1 [40] Let n ∈ N be given. The function GENn is defined as follows. Its inputs are
t ∈ [n]× [n]× [n], and GENn(t) = 1 if and only if ` n, where for c ∈ [n], ` c is defined recursively
via ` c if and only if c = 1 or there are a, b ∈ [n] with ` a, ` b and ta,b,c = 1.

Definition 6.2 [8] Let d ∈ N be given. The set Pyrd is defined as Pyrd := {(i, j) | 1 ≤ j ≤ i ≤ d}.
Let n ∈ N be given, and let t ∈ {0, 1}n3

be an input to GENn. We say that n is generated in a
depth d pyramidal fashion by t if there exsists a mapping m : Pyrd → [n] so that:

1. For every j ∈ [d], t1,1,m(d,j) = 1.

2. For every (i, j) ∈ Pyrd−1, tm(i+1,j),m(i+1,j+1),m(i,j) = 1.

3. tm(1,1),m(1,1),n = 1.

Theorem 16 [8] There exists ε > 0 so that for all d ∈ N, with n =
(d+1

2

)15
+ 2, every monotone

Boolean formula that outputs a 1 on inputs to GENn for which n is generated in a depth d pyramidal
fashion, and outputs 0 on all inputs where GENn is 0, must have size at least 2nε

.

Definition 6.3 [8] Let d be given, and let n =
(

d+1
2

)15
+ 2. Let there be a variable qi,j,a for each

(i, j) ∈ Pyrd and a ∈ [n], let there be a variable pa,b,c for each a, b, c ∈ [n], and let there be a variable
ra for each a ∈ [n]. The CNF ColGend(~p, ~q,~r) consists of the following clauses:

∨

a∈[n]

qi,j,a for (i, j) ∈ Pyrd(1)

¬qd,j,a ∨ p1,1,a for 1 ≤ j ≤ d, a ∈ [n](2)

¬q1,1,a ∨ pa,a,n for a ∈ [n](3)

¬qi+1,j,a ∨ ¬qi+1,j+1,b ∨ ¬qi,j,c ∨ pa,b,c for (i, j) ∈ Pyrd−1 and a, b, c ∈ [n](4)

¬p1,1,a ∨ ¬ra for a ∈ [n](5)

¬pa,a,n ∨ ra for a ∈ [n](6)

ra ∨ rb ∨ ¬pa,b,c ∨ ¬rc for a, b, c ∈ [n](7)

Furthermore, let Gend(~p, ~q) be the CNF given by the clauses of 1, 2, 3, and 4, and let Cold(~p,~r)
be the CNF given by the clauses of 5, 6, and 7.
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The following facts follow immediately from Definition 6.3, and applications of Corollary 7 and
Lemma 11.

Lemma 17 Let d tend to infinity, and let m : N → N be function of d, eg. m = m(d).

1. The number of variables in ColGend is Θ(d90), the number of clauses in ColGend is O(d92),
and the negative width of ColGend is 3.

2. The number of variables in ColGenm
d is Θ(md90), and the number of clauses in ColGenm

d is
O(m3d92).

3. The number of variables in perm(ColGenm
d ) is Θ(md90), and perm(ColGenm

d ) contains
O(m5d272) many clauses.

6.1 Lower bound for tree-like OBDD refutations

Lemma 18 Let d ∈ N be given. Set n =
(d+1

2

)15
+ 2, set N = |V ars(ColGend)|, and and set

m = 4N3. If there is a size S tree-like OBDD refutation of perm(ColGenm
d ), then there is a size

SO(log N) monotone Boolean formula that outputs 1 on instances where t generates n in a depth d
pyramidal fashion, and outputs 0 on all instances where t does not generate n.

Proof: Because 2N3

m + N2

mN−1 = 2N3

4N3 + N2

4N4−1
< 1, we may apply Lemma 14 and conclude that

there is a size ≤ S tree-like OBDD refutation of ColGend with respect to an order that places all
qi,j,a’s before all pi,j,k’s, and all pi,j,k’s before all ra’s. By Theorem 4 there is a monotone Boolean
formula F of size at most SO(log n) that separates Cold(~p,~r) and Gend(~p, ~q). We now show that
the formula F must output 1 on instances where t generates n in a depth d pyramidal fashion, and
output 0 on all instances where t does not generate n. Consider an assignment t ∈ {0, 1}n3

to the
variables of ~p. If n generated by a depth d pyramid according to ~t, then Gen(~p,~r) is satisfiable.
So Col(~p,~r) is unsatisfiable, and thus F (~t) = 1. On the other hand, if GENn(~t) = 0 then Col(~t, ~r)
can be satisfied by assigning color 0 to the elements that can be generated under ~t. Thus Gen(~t, ~q)
is unsatisfiable, so F (~t) = 0.

Combining Lemma 18 with Theorem 16:

Lemma 19 Let d be an integer tending to infinity and let N be the number of variables in ColGend.
All tree-like OBDD refutations of perm(ColGen4N3

d ) have size 2NΩ(1)
.

By Lemma 17, when N = |V ars(ColGend)|, the number of variables in perm(ColGen4N3

d ) is
polynomial in the number of variables in ColGend. Therefore, we have as a corollary:

Corollary 20 Let d be an integer tending to infinity and let N be the number of variables in
ColGend. Let M be the number of variables in perm(ColGen4N3

d ). All tree-like OBDD refutations

of perm(ColGen4N3

d ) have size 2MΩ(1)
.

6.2 Upper bound for DAG-like resolution refutations

A resolution refutation of ColGend of size dO(1) in presented in [8], and although they were not
concerned with negative width, an inspection of their refutation reveals that it has negative width
four. We put the argument in the Appendix for completeness.
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Theorem 21 [8] Let d ∈ N tend to infinity, and let N = N(d) be the number of variables in
ColGend. The CNF ColGend(~p, ~q,~r) has a DAG-like resolution refutation of size NO(1) and nega-
tive width 4.

Lemma 22 Let d ∈ N tend to infinity, and let N = N(d) be the number of variables in ColGend.
Let m ∈ N be given. The CNF perm(ColGenm

d ) has a a resolution refutation of of size (Nm)O(1).

Proof: By Theorem 21 there is a resolution refutation of ColGend of size dO(1) and negative width
4, so by Corollary 9, there is a resolution refutation of ColGenm

d of size at most m5NO(1). So by
Lemma 12, there is a resolution refutation of perm(ColGenm

d ) of size at most 4N2m5NO(1).

Corollary 23 Let d ∈ N tend to infinity, let N = N(d) be the number of variables in ColGend,
and let M = M(d) be the number of variables in perm(ColGen4N3

d ). The CNF perm(ColGen4N3

d )
has a a resolution refutation of of size MO(1).

Let d ∈ N be given, let N be the number of variables in ColGend, and let M = M(d) be
the number of variables in perm(ColGen4N3

d ). Corollary 20 shows that tree-like OBDD refuta-

tions size 2MΩ(1)
to refute perm(ColGen4N3

d ), and Corollary 23 shows that resolution can refute

perm(ColGen4N3

d ) in size MO(1). Combining these two facts proves Theorem 1: Tree-like OBDD
refutations cannot p-simulate DAG-like resolution.

7 DAG-like OBDD refutations do not p-simulate Res(O(logn))

Definition 7.1 [27, 41] Let l,m, n ∈ N be given. Let there be propositional variables pe, for all
e ∈

([n]
2

)

, qu,i for all u ∈ [m], i ∈ [n], and ri,a for all i ∈ [n] and a ∈ [l]. The set of clauses
Cliquem,n(~p, ~q) is given by:

1.
∨

i∈[n] qu,i for all u ∈ [m].

2. ¬qu,i ∨ ¬qv,i for all u, v ∈ [m] with u 6= v and all i ∈ [n].

3. ¬qu,i ∨ ¬qv,j ∨ pi,j for all u, v ∈ [m] with u 6= v and all {i, j} ∈
(

[n]
2

)

.

The set of clauses Colorn,l(~p,~r) is given by:

1.
∨

a∈[l] ri,a for all i ∈ [n].

2. ¬ri,a ∨ ¬ri,b for all a, b ∈ [l] with a 6= b, and all i ∈ [n].

3. ¬ri,a ∨ ¬rj,a ∨ ¬pi,j for all a ∈ [l], and all {i, j} ∈
(

[n]
2

)

.

For each n, set l(n) = b
(

n
8 log n

)2/5
c and m(n) = l2. Let CliqColn be the union of Cliquem,n(~p, ~q)

and Colorn,l(~p,~r).

The following facts follow immediately from Definition 7.1, and applications of Corollary 7 and
Lemma 11.

Lemma 24 Let n tend to infinity, with k = k(n) ∈ N.
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1. The number of variables in CliqColn is Θ(n2), the number of clauses in CliqColn is O
(

n2 (n/ log n)8/5
)

,

and the negative width of CliqColn is 3.

2. The number of variables in CliqColkn is Θ(kn2), and the number of clauses in CliqColkn is

O
(

k3n2 (n/ log n)8/5
)

.

3. The CNF perm(CliqColkn) contains Θ(kn2) many variables, and perm(CliqColkn) contains

O
(

k5n6 (n/ log n)8/5
)

many clauses.

7.1 Lower bound for OBDD refutations

Lemma 25 Let n ∈ N be given and let N be the number of variables in CliqColn. If there is a

size S OBDD refutation of perm
(

CliqCol4N3

n

)

), then there is a size SO(log N) monotone Boolean

circuit that separates Cliquen,m(~p, ~q) from Colorn,l(~p,~r), where l = b
(

n
8 log n

)2/5
c and m = l2.

Proof: Because 2N3

4N3 + N2

4N4−1
< 1, we may apply Lemma 14 and conclude that there is a size ≤ S

tree-like OBDD refutation of CliqColl,m,n with respect to an order that places all qu,i’s before all
pi,j’s, and all pi,j’s before all ri,a’s. By Theorem 4 there is a monotone Boolean circuit F of size at
most SO(log n) that separates Cliquen,m(~p, ~q) from Colorn,l(~p,~r).

Theorem 26 [27] There exists a constant c > 0 so that for all l,m, n satisfying 3 ≤ l < m and
m
√
l ≤ n

8 log n , every monotone Boolean circuit that separates Cliquen,m(~p, ~q) from Colorn,l(~p,~r)

has size at least 2c
√

l.

Combining Lemma 25 with Theorem 26 yields:

Lemma 27 Let n ∈ N tend to infinity, and let N be the number of variables in CliqColn. All
OBDD refutations of perm(CliqCol4N3

n ) have size 2NΩ(1)
.

Proof: Let S be the size of smallest OBDD refutation of perm(CliqCol4N3

n ). By Lemma 25, there
is a monotone circuit of size at most SO(log N) that separates Cliquen,m(~p, ~q) from Colorn,l(~p,~r),

where l = b
(

n
8 log n

)2/5
c and m = l2. Because m

√
l = l5/2 ≤

(

(

n
8 log n

)2/5
)5/2

= n
8 log n we may

apply Theorem 26 and conclude that every monotone Boolean circuit that separates Cliquen,m(~p, ~q)

from Colorn,l(~p,~r) has size at least 2Ω(
√

l) = 2Ω( 5
√

n/ log n). Therefore, S = 2NΩ(1)
.

By Lemma 24, when N = |V ars(CliqColn)|, the number of variables in perm(CliqCol4N3

n ) is
polynomial in the number of variables in ColGenn. Therefore, we have as a corollary:

Corollary 28 Let n ∈ N tend to infinity, let N be the number of variables in CliqColn, let M be
the number of variables in perm(CliqCol4N3

n ). All OBDD refutations of perm(CliqCol4N3

n ) have

size 2MΩ(1)
.
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7.2 Quasipolynomial size Res(O(logn)) refutations

Lemma 29 Let n ∈ N tend to infinity, and let N be the number of variables in CliqColn. There
is a Res(O(logN)) refutation of CliqColn of size NO(log N).

Proof: First, we reduce the task of refuting CliqColn to the task of refuting PHPm
l , where

l = b
(

n
8 log n

)2/5
c and m = l2. We simply define the PHP l2

l variables using a 2-DNF substitution,

as was done in [41, 9], and then apply Lemma 8 using the Res(O(log l)) refutations of PHP l2

l

demonstrated by Maciel, Pitassi and Woods [31].
Here is the reduction from CliqColn to PHPm

l : For u ∈ [m], v ∈ [l], define Pu,v =
∨n

i=1 qu,iri,v.
Note that for each u ∈ [m],

∨

v∈[l] Pu,v =
∨

v∈[l]

∨n
i=1 qu,iri,v is a positive 2-DNF. Furthermore, each

∨

v∈[l] Pu,v it can be derived from the Cliquem,n clauses of type 1 and the Colorl,n claues of type 1,

using an nO(1) size Res(2) derivation. For u, u′ ∈ [m] with u 6= u′, and v ∈ [l], ¬Pu,v ∨ ¬Pu′,v, can
be expressed as a conjunction n2 many clauses, each of negative width four: For each i, j ∈ [n],
¬qu,i∨¬ri,v ∨¬qu′,j ∨¬rj,v. These can be derived as from the clauses of Cliquem,n of types 2 and 3
and the clauses of Coll,n of types 2 and 3, using a nO(1) size Res(2) derivation.

Maciel Pitassi and Woods have demonstrated that PHP l2

l has a Res(O(log l)) refutation of size
lO(log l) [31]. Furthermore, a careful inspection of their proof reveals that it contains no negative
literals in compound terms, and that every line contains at most O(log l) many negative literals
(see Theorem 31 of the Appendix). Because the 2-DNFs Pu,v are positive, and each contains at

most n many terms, by Lemma 8, there is a Res(O(log l)) refutation of PHP l2

l (P ) of size at most
nO(log l).

Thus there is a Res(O(log l)) refutation of CliqColn of size at most nO(log l) = NO(log N).

Corollary 30 Let n ∈ N tend to infinity, let N be the number of variables in CliqColn, and
let M be the number of variables in perm(CliqCol4N3

n ). There is a Res(O(logM)) refutation of
perm(CliqCol4N3

n ) of size MO(log M).

Let n ∈ N be given, let N be the number of variables in CliqColn, and let M be the number of
variables in perm(CliqCol4N3

n ). Corollary 28 shows that OBDD refutations require size 2MΩ(1)
to

refute perm(ColGen4N3

d ), and Corollary 23 shows that Res(O(logM)) can refute perm(CliqCol4N3

n )
in sizeMO(1). Combining these two facts proves Theorem 2: OBDD refutations ofM -variable CNFs
cannot p-simulate Res(O(logM)).
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A Blowing up Res(k) refutations

Proof:(of Lemma 8) Let Γ be a Res(k0) refutation of F that has size at most S, negative width at
most w, and contains no negated literals in compound terms. We simply apply the transformation
that replaces each k0-DNF F of Γ by the (k0k1)-DNFs of ΣD(F ) and then patch things up to
preserve the inferences. By Corollary 6, the initial translation that replaces each F by ΣD(F )
increases the number of lines from S to at most mwS. In the analysis below, we show that each
formula in the translation needs at most 2mk0 many new lines to patch up its inference, thus the
net size of the derivation is at most 2mw+k0S.

Axioms: Every k0-DNF F ∈ F is replaced by the (k0k1)-DNFs of ΣD(F ), so the hypotheses of
the new derivation are indeed the DNFs of ΣD(F).

Subsumption inferences: From F with F ⊆ G, infer G. The characterization of Lemma 5
guarantees that in this case, every G′ ∈ ΣD(G) is subsumed by some F ′ ∈ ΣD(F ).

AND-introduction inferences : From F ∨ ∧i∈I1
xi, F ∨ ∧i∈I2

xi, . . . F ∨ ∧i∈Ij
xi, infer F ∨

(
∧

i∈I xi

)

, where I = I1 ∪ · · · ∪ Ij and |I| ≤ k. Note that the literals of the conjunction are all
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positive variables because Γ contains no negations inside compound literals. By Lemma 5,
we have that:

ΣD

(

F ∨
(

∧

i∈I

xi

))

= {F ′ ∨
∨

T∈
∏

i∈I Di

(

∧

i∈I

Ti

)

| F ′ ∈ ΣD(F )}

On the other hand, for each l = 1, . . . j:

ΣD



F ∨





∧

i∈Il

xi







 = {F ′ ∨
∨

T∈
∏

i∈Il
Di

(

∧

i∈I

Ti

)

| F ′ ∈ ΣD(F )}

Therefore, we can construct every (k0k1)-DNF of ΣD

(

F ∨
(

∧k
i=1 xi

))

by using a tree of at

most
∑k

j=0m
j < 2mk ≤ 2mk0 many AND-introduction inferences.

AND-elimination inferences: From F ∨
(
∧

i∈I xi

)

infer F ∨∨i∈J xi, where J ⊆ I and |I| ≤ k0.
Because Γ contains no negations inside compound terms, we may assume that each xi is
positive.

ΣD

(

F ∨
(

∧

i∈I

xi

))

= {F ′ ∨
∨

T∈∏k
i=1 Di

(

∧

i∈I

Ti

)

| F ′ ∈ ΣD(F )}

On the other hand:

ΣD

(

F ∨
(

∧

i∈J

xi

))

= {F ′ ∨
∨

T∈
∏

i∈J Di

(

∧

i∈J

Ti

)

| F ′ ∈ ΣD(F )}

Therefore, every DNF of ΣD(F∨
∨

i∈J xi) can be inferred from some DNF of ΣD

(

F ∨
(
∧

i∈I xi

))

by at most m|I| ≤ mk0 applications of AND-elimination.

Cut inferences: From F ∨ xi and G ∨ ¬xi, infer F ∨ G. Every DNF of ΣD(F ∨ G) is of the
form F ′ ∨G′ where F ′ ∈ ΣD(F ) and G′ ∈ ΣD(G). On the other hand, for each F ′ ∈ ΣD(F ),
F ′∨Di ∈ ΣD(F ∨xi), and for each DNF G′ ∈ ΣD(G), for each T ∈ Di, the clause G′∨∨l∈T ¬l
belongs to ΣD(G ∨ ¬xi). We apply cut-inferences with these at most m DNFs with F ′ ∨Di,
and we we obtain F ′ ∨G′.

B A resolution refutation of the ColGen principle

Proof:(of Theorem 21, as per [8]) For each c ∈ [n], j ∈ [d], resolve the clauses of the form
¬qd,j,c ∨ p1,1,c and ¬p1,1,c ∨¬rc to obtain ¬qd,j,c∨¬rc. Clearly these steps have negative width two.

Now derive ¬qi,j,c ∨ ¬rc for every (i, j) ∈ Pyrd and c ∈ [n]. This is done downwards for d to
1, the starting point is just ¬qd,j,c ∨ ¬rc, which we derived previously. After stage i + 1, we have
derived ¬qi+1,j,a ∨ ¬ra and ¬qi+1,j+1,b ∨ ¬rb, for each a, b ∈ [n]. For each c ∈ [n], esolve these
against ra ∨ rb ∨ ¬pa,b,c ∨ ¬rc to obtain ¬qi+1,j,a ∨ ¬qi+1,j+1,b ∨ ¬pa,b,c ∨ ¬rc, and resolve these new
clauses against ¬qi+1,j,a, ∨¬qi+1,j+1,b ∨¬qi,j,c ∨ pa,b,c to obtain ¬qi+1,j,a ∨¬qi+1,j+1,b ∨¬qi,j,c ∨¬rc.
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For each a, b ∈ [n], we resolve ¬qi+1,j,a ∨ ¬qi+1,j+1,b ∨ ¬qi,j,c ∨ ¬rc against
∨

a∈[n] qi+1,j,a, to obtain
¬qi+1,j+1,b ∨ ¬qi,j,c ∨ ¬rc. Then, for reach b ∈ [n], we resolve ¬qi+1,j+1,b ∨ ¬qi,j,c ∨ ¬rc against
∨

b∈[n] qi+1,j+1,a, to obtain ¬qi,j,c ∨ ¬rc. Notice that this phase has negative width a most 4.
Now, we have ¬q1,1,a ∨¬ra for all a ∈ [n]. For each a ∈ [n], resolve these against ¬pa,a,n ∨ ra to

obtain ¬q1,1,a ∨ ¬pa,a,n. Resolve these against ¬q1,1,a ∨ pa,a,n to obtain ¬q1,1,a. Now resolve these
against

∨

a∈[n] q1,1,a to obtain the empty clause. Clearly this final phase has negative width at most
two.

This refutation clearly has size nO(1).

C Refuting PHP l2

l

Theorem 31 [31] There exists c > 0, such that for every n > 1, there is a Res(dlog ne + 1)
refutation of PHPn2

n of size nc log n, such that no negated literal appears in a compound term, and
the negative width of every formula is at most 2 log n.

Proof: We just carry out the proof from [31] and keep track of the negative literals.
Let n > 1 be given. We show by induction on l = 0, . . . dlog ne, for every k, and every family

〈Qi,j | i ∈ [n2], j ∈ [2l]〉 of positive k-DNFS, the set of k-DNFs PHPn2

n ∪ PHPn2

2l (Q) has a

Res(l + k) refutation of size nO(k+l) with no negative literals in compound terms, and negative
width at most 2l + 2k. Specializing to the case of k = 1 and l = dlog ne proves Theorem 31.

For l = 0, note that PHPn2

1 has a resolution refutation of five lines with negative width two.
It immediately follows that for any positive k-DNFs 〈Qi,j | i ∈ [n2], j ∈ [2l]〉, PHPn2

1 has a Res(k)
refutation of size nO(k) with no negative literals in compound terms and negative width at most
2k.

Now, let l < log n be given, and assume that for every k, and every family of positive k-DNFs
〈Qi,j | i ∈ [n2], j ∈ [2l]〉, PHPn2

n ∪ PHPn2

2l (Q) has a Res(l + k) refutation of size nO(k+l) with no
negative literals in compound terms, and negative width at most 2l + 2k.

Let k be given and let 〈Qi,j | i ∈ [n2], j ∈ [2l+1]〉 be a family of positive k-DNFs. Partition [n2]
into n many sets of size n, A1, . . . Am. Partition 2l+1 into two sets of size 2l, B0 and B1.

Consider some m ∈ [n]. For each i ∈ Am, the formula
∨

j∈[2l+1]Qi,j can be written as
∨

j∈B0
Qi,j ∨

∨

j∈B1
Qi,j. For each i ∈ [n2], j ∈ B0, let let Ri,j be the (k+1)-DNF

∨n
t=1 xi,tQt,j. Us-

ing AND-introduction inferences and subsumption inferences, we derive
∨

j∈B0
Ri,j for each i ∈ [n2],

j ∈ B0. Furthermore, the set of clauses equivalent to ¬Ri0,j ∨ ¬Ri1,j, for i0, i1 ∈ [n2], with i0 6= i1,
and j ∈ B0, either follows by subsuming some ¬Qt0,j ∨ ¬Qt1,j (with t0, t1 ∈ [n], t0 6= t1) or by
subsuming some ¬xi0,t ∨ ¬xi1,t with t ∈ [n]. Therefore, we may apply the induction hypothesis to

refute PHPn2

n ∪PHPn2

2l (Q) has a Res(l + k + 1) refutation of size nO(k+1) with no negative literals
in compound terms, and negative width at most 2l+2k+2. By dragging along the side formulas, we
derive

∨

i∈Am

∨

j∈B1
Qi,j, using a Res(l + k + 1) derivation of size nO(k+1) with no negative literals

in compound terms, and negative width at most 2l + 2k + 2.
Perform the derivation of the preceding paragraph for eachm ∈ [n]. This derives

∨

v∈B1

∨

u∈Am
Qu,v

for each m ∈ [n]. Thus, we have derived PHPn
B1

(〈∨u∈Am
Qu,v | m ∈ [n]〉).

For each i ∈ [n2], j ∈ B1, let Ri,j be the (k + 1)-DNF
∨n

m=1 xi,m

(
∨

u∈Am
Qu,j

)

. We derive

PHPn2

B1
(〈Ri,j | i ∈ [n2], j ∈ [n]〉) from PHPn2

n ∪ PHPn
B1

(〈∨u∈Am
Qu,v | m ∈ [n]〉) as follows:

The formulas
∨

j∈[n]Ri,j for each i ∈ [n2] follow by applying AND-introduction and subsumption

inferences to the formulas
∨n

t=1 xi,t and
∨

j∈B1

∨

u∈Am
Qu,j. Each clauses in the deMorgan expansion
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of ¬Ri0,j ∨ ¬Ri1,j either follows by subsuming some ¬Qt0,j ∨ ¬Qt1,j (with t0, t1 ∈ [n], t0 6= t1) or
by subsuming some ¬xi0,t ∨ ¬xi1,t with t ∈ [n].

Therefore, we can apply the induction hypothesis to PHPn2

n ∪PHPn2

B1
(〈Ri,j | i ∈ [n2], j ∈ [n]〉)

and we have a Res(k + 1 + l) of size nO(k+1) with no negated literals in compound terms, and of
negative width at most k + l + 1.
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