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Abstract

We revisit the connection between boosting algorithms and hard-core set constructions dis-
covered by Klivans and Servedio. We present a boosting algorithm with a certain smoothness
property that is necessary for hard-core set constructions: the distributions it generates do not
put too much weight on any single example. We then use this boosting algorithm to show the
existence of hard-core sets matching the best parameters of Klivans and Servedio’s construction.

1 Boosting and Hard-Core sets

Hard-core set constructions are a form of hardness amplification of boolean functions. In such
constructions, starting with a function that is mildly inapproximable by circuits of a certain size,
we obtain a distribution on inputs such that the same function is highly inapproximable by circuits
of size closely related to the original, when inputs are drawn from it.

Impagliazzo [3] gave the first hard-core set constructions and used them to give an alternative
proof of Yao’s XOR lemma. Klivans and Servedio [4] gave improved hard-core set constructions
using a connection to the notion of boosting from learning theory. The goal of boosting is to
“boost” some small initial advantage over random guessing that a learner can achieve in Valiant’s
PAC (Probabilistically Approximately Correct) model of learning. Klivans and Servedio describe
how boosting algorithms which satisfy certain smoothness properties can be generically used to
obtain good hard-core set constructions.

We give a new algorithm for boosting that enjoys the smoothness properties necessary for hard-
core set constructions. This algorithm has the additional desirable property that it has the same
number of iterations as the AdaBoost algorithm, and thus is more efficient Servedio’s SmoothBoost
algorithm [5]. For this reason, the boosting algorithm should be of independent interest, especially
for the applications in Servedio’s paper [5] on learning in the presence of malicious noise. Our
boosting algorithm is inspired by Warmuth and Kuzmin’s [7] technique (which, in turn, uses ideas
that originated in the work Herbster and Warmuth [2]) of obtaining smooth distributions from any
other distribution by projecting it into the set of smooth distributions using the relative entropy
as a distance function.

We use this boosting algorithm to construct hard-core sets matching the best parameters of
the Klivans-Servedio construction. Although we do not improve over the parameters of Klivans
and Servedio’s construction, our proof is arguably simpler for three reasons: (a) it obtains the
best known parameters for hard-core set constructions directly by applying the boosting algorithm,
rather than building it up incrementally by accumulating small hard-core sets, and (b) it obviates
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the necessity of composing two different boosting algorithms, with separate analyses of the distri-
butions they produce, and, consequently, (c) the final circuit found in our construction is a simple
majority over circuits found by the boosting algorithm, rather than a majority of majorities over
circuits.

Finally, the improved efficiency of our boosting algorithm has ramifications for for an application
in Klivans and Servedio’s paper: it enables us to shave off a factor of O(log(1/ε)) from the running
time of the fastest known algorithm to learn DNF formulae with membership queries under the
uniform distribution, while retaining the final hypothesis as a simple majority-of-parity circuit,
instead of a majority-of-majority-of-parity circuit.

Our boosting algorithm is based on the same technology as Freund and Schapire’s AdaBoost

algorithm [1], viz. the Multiplicative Weights Update method. We augment this technique with the
technique of Bregman projections (from [2, 7]) into the set of all smooth distributions as mentioned
previously.

We now introduce this technique in the context of a repeated online decision making problem.
In each round, we have to make a decision, and then we suffer an associated cost. To guide us in
this task, we have n experts. In each round, every expert recommends a course of action, and our
task is to pick an expert and use his advice. At this point the costs of all actions recommended by
the experts are revealed, and we suffer the cost of the action recommended by the expert we chose.

We now set up some notation. Let t denote the current round, and let i be a generic expert.
In each round t, we select a distribution p(t) over the set of experts, and select an expert i ran-
domly from it (and use his advised course of action). We impose the (crucial) restriction that the
distribution p(t) comes from some specified convex set P of distributions.

At this point, the costs of all the actions recommended by the experts are revealed in the form of
the vector m(t) such that expert i incurs cost mi

(t). We assume that the costs lie in the range [0, 1].
The expected cost to the algorithm for choosing the distribution p(t) is Ei∈p(t) [mi

(t)] = m(t) ·p(t).

The total expected cost over all rounds is therefore
∑T

t=1 m(t) · p(t). Our goal now is to design
an algorithm which achieves a total expected cost not too much more than the cost of the best fixed
distribution in P in hindsight, viz. minp∈P

∑T
t=1 m(t) · p. The following theorem will be proved

in Section A. This theorem (and its analysis) appears in a slightly different form in [2, 7], and for
completeness we include the proof of the theorem in Appendix A.

Theorem 1. Let 0 < δ ≤ 1/2 be an error parameter, and let T be any positive integer. There is an

algorithm, which generates distributions p(1), . . . ,p(T ) ∈ P where each p(t) is computed only based

on m(1), . . . ,m(t−1), such that for any p ∈ P,

T
∑

t=1

m(t) · p(t) ≤ (1 + δ)

T
∑

t=1

m(t) · p +
RE(p ‖ p(1))

δ
.

Here, for distributions p and q, the relative entropy between them is RE(p ‖ q) =
∑

i pi ln(pi/qi).

2 A Smooth Boosting algorithm

We work in the setting of Valiant’s Probably Approximately Correct (PAC) learning framework [6].
In this framework, we are given a domain X of learning examples, and a concept class C of certain
boolean functions over the domain X. We assume there is an unknown function f ∈ C which labels
all points in X with boolean values. Also, we assume that there is an unknown distribution D
over X such that we can efficiently sample points from X under D and obtain their corresponding
labels.
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We assume that we have access to a sample set S of m labeled examples 〈xj , yj〉 for j =
1, 2, . . . ,m, where xj ∈ X, the domain of our samples, and yj ∈ {0, 1} is the label of xj. Given
a function f : X → [0, 1], and an example 〈xj , yj〉, the margin of f on xj is defined to be 1/2 −
|f(xj) − yj|. Intuitively, if we use the function value on an example as a probability to predict the
label of the example, then the margin is the advantage over random guessing. Given a distribution
p over S, the function f is said to have advantage γ under p if the expected margin of f when
examples are drawn from p is at least γ, i.e.

∑m
j=1 pj[1/2 − |f(xj) − yj|] ≥ γ, or equivalently,

∑m
j=1 pj|f(xj)−yj | ≤ 1/2−γ. A γ-weak learning algorithm for S is one which, given any distribution

p on S and a parameter γ > 0, returns a function h : X → [0, 1] with advantage γ under p. Given
an error rate ε, a boosting algorithm with margin θ is one which, given access to a γ-weak learning
algorithm for S, runs it on a sequence of carefully constructed distributions on S, and combines
the hypotheses it returns in some manner to obtain a function f : X → [0, 1] that has margin at
least θ on at least 1 − ε fraction of examples in S.

For the application to hard-core set constructions, we need the boosting algorithm to satisfy
a certain smoothness property on the distributions it generates: it needs to ensure that these
distribution do not put too much mass on any single example. For a distribution p on S, define
µ(p) := 1

|S|L∞(p) (here, L∞(p) = maxi pi). A distribution p on S is called ε-smooth if µ(p) ≥ ε.
With this setup, we can now describe the properties of our boosting algorithm:

Theorem 2. Given an error rate ε and access to a γ-weak learning algorithm, there is an efficient

boosting algorithm with margin θ = γ/4 which makes T = O( log(1/ε)
γ2 ) calls to the weak learning

algorithm with ε-smooth distributions. The final output hypothesis is f = 1
T

∑T
t=1 h(t), where h(t)

is the hypothesis output by the weak learning algorithm in round t.

Proof: Let P be the set of ε-smooth distributions on the S. Note that this is a convex set. We
now run the Multiplicative Weights algorithm of Theorem 1 with the experts corresponding to the
m examples in S and with the parameter δ = γ/4. The distributions on the experts are restricted
to be in P (and are thus always ε-smooth).

We start with p(1) = u, the uniform distribution on S. In every round t, the algorithm runs
the γ-weak learning algorithm with the distribution p(t) generated by the Multiplicative Weights
algorithm to obtain a hypothesis h(t) that has advantage γ under p(t). Then for j = 1, . . . ,m, we
set mj

(t) = 1 − |h(t)(xj) − yj| (thus, mj
(t) is just the margin of h(t) on xj , plus 1/2). Note that

mj
(t) ∈ [0, 1], and the expected loss in the round t is

m(t) · p(t) =
∑

j

pj
(t)[1 − |h(t)(xj) − yj |] ≥ 1/2 + γ,

since h(t) has advantage γ under p(t).
After T = d8 ln(1/ε)

γ2 e+ 1 rounds, we set our final hypothesis f = 1
T

∑T
t=1 h(t). Let E ⊆ S be the

subset of examples where f has margin less than θ = γ/4. Suppose |S| ≥ εm. Let p = uE, the
uniform distribution on E. Note that uE ∈ P, since |S| ≥ εm. Now, for any example 〈xj , yj〉 ∈ S,
we have

T
∑

t=1

mj
(t) =

T
∑

t=1

1 − |h(t)(xj) − yj| ≤ T −

∣

∣

∣

∣

∣

T
∑

t=1

h(t) − Tyj

∣

∣

∣

∣

∣

= T (1 − |f(xj) − yj|) ≤ (1/2 + θ)T,

since f has margin less than θ on 〈xj , yj〉. Thus,

T
∑

t=1

m(t) · uE =
1

|E|

∑

〈xj ,yj〉∈S

T
∑

t=1

mj
(t) ≤ (1/2 + θ)T.
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Also, since |E| ≥ εm, it is easy to check that

RE(p ‖ p(1)) = RE(uE ‖ u) ≤ ln(1/ε).

Plugging these observations into the inequality of Theorem 1, since δ = γ/4, we get

(1/2 + γ)T ≤ (1 + γ/4)(1/2 + θ)T +
4 ln(1/ε)

γ
.

But since θ = γ/4, we get that (1 + γ/4)(1/2 + θ) ≤ 1/2 + γ/2. Now since T = d8 ln(1/ε)
γ2 e + 1, we

get a contradiction to this inequality. 2

A note of comparison: our boosting algorithm improves over Servedio’s SmoothBoost algo-
rithm [5] in running time, reducing the polynomial dependence on 1/ε to logarithmic dependence.

SmoothBoost needs O( 1
εγ2 ) calls to the weak learning algorithm, whereas ours needs O( log(1/ε)

γ2 ).

3 Hard-core Set Construction

Let f be a function from {0, 1}n → {0, 1}. Let u be the uniform distribution on {0, 1}n. f is said
to be ε-hard for circuits of size g if no such circuit can match f on more than 1 − ε fraction of
inputs. For a distribution p on {0, 1}n, f is said to be γ-hard-core under p for circuits of size g if
no such circuit can match on f on a subset of inputs of measure at least 1/2 + γ when inputs are
sampled from p. A γ-hard-core set for f is a set of inputs S such that f is γ-hard-core under the
uniform distribution uS on S for circuits of size g.

Given a function f that is ε-hard for circuits of size g, our goal is to find hard-core sets S for
f that are as large as possible, for circuits of size g′ which is as close to g as possible. The size of
S, as a fraction of the 2n inputs, is exactly 1/L∞(2nuS). We relax our objective a bit, and aim
to find a distribution p on {0, 1}n such that f is γ-hard-core on p, so that µ(p) := 1/L∞(2np) is
as large as possible. It can be shown that by randomly sampling inputs using p sufficiently many
times, we can construct an O(γ)-hard-core set of size Ω(µ(p) · 2n).

We now describe our hard-core set constructions. Note that the following theorem can also be
proved directly using the Theorem 1, but we prefer to prove it using the boosting algorithm of the
previous section to make the connection to boosting explicit.

Theorem 3. Let f be a function from {0, 1}n → {0, 1} that is ε hard for circuits of size g.
Then there is a distribution p with µ(p) ≥ ε such that f is γ-hard-core for p for circuits of size

O( γ2

log(1/ε)g).

Proof: Assume by way of contradiction that for any distribution p with µ(p) ≥ ε, there is a

circuit of size g′ = O( γ2

log(1/ε)g) that computes f on a subset of inputs of measure at least 1/2 + γ
under p.

We now run the smooth boosting algorithm of Theorem 2 with the set of examples S =
{〈x, f(x)〉 : x ∈ {0, 1}n}, and with the error parameter ε. The weak learning algorithm, given a
distribution p with µ(p) ≥ ε, outputs a circuit (which exists, by our assumption above) of size g′

which computes f on a subset of inputs of measure at least 1/2 + γ under p. It can be checked
easily that the function computed by this circuit has advantage γ under p. Let C(t) be the circuit
found in round t for distribution p(t), and let h(t) be the function computed by it. Theorem 2
implies that the function f = 1

T

∑T
t=1 h(t) has margin at least θ = γ/4 on at least 1 − ε fraction of

inputs. This implies that the circuit MAJORITY(C(1), . . . , C(T )) matches f on at least 1− ε fraction
of inputs. The size of this majority of circuits is Θ(Tg′) < g, for a suitable choice of g′, which
contradicts the assumption that f is ε hard for circuits of size g. 2

4



Acknowledgments

I thank Manfred Warmuth for showing me the Bregman projection trick, and for interesting dis-
cussions of the uses of this idea in other applications.

References

[1] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and
an application to boosting. Journal of Computer and System Sciences, 55(1):119–139, August
1997.

[2] Mark Herbster and Manfred K. Warmuth. Tracking the best linear predictor. Journal of

Machine Learning Research, 1:281–309, 2001.

[3] Russell Impagliazzo. Hard-core distributions for somewhat hard problems. In 36th Annual

Symposium on Foundations of Computer Science, pages 538–545, Milwaukee, Wisconsin, 23–25
October 1995. IEEE.

[4] Adam R. Klivans and Rocco A. Servedio. Boosting and hard-core set construction. Machine

Learning, 51(3):217–238, 2003.

[5] Rocco A. Servedio. Smooth boosting and learning with malicious noise. Journal of Machine

Learning Research, 4:633–648, 2003.

[6] Leslie G. Valiant. A theory of the learnable. In STOC, pages 436–445, 1984.

[7] Manfred K. Warmuth and Dima Kuzmin. Randomized pca algorithms with regret bounds that
are logarithmic in the dimension. In NIPS, 2006.

A The Multiplicative Weights algorithm with Restricted Distri-

butions

In this section we prove Theorem 1. We restate it here for convenience:

Theorem 1. Let 0 < δ ≤ 1/2 be an error parameter, and let T be any positive integer. There is an

algorithm, which generates distributions p(1), . . . ,p(T ) ∈ P where each p(t) is computed only based

on m(1), . . . ,m(t−1), such that for any p ∈ P,

T
∑

t=1

m(t) · p(t) ≤ (1 + δ)
T

∑

t=1

m(t) · p +
RE(p ‖ p(1))

δ
.

Proof: The algorithm is shown in Figure 1.
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Multiplicative Weights Update algorithm with Restricted Distributions

Initialization: Fix a δ ≤ 1
2 . Start out with an arbitrary probability distribution p(t) on the

experts. initialized to 1.
For t = 1, 2, . . . , T :

1. Choose expert i using p(t).

2. Observe the costs of the experts m(t).

3. Compute the probability vector p̂(t+1) using the following multiplicative update rule: for
every expert i,

pi
(t+1) = pi

(t)(1 − δ)mi
(t)

/Z(t) (1)

where Z(t) =
∑

i pi
(t)(1 − δ)mi

(t)
is the normalization factor.

4. Set p(t+1) to be the projection of p̂(t) on the set P using the RE as a distance function, i.e.

p(t+1) = arg min
p∈P

RE(p ‖ p̂(t)).

Figure 1: The Multiplicative Weights algorithm with Restricted Distributions

We use the relative entropy between p and p(t), RE(p ‖ p(t)) :=
∑

i pi ln(pi/pi
(t)) as a “poten-

tial” function. We have

RE(p ‖ p̂t+1) − RE(p ‖ p(t)) =
∑

i

pi ln
pi

(t)

p̂i
(t+1)

=
∑

i

pi ln
Z(t)

(1 − δ)mi
(t)

= ln
1

1 − δ

∑

i

pimi
(t) + ln Z(t)

≤ δ(1 + δ)(m(t) · p) + ln Z(t).

The last inequality follows because − ln(1 − δ) ≤ δ(1 + δ) for δ ≤ 1
2 .

ln Z(t) = ln[
∑

i

pi
(t)(1 − δ)mi

(t)
]

≤ ln[
∑

i

pi
(t)(1 − δmi

(t))] ∵ (1 − δ)x ≤ (1 − δx) for x ∈ [0, 1]

= ln[1 − δ
∑

i

pi
(t)mi

(t)]

≤ −δ
∑

i

pi
(t)mi

(t). ∵ ln(1 − x) ≤ −x for x < 1

Thus, we get

RE(p ‖ p̂t+1) − RE(p ‖ p(t)) ≤ δ(1 + δ)(m(t) · p) − δ(m(t) · p(t)).
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Now, projection on the set P using the relative entropy as a distance function is a Bregman
projection, and thus it satisfies the following Generalized Pythagorean inequality (see, e.g. [2]), for
any p ∈ P:

RE(p ‖ p(t+1)) + RE(p(t+1) ‖ p̂(t+1)) ≤ RE(p ‖ p̂(t+1)).

Since RE(p(t+1) ‖ p̂(t+1)) ≥ 0, we get the following bound:

RE(p ‖ p(t+1)) − RE(p ‖ p(t)) ≤ δ(1 + δ)(m(t) · p) − δ(m(t) · p(t)).

Summing up from t = 1 to T , and using the fact that RE(p ‖ p(T+1)) ≥ 0, and simplifying, we get

T
∑

t=1

m(t) · p(t) ≤ (1 + δ)

T
∑

t=1

m(t) · p +
RE(p ‖ p(1))

δ
.

2

A.1 Computing the Projection

In general, the projection of a probability distribution p on the experts is a convex program, since
the RE(q ‖ p) is a convex function of q, and so it can be computed in polynomial time using
standard convex programming techniques.

In one special case, however, we can compute the projection far more efficiently. Let ε > 0 be
a given parameter. For a distribution p on the experts, define µ(p) := 1/(nL∞(p)), and let P be
the (convex) set of distributions p on the experts such that µ(p) ≥ ε.

In [2], [7], the following theorem is proved, by recursively using the median:

Theorem 4. There is a O(n) time algorithm that, given a probability distribution p over S, com-

putes the projection of p on P with the RE as a distance function.

A very simple algorithm can be obtained as follows. Find the least index k such that clipping
the largest k coordinates of p to 1

εn and rescaling the rest of the coordinates to sum up to 1 − k
εn

ensures that all coordinates are at most 1
εn , and output the probability vector thus obtained. This

is the required projection. This can be implemented by sorting the coordinates, and so it takes
O(n log n) time.
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