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Abstract

We initiate the study of the tradeoff between the length of a probabilistically checkable proof
of proximity (PCPP) and the maximal soundness that can be guaranteed by a 3-query verifier
with oracle access to the proof. Our main observation is that a verifier limited to querying a
short proof cannot obtain the same soundness as that obtained by a verifier querying a long
proof. Moreover, we quantify the soundness deficiency as a function of the proof-length and
show that any verifier obtaining “best possible” soundness must query an exponentially long
proof.

In terms of techniques, we focus on the special class of inspective verifiers that read at most 2
proof-bits per invocation. For such verifiers we prove exponential length-soundness tradeoffs that
are later on used to imply our main results for the case of general (i.e., not necessarily inspective)
verifiers. To prove the exponential tradeoff for inspective verifiers we show a connection between
PCPP proof length and property-testing query complexity, that may be of independent interest.
The connection is that any property that can be verified with proofs of length ` by inspective
verifiers must be testable with query complexity ≈ log `.
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1 Introduction

This paper discusses the relationship between two basic parameters of probabilistically checkable
proofs of proximity (PCPPs) — their proof length and soundness. PCPPs were simultaneously
introduced in [BSGH+04] and (under the name assignment testers) in [DR04] and a similar notion
also appeared earlier in [Sze99]. The interest in PCPPs stems first and foremost from the role they
play within the proof of the celebrated PCP Theorem of [AS98, ALM+98]. All recent constructions
of PCPs, starting with [BSGH+04, DR04], use PCPPs to simplify the proof of the PCP theorem
and improve certain aspects of it, most notably, to decrease the length of proofs as in [BSGH+04,
BSS05, Din07]. All previous proofs of the PCP theorem implicitly use PCPPs and can be augmented
to yield them. (See, e.g., [BSGH+04, Theorem 3.2] for a conversion of the original PCP system
of [AS98, ALM+98] into a PCPP). But PCPPs are also interesting beyond the scope of the PCP
Theorem. They can be used to transform any error correcting code into a locally testable one and to
construct “relaxed” locally decodable codes [BSGH+04]. Additionally, as shown in [FF05, GR05],
they have applications to questions in the theory of “tolerant” property testing that was introduced
in [PRR06].

A PCPP verifier, (or, simply, verifier) for a property P ⊂ {0, 1}n is a randomized, sublinear-time
algorithm that distinguishes with high probability between inputs that belong to P and inputs that
are far in relative Hamming distance from all members of P . In this respect a verifier is similar to
a property-tester as defined in [GGR98]. However, in contrast to a tester, the verifier may query an
auxiliary proof, called a proof of proximity. A PCPP system has four basic parameters of interest,
described next — length, query complexity, completeness and a soundness function. The proof
length is the length of the auxiliary proof that is queried by the verifier1. The query complexity is
the maximal number of bits that can be read from both the input and the proof. The completeness
parameter is the minimal probability with which inputs that belong to P are accepted when they
are presented along with a “good” proof of proximity. Finally, the soundness function s(δ) is the
minimal rejection probability of inputs that are δ-far (in relative Hamming distance) from (all
members of) P , where the minimum is taken over all such δ-far inputs and all possible proofs that
may accompany them.2 (See Section 2 for a formal definition of PCPPs and further discussion of
their parameters).

1.1 Informal description of main results

To describe our results, let us discuss the range of parameters we can expect from a verifier for
a linear property over the binary alphabet, i.e., a property that is closed under addition modulo
2. (This amounts to saying P is a linear subspace of F

n
2 where F2 denotes the two-element field.)

We look at nonadaptive 3-query verifiers with perfect completeness, thereby fixing two of the four
basic parameters, and look at the tradeoff between proof length and soundness. We point out
that all known constructions of PCPPs naturally yield nonadaptive 3-query verifiers with perfect
completeness (see, e.g., Lemma 7.1), so the results described next apply to all of them.

Suppose we are interested in minimizing proof length. The results of [Din07, BSS05] give

1In PCP literature one often encounters randomness complexity as a means for bounding proof-length. The two
parameters are closely related, i.e., proof-length ≈ 2randomness and we stick to the former parameter.

2Often, in literature on PCPs, the term “soundness” refers to “soundness-error” which is defined to be the maximal

acceptance probability of a “bad” input. The connection between soundness (used here) and soundness-error, denoted
serror, is given by s = 1 − serror.
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constructions with proofs of length at most m · polylog n where m is the minimal size of circuit
deciding P . (Notice the linearity of P implies m = O(n2).) Regarding the soundness function,
consider a random word that can be shown to have, with high probability, distance δ ≈ 1

2 from P .
The “short PCPP” construction mentioned above gives s(δ) > ε for some small and unspecified
constant ε > 0 that depends only on δ and neither on P , nor on n.

Next, let us try to increase the soundness. We show in Theorem 2.7 that soundness can be
boosted to s(δ) ≥ δ and this soundness is obtained by a linear verifier. A verifier is called linear
if the set of answer-bits that cause it to accept forms a linear space. (For F2 this amounts to
saying the verifier accepts iff the sum (mod 2) of the queried bits is 0.) For such verifiers, it can
be shown that s(δ) is at most 1

2 and thus the soundness of our construction is optimal. On the
down side, the length of the proof used by this verifier is exponential in n. (We note in passing
that this soundness-optimal construction can be carried out over any finite field of prime size. See
Theorem 2.7 for details.)

To sum up the situation so far, we have constructions that are nearly optimal in length, but
are deficient in soundness and we have constructions that are optimal in soundness but deficient
in length. One could have conjectured (as we did before embarking on this research project) that
a “super-PCPP” with short proofs and optimal soundness exists. Our first main result, stated
in Theorem 2.8 and Corollary 2.9, rules this out. We show a tradeoff between proof length and
soundness that essentially matches our soundness-optimal construction. In plain words, for some
properties (discussed below) any PCPP verifier that queries a short proof of length ` must incur
a soundness deficiency, and this deficiency increases as ` decreases (see Definition 2.5 for a formal
definition of deficiency).

Our next main result, stated in Theorem 2.10 and Corollary 2.11, proves a tighter tradeoff
similar to the one mentioned above for the case of Fp-linear verifiers for Fp-linear properties over a
finite field of size p. Our results in this case are stronger even though the query complexity, when
measured in bits, is greater than 3 (however, the bits are read from three “blocks”, where each block
encodes a field element). Finally, our third main result, stated in Theorem 2.12 and Corollary 2.13,
presents essentially the same kind of exponential tradeoff between soundness and proof length for
a natural generalization of linear verifiers, called unique verifiers (see Definition 2.2).

So far we have not specified which properties cause this kind of tradeoff to arise, i.e., which
properties are “hard to verify”. The culprits are properties that are “hard to test”. Informally,
we say that P ⊂ {0, 1}n is “hard to test” if any property-tester for P (as defined in [GGR98])
that rejects (say) 1

3 -far inputs with probability greater than (say) 1/100 requires query complexity
q � 3. Our main theorems (Theorems 2.8, 2.10 and 2.12) show an exponential tradeoff between
the property-testing query complexity q and the minimal length of a 3-query verifier with large
soundness (say, achieving soundness function s(δ) ≥ δ − 1/100). In a certain sense we show that
any property that is hard to test is also hard to verify. Next, we briefly explain why we believe our
results are interesting.

1.2 Context and motivation

We are motivated by the attempt to understand the limitations of PCP constructions. One in-
teresting open question related to our research is that of obtaining 3-query PCPs with quasilinear
length, completeness 1 − ε and soundness 1

2 − ε for any language in NP. For the sake of ref-
erence, we informally call such a construction a “super-PCP”. The celebrated result of [H̊as97]
obtains three out of four of these parameters (the proof length there is a (very large) polynomial).
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Numerous other works such as [GLST98, HK01, ST00, EH05, KS06, ST06], to name a few, in-
vestigate optimal, or nearly optimal, tradeoffs between the three parameters of query complexity,
completeness and soundness, while settling for polynomial length proofs. A different line of research
focused on optimizing the tradeoff between proof length and query complexity [PS94, HS01, GS02,
BSSVW03, BSGH+04, BSS05, Din07, MR06, MR07] and all of these constructions obtain perfect
completeness. Several of these works, most notably [HS01, GS02, MR06, MR07], also strive to
simultaneously optimize the fourth parameter, soundness, but have stopped short of constructing
a “super-PCP”.

Our results show why a certain natural class of PCP constructions will not be suitable for
reaching our goal. All constructions of “short” PCPs (i.e., with proof length n1+o(1) for NP
instances of size n) start by encoding a witness for an NP-instance by some good error correcting
code, usually based on univariate or multivariate polynomials. These codes are inherently “hard
to test” because they have relatively high degree and are converted into locally testable codes by
composition with a PCPP. Our results show that no matter how one tries to compose such codes
with a PCPP, the resulting soundness will not come close to 1

2 unless the proof is exponentially
long! If a different error correcting code will someday replace the aforementioned codes as a starting
point for PCP constructions, our results imply this code had better be locally testable, at least if
we hope to use it to obtain a “super-PCP” construction.

This work can also be placed within the larger context of the study of limitations of PCPs and
objects related to them. There are preciously few results that give nontrivial tradeoffs between
the basic parameters of a PCP system. One notable example presented in [Zwi98] shows that the
soundness of a 3-query PCP verifier with perfect-completeness cannot exceed 3/8 unless NP ⊆
BPP. A larger number of works try to understand the limitations of PCP systems by either (i)
showing limitations of specific techniques used in PCP constructions, or (ii) proving limitations on
computational and combinatorial objects that are closely related to PCPs. Along the first line of
research one can mention [FK95] that shows limitations on derandomizing the parallel repetition
method of [Raz98] and [Bog05] that shows upper bounds on the soundness that can be obtained
from the gap amplification technique of [Din07]. The second line of research includes the study of
the limits of various basic parameters of locally decodable codes [KT00, KdW03], locally testable
codes [BSGS03], unique games [Kho02, Tre05, CMM06] and a large number of results regarding the
limits of property testing (see the survey [Fis01] for further information). Our work resonates with
both of these lines of research because PCPPs are computational objects that are closely related to
PCPs and constitute the method of choice for constructing them. We also hope that the research
initiated here will contribute to a better understanding of the inherent limits of the magical PCP
theorem.

Last but not least, the actual soundness parameter one obtains from a small query PCPP (and
the PCPs and LTCs resulting from it) may someday in the future deem whether such objects can
be put to practical use in proof checking (à la [BFLS91]), communication and cryptography (as in
[Kil92, Mic00]). Therefore, the study of tradeoffs between soundness and proof length is of inherent
importance.

1.3 Proof techniques

Inspective PCPPs Consider a 3-query verifier that rejects inputs that are δ-far from P with
probability ≈ δ. At first sight it may seem that reaching soundness s(δ) ≥ δ is impossible because
such high soundness forces the verifier to make at least one out of three queries to the input,
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leaving only two queries for “checking” the proof. Indeed, a verifier that seldom queries the input
can easily be fooled to accept with high probability a “legitimate” proof accompanying an input
that is δ-far from P . The need to look at the input naturally leads us to define an inspective verifier
as one that inspects the input on every invocation. Formally, an inspective verifier is one that
makes at most two queries to the proof; all other queries are to the input.3 Our main positive
result, Theorem 2.7, says that every Fp-linear property over a prime field of size p has a 3-query
Fp-linear inspective verifier with soundness function s(δ) ≥ δ and proof length at most pdim(P ).
“Good” proofs for inputs w ∈ P turn out to be certain “folded” Hadamard codewords and we
analyze soundness using the Fourier analytic approach to linearity testing that was introduced in
[BCH+95]. (See Section 3 for more details.) The soundness obtained by the verifier of Theorem 2.7
is the bench-mark against which we measure all other 3-query verifiers and next we describe how
we prove that short proofs lead to soundness-deficiency with respect to this benchmark.

Exponential tradeoffs between soundness and proof length for inspective PCPPs All
our results about the soundness deficiency of short PCPPs are based on exponential tradeoffs
between soundness and proof length for inspective PCPPs. Since these results are similar in spirit
let us describe how we obtain them in the simplest setting — that of F2-linear verifiers. The actual
proofs have a few additional subtle details that we brush aside in the following informal description.

Roughly speaking, we show that if the linear property P ⊂ F
n
2 has a linear inspective verifier

that makes q queries4 to a proof of length ` and achieves soundness function s(δ), then for every
ε > 0 the property P has a tester, i.e., a proofless verifier that queries only input bits, with
query complexity O((q log `)/ε) and soundness function s(δ) − ε. The contrapositive formulation
for δ ≈ 1/2 and ε = 0.01 gives the following statement. Suppose P is “hard to test”, i.e., any tester
for P with large soundness requires large query complexity. Then any inspective linear verifier for
P with small query complexity must use proofs of exponential length. Examples of “hard to test”
properties include most random Low Density Parity Check (LDPC) codes as defined in [Gal62]
and linear spaces P for which the dual space, denoted P ∗, has no elements of small support (in
coding terminology, P is a linear code with large dual distance). As mentioned earlier, most error
correcting codes actually used as the starting point for constructing PCPs, PCPPs and LTCs fall
within this latter class.

From inspective to general PCPP tradeoffs Given the exponential tradeoff between sound-
ness and proof length for inspective verifiers, the proof of our main results (stated in Section 2)
goes along the following lines. A verifier is forced to choose between two “bad” options. Either the
probability that it reads only proof-bits is large. In this case we fool it by presenting a legitimate
proof for some word and capitalize on the fact that the verifier seldom looks at the input (that
is δ-far from P ). Otherwise, the probability that the verifier makes an inspective query is large.
In this case we use the tradeoff for the inspective case to fool verifiers that use short proofs. In
either of these two cases we manage to fool the verifier into accepting words that are δ-far from P
with probability ≈ 1 − δ/2, i.e., the soundness-deficiency of short-proof verifiers when compared

3Alternatively, an inspective verifier could be defined as one that makes at least one query to the input. For query
complexity 3 the two definitions coincide, but for larger query complexity there is a big difference. In particular,
our main technical lower bound can be extended to any q-query inspective PCPP, as long as we limit the number of
proof-queries to be at most two.

4Our tradeoffs for inspective PCPPs hold for query complexity larger than 3, even though for the proof of our
three main theorems query complexity 3 suffices.
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to the exponential length verifier of Theorem 2.7 is ≈ δ/2. To complete the overview of our proof
techniques we describe next how we obtain exponential length-soundness tradeoffs for inspective
verifiers.

Proving Tradeoff Theorems for inspective verifiers Informally, we convert a q-query in-
spective verifier for P that uses a proof of length ` and obtains soundness function s into a proofless
tester with query complexity O(q log `)/ε and soundness s − ε. We start by noticing that an in-
spective verifier gives rise to a natural induced labeled multigraph. The vertices of this graph are
indices of proof bits, so the number of vertices equals the length of the proof. For simplicity assume
each query-tuple reads exactly two bits of the proof. Thus, each query-tuple defines an edge whose
endpoints are the proof bits read and we label this edge by the set of indices of input bits read
when making the query. (The resulting graph may have multiple edges between two vertices and
these edges may have different labels.). Notice the induced graph is actually a representation of
the verifier in the sense that a single invocation of the verifier corresponds to picking a random
edge in the graph and making the set of queries given by the names of the end-vertices and the
edge-label. More to the point, the labeled graph also constitutes a “partially-defined” constraint
graph, meaning that if all input bits are read then the resulting set of constraints (over proof bits)
forms a constraint satisfaction problem with two-variables per constraint.

We apply a decomposition lemma (Lemma 5.4) due to [LR99] to the constraint graph and
remove some of its edges. The decomposition lemma guarantees that if the graph was small to
start with (i.e., the proof was short), then after removing a tiny fraction of edges we are left with
disconnected components of small radius5. The “decomposed” graph corresponds to a new linear
inspective verifier whose soundness has not decreased significantly because it makes pretty much
the same queries as the original verifier. Our analysis is completed (in Lemma 5.3) by showing that
inspective PCPPs whose induced graph has radius R can be converted with no loss in soundness
into (proofless) testers with query complexity O(R). Summing up, if the proof is short to start
with, then its decomposed graph has small radius, hence P has a (proofless) tester with small query
complexity and good soundness.

The decomposition lemma mentioned above was previously used in a closely related context
in [Tre05] to provide algorithms for approximating unique games. We use it for similar purposes,
namely, for analyzing constraint graphs, but our setting differs from that of [Tre05] in three impor-
tant aspects. First, in our setting the constraints that label edges of the constraint graph are not
given to the verifier. Only the structure of the graph itself is known in advance. This difference
also explains why the techniques relying on linear and semidefinite programming that were used
in [Kho02, Tre05, CMM06, GT06] do not seem appropriate for our setting. The second difference
is that for our constraint graphs that are induced by 3-query verifiers, perfect completeness can
be assumed. In the context of the unique games conjecture, assuming perfect completeness makes
the problem trivial to solve. Finally, we use the decomposition lemma to construct a tester for the
constraint graph rather than just decide if the constraint graph is close to be satisfiable.

We end our discussion of the proof techniques by pointing out Lemma 4.2, a generalization
of the decomposition lemma to the case of non-unique constraint graphs. This lemma, which is
required for obtaining our main result for general verifiers (Theorem 2.8), may be of independent
interest. It says that any 2-CSP with ` constraints over the binary alphabet that is ε-far from being

5The radius of a connected graph is the minimum maximal distance between any vertex and any other vertex (i.e,
rad(G) = minv maxu d(u, v), where d(u, v) denotes the distance between the vertices u and v.
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satisfiable, must contain a contradiction with O(log `/ε) constraints.

Paper organization In the next Section we give formal definitions and statements of our main
results. Section 3 constructs 3-query verifiers with optimal soundness and exponentially long proofs.
Sections 4–6 prove our main tradeoffs for general, linear and unique verifiers respectively. We end
by arguing in Section 7 that all known PCPP constructions give rise to linear (and hence also
unique) verifiers.

2 Definitions and Main Results

We start by recalling the basic definitions and parameters of a PCPP system. Then, in Subsec-
tion 2.2 we introduce and define the best soundness and the soundness deficiency which are the
quantities we use to measure the tradeoff between proof length and soundness. In Subsection 2.3
we summarize our main results for the three cases of (i) general PCPPs over the binary alphabet,
(ii) linear PCPPs over finite fields, and (iii) unique PCPPs. Finally, in Subsection 2.4 we formally
define inspective PCPPs and state the tradeoffs for these PCPPs.

2.1 Probabilistically Checkable Proofs of Proximity (PCPPs)

Recall the basic task of property testing. Let Σ be a finite alphabet. A set P ⊆ Σn is called a
property of length n over Σ. We are interested in deciding the promise problem whose set of YES
instances is P and whose set of NO instances is NOδ0 = {w ∈ Σn | δ(w,P ) > δ0}, where δ(·) denotes
fractional Hamming distance and δ0 is called the proximity parameter. The decision should be made
after making a small number of queries into the input word w ∈ Σn and the decision should be
correct with high probability. (More information on property testing can be found in [GGR98] and
in the survey [Fis01].)

In the context of proximity testing we try to decide the very same promise problem but the
difference is that we allow oracle access to an additional proof of proximity π ∈ Σ` of length `,
and restrict the total number of queries that can be made to both w and π. A randomized query-
restricted algorithm deciding the property testing problem is called a tester and when we allow
oracle access to a proof we call it a verifier. The formal definition follows. (See [BSGH+04] for
more information on PCPPs.)

To simplify exposition we view w, π as functions from [n] = {1, . . . , n} and from [n + 1, n + `] =
{n + 1, . . . , n + `} respectively to Σ and define the word-proof pair as the function (w◦π) : [n+`]→
Σ that is the concatenation of w and π. We call (w ◦ π)[i] a word-symbol whenever i ≤ n and a
proof symbol when i ∈ {n + 1, . . . , n + `}. For a set of indices I ⊆ [n + `] let (w ◦ π)|I : I → Σ
denote the restriction of w ◦ π to I.

Definition 2.1 (Verifier, Tester). A query of size q into a word of length n and proof of length ` is a
pair Q = (I, C) where I ⊆ [n+`], |I| ≤ q denotes the query’s index-set and C : ΣI → {accept, reject}
is the query’s constraint. Given word w and proof π let Q(w ◦π) = C((w ◦ π)|I). A (q, n, `)-verifier
for a property of length n is a pair V = 〈Q,D〉 where

• Q is a finite set of queries of size at most q into a word of length n and proof of length `.

• D is a distribution over Q. We use Q ∼D Q to denote that Q is sampled from Q according
to distribution D.
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A q-tester is a (q, n, 0)-verifier, i.e., a verifier that queries only the input.

Often we will restrict our attention to a subclass of verifiers that use special kinds of constraints.
In particular, we will be interested in unique and linear verifiers, defined next.

Definition 2.2 (Unique and linear verifiers). A query Q = (I, C) is called unique if for every set
of |I| − 1 answers to |I| − 1 queries, there exists a unique answer to the missing query that satisfies
the constraint. Formally, for all i0 ∈ I and aij ∈ Σ, ij ∈ I \ {i0} there exists a unique b ∈ Σ such
that C(ai1 , . . . , ai0−1, b, ai0+1, . . . , ai|I|) = accept.

A query is called F-linear if Σ = F is a finite field and the set of assignments accepted by the
query-constraint forms an F-linear space.

A verifier is called unique, (F-linear, respectively) if all its queries are unique (F-linear, respec-
tively). Let uniqV, F-linV denote the set of unique, F-linear verifiers, respectively.

Notice that without loss of generality, F-linear verifiers are unique (this assumption is justified
by removing from each query’s index-set the set of indices upon which the query-constraint does
not depend). The use of the term unique is justified by noticing that if we assign all but two indices
of a unique constraint, the restricted binary constraint is “unique” according to the definition of
this term in [Kho02].

Informally, if a (q, `)-verifier solves the promise problem associated with P “with high proba-
bility” then we say P “has a PCPP” (with query complexity q and length `). The completeness
and soundness parameters quantify the success probability of the verifier. The formal definition
follows.

Definition 2.3 (PCPP, Testability). A property P ⊂ Σn is said to have a PCPP of length `, query
complexity q, completeness parameter c and soundness function s : (0, 1] → [0, 1] if there exists a
(q, n, `)-verifier for the property satisfying the following pair of requirements.

• Completeness: For all w ∈ P ,

max
π∈Σ`

Pr
Q∼DQ

[Q(w ◦ π) = accept] ≥ c.

If c = 1, we say the verifier has perfect completeness.

• Soundness: For all w ∈ Σn \ P ,

min
π∈Σ`

Pr
Q∼DQ

[Q(w ◦ π) = reject] ≥ s(δ(w,P )),

where δ(w,P ) denotes the minimal fractional Hamming distance between w and an element
of P .

If P has a PCPP of length 0, query complexity q, completeness parameter c and soundness function
s, we say that P is q-testable with completeness c and soundness s.

A verifier is said to be adaptive if it’s query indices depend on answers given to previous queries.
The verifier defined above is nonadaptive. All results in this paper refer to nonadaptive verifiers
with perfect completeness. We point out that all known PCPP constructions use nonadaptive
verifiers and achieve perfect completeness so our deficiency bounds, stated next, apply to all of
them (see Section 7 for further discussion).
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2.2 Soundness Deficiency

We study the tradeoff between proof length and soundness. Our aim is to show that short PCPPs
cannot attain the same soundness as long ones. To quantify this tradeoff we start by defining the
best soundness that can be obtained by a class of verifiers with restricted proof length.

Definition 2.4 (Best Soundness). Let P ⊆ Σn be a property. For integers q, ` and δ ∈ [0, 1], define
the best soundness SP (q, `, δ) to be the maximum — taken over all (q, n, `)-verifiers V — of the
soundness of V with respect to inputs that are δ-far from P . Formally,

SP (q, `, δ) = max
(q, n, `)-verifiers

min
w◦π∈Σn+`, δ(w,P )=δ

Pr
Q∼DQ

[Q(w ◦ π) = reject].

The best tester soundness is SP (q, 0, δ).
The best soundness with respect to a class of verifiers V, denoted SP

V (q, `, δ), is defined by taking
the maximum above over all (q, n, `)-verifiers in V. Notice that SP

V (q, `, δ) ≤ SP (q, `, δ).

The soundness-deficiency, defined next, is the reduction in best soundness incurred by 3-query
verifiers limited to using short proofs.6 As customary in computational complexity, we measure the
asymptotic deficiency over a family of properties of increasing length. In the remark following the
definition, we further explain the need for complexity assumptions.

Definition 2.5 (Soundness deficiency). For P = {P ⊆ Σn | n ∈ Z
+} a family of properties, V a

class of verifiers and ` : Z
+ → Z

+ a function measuring proof length, let the soundness-deficiency
be the function measuring the decrease in soundness due to limited proof length. Formally, it is a
function from (0, 1] to [0, 1] defined by

s-Def.V[P, `](δ) = lim inf
n→∞

SPn
V (3,∞, δ) − SPn

V (3, `(n), δ) .

For C a complexity class and L a family of complexity functions, let s-Def.V[C,L](δ) be the maximal
soundness deficiency function taken over all P ⊆ C and ` ∈ L. Let in addition max-s-Def.V[C,L] =
maxδ∈(0,1] s-Def.V[C,L](δ) be the maximal value that this function obtain over all δ ∈ (0, 1]. As
before, whenever there is no restriction to a specific class of verifiers, the subscript V is omitted.

Remark 2.6 (Complexity restrictions). If no restriction is placed on the complexity of P, then one
may end up with trivial and uninteresting results. For instance, if Pn ⊂ {0, 1}

n is random, then
with high probability any nondeterministic circuit deciding the promise problem associated with
Pn requires size 2Ω(n/ log n). This implies that there are no constant query PCPPs with positive
soundness and proof length 2o(n/ log n). Thus, to get meaningful results, we focus on properties
P ∈ P/poly for which the existence of polynomial-length PCPPs is guaranteed.

2.3 Summary of Results

In this section, we summarize our main results bounding the maximum soundness deficiency for
three different classes of verifiers – general verifiers, linear verifiers and unique verifiers. Deficiency
bounds are obtained by bounding from below the soundness of inspective verifiers that have access

6The definition could be naturally generalized to query complexity greater than 3. However, since all our results
are limited to q = 3 we omit the query complexity parameter to simplify notation.
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to long proofs and then bounding from above the soundness obtained by verifiers limited to short
proofs. The next theorem shows the first bound, namely, that large soundness is obtainable if no
restriction is placed on proof length. Its proof is based on the Fourier analytic approach introduced
in [BCH+95] and appears in Section 3.

Theorem 2.7 (Best soundness with unbounded proof length). Let Fp be a prime field. Every Fp-
linear property P ⊆ F

n
p has a 3-query Fp-linear verifier using a proof of length ≤ |F|dim(P ) ≤ |F|n

that achieves soundness function s(δ) ≥ δ. Formally,

SP
linV

(

3, |Fp|
dim(P ), δ

)

≥ δ.

2.3.1 Deficiency of short PCPPs

Our first main theorem says that for some properties, proofs of sub-exponential length incur con-
stant soundness-deficiency. This deficiency can be reduced, but only at the expense of using expo-
nentially long proofs.

Theorem 2.8 (Main). Let α ∈ (0, 1) be a positive constant and let P , {Pn ⊆ {0, 1}
n : n ∈ Z

+}
be a family of binary linear properties (codes) with dual distance7 at least αn. The properties in
P have no sub-exponential PCPP’s achieving soundness larger than 1/3. Namely, for every ε > 0
there are β > 0 and n0 ∈ N such that for any property Pn ∈ P, n > n0 the following is satisfied for
all δ ∈ [0, 1]:

SPn

(

3, 2βn, δ
)

≤
1

3
+ ε.

We show in Theorem 2.7 that every (in particular) binary linear property P ⊆ {0, 1}n of
dimension k ≤ n has a (3, 2k)-verifier with soundness function s(δ) ≥ δ. This implies constant
deficiency for short PCPPs over the binary alphabet as formalized in the following corollary.

Corollary 2.9 (Soundness deficiency). Let SUBEXP denote the set of sub-exponential functions,
i.e., functions satisfying f(n) = 2o(n). There exists a family P of linear properties over the binary
alphabet such that

s-Def.[P,SUBEXP](δ) ≥ δ −
1

3
.

Consequently, since there are words that are roughly 1
2-far from P, the maximal deficiency with

sub-exponential proofs is at least 1
6 , i.e.,

max-s-Def.[P/poly,SUBEXP] ≥
1

6
.

2.3.2 Deficiency of short Linear PCPPs

Our next main theorem presents stronger deficiency bounds for linear PCPPs and states the
following intuitively appealing implication: Let p be a prime. Every Fp-linear property that is
“untestable” — in the sense that testers with small query complexity for it have low soundness
— is also ”unverifiable”, i.e., 3-query Fp-linear verifiers with short proofs must incur a large loss
in soundness. Limiting our attention to linear verifiers seems natural in light of the fact that all
current PCPP constructions produce linear verifiers for linear properties, as argued in Section 7.

7The dual distance of a linear property P is defined to be the minimal support-size of a nonzero vector in the
space dual to P .

9



Theorem 2.10 (Main, linear case). Let P ⊆ F
n be a F-linear property. Let s[`](δ) denote the best

soundness of a (3, `)-linear verifier for P , i.e., s[`](δ) = SP
linV (3, `, δ). Let t[q](δ) denote the best

soundness of a q-tester for P , i.e., t[q](δ) = SP (q, 0, δ). Then

s[`](δ) ≤ min
ε>0

{

t

[

36 log `

ε

]

(δ) +
1

2
·

(

1−
1

|F|
+ ε

)}

.

Using Theorem 2.7 again for arbitrary prime p we get the following bound on the deficiency of
linear verifiers.

Corollary 2.11 (Soundness deficiency, linear case). Let SUBEXP denote the set of subexponential
functions, i.e., functions satisfying f(n) = 2o(n). For every prime field Fp there exists a family of
Fp-linear properties P such that

s-Def.Fp−linV[P,SUBEXP](δ) ≥ δ −
1

2
·

(

1−
1

p

)

.

Consequently, the maximal deficiency of linear verifiers with sub-exponential proofs is at least 1
2 ·

(1− 1/p). In other words,

max-s-Def.Fp−linV[Fp − linear,SUBEXP] ≥
1

2
·

(

1−
1

p

)

.

We point out that even if we restrict our attention to families of linear properties with constant
dual distance, the soundness deficiency can be very large. This last point is explained in detail in
the proof of Corollary 2.11.

2.3.3 Deficiency of short unique PCPPs

Our last main theorem generalizes Theorem 2.10 to the case of arbitrary unique verifiers (of which
linear verifiers are a special case).

Theorem 2.12 (Main—Unique case). Let α ∈ (0, 1) be a positive constant and let P , {Pn ⊆ F
n :

n ∈ N} be a family of F-linear properties (codes) with dual distance at least αn. For every ε > 0,
there exists a β > 0 and n0 ∈ N such that for any property Pn ∈ P, n > n0 the following is satisfied
for all δ ∈ (0, 1]:

SPn
uniqV

(

3, 2βn, δ
)

≤
2(1 + ε)

3
·

(

1−
1

|F|

)

.

As before, we use the fact that for prime p, every Fp-linear property has a high-soundness linear
(hence unique) verifier, as long as proof length is unlimited. This implies the following bound on
deficiency of unique verifiers.

Corollary 2.13 (Soundness deficiency, unique case). Let SUBEXP denote the set of sub-exponential
functions, i.e., functions satisfying f(n) = 2o(n). For every prime field Fp there exists a family of
Fp-linear properties P such that

s-Def.Fp−uniqV[P,SUBEXP](δ) ≥ δ −
2

3
·

(

1−
1

p

)

.

Consequently, the maximal deficiency of unique verifiers with sub-exponential proofs is at least
1
3 · (1− 1/p), or formally,

max-s-Def.Fp−uniqV[Fp − linear,SUBEXP] ≥
1

3
·

(

1−
1

p

)

.
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2.4 Inspective PCPPs

The deficiency bounds stated above follow from much stronger bounds on the soundness achieved
by a special family of inspective verifiers, defined next. Informally, inspective verifiers are called so
because every 3-query they make inspects the word w in at least one location.

Definition 2.14 (Inspective PCPP). A query Q = (I, C) is called inspective if its index-set involves
at most two symbols of the proof, i.e., |I ∩ [n + 1, n + `]| ≤ 2. We refer to the above quantity as the
inspective size (i-size) of the query Q.

A verifier V = 〈Q,D〉 is said to be inspective if all its queries are inspective. We denote by Vi

be the set of inspective verifiers, by linVi the set of inspective linear verifiers and by uniqVi the
set of inspective unique verifiers.

A property P ⊂ Σn is said to have a inspective PCPP of length `, query complexity q and
soundness function s : (0, 1] → [0, 1] if there exists a (q, n, `)-inspective verifier with soundness
function s. Inspective linear PCPPs and inspective unique PCPPs are similarly defined.

Remark 2.15. We note that the linear verifier mentioned in Theorem 2.7 is in fact a inspective
verifier that makes inspective queries of size exactly two. Thus, SP

linVi

(

3, |Fp|
dim(P ), δ

)

≥ δ.

The main technical components in the proofs of Theorems 2.8, 2.10 and 2.12 are the following
respective upper bounds on the soundness of inspective verifiers limited to querying only short
proofs. The proof of these theorems rely on defining a natural inspective graph (Definition 4.5) and
applying a decomposition lemma to it. In the case of general PCPPs over the binary alphabet we
use Lemma 4.2 and in the remaining two cases we apply Lemma 5.4 which is very similar to the
original decomposition lemma of [LR99].

Definition 2.16 (d-Universal Properties). A property P ⊆ Σn is d-universal if for all subsets
I ⊂ [n], |I| ≤ d, the restriction of P to I equals ΣI , i.e., {w|I | w ∈ P} = ΣI . Observe that any
linear property P with dual distance d is also d-universal.

Theorem 2.17 (Best soundness with inspective verifiers). Let P ⊆ {0, 1}n be a d-universal prop-
erty, and let q ∈ Z

+. Let si denote the best soundness of a (q, `)-inspective verifier for P , i.e.,
si(δ) = SP

Vi
(q, `, δ). Then for every δ ∈ [0, 1],

si(δ) ≤ min
ε>0

{

4 log(ε−2(n + `))
d

q−1 − 2
+ ε

}

.

Theorem 2.18 (Best soundness with inspective linear verifiers). Let P ⊆ F
n be a F-linear prop-

erty. Let si(δ) denote the best soundness of a (3, `)-linear inspective verifier for P , i.e., si(δ) =
SP

linVi
(3, `, δ). Let t[q](δ) denote the best soundness of a q-tester for P , i.e., t[q](δ) = SP (q, 0, δ).

Then

si(δ) ≤ min
ε>0

{

t

[

36 log `

ε

]

(δ) + ε

}

.

Theorem 2.19 (Best soundness with inspective unique verifiers). Let P ⊆ Σn be a property. Let si

denote the best soundness of a (3, `)-unique inspective verifier for P , i.e., si(δ) = SP
uniqVi

(3, `, δ).

Let t[q](δ) denote the best soundness of a q-tester for P , i.e., t[q](δ) = SP (q, 0, δ). Then

si(δ) ≤ min
ε>0

{

4t

[

8 log `

s(δ)− ε
· ln (2 ln |Σ|)

]

(δ) + ε

}

.
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3 Long PCPPs with best possible soundness

In this section, we will prove that any Fp-linear property P ⊆ F
n
p over a prime field Fp has a 3-query

linear inspective PCPP of length at most pdim(P ). Furthermore, the soundness of this verifier on
words that are δ-far from P satisfies s(δ) ≥ δ, thereby proving Theorem 2.7. We point out that if
P is “nontrivial”, meaning there is no i ∈ [n] such that wi = 0 for all w ∈ P , then the soundness
of linear verifiers can be shown to be bounded from above by 1 − 1/p. This shows that for δ
approaching 1−1/p the term “best possible” aptly describes the soundness function of our verifier.

3.1 Fourier transform – preliminaries

We interpret Zp as the multiplicative group of pth complex roots of unity. Let ω , e
2πi
p , and let

µp = {ω0, ω1, . . . , ωp−1} be the pth complex roots of unity. For every α = (α1, . . . , αn) ∈ Z
n
p we

define the function χα : Z
n
p → C as

χα(x1, . . . , xn) = ω(x·α) = ω
∑

i xiαi

For two functions f : Z
n
2 → C and g : Z

n
p → C, we define their inner product as

〈f, g〉 ,
1

pn

∑

x∈Zn
p

f(x) · g(x) = Ex∈Zn
p

[

f(x) · g(x)
]

It is easy to verify that the functions χα : Z
n
p → C are orthonormal with respect to this inner

product. Namely, that for every α ∈ Z
n
p ,

〈χα, χα〉 = 1

and for every α, β ∈ Z
n
p , α 6= β,

〈χα, χβ〉 = 0

Therefore the functions {χα}α∈Zn
p

form a basis for the space of functions f : Z
n
p → C (the dimension

of which is exactly pn). Hence, every function f : Z
n
p → C can be written as a linear combination

of the elements of this basis
f(x) =

∑

α

f̂α · χα(x)

where the coefficients f̂α (called the Fourier coefficients of f) are defined as follows:

f̂α = 〈f, χα〉

We have the following equality (Parseval’s identity)

∑

α∈Zn
p

|f̂α|
2 = 〈f, f〉 = Ex∈Zn

p

[

|f(x)|2
]

.

and in particular, if f : Z
n
p → µp, then

∑

α∈Zn
p
|f̂α|

2 = 1 and for all α, |f̂α| ≤ 1.

We also have the following useful lemma.

Lemma 3.1. Let η ∈ µp be a pth root of unity. Then the sum
∑

i∈[p]\{0} ηi equals p − 1 if η = 1,
and it equals −1 for any η 6= 1.
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3.2 Proof of Theorem 2.7

Let P ⊆ Z
n
p be a Zp-linear space of dimension k. Fix G ∈ Z

n×k
p to be a matrix such that P equals

the span of columns of G so that

P = {w : ∃x ∈ Z
k
p such that w = Gx}.

Let gi ∈ Z
k
p denote the ith row of G. Thus, if w = Gx, we have that wi = (gi · x) for all i. In the

terminology of error correcting codes G is a generating matrix for the [n, k]p-code P and so we refer
to elements w ∈ P as “codewords”.

For every x ∈ Z
k
p we denote by Hx : Z

k
p → C the Hadamard encoding of x, which is defined as

Hx(y) = ω(x·y) = ω
∑

i xiyi . The function Hx can be explicitly written as a vector of values (of the

exponents) in Z
pk

p . However, the following folded representation of Hx will be simpler to analyze.

We partition the set Z
k
p \ {0} into disjoint classes of the form

{

j · y : j ∈ {1, . . . , p − 1}
}

, each

of size p − 1. Then for each of these classes we chose one of its elements as a representative, and
eventually we keep the values of Hx only for these representative elements. Now we can extract
the value of Hx(y) for every y ∈ Z

k
p as follows.

• If y = 0 then Hx(y) = ω0 = 1.

• If y is one of the representatives, then we read the appropriate value according to the folded
encoding.

• Otherwise, we find a representative u and j such that y = j ·u, we read Hx(u) by the previous

rule, and set Hx(y) =
(

Hx(u)
)j

.

Since Hx is a linear function, these extraction rules are consistent with the original function.
For every codeword w ∈ P , we denote by xw ∈ Z

k
p the vector that satisfies w = Gxw, and we

denote by πw : Z
k
p → C the Hadamard encoding of xw, i.e. πw = Hxw . We assume that πw is

represented in its folded form, so the actual representation of πw takes pk−1
p−1 values in Zp. Note

that the value of πw on 0 is not kept in the folded representation.
Consider the following 3-query linear inspective verifier V for P

Inspective Verifier V

Input (as oracles): w ∈ Z
n
p , π : Z

k
p → C

1. Choose y ∈ Z
k
p and i ∈ [n] uniformly at random

2. Output accept if and only if π(y) · ωwi = π(y + gi)

Claim 3.2. The inspective verifier V satisfies the following properties

• Completeness: If w ∈ P and π = πw then Pr
[

V (w,πw) = accept
]

= 1

• Soundness: For any w ∈ Z
n
p and any (folded) π ∈ Z

pk−1

p−1

p , Pr
[

V (w,π) = reject
]

≥ δ(w,P )

Before proceeding to the proof of Claim, we first observe that Theorem 2.7 follows immediately
the above claim.
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Proof. For a codeword w = G · xw ∈ P and a legal proof πw = Hxw we have wi = (gi · xw), and
together with the fact that Hxw is linear we have

πw(y + gi) = πw(y) · πw(gi) = πw(y) · ω(gi·xw) = π(y) · ωwi

thus, the completeness condition is satisfied. Now we have to prove that the soundness of V is as
required.

In the following we use the fact that the function π is represented in folded form, and hence

for every y ∈ Z
k
p and j ∈ [p] we have π(j · y) =

(

π(y)
)j

. Denote by s the soundness of V , i.e., the

probability it rejects a word-proof pair. We are going to express s in terms of δ(w,P ) by making
some manipulations on the Fourier expansion of π. According to the description of algorithm V ,

s = Pry,i[π(y)ωwiπ(y + gi) = 1]

and according to Lemma 3.1, if η is a pth root of unity, then the sum
∑

j∈[p]\{0} ηj equals p − 1
when η = 1, and it equals −1 otherwise. Thus for all pairs (w, π) we have

(p− 1)(1 − s)− s = Ey,i

[

∑

j∈[p]\{0}

(

π(y)ωwiπ(y + gi)
)j]

=

Ey,i

[

∑

j∈[p]\{0}

π(jy)ωjwiπ(jy + jgi)
]

=

Ey,i

[

∑

j∈[p]\{0}

ωjwi(
∑

α

π̂αχα(jy))
(

∑

β

π̂βχβ(jy)χβ(jgi)
)

]

=

∑

α,β

π̂απ̂β

∑

j∈[p]\{0}

Ei

[

ωjwiχβ(jgi)
]

Ey

[

χα(jy)χβ(jy)
]

=

by the orthonormality of the character functions

∑

α

|π̂α|
2

∑

j∈[p]\{0}

Ei

[

ωjwiχα(jgi)
]

=

∑

α

|π̂α|
2
Ei

[

∑

j∈[p]\{0}

ωjwiχα(jgi)
]

=

∑

α

|π̂α|
2
Ei

[

∑

j∈[p]\{0}

(

ωwiχα(gi)
)j]

=

∑

α

|π̂α|
2
Ei

[

∑

j∈[p]\{0}

(

ωwi−α·gi

)j]

=

by Lemma 3.1, for every i such that wi = αgi (the agreeing indices) the sum
∑

j∈[p]\{0}

(

ωwi−α·gi

)j

evaluates to p− 1, and for all other indices i, this sum evaluates to −1, therefore the above equals
to

∑

α

|π̂α|
2
(

(

1− δ(w,Gα)
)

(p− 1)− δ(w,Gα)
)

≤

14



(

(

1− δ(w,P )
)

(p − 1)− δ(w,P )
)

∑

α

|π̂α|
2 ≤

p− 1− pδ(w,P )

The last inequality is due to Parseval’s identity. To conclude, we have (p−1)−ps ≤ (p−1)−pδ(w,P ),
or simply s ≥ δ(w,P ) as required.

4 Proof of Length-Soundness Tradeoff (Theorem 2.8)

The proof is organized as follows. In Section 4.1 we define constraint graphs, which are later used
to analyze inspective verifiers. In Section 4.2 we prove an auxiliary lemma that allows us to convert
any verifier V = 〈Q,D〉 into a verifier V ′ = 〈Q′,D′〉 such that V ′ achieves almost the same soundness
as V, but the size of Q is linear in the length of the proof, and the distribution D′ is uniform over
Q. In Section 4.3 we prove that the soundness of inspective verifiers goes to zero as long as the
proof length is sub-exponential. Based on these, we prove Theorem 2.8 in Section 4.4 and complete
several missing proofs in Section 4.5.

4.1 Constraint Graphs and the Generalized Decomposition Lemma

Definition 4.1 (Constraint Graphs). A constraint graph is a pair φ = (G,C), where G = (V,E)

is a directed multigraph and C =
{

ce : {0, 1}2 → {accept, reject} | e ∈ E
}

is a set of binary

constraints associated with the edges of G.
If an assignment π : V → {0, 1} satisfies a δ-fraction of the constraints in φ then we say that π

δ-satisfies φ. Namely, π is δ-satisfying if
∣

∣

∣

{

e = (u, v) ∈ E : ce

(

π(u), π(v)
)

= accept
}∣

∣

∣
= δ|E|.

A constraint graph φ is unsatisfiable if there is no assignment that 1-satisfies it. We also say
that φ is ε-far from being satisfiable if there is no assignment π : V → {0, 1} that (1 − ε)-satisfies
φ.

For abbreviation, we say that a constraint graph φ′ = (G′, C ′) is a subgraph of φ = (G,C) if G′

is a subgraph of G, and in addition, for every e ∈ E(G′) the corresponding constraints ce ∈ C and
c′e ∈ C ′ are identical.

The following main lemma is a natural generalization of the decomposition lemma from [LR99],
which is useful when analyzing graphs with general edge-constraints (rather than linear ones). The
lemma states that any constraint graph which is far from being satisfiable has a small unsatisfiable
subgraph (witness of unsatisfiability).

Lemma 4.2. Let φ = (G,C) be a constraint graph which is ε-far from being satisfiable. Then φ

has an unsatisfiable subgraph φ′ with at most 4 log |E(G)|
ε + 2 edges.

Observe that an immediate corollary of Lemma 4.2 is that if a 2-CSP formula with m constraints
is ε-far from being satisfiable (meaning that any assignment falsifies at least εm constraints) then
it has an unsatisfiable subset of at most 4 log m

ε + 2 constraints.
Before proving the lemma we need some definitions.

Definition 4.3 (Forcing). Let φ = (G,C) be a constraint graph, and let u ∈ V (G) and bu ∈ {0, 1}
be a vertex of G and a value assigned to it, respectively. For every vertex v ∈ V (G) \ {u} and any
value bv ∈ {0, 1}, we say that (u← bu) forces (v ← bv) if
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• the partial assignment π : {u, v} → {0, 1} defined as π(u) = bu and π(v) = bv does not violate
any constraint in C

• the partial assignment π′ : {u, v} → {0, 1} defined as π′(u) = bu and π′(v) = 1− bv violates at
least one constraint ce ∈ C (and the violated constraints are called the forcing constraints).

Observe that (u← bu) forces (v ← bv) if and only if (v ← 1− bv) forces (u← 1− bu).

We can naturally extend the notion of forcing for subsets of vertices as follows. Let U ⊂ V (G)
be a subset of G’s vertices, and let πU : U → {0, 1} be a partial assignment on U . For every vertex
v ∈ V (G) \ U and every value bv ∈ {0, 1} we say that πU forces (v ← bv) if there exists a vertex
u ∈ U such that (u← πU (u)) forces (v ← bv).

In some cases there is no immediate forcing between assignments, but there is an indirect
implication. We say that (u ← bu) implies (v ← bv) if there are k > 0 vertices x1, x2, . . . , xk ∈
V \ {u, v} and k values b1, b2, . . . , bk ∈ {0, 1} such that:

• (u← bu) forces (x1 ← b1)

• for all 1 ≤ i < k, (xi ← bi) forces (xi+1 ← bi+1)

• (xk ← bk) forces (v ← bv).

We also define the implication path from (u← bu) to (v ← bv) as the corresponding path of k + 1
forcing edges from u to v.

If for some pair of vertices u, v ∈ V and a value bu ∈ {0, 1} the assignment (u ← bu) implies
both (v ← 0) and (v ← 1), it means that (u← bu) leads to contradiction, and hence any assignment
π for which π(u) = bu cannot satisfy φ. In this case we call the pair of corresponding implication
paths a contradiction cycle. Furthermore, if both (u ← 0) and (u ← 1) lead to contradiction,
then clearly the constraint graph is unsatisfiable. In this case we call the pair of corresponding
contradiction cycles a witness of unsatisfiability.

Given a subset U ⊂ V , a partial assignment πU : U → {0, 1} has no consistent extensions if one
of the following holds:

• πU forces two different values on some v ∈ V \ U

• there exists an edge e = (v1, v2) ∈ E(V \ U) such that πU forces the values b1, b2 on v1, v2

respectively, and ce(b1, b2) = reject

Notice that in both cases there is a contradiction cycle witnessing the inextensibility of πU .
If πU has a consistent extensions, then we denote by f(U) , {v1, . . . , vk} ⊆ V \U the set of all

vertices that are forced by πU to have the values bv1
, . . . , bvk

respectively, and we define the forced
extension of πU which is an assignment πU∪f(U) : U ∪ f(U)→ {0, 1} given by

πU∪f(U)(v) =

{

πU (v) , v ∈ U
bv , v ∈ f(U)

.

Proof of Lemma 4.2. Assume for the sake of contradiction that φ = (G,C) is the smallest constraint
graph that violates the conditions of Lemma 4.2. Namely, φ is ε-far from being satisfiable, but it has
no unsatisfiable subgraph with at most 4 log |E(G)|

ε +2 edges. Pick an arbitrary vertex r ∈ V (G) and
consider the executions FindContradiction(r, 0) and FindContradiction(r, 1) of the following
algorithm, which is basically a BFS algorithm starting from vertex r that proceeds along forcing
edges.
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FindContradiction(r,b)

1. Set U = {r}, i = 0, and define a partial assignment πU as πU (r) = b.

2. i = i + 1.

3. If i > log|E(G)|
ε output FAIL.

4. If πU has a consistent extension πU∪f(U) to the set f(U) of the forced neighbors of U :

(a) If |E(f(U), U)| ≥ ε|E(U)| then set U = U ∪ f(U), set πU = πU∪f(U) and go to step 2.

(b) Else output FAIL.

5. Else there must be a contradiction cycle W of length at most 2i + 1 ≤ 2log|E(G)|
ε + 1 8 for the

assignment (r ← b). Output W.

If both executions FindContradiction(r, 0) and FindContradiction(r, 1) reached step 5 then

we have a pair of contradiction cycles (each of length at most 2 log |E(G)|
ε + 1) for both (r ← 0)

and (r ← 1). Joined together, these cycles form a witness of unsatisfiability of length at most
4 log |E(G)|

ε + 2, contradicting our assumption that φ has no unsatisfiable subgraphs with at most
4 log |E(G)|

ε + 2 edges. Therefore, one of the executions must output FAIL either in step 3 or in step
4b.

Since in every iteration of the algorithm |E(U)| grows by a multiplicative factor of at least

(1 + ε), after log|E(G)|
ε > log(1+ε) |E(G)| iterations we get |E(U)| > |E(G)|, which is of course

impossible. This completely rules out the possibility of outputting FAIL in step 3.
Finally, assume towards a contradiction that one of the executions outputs FAIL in step 4b.

Consider the induced subgraphs GU = G(U) and GV \U = G(V \U), and the corresponding induced
constraint graphs φU = (GU , CU ) and φV \U = (GV \U , CV \U ) where CU and CV \U are the sets of
all original constraints associated with E(U) and E(V \ U) respectively.

According to Algorithm FindContradiction(r,b), the set U is enlarged only when the as-
signment πU has a consistent extension. This fact preserves the invariant that the constraints
{ce : e ∈ E(U)} are always satisfied by πU . Therefore πU completely satisfies the subgraph φU . On
the other hand, by the minimality condition φV \U must be 1 − ε satisfiable by some assignment
πV \U . Let π : V (G)→ {0, 1} be the union of πU and πV \U , defined as

π(v) =

{

πU (v) , v ∈ U
πV \U (v) , v ∈ V \ U

.

Since the execution was terminated at step 4b, π falsifies at most ε|E(U)| of the constraints on
E(U, V \ U). So the total number of unsatisfied constraints by π is bounded by ε|E(V \ U)| +
ε|E(U, V \ U)| ≤ ε|E(G)|, contradicting our initial assumption.

8The bound on the cycle length is due to the fact that every implication in U has a corresponding implication
path of length at most i that follows the iterative extension of πU .
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4.2 The Uniform (Sparse) Verifier Lemma

In this section we claim that without loss of generality we can concentrate on (q, n, `)-verifiers that
make roughly O(n + `) uniformly distributed queries. This assumption eases the application of
Lemma 4.2, which bounds the size of contradiction witnesses as a function of number of edges
(rather than number of vertices as in Lemma 5.4).

We note that a similar lemma was already proved in [GS02] for (q, n, 0)-verifiers (property
testers).

Lemma 4.4. For every γ > 0 and property P ⊂ Σn, if P has a (q, n, `)-verifier V = 〈Q,D〉 with
perfect completeness and soundness function s : (0, 1] → [0, 1] then P also has a (q, n, `)-verifier
V ′ = 〈Q′, U〉 with the following properties.

1. V ′ has perfect completeness.

2. V ′ has soundness function s′ that for all δ satisfies s′(δ) ≥ s(δ)− γ.

3. The number of queries in Q′ is γ−2(n + `) log |Σ|.

4. U is the uniform distribution over Q′.

Proof. We prove the lemma by the following probabilistic argument. Construct a multi-set Q′

by choosing independently at random γ−2(n + `) log |Σ| queries Q ∈ Q according to distribution
D. Given Q′, the new verifier V ′ operates similarly to V, but instead of choosing queries from Q
according to distribution D, it chooses them from Q′ according to the uniform distribution.

Since the original verifier V had perfect completeness and since Q′ ⊆ Q, V ′ has perfect com-
pleteness too. Conditions 3 and 4 of the lemma follow from the definition of Q′ and V ′. We only
need to show that the soundness function s′ of V ′ satisfies s′(δ) ≥ s(δ) − γ for all δ > 0. Clearly,
this is satisfied for all δ for which s(δ) ≤ γ because the rejection probability is always non-negative.
Therefore, to complete the proof it is enough to show that with positive probability there exists a

the set Q′ that satisfies the following: For every word w such that s
(

δ(w,P )
)

> γ and every proof

π, at least a
(

s
(

δ(w,P )
)

− γ
)

-fraction of the queries in Q′ reject the pair w ◦ π (we say that the

query Q = (I, C) rejects the pair w ◦ π if C(w ◦ π|I) = reject).

Fix a word w ∈ Σn such that s
(

δ(w,P )
)

> γ and a proof π ∈ Σ`. For every Q ∈ Q, we define

the indicator variable xQ,w◦π which is equal to 1 if Q rejects the pair w ◦ π. Notice that once w is

fixed, for any proof π we have EQ∼DQ[xQ,w◦π] ≥ s
(

δ(w,P )
)

.

We also define an indicator variable Iw◦π which equals 1 if the fraction of queries in Q′ that

reject the pair w ◦ π is at least s
(

δ(w,P )
)

− γ. Since the queries in Q′ were chosen independently

(according to distribution D), by Chernoff’s bound for any w and any π we have

Pr
Q′

[Iw,π = 0] = Pr
Q′

[

( 1

|Q′|

∑

Q∈Q′

xQ,w◦π

)

< s
(

δ(w,P )
)

− γ

]

≤

≤ exp(−2γ2|Q′|) = exp(−2γ2γ−2(n + `) log |Σ|) <

< |Σ|−n−`
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and if we apply the union bound over all word-proof pairs w ◦ π we get

Pr
Q′

[Iw,π = 0 for some pair w ◦ π as above] < |Σ|n+` · |Σ|−n−` < 1.

We conclude that there must be a query set Q′ that satisfies the required soundness condition.

4.3 Best Soundness for Inspective Verifiers (Proof of Theorem 2.17)

Theorem 2.17 (restated) (Best inspective soundness with short proofs) Let P ⊆ {0, 1}n be a
d-universal property, and let q ∈ Z

+. Let si denote the best soundness of a (q, `)-inspective verifier
for P , i.e., si(δ) = SP

Vi
(q, `, δ). Then for every δ ∈ [0, 1],

si(δ) ≤ min
ε>0

{

4 log(ε−2(n + `))
d

q−1 − 2
+ ε

}

.

Before proceeding to the proof we need to define the following component, which is basically a
graph that is induced by a verifier. This graph plays a crucial role also in the proofs of Lemma 5.3
and Theorem 2.19.

Definition 4.5 (Inspective Graph). Let V = 〈Q,D〉 be a (q, n, `)-verifier. For Q = (I, C) of i-size
2 we say Q generates the pair I ∩ [n + 1, n + `]. Similarly, if Q is of i-size 1 we say it generates
the pair (0, I ∩ [n+1, n+ `]). A query of i-size different than 1, 2 generates no pair. The inspective
graph of V, denoted GV , is the multigraph with vertex set V = {0} ∪ [n + 1, n + `] and edge set E
being the multiset of pairs generated by Q.

Proof. Let P ⊂ {0, 1}n be a d-universal property, and let us fix ε ∈ (0, 1) and δ ∈ (0, 1). Let Vi

be an inspective (q, n, `) verifier for P and let Vi
′ = 〈Q′, U〉 be the corresponding “sparse” verifier

(which is also inspective) described in Lemma 4.4 for γ = ε.
Fixing a δ-far word w defines a constraint graph φw = (G,C) over ` + 1 vertices as follows:

• G is the inspective graph induced by Vi
′ as per Definition 4.5.

• for every e = (u, v) ∈ E(G), the constraint ce evaluates to accept whenever the valuation
π(u), π(v) and the word w satisfy the query in Q′ (with i-size 2) that generates the edge e.

• for every e = (0, v) ∈ E(G), the (unary) constraint ce evaluates to accept whenever the
valuation π(v) and the word w satisfy the query in Q′ (with i-size 1) that generates the edge
e.

Notice that according to Lemma 4.4, the number of edges in E(G) is bounded by ε−2(n + `). In
addition, every constraint ce depends on at most q − 1 word bits.

Since the minimal rejection probability of δ-far words by Vi
′ is si(δ) − ε, the constraint graph

φw must be (si(δ) − ε)-far from being satisfiable. Hence by Lemma 4.2, φw has an unsatisfiable
subgraph φ with at most

4 log |E(G)|

si(δ) − ε
+ 2 ≤

4 log(ε−2(n + `))

si(δ) − ε
+ 2
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edges. Let i1, i2, . . . , ik ∈ [n] be the word bits associated with the constraints (edges) of the

unsatisfiable subgraph φ, where k ≤ (q−1)·(4 log(ε−2(n+`))
si(δ)−ε +2). It is clear that any word w′ ∈ {0, 1}n

that agrees with w on indices i1, i2, . . . , ik cannot be in the property P . Therefore, because of the
universality condition k must be larger than d, implying

(q − 1) · (
4 log(ε−2(n + `))

si(δ) − ε
+ 2) > d

or equivalently

si(δ) <
4 log(ε−2(n + `))

d
q−1 − 2

+ ε.

Corollary 4.6. Let α ∈ (0, 1) be a positive constant and let P , {Pn ⊆ {0, 1}
n : Pn is αn−universal}

be a family of αn-universal properties. The properties in P have no sub-exponential inspective
PCPP’s achieving constant soundness. Namely, for every ε′ ∈ (0, 1] there are β > 0 and n0 ∈ N

such that for any property Pn ∈ P, n > n0 the following is satisfied for all δ ∈ [0, 1]:

SPn
Vi

(

3, 2βn, δ
)

≤ ε′.

Proof. Fix an arbitrary ε′ > 0, and set β > 0 and n0 ∈ N such that for all n > n0 satisfy the
inequality

2βn < 2
ε′

8
(αn

2
−2)+2 log ε′−2 − n.

Since Pn is a αn-universal property, we can apply Theorem 2.17 (with q = 3 and ε = ε′/2) and get
that for every δ ∈ [0, 1]:

SPn
Vi

(

3, 2βn, δ
)

≤
4
(

log(n + 2βn)− 2 log ε′ + 2
)

αn
2 − 2

+ ε′/2,

additionally, according to our choice of β and n0 we also have:

4
(

log(n + 2βn)− 2 log ε′ + 2
)

αn
2 − 2

≤ ε′/2,

completing the proof.

4.4 Proof of Theorem 2.8

Theorem 2.8 (restated) Let α ∈ (0, 1) be a positive constant and let P , {Pn ⊆ {0, 1}
n : n ∈ N}

be a family of linear properties (codes) with dual distance at least αn. The properties in P have
no sub-exponential PCPP’s achieving soundness larger than 1/3. Namely, for every ε ∈ (0, 1] there
are β > 0 and n0 ∈ N such that for any property Pn ∈ P, n > n0 the following is satisfied for all
δ ∈ [0, 1]:

SPn

(

3, 2βn, δ
)

≤
1

3
+ ε.

Before proceeding to the proof of Theorem 2.8 we need the following lemma, which is proved
in the next section.
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Lemma 4.7. Let V be a (3, n, `) verifier for a Fp-linear property P ⊆ F
n
p with dual distance at

least 4. Let µ be the probability that V makes an inspective query (i.e., one that makes at most two
queries into the proof). Then, using sV to denote the soundness function of V, we have for any
δ < 1/2

sV(δ) ≤ min

{

1− µ + SP
Vi

(3, `, δ) , (1 −
1

p
)µ

}

.

Proof of Theorem 2.8. Fix any ε ∈ (0, 1], and let β > 0 and n0 be the parameters promised by
Corollary 4.6, so that SPn

Vi

(

3, 2βn, δ
)

< ε for every n > n0.
Notice that the right hand side of the inequality in Lemma 4.7 (p = 2 in our case) is maximized

when the two terms are equal, i.e., when µ = 2
3

(

1+SP
Vi

(3, `, δ)
)

. Therefore, for n > n0 and proofs

of length 2βn,

sV(δ) ≤
1

3
(1 + SPn

Vi

(

3, 2βn, δ
)

) <
1

3
+ ε,

where the second inequality follows from Corollary 4.6.

4.5 Proof of Lemma 4.7

Proof. To see why sV(δ) ≤ 1 − µ + SP
Vi

(3, `, δ) convert V = 〈Q,D〉 into an inspective verifier V ′

as follows. V ′ picks Q ∼ D in the same manner that V does. If Q is an inspective query, V ′

performs it. Otherwise, V ′ performs the trivial (inspective) query that always accepts (without
reading any information). Since V ′ is inspective, we conclude sV

′
≤ SP

Vi
(3, `, δ), i.e., there exists

some input w that is δ-far from C and a proof π such that (w ◦π) is rejected by V ′ with probability
at most SP

Vi
(3, `, δ). Even if V rejects all non-inspective queries on this particular pair, this can

only increase the soundness by an additive factor 1− µ, implying the first inequality.
To show that sV(δ) ≤ (1− 1

p)µ we need the following two lemmas, which we prove in Subsection
4.5.1.

Lemma 4.8. Let C ⊂ F
n
p be a linear code. For any x ∈ F

n
p and any codeword w ∈ C,

δ(x + w, C) ≥ δ(x, C).

Lemma 4.9. Let C ⊂ F
n
p be a linear code with dual distance d + 1, and let I ⊂ [n] be a set of at

most d indices. For any x ∈ F
n
p and any y ∈ F

d
p,

Prw∼UC [(x + w)|I = y] = p−d,

and in particular, for any y ∈ F
d
p,

Prw∼UC [w|I = y] = p−d.

The proof proceeds as follows. First we fix a δ-far word x ∈ F
n
p , and pick ŵ ∈ C uniformly at

random. Let π denote the legitimate proof for the codeword ŵ. Then, we pick another codeword
w′ ∈ C uniformly at random, and set w , x + w′. Recall that according to Lemma 4.8, w is δ-far
from C. We use the word-proof pair (w ◦ π) to fool the verifier V = 〈Q,D〉, i.e. to make it reject
with probability at most (1− 1

p)µ.
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Let Q0,Q1,Q2,Q3 be a partition of Q, where Qi contains all queries that read i bits from the
proof. Since the verifier V has perfect completeness, all queries in Q3 must be satisfied because π is
a legitimate proof and all queries in Q0 (tester queries) must be satisfied because the dual distance
of C is larger than three. In addition, the queries in Q2 are satisfied with probability at least 1/p,
since according to Lemma 4.9 for every i ∈ [n], wi = ŵi with probability 1/p. To complete the
proof, it is enough to show that every query Q ∈ Q1 is satisfied with probability at least 1/p over
the choice of ŵ and w′.

Let Q = (I, C) be a query in Q1. Let i1, i2 be the indices in I ∩ [n] and let j be the index
in I ∩ [n + 1, n + `], so that the query Q is satisfied whenever C(α1, α2, πj) = accept. For every
β ∈ Fp, let kβ denote the number of assignments (α1, α2) ∈ F

2
p for which C(α1, α2, β) = accept.

Since the dual distance of C is larger than two, we know that for each one of the p2 possible
assignments (α1, α2) ∈ F

2
p there exists a value πj ∈ Fp such that C(α1, α2, πj) = accept, therefore

∑

β∈Fp
kβ ≥ p2.

Recall that we chose π by the following distribution: pick a codeword ŵ ∈ C uniformly at
random, and set π to be the legitimate proof for codeword ŵ. According to Lemma 4.9, the values
of all pairs of indices in the word w are distributed uniformly. Therefore, once ŵ is chosen (and

the corresponding proof π is set), the query Q is satisfied by
(

w ◦ π
)

with probability kπj/p
2 over

the choice of w′ ∈ C.
Let ηβ denote the probability (over the random choice of ŵ ∈ C) that πj = β. By Lemma 4.9

the values ŵi1 and ŵi2 are distributed uniformly and independently of each other, therefore,

ηβ = Pr[πj = β] =
kβ

∑

γ kγ
.

So the overall acceptance probability is

Prŵ,w′[C(wi1 , wi2 , πj) = accept] =
∑

β

ηβ ·
kβ

p2
=

∑

β

(
kβ

∑

γ kγ
·
kβ

p2
) =

1

p2
∑

γ kγ

∑

β

k2
β.

Recall that
∑

β kβ ≥ p2. In addition, by Cauchy-Schwartz inequality we know that

∑

β

k2
β ≥

1

p
(
∑

β

kβ)2 ≥ p
∑

β

kβ

hence the acceptance probability is at least 1/p as required.
We constructed a distribution of word-proof pairs (w ◦ π) in which all words are δ-far from

C, and all proofs are legitimate proofs. Any query from Q3 is satisfied with probability 1 under
this distribution, and all other queries are satisfied with probability at least 1/p. So by linearity
of expectation, we conclude that there must be a pair (w ◦ π) (where w is δ-far from C) that is
accepted by the verifier V with probability at least (1− µ) · 1 + µ · 1

p = 1− (1− 1
p)µ.

4.5.1 Proofs of Lemma 4.8 and Lemma 4.9

Proof of Lemma 4.8. Assume towards a contradiction that for some x ∈ F
n
p and w ∈ C we have

δ(x + w, C) < δ(x, C). Let w′ ∈ C be the closest codeword to x + w, i.e. a codeword for which
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δ(x + w,w′) = δ(x + w, C). Observe that δ(x + w,w′) = δ(x,w′ + (−w)), and w′ + (−w) ∈ C. This,
together with our initial assumption, leads to the following contradiction,

δ(x, C) > δ(x + w, C) = δ(x + w,w′) = δ(x,w′ + (−w)) ≥ δ(x, C).

Proof of Lemma 4.9. The second part of the lemma follows from the fact that C has no linear
constraints of weight less than d + 1, hence any projection to d (or less) indices forms a linear
sub-space. The first part of the lemma follows from the second part, since a constant shift of a
uniform distribution yields uniform distribution.
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5 Proof of Length-Soundness Tradeoff for Linear Verifiers (Theo-

rem 2.18)

We start by restating our main theorem regarding linear verifiers and its main corollary. In Sub-
section 5.1 we reduce both of these results to our main technical lemma, Lemma 5.3. To prove
the lemma we need (a variant of) the decomposition lemma of [LR99] and this is proved in Sub-
section 5.2. After setting the ground with the decomposition lemma, we complete our proof by
proving the main lemma in Subsection 5.3.

Theorem 2.10 (restated) Let P ⊆ F
n be a F-linear property. Let s[`](δ) denote the best soundness

of a (3, `)-linear verifier for P , i.e., s[`](δ) = SP
linV (3, `, δ). Let t[q](δ) denote the best soundness

of a q-tester for P , i.e., t[q](δ) = SP (q, 0, δ). Then

s[`](δ) ≤ min
ε>0

{

t

[

36 log `

ε

]

(δ) +
1

2
·

(

1−
1

|F|
+ ε

)}

.

Corollary 2.11 (restated) Let SUBEXP denote the set of subexponential functions, i.e., func-
tions satisfying f(n) = 2o(n). For every prime field Fp there exists a family of Fp-linear properties
P such that

s-Def.Fp−linV[P,SUBEXP](δ) ≥ δ −
1

2
·

(

1−
1

p

)

,

Consequently, the maximal deficiency of linear verifiers with subexponential proofs is at least 1
2 ·

(1− 1/p):

max-s-Def.Fp−linV[Fp − linear,SUBEXP] ≥
1

2
·

(

1−
1

p

)

.

We start by proving that the main theorem implies the corollary.

Proof of Corollary 2.11. Take P = {Pn | n ∈ Z
+} to be a family of linear properties satisfying both

(a) (dim(Pn)/n)−−−→n→∞0 and (b) the best soundness of an o(n)-tester for Pn goes to 0 as n goes to
∞. One construction of such a family is based on properties that have linear dual distance, i.e.,
the minimal weight of a nonzero element in P ∗

n is Ω(n). Any o(n)-tester with perfect completeness
for such a property must have soundness function 0. A different construction is obtained by taking
P to be a family of random Low Density Parity Check (LDPC) codes that satisfy (a). These codes
were shown in [BSHR05] to satisfy (b). Let wn ∈ F

n be δ-far from Pn. The verifier in Theorem
2.7 achieves soundness ≥ δ on w when the proof-length is exponential in n. On the other hand,
take εn to be a sequence approaching 0 when n approaches ∞ while satisfying 36 log `(n)

εn
= o(n).

Such a sequence exists because `(n) = 2o(n). In this case Theorem 2.10 shows that the soundness

of (3, `(n))-verifiers approaches 1
2 ·

(

1− 1
p

)

as n approaches ∞. This proves the first part of the

corollary. To get the second part notice that (a) implies that a random w′ ∈ F
n
p has distance

δ = ((1− 1/p) − o(1)) from Pn. This completes the proof.
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5.1 Proof of Theorem 2.10

Overview Given a verifier V and a word w that is δ-far from P we need to describe a proof π
such that V accepts w ◦ π with relatively high probability. We divide this into two cases. If a large
fraction of the queries of V are inspective, we try to satisfy these queries and care little about the
rejection probability on the other queries. This part is argued in Lemma 5.3. On the other hand,
if V rarely queries w, we present a proof that is good for some codeword w′ ∈ P and hope that V
doesn’t notice the difference between w and w′. Details follow.

Notation When discussing F-linear verifiers, we view a word-proof pair as a vector w ◦ π ∈ F
n+`

by setting (w ◦ π)i = (w ◦ π)[i]. A q-query constraint Q = (I, C) can be represented by a vector
vQ ∈ F

n+` such that the support of vQ, denoted supp(vQ), is I and

C(w ◦ π|I) = accept⇔ 〈vQ, w ◦ π〉 =
n+
∑̀

i=1

(vQ)i(w ◦ π)i = 0.

Abusing notation, we identify Q with its representing vector and say “(w ◦π) satisfies Q” whenever
〈Q, (w ◦ π)〉 = 0. For I ′ ⊂ [n+ `] we denote supp(Q)∩ I ′ by suppI′(Q). Similarly, let 〈Q,w ◦ π〉I′ =
∑

i∈I′ Qi · (w ◦ π)i, where Qi denotes the ith entry of the vector Q. Finally, for P a linear space we
denote its dual space by P ∗.

To simplify the proof of Theorem 2.10 we assume our verifier makes no redundant queries
according to the following definition and claim.

Definition 5.1. A query Q ∈ F
n+`, |supp(Q)| ≤ 3 is called redundant for the property P if

|supp[n](Q)| > 0, |supp[n+1,n+`](Q)| > 0 and there exists u ∈ P ∗, u 6= 0 with supp(u) ⊆ supp[n](Q).

If the dual distance of P is greater than 2 then all queries are nonredundant. The next claim
says that even if the dual distance of P is 2, we may assume without loss of generality that its
verifier makes no redundant queries. The proof comes after the proof of Theorem 2.10.

Claim 5.2. If P has a (3, `)-linear verifier with soundness function s, then P has a (3, `)-linear
verifier that makes no redundant query and has soundness function s.

Proof (of Theorem 2.10). Let V = 〈Q,D〉 be a 3-query linear verifier. Let µ = PrQ∼DQ[supp[n](Q) 6=
∅]. Fix ε > 0. We prove the following bound:

s[`](δ) ≤ min

{

t

[

36 log `

ε

]

(δ) + ε + (1− µ) ·

(

1−
1

|F|

)

, t

[

36 log `

ε

]

(δ) + µ ·

(

1−
1

|F|

)}

. (1)

The right hand side attains its maximal value when

µ =
1

2
+

ε

2
(

1− 1
|F|

) .

Plugging this value of µ back into (1) completes the proof.
Now we argue (1). The first element on the right hand side of (1) is given by the following

lemma that is proved in the next subsection.

25



Lemma 5.3. Let V = 〈Q,D〉 be a F-linear verifier for the F-linear property P ⊆ F
n with soundness

function s, let ε > 0 and let µ = PrQ∼DQ[supp[n](Q) 6= ∅]. Then

s(δ) ≤ t

[

36 log `

ε

]

(δ) + ε + (1− µ) ·

(

1−
1

|F|

)

.

To complete the proof we only need to show

s[`](δ) ≤ t

[

36 log `

ε

]

(δ) + µ ·

(

1−
1

|F|

)

. (2)

Let w0 be δ-far from P . By linearity, the all-zero proof π0 = 0 is a legitimate proof (accom-
panying the zero codeword). Consider the soundness of V when presented with w ◦ π0 where w
is the sum of w0 and a random word w′ ∈ P . Every query Q, supp[n](Q) = ∅ is satisfied by the
legitimate proof π0. Additionally, every query Q, supp[n+1,n+`](Q) = ∅ corresponds to a test, so the

accumulated rejection probability of such tests is at most t
[

36 log `
ε

]

(δ) because increasing query

complexity does not decrease soundness. Finally, consider a query Q such that both supp[n](Q)
and supp[n+1,n+`](Q) are not empty. By Claim 5.2 we may assume V is nonredundant, so there is
no u ∈ P ∗, u 6= 0 such that supp(u) ⊆ supp[n](Q). Since P is linear, by Lemma 4.9 for a random
w′ ∈ P we know that 〈Q,w′〉[n] is a random element of F. This implies the rejection probability
over such tests is at most µ · (1− 1/|F|). This gives (2) and Theorem 2.10 follows.

Proof of Claim 5.2. Let V be (3, `)-linear verifier for P using redundant queries. We replace these
queries, one at a time, without increasing query complexity and length and without decreasing
soundness.

Let Q be redundant. Since
∣

∣

∣
supp[n](Q)

∣

∣

∣
≤ 2 and there exists u ∈ P ∗, supp(u) ⊆ supp[n](Q)

there exists a nonzero vector Q′ ∈ span(P ∗, Q) such that |supp[n](Q
′)| <

∣

∣

∣
supp[n](Q)

∣

∣

∣
. Replace Q

by Q′. Notice |supp(Q′)| ≤ 2 and
∣

∣

∣
supp[n+1,n+`](Q

′)
∣

∣

∣
≥ 1, so Q′ is a constraint that requires a proof

symbol, say, πn+`, be equal to one of the following three possibilities: (i) the constant 0 (in case

|supp(Q′)| = 1; (ii) a different proof symbol πi′ (in case |supp(Q′)| =
∣

∣

∣
supp[n+1,n+`](Q

′)
∣

∣

∣
= 2); or

(iii) a word symbol wi′ (in case |supp(Q′)| = |supp(Q)| = 1). In each of these three cases we can
eliminate use πi and calculate its value by querying a single different proof- or word-symbol. By
construction, query complexity does not increase and proof length decreases because πn+` is not
queried any more. By linearity, the new verifier retains perfect completeness, because every new
query lies in span(Q, P ∗). Finally, to argue soundness notice that a proof π′ of length `− 1 can be
extended to a proof of length ` such that w ◦ π satisfies a query Q of V if and only if w ◦ π′ satisfies
the modified form of Q.

We end this subsection with the formal proof of Theorem 2.18.

Proof (of Theorem 2.18). Follows from Lemma 5.3 by noticing that in the case of an inspective
verifier we have µ = 1.
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5.2 The Decomposition Lemma

In the proof of Lemma 5.3 and later on in the proof of Theorem 2.19 we use the decomposition
lemma of [LR99], stated next. The proof is included because we use a stronger version than the
one appearing in [LR99, Tre05]. Our version deals with multigraphs yet bounds the radius of the
decomposed graph as a function of the number of vertices. The proof follows along the lines of
[LR99].

Before stating the lemma we need to introduce some notation. For any subset V ′ ⊆ V of vertices
of a multigraph G, let G(V ′) denote the induced subgraph of G on the vertex set V ′. Also, let
E(V ′) = E(G(V ′)). Similarly, let E(V ′, V \V ′) denote the set of edges between V ′ and V \V ′ (i.e.,
E(V ′, V \ V ′) = E∩(V ′ × (V \ V ′)). For any connected graph G, define the radius of G (rad(G))
as follows:

rad(G) = min
v∈V

max
u∈V

d(u, v),

where d(u, v) denotes the length of the shortest path between vertices u and v. Notice that for any
connected graph, the distance between any two vertices is at most twice the radius of the graph.

Lemma 5.4 (Decomposition). [LR99] For every ε ∈ (0, 1) and every multigraph G = (V,E),
there exists a subset of edges E′ ⊆ E of size at most ε|E|, such that every component of the graph
GDecomp. = (V,E \ E′) has radius strictly less than log |V |/ε. The graph GDecomp. is said to be an
ε-decomposition of G.

Proof. Assume for contradiction that for some ε > 0, there exists a graph G which cannot be
decomposed into components of radius less than O log |V |/ε by removing at most ε-fraction of the
edges. Let G be such a graph with the minimum number of vertices.

Let v be a vertex of maximum degree in V . Hence, deg(v) ≥ 2|E|/|V |. Now, consider the set
of vertices V ′ defined by the following sequence of operations. In the following, Γ(V ′) denotes the
neighborhood of V ′ (i.e., Γ(V ′) = {u ∈ V ′|(u, v) ∈ E for some v ∈ V ′}).

1. Set V ′ ← {v}∪Γ(v)

2. While |E(V ′, V \ V ′)| > ε|E(V ′)| do

Set V ′ ← V ′∪Γ(V ′)

3. Output V ′

Clearly, |E(V ′, V \ V )| ≤ ε|E(V ′)|. Let t be the number of iterations of the while loop in the
above procedure. Clearly, t + 1 upper bounds the radius of the induced subgraph G(V ′) because
d(v, u) ≤ t+1 for all u ∈ G(V ′). Furthermore, each iteration of the while loop increases the number
of edges in G(V ′) by a multiplicative factor of at least (1 + ε). Hence,

|E(V ′)| > (1 + ε)t deg(v) ≥ (1 + ε)(rad(G(V ′))−1)

(

2|E|

|V |

)

≥ (1 + ε)rad(G(V ′)) ·
|E|

|V |

where in the last inequality we have used the fact 2 > (1 + ε). However, since E(V ′) ⊆ E, we have
that rad(G(V ′)) < log |V |/ log(1 + ε) < log |V |/ε. Here, we have used that fact log2(1 + ε) > ε for
all ε ∈ (0, 1).

Now, consider the induced subgraph G′ = G(V \ V ′). Since |V \ V ′| < |V |, by the minimality
condition we have that there exists a set of edges E′′ ⊆ E(G′) of size at most ε|E(G′)|, such
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that every component of the graph G′
Decomp. = (V \ V ′, E(G′) \ E′′) has radius strictly less than

log |V \ V ′|/ε.
Let E′ = E(V ′, V \ V ′)∪E′′. We first observe that |E′| ≤ ε|E(V ′)| + ε|E(G′)| ≤ ε|E|. Fur-

thermore, the components of the graph GDecomp. = (V,E \ E′) are G(V ′) and the components of
G′

Decomp.. Hence, their radius is strictly less than log |V |/ε. This contradicts the assumption that
G is a counterexample to the lemma. Hence, proved.

5.3 Proof of Lemma 5.3

Overview Given verifier V = 〈Q,D〉 we construct a tester V ′ = 〈Q′,D〉 with a one-to-one

correspondence between the queries of V and those of V ′. The query complexity of V ′ is O
(

log `
ε

)

.

Additionally, we construct a set of proofs Π such that for every proof π ∈ Π, a (1 − ε)-fraction of
inspective queries Q satisfy 〈Q,w ◦ π〉 = 〈Q′, w ◦ π〉, where Q′ is the test of V ′ corresponding to Q.
Finally, we show that if π is a random proof from Π then the expected acceptance probability of a
noninspective query is ≥ 1− 1/|F|. Summing up, the differece between the rejection probability of
the tester V ′ and that of the verifier V is at most ε+(1−1/|F|)(1−µ) and this completes our proof.
The construction of V ′ and Π uses (i) the F-linearity of the constraints and (ii) the ε-decomposition
of the inspective graph of V given in Lemma 5.4. We now focus on these two aspects.

Decomposed F-linear verifiers Let V be a F-linear verifier and let G = G(V) be its inspective

graph. Recall from Definition 4.5 that if
∣

∣

∣
supp[n+1,n+`](Q)

∣

∣

∣
= 1 then Q induces an edge between 0

and a vertex i ∈ [n + 1, n + `] whereas if
∣

∣

∣
supp[n+1,n+`](Q)

∣

∣

∣
= 2 both vertices of the edge generated

by Q lie in [n + 1, n + `]. (If
∣

∣

∣
supp[n+1,n+`](Q)

∣

∣

∣
6= 1, 2 then Q generates no edge.)

Let G′ be an ε-decomposition of G as per Lemma 5.4 with E′ being the set of removed edges,
|E′| ≤ ε|E|. Let V0, V1, . . . , Vm be the set of connected components of G′, where V0 is the component
to which the vertex 0 belongs. Let F0, . . . , Fm be a set of spanning trees, one per component, of
radius at most log `

ε each and let F = ∪jFj . (The existence of these trees is guaranteed by Lemma
5.4.) Let r1, . . . , rm be arbitrary roots for F1, . . . , Fm and set r0 = 0 to be the root of F0. To
describe V ′ and Π we define two types of constraints that belong to span(Q). They are described
next.

Vertex constraints For i ∈ Vj \ {rj} let Q(i) be the set of constraints that generate the edges
along the unique path in Fj leading from rj to i. Let Q(i) be the unique nonzero vector in span(Q(i))
satisfying

(Q(i))i′ =

{

−1 i′ = i
0 i′ ∈ [n + 1, n + `] \ {rj, i}

(3)

Such a constraint can be shown to exist by performing Gaussian elimination to remove the variables
appearing in internal nodes i1, . . . , it along the path from rj to i. We call Q(i) the vertex constraint
corresponding to i and record for future reference its basic properties.

Claim 5.5 (Basic properties of vertex constraint). For i ∈ Vj \ {rj} we have
(a) {i} ⊆ supp[n+1,n+`](Q(i)) ⊆ {i, rj},

(b) |supp[n](Q(i))| ≤ 4 log `
ε and

(c) rj ∈ supp[n+1,n+`](Q(i)) iff j 6= 0.
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Proof. Part (a) follows by construction. Part (b) holds because a query Q that generates an edge has
∣

∣

∣
supp[n](Q)

∣

∣

∣
≤ 2 and Q(i) lies in the span of at most 2 log `

ε constraints. Regarding part (c), clearly

j = 0 implies rj 6∈ supp[n+1,n+`](Q(i)) because 0 is not in the support of any query. For the other
direction, if j 6= 0 notice every constraint has precisely two vertices in its support. Additionally,
every internal vertex along the path from rj to i, but for i and rj , appears in the support of exactly
two constraints. Thus, any Q ∈ span(Q(i)) satisfying (3) must have rj in its support.

Edge constraints For e = (i, i′) ∈ Vj × Vj an edge in G′ generated by Q, let

Q̂(e) =







Q + Qi ·Q(i) i′ = rj

Q + Qi′ ·Q(i′) i = rj

Q + Qi ·Q(i) + Qi′ ·Q(i′) i, i′ 6= rj

and Q(e) =

{

Q̂(e) (Q̂(e))rj = 0
−1
Q̂rj

· Q̂(e) (Q̂(e))rj 6= 0 .

In words, Q(e) is the unique linear combination of Q and Q(i), Q(i′) (if one or both of the latter
two are defined) that satisfies

Q(e)rj ∈ {−1, 0} and Q(e)i′′ = 0 for i′′ ∈ [n + 1, n + `] \ {rj}. (4)

We call Q(e) the edge constraint corresponding to e and record for future reference its basic prop-
erties.

Claim 5.6. For e = (i, i′) ∈ Vj×Vj we have (a) supp[n+1,n+`](Q(e)) ⊆ {rj}, (b) |supp[n](Q)| ≤ 8 log `
ε

and (c) if j = 0 then supp[n+1,n+`](Q(e)) = ∅.

Proof. Let Q be the constraint that generates e and notice supp[n+1,n+`](Q) ⊆ {i, i′}. For part
(a) assume i ∈ supp[n+1,n+`](Q). Recall from Claim 5.5 that supp[n+1,n+`](Q(i)) ⊆ {rj , i} and
Q(i)i = −1. This implies supp(Q + Qi · Q(i)) ⊆ {i′, rj}. The case of i′ is handled identically and

this proves part (a). Part (b) follows because Q(e) lies in the span of at most 4 log `
ε constraints and

each constraint has
∣

∣

∣
supp[n](Q)

∣

∣

∣
≤ 2. Part (c) follows from part (a) by observing that 0 is not in

the support of any constraint.

Forced components The construction of the tester V ′ and the corresponding proofs Π depend
on a partition of the components of G′ into forced and unforced components, defined next.

Definition 5.7 (Forced component). If e ∈ Vj × Vj satisfies supp[n+1,n+`](Q(e)) = {rj} we say e
forces Vj . If Vj contains an edge that forces it we say Vj is forced. Pick an arbitrary ordering of
edges and set the designated forcing edge of Vj to be the smallest edge that forces it.

Construction of the Tester V ′ We construct V ′ = 〈Q′,D〉 from V = 〈Q,D〉 in three consecutive
steps. Assume without loss of generality that V1, . . . , Vk are the forced components of G′. (Notice
that Claim 5.6(c) implies that V0 is unforced.) First we convert each query Q into a query Q(1) with
supp[n+1,n+`](Q

(1)) ⊆ {r1, . . . , rm}. Then we convert Q(1) into a Q(2) with supp[n+1,n+`](Q
(2)) ⊆

{rk+1, . . . , rm}. Finally, we replace Q(2) by Q′ with supp[n+1,n+`](Q
′) = ∅, i.e., Q′ is a test. All

the time we keep the same distribution over tests, i.e., D(Q′) = D(Q(2)) = D(Q(1)) = D(Q). The
detailed construction follows.
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1. For every query Q set

Q(1) = Q +
∑

i∈[n+1,n+`]\{r1,...,rm}

Qi ·Q(i).

2. For every query Q(1)

Q(2) = Q(1) +

k
∑

j=1

(Q(1))rj ·Q(ej).

3. For every query Q(2) set

Q′ =

{

0 |supp[n+1,n+`](Q
(2))| > 0

Q(2) otherwise

Next we bound all of the important parameters of V ′ but for it’s soundness function.

Claim 5.8 (Basic properties of V ′). V ′ is a tester with perfect completeness and query complexity
≤ 36 log `

ε .

Proof. V ′ is a tester because the last conversion step enforces supp(Q′) ⊆ [n] for all Q′ ∈ Q′. Perfect
completeness of V ′ follows from the perfect completeness of V by F-linearity because Q′ ⊆ span(Q).

Finally, the bound on query complexity follows from Claims 5.5(b), 5.6(b) by noting that Q′

lies in the span of Q and at most 3 vertex constraints and 3 edge constraints. Indeed,

Q(1) ∈ span(Q,
{

Q(i) | i ∈ supp[n+1,n+`](Q) \ {r1, . . . , rm}
}

),

and since
∣

∣

∣
supp[n+1,n+`](Q)

∣

∣

∣
≤ 3 we conclude Q(1) is in the span of Q and at most 3 vertex

constraints. By Claim 5.5(a) and Equation (4) we have

supp[n+1,n+`](Q
(1)) ⊆

{

rj | ∃i ∈ supp[n+1,n+`](Q) ∩ Vj

}

,

so
∣

∣

∣
supp[n+1,n+`](Q)

∣

∣

∣
≤ 3 also implies

∣

∣

∣
supp[n+1,n+`](Q

(1))
∣

∣

∣
≤ 3. This implies Q(2) lies in the span

of Q(1) and at most 3 edge constraints and our proof is complete.

Construction of proof-set Π To argue soundness of V ′ we introduce a family of proofs designed
to fool inspective verifiers.

Definition 5.9. Let V1, . . . , Vk be the forced components of G′ and let e1, . . . , ek be their respective
designated forcing edges. A proof π is called F -compliant for w if w ◦ π satisfies every constraint
that generates an edge in F ∪ {e1, . . . , ek}. Let Π = Π(w) denote the set of F -compliant proofs for
w.

The next claim shows that F -compliant proofs exist for any word and describes the structure
of these proofs. This structure will be used to analyze the soundness of V ′.

Claim 5.10. For every w ∈ F
n and αk+1, . . . , αm ∈ F there exists a unique F -compliant proof for

w such that πrj = αj for k < j ≤ m.
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Proof. The set of constraints that generate the edges of F , denoted Q(F ), is linearly independent
and any setting of values for πr1

, . . . , πrj can be extended in a unique way to a proof that satisfies
Q(F ). (This can be proved by induction along paths in F . Details omitted.)

To complete the proof we have to argue uniqueness. To do so we show that all F -compliant
proofs assign the same values to πi, i 6∈ V1 ∪ . . . ∪ Vk

First, consider V0, the special component whose root is 0. Let e = (0, i) ∈ F0 be generated by

Q. There is a unique setting of πi that satisfies Q because
∣

∣

∣
supp[n+1,n+`](Q)

∣

∣

∣
= 1. Once all vertices

at distance 1 from 0 have been fixed, there is a unique assignment to πi, i ∈ V0 that satisfies Q(F0)
— the set of constraints that generate edges in F0.

Next, consider e = (i, i′) — generated by Q — that is the designated forcing edge of Vj. By
definition 5.7 we have supp[n+1,n+`](Q(e)) = {rj}, so there is a unique setting for πrj that satisfies
Q. By the linear independence of Q(Fj) this can be extended to an assignment to πi, i ∈ Vj that
satisfies Q(Fj). This completes the proof.

F -compliant proofs are important because on certain types of queries the output of Q on w ◦ π
is equal to the output of the test Q′ performed on w. This is argued in our next claim.

Claim 5.11. If π is F -compliant for w and Q ∈ Q has one of the following properties

1. supp[n+1,n+`](Q) = ∅, or

2. Every i ∈ supp[n+1,n+`](Q) belongs to a forced component, or

3. Q generates an edge e ∈ E \ E′.

Then
〈Q′, w ◦ π〉 = 〈Q,w ◦ π〉.

Proof. We prove each case separately.

1. By construction Q′ = Q(2) = Q(1) = Q and the claim follows.

2. By assumption and Claim 5.5(a) we have supp[n+1,n+`](Q
(1)) ⊆ {r1, . . . , rk}. Suppose rj ∈

supp[n+1,n+`](Q
(1)). Definition 5.7 and Equation (4) imply (Q(ej))rj = −1, so by construc-

tion rj 6∈ supp[n+1,n+`](Q
(2)). This is argued for each rj ∈ supp[n+1,n+`](Q

(1)) and shows

supp[n+1,n+`](Q
(2)) = ∅ . By construction this implies Q′ = Q(2). Notice Q(2) = Q + Q′′

where Q′′ is a linear combination of constraints that generate edges in F ∪ {e1, . . . , ek}. We
conclude

〈Q′, w ◦ π〉 = 〈Q(2), w ◦ π〉 = 〈Q,w ◦ π〉+ 〈Q′′, w ◦ π〉 = 〈Q,w ◦ π〉, (5)

The last equality follows because π is F compliant for w.

3. We may assume e belongs to component Vj that is not forced because the other case (of forced
Vj) was argued in part 2. By construction Q(1) = Q(e). By assumption e does not force Vj ,
so by Definition 5.7 we have supp[n+1,n+`](Q(e)) = ∅. By construction Q′ = Q(2) = Q(1) and

the F -compliancy of π implies as argued in Equation (5) that 〈Q′, w ◦ π〉 = 〈Q(2), w ◦ π〉 =
〈Q,w ◦ π〉. This completes the proof.
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We are ready to argue the soundness of V ′ and complete the proof of Lemma 5.3.

Claim 5.12 (Soundness). Let σ = PrQ∼DQ[
∣

∣

∣
supp[n+1,n+`](Q)

∣

∣

∣
= 3]. There exists an F -compliant

proof π such that

Pr[V ′w◦π = reject] ≥ Pr[Vw◦π = reject]− ε− (1− 1/|F|) · σ.

Proof. If π is F -compliant for w then by Claim 5.11 the output of V and V ′ on w ◦ π may differ only
if the query performed is one of two types. The first type is a query that generates an edge e ∈ E′.

The fraction of these queries is at most ε. The second type is a query with
∣

∣

∣
supp[n+1,n+`](Q)

∣

∣

∣
= 3

and there exists i ∈ supp[n+1,n+`](Q) such that i belongs to an unforced component Vj . Let σ′

denote the fraction of queries of the second type and notice σ′ ≤ σ. We can already conclude

Pr[V ′w◦π = reject] ≥ Pr[Vw◦π = reject]− ε− σ,

but to reach the stronger claim stated above we need one additional observation regarding con-
straints of the second type.

Let Q be such a constraint and suppose i ∈ supp[n+1,n+`](Q) belongs to the unforced component
Vj . Consider the uniform distribution over F -compliant proofs obtained by randomly fixing values
αk+1, . . . , αm for πrk+1

, . . . , πrm and extending these values to an F -compliant proof for w. Notice
the value assigned to πi depends linearly on the value of πrj . Thus, assigning a uniformly random
value to πrj implies 〈Q,w ◦ π〉 is a random variable ranging uniformly over F, i.e., Q accepts w ◦ π
with probability 1/|F|. This implies the expected number of constraints of the second type that are
satisfied is 1/|F|. We conclude the existence of an F -compliant proof such is rejected by at most a
(1− 1/|F|)-fraction of the queries of the second type. This completes our proof.

Proof of Lemma 5.3. Let w be δ-far from P . Let V ′ be the tester constructed from V as described
earlier in this subsection. Let π be the F -compliant proof for w satisfying Claim 5.12. Notice
σ ≤ 1− µ so this claim implies

s(δ) ≤ Pr[Vw◦π = reject] ≤ Pr[V ′w◦π = reject] + ε + (1− 1/|F|)(1 − µ).

The proof is completed by recalling from Claim 5.8 that V ′ is a
(

36 log `
ε

)

-tester, hence Pr[V ′w◦π =

reject] ≤ t
[

36 log `
ε

]

(δ).
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6 Proof of length-soundness tradeoff for unique verifiers

In this section, we prove the length-soundness tradeoff for 3-query unique verifiers (Theorem 2.12).
As in the case of linear, we first prove a similar theorem for the special case of inspective unique
verifiers (Theorem 2.19) and then extend this result to general 3-query unique verifiers.

6.1 Best soundness for inspective unique verifiers (Proof of Theorem 2.19)

Theorem 2.19 (restated) (Best soundness with unique inspective verifiers) Let P ⊆ Σn be a
property. Let s(δ) denote the best soundness of a (3, `)-unique inspective verifier for P , i.e., s(δ) =
SP

uniqVi

(3, `, δ). Let t[q](δ) denote the best soundness of a q-tester for P , i.e., t[q](δ) = SP (q, 0, δ).
Then

s(δ) ≤ min
ε>0

{

4t

[

8 log `

s(δ) − ε
· ln (2 ln |Σ|)

]

(δ) + ε

}

.

The conclusion of Theorem 2.19 has s(δ) on both sides of the inequality, which makes it rather
cumbersome to deal with. So, we obtain the following corollary of Theorem 2.19, which is a more
convenient form to work with (for instance to derive Theorem 2.12).

Corollary 6.1. Let α ∈ (0, 1) and let P , {Pn ⊆ Fn : n ∈ N} be a family of F-linear properties
(codes) with dual distance at least αn. For every ε > 0, there exists a β > 0 and n0 ∈ N, such that
for any property Pn, n > n0, the following is satisfied for all δ ∈ (0, 1),

SPn
uniqVi

(

3, 2βn, δ
)

≤ 2ε.

Proof. Set β = αε/(8 ln(2|F|)). Suppose the corollary is false for this setting of β, i.e., there exists
a inspective unique (q, n, 2βn) verifier with soundness s(δ) > 2ε. Now, since s(δ) > 2ε, we have
that 8βn

s(δ)−ε · ln (2 ln |F|) < 8βn
ε · ln (2 ln |F|) = αn. Since the dual distance of Pn is at least αn, we

have t
[

8 log l
s(δ)−ε · ln (2 ln |Σ|)

]

(δ) = 0. Thus, it follows from Theorem 2.19 that s(δ) ≤ ε contradicting

our assumption that s(δ) > 2ε. Hence, proved.

Proof of Theorem 2.19. The outline of the proof is similar to the linear case. Given an inspective
unique verifier for some property P , we construct using the graph decomposition lemma (Lemma
5.4) a tester for P . The lower bound on the soundness of the tester implies a lower bound on that
of the inspective verifier.

Let P ⊂ Σn and let V = 〈Q,D〉 be an inspective unique (q, n, `) verifier for P and let s
denote the soundness of the verifier V. We may assume without loss of generality that D is the
uniform distribution by repeating queries in Q proportional to their probability. Let G = G(V)
be the inspective graph corresponding to uniqVi, as per Definition 4.5. For any ε, let Gε be an
ε-decomposition of G as per Lemma 5.4. Note that the soundness of the verifier corresponding to
Gε is at least s′ = s − ε. Let V0, V1, . . . , Vm be the components of Gε, where V0 is the component
which contains the vertex 0. Let F0, F1, . . . , Fm be a set of spanning trees, one per component,
of radius at most log `/ε. Let r1, r2, . . . , rm be arbitrary roots for F0, F1, . . . , Fm respectively and
set r0 to be the root of F0. Furthermore, let p0, p1, . . . , pm be the normalized number of edges in
components V0, V1, . . . , Vm respectively (i.e., pi = |E(Vi)|/|E(Gε)|).
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Corresponding to every non-tree edge e = (u, v) in E(Vi) \Fi, there exists a unique cycle in the
graph Fi + {e}. Call this cycle ce, the cycle completed by edge e.

For i = 1, . . . ,m and any σ ∈ Σ let πσ
i : Vi → Σ be the unique labeling of the vertices of

component Vi such that (a) the root ri is labeled by σ and (b) all the edge constraints of the tree
edges of Fi are satisfied by πσ

i . Note that once the label of the root is fixed, it induces a labeling
on all the vertices of the tree such that all tree-edge constraints are satisfied due to the uniqueness
property of the verifier. πσ

i is this induced labeling where the root vertex is labeled by σ. For the
component V0, note that there is a unique labeling of the vertices of V0 that satisfies all tree-edge
constraints. Let π0 : V0 → Σ be this unique labeling.

We are now ready to describe the tester T that distinguishes w ∈ P from w that are δ-far from
P . Observe that the soundness of the inspective verifier corresponding to Gε is at least s(δ) − ε.
We call this quantity s′.

Tester T

Oracle: w : [n]→ Σ

1. Choose i←R {0, . . . ,m} according to the probability distribution (p0, . . . , pm).

2. Choose k = 2
s′ ln(2|Σ|) edges in E(Vi)\Fi (i.e., the non-tree edges) uniformly at random

(independently and with repetition).

3. Let C be the set of all cycles completed by the above k non-tree edges. Let EC be the
set of all edges contained in the cycles C (i.e., EC = {e|∃c ∈ C, e ∈ c}).

4. Let QE be the set of constraints of V that generate the set of edges E. Let IE be the

set of indices in [n] probed by the constraints QE (i.e., IE =
(

⋃

(I,C)∈QE
I
)

∩ [n]).

5. Query the word w for all indices i ∈ IE

6. If i = 0

Accept if the partial assignments w : IE → Σ and π0 : V0 → Σ do not violate any
constraint in QE

7. Else (i.e., i 6= 0)

Accept if there exists a σ ∈ Σ such that the partial assignments w : IE → Σ and
πσ

0 : V (G(Vi))→ Σ do not violate any constraint in QE

The query complexity of the tester T is at most twice the number of edges E because each edge
is labeled by at most 2 indices in [n], so this query complexity is bounded above by 2k · (2 log `/ε) =
(8 log `/s′) · ln(2|Σ|).

Clearly, the above tester has perfect completeness. Consider any word w : [n] → Σ that is
δ-far from P . We show below that the tester T rejects w with probability at least (s(δ) − ε)/4 =

s′/4. Given this fact, the theorem follows since t
[

8 log `
s′ · ln(2|Σ|)

]

(δ) upper bounds the rejection

probability of any tester.
Since w is δ-far from P , it follows from the soundness of the inspective graph Gε, that for any

labeling π : V (Gε)→ Σ, at least s′ = s(δ) − ε fraction of the edge constraints are violated.
Suppose Vi is the component chosen in Step 1. Consider the inspective graphs G(Vi) corre-

sponding to the components Vi. Let si be the soundness of G(Vi).
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Assume i 6= 0. Consider any σ ∈ Σ. Since the soundness of G(Vi) is si, the labeling πσ
i violates

at least si fraction of edge constraints. (note that only non-tree edges are violated by πσ
i ). Hence,

for a random non-tree edge, the probability that it is not violated by πσ
i is at most 1−si. Therefore,

the probability that all k edges chosen in Step 2 are not violated by πσ
i is at most (1− si)

k ≤ e−sik.
Hence, the probability that there exists a σ ∈ Σ such that all k edges are not violated by πσ

i is at
most |Σ|e−sik ≤ 2−2si/s′ .

If i = 0, the analysis is similar to above except that we do not have the final union bound. Hence,
the probability that all k edges are not violated by π0 is at most e−s0k ≤ 2−2s0/s′/|Σ| < 2−2s0/s′ .

We now need to relate si to s′. Towards this end, observe that
∑

pisi denotes the soundness of
the entire graph which is at least s′ = s− ε. Hence, with probability at least s′/2, the component
i chosen in Step 1 satisfies si ≥ s′/2. Hence, with probability at least s′/2 over the choice of
component in Step 1 the tester rejects with probability at least 1 − 2−2(s′/2)/s′ ≥ 1/2. Hence, T
rejects w with probability at least (s′/2) · (1/2) = s′/4 = (s(δ)− ε)/4. This completes the proof of
the Theorem.

6.2 Proof of Theorem 2.12

We are now ready to prove the Theorem 2.12.

Theorem 2.12 (restated) Let α ∈ (0, 1) be a positive constant and let P , {Pn ⊆ F
n : n ∈ N} be

a family of F-linear properties (codes) with dual distance at least αn. For every ε > 0, there exists
a β > 0 and n0 ∈ N such that for any property Pn ∈ P, n > n0 the following is satisfied for all
δ ∈ (0, 1]:

SPn
uniqV

(

3, 2βn, δ
)

≤
2(1 + 2ε)

3
·

(

1−
1

|F|

)

.

Proof. Let V be a unique verifier for Pn and let sV(δ) its soundness function. Let µ be the fraction
of inspective queries made by V. We have from Lemma 4.7 that

sV(δ) ≤ min{1− µ + SPn
uniqVi

(

3, 2βn, δ
)

, µ

(

1−
1

|F|

)

}.

The above inequality is maximized when the two sides are equal, i.e.,

µ =
(

1 + SPn
uniqVi

(

3, 2βn, δ
))

/(2 − 1/|F|).

For this setting of µ, we have

sV(δ) ≤
(

1 + SPn
uniqVi

(

3, 2βn, δ
))

·

(

1− 1
|F|

)

(

2− 1
|F|

)

≤
(

1 + SPn
uniqVi

(

3, 2βn, δ
))

·

(

1− 1
|F|

)

3
2

[Since |F| ≥ 2]

Corollary 6.1 implies that SPn
uniqVi

(

3, 2βn, δ
)

≤ 2ε which proves the theorem.
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7 Short Linear PCPPs

It has been shown in [Din07, BSS05] that any property P ⊂ {0, 1}n that can be decided by a
nondeterministic circuit of size t has a (3, tpolylog t)-verifier V with (perfect completeness and)
constant soundness, meaning that for any δ there exists ε that depends only on δ (and not on n or
P ) such that the soundness function of V satisfies s(δ) > ε. Next we claim that if P is F2-linear,
then V can be assumed without loss of generality to be F2-linear too.

In what follows, a F2-linear circuit is a multi-output circuit with fan-in and fan-out at most
2 comprised of gates that compute F2-addition. The property decided by a F2-linear circuit P is
the space of inputs that cause all output gates to evaluate to 0. Notice every F2-linear property
P ⊂ F

n
2 can be decided by a circuit of size at most n2.

Lemma 7.1 (Short linear PCPPs). For every δ > 0 there exists ε = ε(δ) > 0 such that the following
holds. Every F2-linear property P ⊆ F

n
2 that can be decided by a F2-linear circuit of size m has a

3-query linear verifier accessing a proof of length ` = m · polylog (n), that has perfect completeness
and soundness function satisfying s(δ) ≥ ε.

Moreover, the proof oracle is linear in the input oracle, i.e., there exists a F2-linear transfor-
mation T : F

n
2 → F

`
2 such that every w ∈ P is accepted by the verifier in conjunction with the proof

oracle πw = T (w).

Proof sketch. The results of [Din07, BSS05] imply all but the F2-linearity in the lemma stated
above. It suffices to modify their PCPP construction so that the proof πw for word w ∈ P will be
given by a F2-linear transformation T . Then, consider the property

P ′ ⊂ F
n+`
2 , P ′ = {w ◦ πw | w ∈ P}.

By construction, P ′ is F2-linear. Hence, [BSHR05][Theorem 5.3] implies P ′ has a 3-query F2-linear
tester and this tester is a (3, `), F2-linear verifier for P with perfect completeness and soundness
function as claimed.

Transforming the proof oracle of [BSS05] into an F2-linear one involves inspecting the various
steps in its construction and making sure each of them is F2-linear. This is argued for the closely
related construction of [BSGH+04] in Proposition 8.14 there. The key element in [BSS05] that does
not appear in [BSGH+04] is the construction of PCPPs for Reed-Solomon codes. This construction
can be verified to be given by a linear transformation by inspecting Section 6. In particular, let
us follow the proof of Proposition 6.9 in [BSS05] using the notation there. Let F be the finite
field of characteristic 2 used there (and denoted by GF(2`)). Let p : F → F be the evaluation
of a polynomial P . The coefficients of the bivariate polynomial Q are obtained by a F-linear
transformation applied to the coefficients of P , because by construction (in Proposition 6.2) Q = P
mod (y−q(x)), and taking the remainder of P is a F-linear operation. Hence, the function f : S → F

which is an evaluation of Q on a subset S of F×F is given by an F-linear applied to p. This implies
that f : S ∪ T → F is also F-linear in p. So arguing inductively, the PCPP for an RS-codeword
p is F-linear in p and so it is also F2-linear in p. We assume p is itself obtained by a F2-linear
transformation applied to w (by arguing along the lines of [BSGH+04][Proposition 8.14], details
omitted). We conclude that the PCPP resulting from [BSS05] is F2-linear in w.

We move on to the construction in [Din07] and follow the proof of [Din07][Theorem 9.1], using
the notation given there. We assume we have at hand a proof of length m · polylog n obtained by
applying a linear transformation to w ∈ P . This proof is viewed as a mapping σ : V → F2 where V
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is the set of vertices of a a constraint graph G. The first step in the proof of [Din07][Theorem 9.1]
is to construct σ1 : VH → F2 where VH replaces each vertex v ∈ V by a “cloud” of vertices, denoted
[v], and σ1 assigns the value σ(v) to all vertices in [v]. Clearly, σ1 is F2-linear in σ as it is obtained

from it by repetition. Next, an assignment σ2 : VH → F
dt/2

2 is constructed from σ1 by taking σ2(v)
to be the value given by σ1 to all vertices within distance ≤ t/2 from v (d denotes the degree of the
regular graph H). Being a repetition of σ1, this transformation is also F2-linear. The final step is
“alphabet reduction by composition” with an assignment tester, which is synonymous to a PCPP.
In [Din07], the long-code based assignment tester is used. However, to maintain F2-linearity we

compose with the Hadamard based PCPP. In particular, for every v ∈ VH we replace σ2(v) ∈ F
dt/2

2

with its Hadamard encoding which is an element of F
2dt/2

2 . Let us call the resulting assignment
σ3. Notice σ3 is F2-linear in σ2 because it is obtained by concatenation with a F2-linear code. We
set σ = σ3 and repeat this process (σ 7→ σ1 7→ σ2 7→ σ3) a number of times (see [Din07][Section
8] for details), resulting in an F2-linear transformation that converts w ∈ P into a proof of length
m polylog n. This completes our proof-sketch.
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