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Abstract

We prove that the sum of d small-bias generators L : F
s → F

n fools degree-d
polynomials in n variables over a prime field F, for any fixed degree d and field F,
including F = F2 = {0, 1}.

Our result improves on both the work by Bogdanov and Viola (FOCS ’07) and the
beautiful follow-up by Lovett (ECCC ’07). The first relies on a conjecture that turned
out to be true only for some degrees and fields, while the latter considers the sum of
2d small-bias generators (as opposed to d in our result).

Our proof builds on and somewhat simplifies the arguments by Bogdanov and Viola
(FOCS ’07) and by Lovett (ECCC ’07). Its core is a case analysis based on the bias of
the polynomial to be fooled.

1 Introduction

A pseudorandom generator G : F
s → F

n for polynomials of degree d over a prime field F

is an efficient procedure that stretches s field elements into n � s field elements that fool
any polynomial of degree d in n variables over F: For every polynomial p of degree d, the
statistical distance between p(U), for uniform U ∈ F

n, and p(G(S)), for uniform S ∈ F
s, is

at most a small ε.
The fundamental case of linear, i.e. degree-1, polynomials is first studied by Naor and

Naor [NN] who give a generator with seed length s = O(log|F| n) (for error ε = 1/n), which
is optimal up to constant factors (cf. [AGHP]).1 This generator is known as small-bias
generator, and is one of the most celebrated results in pseudorandomness, with a myriad of
applications (see, e.g., references in [BV]).

The case of higher degree is first addressed by Luby, Veličković, and Wigderson [LVW],
and a decade later by Bogdanov [Bog]. However, the generators in [LVW, Bog] have poor
seed length or only work over very large fields.
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1Naor and Naor [NN] only consider the case F = F2. However, it has been observed by several researchers
that their result extends to any prime field.
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Recently, Bogdanov and the author [BV] introduce a new approach to attack this problem
over small fields, which we now describe. The work considers the generator Gk : F

s → F
n

that is obtained by summing k copies of the small-bias generator L : F
s′ → F

n by Naor and
Naor [NN], which fools linear (i.e., degree-1) polynomials:

Gk(s1, . . . , sk) := L(s1) + · · ·+ L(sk),

where the sum is element-wise. [BV] shows that such a generator can be analyzed using the
so-called Gowers norms. It unconditionally shows that Gd fools polynomials of degree d for
d ≤ 3. For larger d > 3, the work proves a conditional result. Specifically, it introduces
a special case of a conjecture known as the Gowers inverse conjecture [GT1, Sam]. This
special case is called the “d vs. d − 1 Gowers inverse conjecture” and we subsequently refer
to it as “d-GIC.” Under d-GIC, [BV] shows that Gd fools polynomials of degree d for every
d. Moreover, a counting argument shows that Gd achieves the optimal dependence of the
seed length s on the number of variables n, up to additive terms. (In particular, Gd−1 does
not fool polynomials of degree d.)

Subsequently, Lovett [Lov] unconditionally shows that G2d fools polynomials of degree
d, for every d. Lovett’s proof is remarkable because it is unconditional and does not use the
theory of Gowers norms. On the other hand, it only works when summing an exponential
number 2d of small-bias generators, as opposed to d in [BV].

Very recently, Green and Tao [GT2] prove d-GIC when the field size |F| is bigger than the
degree d of the polynomial. Thus, in this case, the approach in [BV] works and in particular
one has that Gd fools polynomials of degree d. On the negative side, Green and Tao [GT2],
and independently Lovett, Meshulam, and Samorodnitsky [LMS], show that d-GIC is false
when the field size is much smaller than the degree of the polynomial (which in particular
falsifies the more general Gowers inverse conjecture [GT1, Sam]). This falsity prevents the
analysis in [BV] to go through for small fields, notably over F2 = {0, 1}. Still, it was left
open to understand whether, regardless of the Gowers inverse conjecture, the generator Gd

in [BV] fools polynomials of degree d over small fields such as F2. In this work we answer
this question in the affirmative.

1.1 Our results

In this section we state our results. We state them over F2 = {0, 1} for simplicity, though
they hold over any prime field (the necessary details appear in [BV]). Also, we state them
for distributions rather than generators; the translation into the language of generators is
immediate. Let us start by formalizing the standard notion of fooling.

Definition 1 (Fool). We say that a distribution W on {0, 1}n ε-fools degree-d polynomials
in n variables over F2 if for every such polynomial p we have:

|EW e [p(W )] − EU e [p(U)]| ≤ ε,

where U is the uniform distribution over {0, 1}n and e[x] := (−1)x.

2



The following is our main theorem.

Theorem 2 (The sum of d small-bias generators fools degree-d polynomials). Let Y1, . . . , Yd ∈
{0, 1}n be d independent distributions that ε-fool degree-1 polynomials in n variables over
F2 = {0, 1}. Then the distribution W := Y1 + · · · + Yd εd-fools degree-d polynomials in n
variables over F2 where

εd := 16 · ε1/2d−1

.

Theorem 2 shows that the generator in [BV] fools polynomials of any degree d (although
the analysis in [BV] only works for d ≤ 3). Theorem 2 improves on the recent and beautiful
work by Lovett [Lov] who proves a similar result but with 2d distributions as opposed to
d. Another minor improvement is in the loss in the error parameter, which beats previous
work [BV, Lov]. Still, the error loss is such that the current analysis gives nothing for
degree d = log2 n. Whether this barrier can be broken is an interesting open problem that is
reminiscent of the analogous open problem in the literature on correlation bounds (cf. [VW]).

2 Proof of Theorem 2

The proof of Theorem 2 builds on and somewhat simplifies [BV, Lov]. Following [BV, Lov],
the proofs goes by induction on d. However, it differs in the inductive step. The inductive
step in [BV] is a case analysis based on the Gowers norm of the polynomial p to be fooled,
while the one in [Lov] is a case analysis based on the Fourier coefficients of p. The inductive
step in this work is in hindsight natural: It is a case analysis based on the bias of p, which
is defined as follows.

Definition 3. The bias of a polynomial p in n variables is Bias (p) :=
∣

∣EU∈{0,1}n e [p(U)]
∣

∣,
where U is uniformly distributed and e[x] := (−1)x.

The next Lemma 4 deals with polynomials of small bias, whereas Lemma 5 deals with
polynomials of high bias. The next small-bias case (Lemma 4) is the main contribution of
this work and departure from [BV, Lov].

Lemma 4 (Fooling polynomials with small bias). Let W ∈ {0, 1}n be a distribution that
εd-fools degree-d polynomials, and let Y ∈ {0, 1}n be a distribution that ε1-fools degree-1
polynomials. Let p be a polynomial of degree d + 1 in n variables over F2. Then

|EW,Y e [p(W + Y )] − Bias (p)| ≤ 2 · Bias (p) + ε1 +
√

εd.

Proof of Lemma 4. We start by an application of the Cauchy-Schwarz inequality which gives

EW,Y e [p(W + Y )]2 ≤ EW

[

EY e [p(W + Y )]2
]

= EW,Y,Y ′ e [p(W + Y ) + p(W + Y ′)] , (1)

where Y ′ is independent from and identically distributed to Y . Now we observe that for
every fixed Y and Y ’, the polynomial p(U + Y ) + p(U +Y ′) has degree d in U , though p has
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degree d + 1. Since W εd-fools degree-d polynomials, we can replace W with the uniform
distribution U ∈ {0, 1}n:

EW,Y,Y ′ e [p(W + Y ) + p(W + Y ′)] ≤ EU,Y,Y ′ e [p(U + Y ) + p(U + Y ′)] + εd. (2)

At this point, a standard argument shows that

EU,Y,Y ′ e [p(U + Y ) + p(U + Y ′)] ≤ EU,U ′ e [p(U) + p(U ′)] + ε2

1 = Bias (p)2 + ε2

1. (3)

Therefore, chaining Equations (1), (2), and (3), we have that

|EW,Y e [p(W + Y )] − Bias (p)| ≤ |EW,Y e [p(W + Y )]| + Bias (p) ≤
√

Bias (p)2 + ε2
1 + εd + Bias (p) ≤ 2 · Bias (p) + ε1 +

√
εd,

which concludes the proof of the lemma.
For completeness, we include a derivation of Equation (3) next.

EU,Y,Y ′ e [p(U + Y ) + p(U + Y ′)]

= EU,Y,Y ′









∑

α∈{0,1}n

p̂α · χα(U + Y )









∑

β∈{0,1}n

p̂β · χβ(U + Y ′)









Here we use the Fourier expansion of p: e(p(x)) =
∑

α∈{0,1}n p̂α · χα(x),

where χα(x) := e(
∑

i αi · xi) is the inner product between α and x.

= EU,Y,Y ′

[

∑

α,β

p̂α · p̂β · χα+β(U) · χα(Y ) · χβ(Y ′)

]

Here we use standard manipulations, e.g. χα(U + Y ) = χα(U) · χα(Y ).

= EY,Y ′

[

∑

γ=α=β

p̂2

γ · χγ(Y ) · χγ(Y
′)

]

Because EU e [χα+β(U)] equals 0 when α 6= β, and 1 otherwise.

= Bias (p)2 +
∑

γ 6=0

p̂2

γ · (EY [χγ(Y )])2

Because |p̂0| = |EU e [p(U)]| = Bias (p), and χ0(Y ) ≡ 1.

≤ Bias (p)2 + ε2

1 ·
∑

γ 6=0

p̂2

γ

Because Y ε1-fools degree-1 polynomials such as
∑

i γi · Yi.

≤ Bias (p)2 + ε2

1.

Because
∑

γ 6=0
p̂2

γ ≤ ∑

γ p̂2
γ = 1 by Parseval’s identity.
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We now move to the high-bias case. This case was solved both in [BV] and more com-
pactly in [Lov]. We present a stripped-down version of the remarkable solution in [Lov]
which is sufficient for our purposes and achieves slightly better parameters.

Lemma 5 (Fooling polynomials with high bias). Let W be a distribution that εd-fools degree-
d polynomials. Let p be a polynomial of degree d + 1. Then

|EW e [p(W )] − Bias (p)| ≤ εd

Bias (p)
.

Proof of Lemma 5. We have the following derivation

|EW e [p(W )] − EU e [p(U)]| =
|EW e [p(W )] − EU e [p(U)]| · Bias (p)

Bias (p)

=
|EW,U ′ e [p(W ) + p(U ′)] − EU,U ′ e [p(U) + p(U ′)]|

Bias (p)

=
|EW,U ′ e [p(W ) + p(W + U ′)] − EU,U ′ e [p(U) + p(U + U ′)]|

Bias (p)

Because U ′ is uniformly distributed over {0, 1}n.

≤ EU ′|EW e [p(W ) + p(W + U ′)] − EU e [p(U) + p(U + U ′)]|
Bias (p)

≤ εd

Bias (p)
,

where in the last inequality we use that for every fixed U ′ the polynomial p(x) + p(x + U ′)
has degree d in x, though p has degree d + 1, and that W εd-fools degree-d polynomials.

To conclude, we work out the parameters for the proof of Theorem 2.

Proof of Theorem 2. Let εd be the error for polynomials of degree d, i.e. the maximum over
polynomials p of degree d of the quantity

|EW e [p(W )] − Bias (p)|.
We claim that for every d > 0 we have

εd+1 ≤ 4 · √εd. (?)

Indeed, let p be an arbitrary polynomial of degree d + 1. If Bias (p) ≤ √
εd we have by

Lemma 4 that

|EW e [p(W )] − Bias (p)| ≤ 2 · √εd + ε +
√

εd ≤ 4 · √εd,

which confirms (?) in this case. Otherwise, if Bias (p) ≥ √
εd we have by Lemma 5 that

|EW e [p(W )] − Bias (p)| ≤ εd√
εd

=
√

εd ≤ 4 · √εd,

which again confirms (?) in this case.
Finally, from (?) it follows that

εd ≤ 4
∑

d−2

i=0
2−i · ε1/2d−1 ≤ 16 · ε1/2d−1

for every d, and thus the theorem is proved.
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