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Abstract

We show how to construct a variety of “trapdoor” cryptographic tools assuming the worst-
case hardness of standard lattice problems (such as approximating the shortest nonzero vector
to within small factors). The applications include trapdoor functions with preimage sampling,
simple and efficient “hash-and-sign” digital signature schemes, universally composable oblivious
transfer, and identity-based encryption.

A core technical component of our constructions is an efficient algorithm that, given a basis
of an arbitrary lattice, samples lattice points from a Gaussian-like probability distribution whose
standard deviation is essentially the length of the longest vector in the basis. In particular, the
crucial security property is that the output distribution of the algorithm is oblivious to the
particular geometry of the given basis.
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1 Introduction

Ever since the seminal work of Ajtai [Ajt96] connecting the average-case complexity of lattice prob-
lems to their complexity in the worst case, there has been an intriguing and fruitful effort to base
cryptography (which requires security for randomly chosen keys) on worst-case lattice assumptions.
In addition to their unique theoretical niche, lattice-based schemes enjoy many advantages: first,
their asymptotic efficiency and simplicity (usually requiring only linear operations on small inte-
gers); second, their resistance so far to cryptanalysis by quantum algorithms (as opposed to schemes
based on factoring or discrete log); and third, the guarantee that their random instances are “as
hard as possible.”

To date, the known constructions of such primitives have been limited mainly to one-way and
collision-resistant hash functions [Ajt96, GGH96, CN97, Mic04, MR07] and public-key encryp-
tion [AD97, Reg04, Reg05]. Of particular note is the lack of any “direct” construction of digital
signatures having the simplicity and efficiency of other lattice-based primitives, even in the random
oracle model.1 (An early signature proposal by Goldreich, Goldwasser, and Halevi [GGH97] was
directly related to a certain lattice problem, but it lacked a security proof, and recently, Nguyen
and Regev [NR06] showed how to recover the secret key completely from a transcript of signatures
(on random messages). We discuss the GGH scheme in more detail below.)

There have been some recent developments in the construction of stronger cryptographic tools
based on lattices (such as chosen ciphertext-secure encryption [PW07]). But despite many advances
in the study of lattices in cryptography, it is still unknown how to realize several notions that were
long ago constructed based on other number-theoretic problems, such as those related to factoring.

1.1 Overview of Results and Techniques

Our main thesis in this work is that lattices admit natural and innate “trapdoors” that have a num-
ber of useful cryptographic applications. Going at least as far back as the GGH proposal [GGH97],
is was intuitively believed that a short basis of a lattice could serve as such a trapdoor. Our main
contribution is to show how to use a trapdoor basis in a theoretically sound and secure way.

As a basic tool, we first construct a collection of trapdoor functions having some special prop-
erties. The functions are many-to-one, (i.e., every output value has several preimages), and the
trapdoor inversion algorithm samples from among all the preimages under an appropriate distribu-
tion. Building upon this foundation, we demonstrate efficient realizations of several more advanced
cryptographic tools, including signature schemes, universally composable oblivious transfer, and
identity-based encryption.

The core technique underlying all these results is an efficient algorithm that “obliviously” sam-
ples from Gaussian-like probability distributions over arbitrary lattices, given a basis (or even just
a full-rank set) of appropriate length. This technique also yields simpler and (slightly) tighter
worst-case/average-case connections for lattice problems, and may have additional applications in
complexity theory and cryptography.

1Indirect (but inefficient) constructions are of course possible by a generic transformation from universal one-way
hash functions [NY89], or (in the random oracle model) by applying the Fiat-Shamir heuristic [FS86] to lattice-based
identification schemes [MV03].
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1.1.1 Gaussian Sampling Algorithm

Because it is the main foundation of our cryptographic results, we start with a summary of our
sampling algorithm. Given a basis B ⊂ R

n of some arbitrary n-dimensional lattice2 Λ (or even
just a full-rank set S ⊂ Λ), the algorithm chooses a lattice vector at random under a Gaussian-like
probability distribution whose standard deviation is essentially the length of the longest vector in
B (or S). Such discrete Gaussian distributions over lattices have been used in mathematics to
prove tight “transference theorems” for lattices [Ban93, Ban95], and more recently have proved
exceedingly useful in studying the computational complexity of lattice problems [AR03, AR05,
Pei07], particularly their worst-case/average-case connections (e.g., [Reg04, MR07, Reg05]). Up to
this point, however, discrete Gaussians have been used primarily as an analysis tool, rather than
an algorithmic one.

The sampling algorithm can also be viewed as a randomized decoder that, given some short
lattice vectors as “advice,” outputs a lattice vector that is relatively close to any given target point
t ∈ R

n. The key feature of the decoder is that its output distribution depends only on the length
of the advice vectors, and is otherwise oblivious to their particular geometry. This will be a crucial
security property in our cryptographic applications.

The algorithm itself is actually a simple randomized variant of Babai’s “nearest-plane” algo-
rithm [Bab86], with one small difference. Instead of always choosing the nearest plane, the algorithm
chooses a particular plane with a probability determined by its distance from the target point. It
turns out that this simple change causes the output distribution to be statistically close to a dis-
crete Gaussian, though the analysis is non-trivial and crucially uses the notion of the smoothing
parameter introduced by Micciancio and Regev [MR07].3 The full details are given in Section 3.

1.1.2 Cryptographic Constructions

For all of our cryptographic constructions, we will need to generate a “hard” public basis for a
random lattice Λ, together with a short private basis for Λ, which will be used as advice for
the sampling algorithm. Our preferred approach is due to Ajtai [Ajt99], who described a way to
generate such bases so that the public basis has worst-case hardness. (As far as we know, our
results are the first use of Ajtai’s generator in cryptography or otherwise.)

Trapdoor functions with preimage sampling. The basic object underlying our higher-level
cryptographic tools is a collection of one-way (and also collision-resistant) trapdoor functions. Very
informally, evaluating a public function f corresponds to choosing a lattice point v ∈ Λ “uniformly
at random” and perturbing it by some short error term e, yielding a point y = v + e.4 Finding a
preimage of y corresponds to decoding it to a sufficiently nearby lattice point v′ ∈ Λ (not necessarily
the original v). This is easy using our sampling algorithm with the trapdoor, but should otherwise
be hard (for the particular distribution of Λ and y).

Our trapdoor functions have two crucial properties for security in cryptographic applications.
First, the input (the error term e) is drawn from a Gaussian distribution with relatively small

2The lattice generated by the basis B = {b1, . . . ,bn} is the set of all integer combinations of the linearly-
independent vectors b1, . . . , bn.

3In private communication, Lyubashevsky has pointed out that Klein [Kle00] also proposed a randomized nearest-
plane algorithm in another context, but gave only a limited analysis of its output distribution. See Section 1.3.

4Being an infinite set, the lattice Λ cannot support a uniform distribution. In actuality, the function simply
reduces the error term e modulo the public basis for Λ.
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standard deviation, and under this distribution, the output y is statistically close to uniform over
the range. This equates the inversion problem with decoding a uniformly random point given the
public basis, for which we can show worst-case hardness. Second, the trapdoor inversion algorithm
does not just find an arbitrary preimage of y, but actually samples from all its preimages (under
the appropriate conditional distribution), using our discrete Gaussian sampling algorithm. In other
words, the inverter samples an input e from the Gaussian input distribution, conditioned on the
event that f(e) = y. Taken together, these two properties imply that there are two (nearly)
equivalent ways of choosing a pair (e,y = f(e)): either choose e from the input distribution and
compute y = f(e), or choose y uniformly at random and sample e from f−1(y). As we shall see,
this makes our trapdoor functions “as good as” trapdoor permutations in certain applications.5

Further discussion of random lattices, the hard decoding problem, and the full details of our
trapdoor functions appear in Section 4.

Signature schemes. There are several (relatively efficient) digital signature schemes in the lit-
erature based on trapdoor permutations: full-domain hash-like schemes [BR93, BR96, Cor02] that
follow the so-called “hash-and-sign paradigm” [DH76] and are existentially unforgeable under cho-
sen message attack in the random oracle model6, and the scheme of Bellare and Micali [BM92] that
is secure in the standard model.

We show that all of the above permutation-based signature schemes can be instantiated equally
well using trapdoor functions with preimage sampling, and retain their security analyses in their
respective models (though subtleties can arise when dealing with multiple queries on the same mes-
sage). In fact, we can demonstrate tight security reductions using the collision-resistance property
of our functions, rather than just their one-wayness.

Concretely, our hash-and-sign schemes represent a more rigorous way of instantiating the orig-
inal (but insecure) GGH proposal [GGH97] and its variants (e.g., NTRUSign [HHGP+03], which
adds an ad-hoc “perturbation” before signing). Informally, a message is hashed to a random point in
space, and its signature is essentially a nearby lattice point, which is found using a short basis. Our
schemes have two main differences: first, they are based on random lattices that enjoy worst-case
hardness; second and more importantly, the signatures are generated by a randomized decoding
algorithm, whose output distribution is oblivious to the particular geometry of the trapdoor basis.
(The original GGH proposal was insecure precisely because its signatures leaked information about
the “shape” of the private basis, allowing full key recovery [NR06].)

Signature schemes are constructed and analyzed in Appendix 5.

Efficient universally composable oblivious transfer. Our next applications are centered
around a cryptosystem of Regev that is based on a problem called learning with error (LWE) [Reg05].
We demonstrate a trapdoor that applies to an optimized version of the system in which all parties
generate their public keys relative to some shared random lattice.7

The first application of this trapdoor is universally composable oblivious transfer, the topic of
a concurrent work by Peikert et al. [PVW07]. The central objects of study in that work are called

5It is also possible to use other (non-Gaussian) input distributions, as long as the function’s output remains close
to uniform and there is an efficient way to sample preimages under the (conditional) input distribution.

6Alternatively, they are random-message unforgeable under a random message attack in the standard model.
7The existence of a trapdoor means that users of the system must implicitly trust the creator of the shared lattice,

because it can extract secret keys from any properly-generated public keys. We note that this by no means constitutes
a “break” of Regev’s system, because parties can generate their own individual lattices.
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message-lossy (or “messy”) public keys, whose defining property is that a ciphertext produced
under such a key carries no information (statistically) about the encrypted message.

Prior works on lattice-based encryption [AD97, Reg04, Reg05] used probabilistic arguments to
show that messy keys are very dense. In this work, we give an explicit geometric description of
messy keys in (a slight variant of) Regev’s cryptosystem. Essentially, a public key is messy if, after
adjoining it to the shared lattice, the minimum distance of the lattice remains large. We then show
how to recognize such keys, by using our Gaussian sampling algorithm to efficiently implement the
preprocessing step of an algorithm that identifies points that are far from a given lattice, due to
Aharonov and Regev [AR05].

The trapdoor for Regev’s cryptosystem is described in further detail in Appendix 6.

Identity-based encryption. Identity-based encryption (IBE), first proposed by Shamir [Sha84],
permits arbitrary strings to serve as public keys in a cryptosystem. Thus far, IBE has been realized
using groups with bilinear pairings (e.g., [BF03, BB04, Wat05]) and under the quadratic residuosity
(QR) assumption in the random oracle model, or under an “interactive” QR assumption in the
standard model [Coc01, BGH07].

Our final application is an efficient and anonymous IBE based on LWE in the random oracle
model, or under an interactive assumption on the hardness of LWE in the standard model. Although
it is possible to extract secret keys from public keys (using a trapdoor) in Regev’s LWE-based
cryptosystem, obtaining IBE is still not entirely straightforward. Essentially, the problem is that
well-formed public keys are exponentially sparse, because they consist only of points that are very
close to the shared lattice. Hence, it is difficult to see how a hash function or a random oracle could
map identities to valid public keys. We circumvent this problem by constructing a “dual” of Regev’s
cryptosystem, in which the key generation and encryption algorithms are effectively swapped. In
the resulting system, every point in space is a valid public key that has many equivalent secret
keys, which are simply the lattice points sufficiently close to the public key.

Due to its use of a trapdoor for extracting secret keys, our IBE is structurally most similar to
those based on QR [Coc01, BGH07]. It is remarkably efficient, at least in an asymptotic sense: for
Θ̃(n)-bit messages (where n is the security parameter), the amortized running time of encryption
and decryption is only Õ(n) bit operations per encrypted bit, and the ciphertext expansion factor
is O(1). One possible drawback of our system is that the master public key and individual secret
keys are Õ(n2) bits.

The constructions of the dual cryptosystem and IBE appear in Section 7.

1.2 Assumptions

Our trapdoor functions and signatures are built upon an average-case “absolute distance” decoding
problem on random lattices. Our “encryption-like” primitives, i.e., oblivious transfer and identity-
based encryption, are built on the average-case learning with error (LWE) problem, defined by
Regev [Reg05]. LWE can seen as a “unique decoding” problem on a certain family of random lattices,
and is a generalization (to larger moduli) of the well-studied learning parity with noise problem,
which is believed to be hard and has seen many applications in cryptography (e.g., [BKW03, HB01,
JW05, KS06]).

Both of the above decoding problems are hard on the average if standard lattice problems (like
the shortest vector problem) are hard to approximate to within small polynomial factors in the
dimension of the lattice, in the worst case. However, the reduction for LWE is quantum [Reg05], i.e.,
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LWE is hard if certain lattice problems are hard in the worst case for quantum algorithms. Given
the state of the art, a stronger assumption for encryption-like primitives is necessary, because there
is no known cryptosystem based on classical worst-case hardness for general lattices.8

For the lattice problems underlying our schemes, the best known classical (and quantum) al-
gorithms require time and space exponential in the dimension of the lattice [AKS01], and the best
known polynomial-time algorithms deliver exponentially-loose approximations [LLL82, Sch87].

1.3 Related Work

Using completely different techniques, Peikert and Waters [PW07] have constructed an entirely
complementary collection of injective trapdoor functions based on lattice problems (among others).
Their TDFs are based on the hardness of LWE, whereas ours are based entirely on classical worst-
case hardness. Their TDFs are injective with exponentially-sparse images, whereas ours are many-
to-one and surjective. Their TDFs imply chosen ciphertext-secure encryption, but the sparse images
seem to make them less well-suited toward applications like signature schemes and IBE. Finally,
from a purely aesthetic point of view, our trapdoor functions correspond more directly to a “natural”
decoding problem on lattices.

As mentioned above, Peikert, Vaikuntanathan, and Waters [PVW07] have constructed efficient
and universally composable oblivious transfer protocols from worst-case lattice assumptions (among
others), using our trapdoor for detecting messy keys. That work predates this one, and provided
motivation for our trapdoor techniques and Gaussian sampling algorithm.

In private communication, Lyubashevsky has pointed out that the randomized nearest-plane
algorithm we use for Gaussian sampling is essentially the same algorithm proposed by Klein [Kle00]
for solving a different problem. Klein considers a restricted variant of the closest vector problem, in
which the target point is guaranteed to be “unusually close” to the lattice. His analysis shows that
under such a promise, the algorithm outputs the closest lattice vector with noticeable probability.
Our contribution is an analysis of the entire output distribution of the algorithm for arbitrary
target points, which shows that the distribution is oblivious to the advice basis.

2 Preliminaries

2.1 Notation

We denote set of real numbers by R and the integers by Z. For a positive integer n, [n] denotes
{1, . . . , n}. We extend any real function f(·) to a countable set A by defining f(A) =

∑

x∈A f(x).
By convention, vectors are assumed to be in column form and are written using bold lower-case

letters, e.g. x. The ith component of x will be denoted by xi. Matrices are written as bold capital
letters, e.g. X, and the ith column vector of a matrix X is denoted xi. The length of a matrix is
the norm of its longest column: ‖X‖ = maxi ‖xi‖. For notational convenience, we sometimes view
a matrix as simply the set of its column vectors.

The natural security parameter throughout the paper is n, and all other quantities are implicitly
functions of n. We use standard big-O notation to classify the growth of functions, and say that
f(n) = Õ(g(n)) if f(n) = O(g(n) · logc n) for some fixed constant c. We let poly(n) denote an
unspecified function f(n) = O(nc) for some constant c. A negligible function, denoted generically

8The cryptosystems from [AD97, Reg04] are based on classical worst-case hardness, but for a restricted class of
lattices having “unique” shortest nonzero vectors.
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by negl(n), is an f(n) such that f(n) = o(n−c) for every fixed constant c. We say that a probability
(or fraction) is overwhelming if it is 1− negl(n).

The statistical distance between two distributions X and Y over a domain D is defined to be
1
2

∑

d∈D |X(d) − Y (d)|. We say that two distributions (formally, two ensembles of distributions
indexed by n) are statistically close if their statistical distance is negligible in n.

Two ensembles of distributions {Xn} and {Yn} are computationally indistinguishable if for every
probabilistic poly-time machine A, |Pr[A(1n,Xn) = 1]− Pr[A(1n, Yn) = 1]| is negligible (in n). The
definition can be extended to non-uniform families of poly-sized circuits in the standard way.

2.2 Cryptographic Notions

For signature schemes, we use the standard notion of existential unforgeability under chosen-
message attack due to [GMR88]. We will actually only use the more powerful notion of strong
unforgeability, called SUF-CMA-security, in which an adversary cannot even produce a new signa-
ture for any previously-signed message.

For public-key encryption, we use the standard definition of indistinguishability under chosen-
plaintext attack [GM84], called IND-CPA-security.

For identity-based encryption (IBE), we use the standard definition of (anonymous) IBE that
is secure under chosen-plaintext (and chosen-identity) attack [BF03, ABC+05], known as ANON-
IND-CPA-security.

2.3 Lattices

An n-dimensional lattice of rank k ≤ n is

Λ = L(B) =
{

Bc : c ∈ Z
k
}

, B ∈ R
n×k

where the k columns b1, . . . ,bk ∈ R
n of the basis B are linearly independent. The dual lattice of

Λ, denoted Λ∗, is defined as Λ∗ = {x ∈ span(Λ) : ∀ v ∈ Λ, 〈x,v〉 ∈ Z}.
The minimum distance λ1(Λ) of a lattice Λ is the length (in some norm, implicitly the Euclidean

`2 norm) of its shortest nonzero element: λ1(Λ) = min06=x∈Λ ‖x‖. More generally, the ith successive
minimum λi(Λ) is the smallest radius r such that Λ contains i linearly independent vectors of norm
at most r. We will write λ∞1 to denote the minimum distance measured in the `∞ norm (which is
defined as ‖x‖∞ = max |xi|).

A lattice is a discrete additive subgroup of R
n. Therefore for lattices Λ′ ⊆ Λ, the quotient group

Λ/Λ′ (also written Λ mod Λ′) is well-defined as the group of distinct cosets v + Λ′ for v ∈ Λ, with
addition of cosets defined in the usual way. In particular, if both Λ′ and Λ are of the same rank k,
then Λ/Λ′ is finite.

For completeness, we recall two standard worst-case approximation problems on lattices (though
we will not need to refer to their specific definitions at any point). In both problems, γ = γ(n) is
the approximation factor as a function of the dimension.

Definition 2.1 (Shortest Vector Problem (Decision Version)). An input to GapSVPγ is a pair
(B, d) where B a basis for a full-rank n-dimensional lattice and d ∈ R. It is a YES instance if
λ1(L(B)) ≤ d, and is a NO instance if λ1(L(B)) > γ(n) · d.
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Definition 2.2 (Shortest Independent Vectors Problem). An input to SIVPγ is a full-rank basis
B of an n-dimensional lattice. The goal is to output a set of n linearly independent lattice vectors
S ⊂ L(B) such that ‖S‖ ≤ γ(n) · λn(L(B)).

2.4 Gaussians on Lattices

Our review of Gaussian measures over lattices follows the development by prior works [Reg04,
AR05, MR07]. For any s > 0 define the Gaussian function on R

n centered at c with parameter s:

∀x ∈ R
n, ρs,c(x) = exp(−π ‖x− c‖2 /s2).

The subscripts s and c are taken to be 1 and 0 (respectively) when omitted.
For any c ∈ R

n, real s > 0, and n-dimensional lattice Λ of rank k ≤ n, define the discrete
Gaussian distribution over Λ as:

∀x ∈ Λ, DΛ,s,c(x) =
ρs,c(x)

ρs,c(Λ)
.

(As above, we may omit the parameters s or c.) Note that the denominator in the above expression
is simply a normalization factor; the probability DΛ,s,c(x) is simply proportional to ρs,c(x). There-
fore for any c ∈ R

n, the distributions DΛ,s,c and DΛ,s,c′ are identical, where c′ is the orthogonal
projection of c onto span(Λ).

Micciancio and Regev [MR07] proposed a lattice quantity called the smoothing parameter :

Definition 2.3 ([MR07]). For any n-dimensional lattice Λ and positive real ε > 0, the smoothing
parameter ηε(Λ) is the smallest real s > 0 such that ρ1/s(Λ

∗\ {0}) ≤ ε.

We recall two bounds on the smoothing parameter. The first relates the smoothing parameter
of a rank-k lattice to its kth successive minimum λk (in `2 norm).

Lemma 2.4 ([MR07]). For any n-dimensional lattice Λ of rank k and real ε > 0, we have

ηε(Λ) ≤ λk(Λ) ·
√

log(2k(1 + 1/ε))/π.

Then for any ω(
√

log n) function, there is a negligible ε(n) for which ηε(Λ) ≤ λk(Λ) · ω(
√

log n).

The second bound relates the smoothing parameter of a lattice to the minimum distance of its
dual lattice, in `∞ norm. We note that the smoothing parameter can also be related to the dual
minimum distance in `2 norm (as shown in [MR07]), but the `∞ norm turns out to be easier to
analyze for random lattices, and will also yield the tightest bounds on their smoothing parameters.

Lemma 2.5 ([Pei07]). For any n-dimensional lattice Λ of rank k and real ε > 0, we have

ηε(Λ) ≤
√

log(2k/(1 + 1/ε))/π

λ∞1 (Λ∗)
.

Then for any ω(
√

log n) function, there is a negligible ε(n) for which ηε(Λ) ≤ ω(
√

log n)/λ∞1 (Λ∗).

We now state some central facts regarding discrete Gaussians that apply when the Gaussian
parameter s exceeds the smoothing parameter of the lattice. The following lemma states that the
total Gaussian measure on any translate of the lattice is essentially the same.

8



Lemma 2.6 ([MR07], implicit). Let Λ be any n-dimensional lattice of rank k. Then for any
s ≥ ηε(Λ), real ε ∈ (0, 1), and c ∈ span(Λ), we have

ρs,c(Λ) ∈ [1−ε
1+ε , 1] · ρs(Λ).

A corollary is that a Gaussian sample over Λ is distributed almost-uniformly modulo a sublattice
Λ′ (of the same rank), for s ≥ ηε(Λ

′).

Corollary 2.7. Let Λ,Λ′ be n-dimensional lattices of rank k, with Λ′ ⊆ Λ. Then for any ε ∈ (0, 1
2),

any s ≥ ηε(Λ
′), and any c ∈ R

n, the distribution of (DΛ,s,c mod Λ′) is within statistical distance at
most 2ε of uniform over (Λ mod Λ′).

Proof. We can assume c ∈ span(Λ) without loss of generality. Consider the marginal distribution of
(z mod Λ′) where z← DΛ,s,c. Then for any coset v+Λ′ of Λ/Λ′, the probability that z = v mod Λ′

is proportional to
ρs,c(v + Λ′) = ρs,c−v(Λ′) ∈ [1−ε

1+ε , 1] · ρs(Λ
′)

by Lemma 2.6. By a routine calculation, it follows that for every v, the probability that z =
v mod Λ′ is within (1± 4ε)/ |Λ/Λ′|, which yields the claim.

Another fact we need says that a sample from a discrete Gaussian with parameter s is at most
s
√

n away from its center (in `2 norm), with overwhelming probability.

Lemma 2.8 ([MR07]). For any n-dimensional lattice Λ of rank k, c ∈ span(Λ), real ε ∈ (0, 1),
and s ≥ ηε(Λ), we have

Pr
x←DΛ,s,c

[

‖x− c‖ > s
√

n
]

≤ 1+ε
1−ε · 2

−k.

The final fact we need for certain applications is an upper bound on the probability of the
mode (the most likely element) of a discrete Gaussian; equivalently, it is a lower bound on the
min-entropy of the distribution. A bound that applies when s ≥ 2ηε(Λ) was first proved in [PR06];
here we give a different style of proof that works for s ≥ ηε(Λ) (the difference is mainly aesthetic).

Lemma 2.9. For any n-dimensional lattice Λ of rank k, center c ∈ R
n, positive ε < exp(−4π),

and s ≥ ηε(Λ), and for every x ∈ Λ, we have

DΛ,s,c(x) ≤ 1+ε
1−ε · 2

−k.

In particular, the min-entropy of DΛ,s,c is at least k − 1.

Proof. We can assume without loss of generality that c ∈ span(Λ). For any x ∈ Λ, we have

DΛ,s,c(x) =
ρs,c(x)

ρs,c(Λ)
≤ 1

ρs,c(Λ)
≤ 1 + ε

1− ε
· 1

ρs(Λ)
,

where the final inequality is by Lemma 2.6. Therefore it suffices to show that ρs(Λ) ≥ 2k.
By the Poisson summation formula,

ρs(Λ) = det(Λ∗) · sk · ρ1/s(Λ
∗) ≥ det(Λ∗) · sk. (2.1)
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Now by Minkowski’s second theorem, we have

det(Λ∗) ≥
∏

i∈[k]

λi(Λ
∗) ≥ (λ∗1)

k, (2.2)

where we write λ∗1 = λ1(Λ
∗). Let v ∈ Λ∗ be such that ‖v‖ = λ∗1. Now because s ≥ ηε(Λ), we have

ε ≥ ρ1/s(Λ
∗\ {0}) ≥ ρ1/s(v) = exp(−π · (sλ∗1)2).

Therefore s ≥
√

ln(1/ε)/π/λ∗1 ≥ 2/λ∗1. Combining this with Inequalities (2.1) and (2.2), we con-
clude that ρs(Λ) ≥ 2k as desired.

2.5 Learning with Error

We start by introducing the learning with error (LWE) problem, for the most part following [Reg05].
For x ∈ R, bxe = bx + 1/2c denotes a nearest integer to x. Denote T = R/Z as the group of

reals [0, 1) with mod 1 addition.

Probability distributions. The normal (Gaussian) distribution with mean 0 and variance σ2

(or standard deviation σ) is the distribution on R having density function 1
σ·
√

2π
exp(−x2/2σ2).

The sum of two independent normal variables with mean 0 and variances σ2
1 and σ2

2 (respectively)
is a normal variable with mean 0 and variance σ2

1 +σ2
2. We will also need a standard tail inequality:

a normal variable with variance σ2 is within distance t · σ (i.e., t standard deviations) of its mean,
except with probability at most 1

t · exp(−t2/2).
For α ∈ R

+, Ψα is defined to be the distribution on T of a normal variable with mean 0 and
standard deviation α/

√
2π, reduced modulo 1. For any probability distribution φ over T and an

integer q ∈ Z
+ (often implicit) its discretization φ̄ is the discrete distribution over Zq of the random

variable bq ·Xφe mod q, where Xφ has distribution φ.
For an integer q ≥ 2 and some probability distribution χ over Zq, an integer dimension n ∈ Z

+

and a vector s ∈ Z
n
q , define As,χ as the distribution on Z

n
q × Zq of the variable (a,aT s + x) where

a← Z
n
q is uniform and x← χ are independent, and all operations are performed in Zq.

Learning with error (LWE). For an integer q = q(n) and a distribution χ on Zq, the goal of the
(average-case) learning with error problem LWEq,χ is to distinguish (with nonnegligible probability)
between the distribution As,χ for some uniform (secret) s ← Z

n
q and the uniform distribution on

Z
n
q × Zq (via oracle access to the given distribution). In other words, if LWE is hard, then the

collection of distributions As,χ is pseudorandom.
Regev demonstrated that for certain moduli q and Gaussian error distributions χ, LWEq,χ is as

hard as solving several standard worst-case lattice problems using a quantum algorithm.

Proposition 2.10 ([Reg05]). Let α = α(n) ∈ (0, 1) and let q = q(n) be a prime such that α · q >
2
√

n. If there exists an efficient (possibly quantum) algorithm that solves LWEq,Ψ̄α
, then there exists

an efficient quantum algorithm for approximating SIVP and GapSVP in the `2 norm, in the worst
case, to within Õ(n/α) factors.

Peikert [Pei07] extended this result to hold for SIVP and GapSVP in any `p norm, 2 ≤ p ≤ ∞,
for essentially the same Õ(n/α) approximation factors.
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3 Sampling from Discrete Gaussians

Here we show how to efficiently sample from a discrete Gaussian probability distribution DΛ,s,c,
given any basis (or full-rank set) of length bounded by about s. As a first attempt, we might
consider an algorithm that first samples from a continuous Gaussian, and then uses the short basis
to “round off” the sampled point to a nearby lattice point. In fact, Regev used this exact strategy
for the “bootstrapping” step of his reduction [Reg05], using an LLL-reduced basis and a Gaussian
parameter s that was exponentially larger than the basis length. Unfortunately, it is not clear that
this strategy works as well when s is a smaller (e.g., poly(n)) multiple of the basis length. The
problem is that within the region of space that is mapped (via rounding) to a particular lattice
point, the density function of the continuous Gaussian may vary significantly. This makes it difficult
to analyze the total probability mass assigned to each lattice point under the rounding scheme, and
to compare it to the desired discrete Gaussian distribution.9

The sampling algorithm below avoids continuous Gaussians altogether, and samples “directly”
from the lattice in a tight way. It can be seen as a randomized version of Babai’s nearest plane
algorithm [Bab86], where instead of always choosing the nearest plane, the algorithm chooses a
plane at random with a probability related to its distance from the target point. The rest of this
section is devoted to formally defining and analyzing the sampling algorithm.

3.1 Sampling Integers

We first develop a core subroutine, which samples from a discrete Gaussian distribution over a
particular one-dimensional lattice, namely, the integers Z. This subroutine will depend on a tail
inequality for the distribution:

Lemma 3.1. For any ε > 0, any s ≥ ηε(Z), and any t > 0, we have

Pr
x←DZ,s,c

[|x− c| ≥ t · s] ≤ 2e−πt2 · 1+ε
1−ε .

Then for ε ∈ (0, 1
2 ) and t ≥ ω(

√
log n), the probability that |x− c| ≥ t · s is negligible (in n).

Proof. Let B = (−1, 1). We will use the fact (proved more generally in [Ban95]) that

ρs((Z− c)\t · s · B) ≤ 2e−πt2 · ρs(Z).

Now consider the total probability assigned by DZ,s,c to all integers outside t · s · (B + c). This is

DZ,s,c(Z\(s · t · (B + c))) =
ρs((Z− c)\t · s · B)

ρs,c(Z)
≤ 2e−πt2 · ρs(Z)

ρs,c(Z)
≤ 2e−πt2 · ρs(Z)

1−ε
1+ε · ρs(Z)

,

where we have used Lemma 2.6 for the last inequality. This completes the proof.

9By using an additional step of rejection sampling, one can effectively “flatten” the continuous distribution over
each region that is mapped to a particular lattice point. However, the resulting algorithm is still somewhat “loose,”
working for a parameter s that is a

√
n factor of the diameter the basis (which may be up to an n factor larger than

the basis length).
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There are several possible methods for efficiently sampling from DZ,s,c (for large enough s); the
easiest to describe works by the standard method of rejection sampling. Let t(n) ≥ ω(

√
log n) be

some fixed function. The algorithm SampleD works as follows: on input (s, c) and (implicitly) the
security parameter n, choose an integer x← Z = Z∩ [c− s · t, c + s · t] uniformly at random. Then
with probability ρs(x− c), output x, otherwise repeat.

Lemma 3.2. For any ε ∈ (0, 1/2) and any s ≥ ηε(Z), SampleD runs in time polynomial in n and
the size of its input (s, c), and its output distribution is statistically close to DZ,s,c.

Proof. First define a probability distribution D on Z in which D(x) is proportional to ρs(x− c) for
every x ∈ Z, and D(x) = 0 otherwise. By rejection sampling, the output distribution of SampleD

is identical to D. Furthermore, the D and DZ,s,c are statistically close, by Lemma 3.1.
We now analyze the running time. Each iteration of SampleD picks a uniformly random integer

x from Z. The probability that the chosen integer x falls in the set Z ∩ [c − s, c + s] is at least
(2s − 1)/(2s · t) ≥ 1/2t, because s ≥ ηε(Z) ≥ 1. Once chosen, x is then output with probability
ρs(x− c) ≥ exp(−π), a positive constant. By a standard repetition argument, the running time is
O(t(n)) with all but an exponentially small probability (which can be made zero by terminating
after a certain number of iterations, without significantly altering the output distribution).

3.2 Sampling from Arbitrary Lattices

Overloading notation, we now describe an algorithm SampleD that samples from a discrete Gaussian
over any lattice. The algorithm works exactly like Babai’s “nearest plane” algorithm, except that
it chooses a plane at random with a probability given by a discrete Gaussian over the integers Z.

The SampleD algorithm takes some n-dimensional basis B ∈ Z
n×k of rank k, a sufficiently large

Gaussian parameter s (related to the length ‖B‖ of the basis), a center c ∈ R
n, and efficiently

outputs a sample from (a distribution close to) DL(B),s,c. It proceeds as follows: on input (B, s, c),

1. If k = 0 (i.e., if B is empty), return 0.

2. Compute b̃k, the (nonzero) component of bk orthogonal to span(b1, . . . ,bk−1).

3. Compute t, the projection of c onto span(B), and the scalar value t = 〈t, b̃k〉/〈b̃k, b̃k〉 ∈ R.

4. Choose an integer z ← D
Z,s/‖b̃k‖,t, using the SampleD algorithm for Z described above.

(This is the only step that differs from the standard nearest plane algorithm.)

5. Output zbk + SampleD(B′, s, t− zbk) via recursion, where B′ = [b1, . . . ,bk−1].

As described, the running time of the sampler is O(n2) times the representation length (in bits)
of B, t. As an optimization, the Gram-Schmidt vectors b̃k (and their lengths) and the scalar values
〈t, b̃k〉 can be pre-computed if the sampler is called multiple times on the same basis B and center
t. With these optimizations, the sampler runs in linear O(n) amortized time (times the bit length
of B, t) to produce Ω(n) samples.

Theorem 3.3. For any lattice basis B ∈ Z
n×k, any real s ≥ ‖B‖ · ω(

√
log n), and any c ∈ R

n,
the output distribution of SampleD(B, s, c) is within negligible statistical distance of DL(B),s,c. The
running time of SampleD is polynomial in n and the size of its input (B, s, c).

12



The main strategy for proving the theorem is to analyze the desired distribution D = DL(B),s,c,
specifically, the total probability mass it assigns to the lattice points in each distinct plane. Each
plane contains some translate of the same sublattice of rank k − 1 (generated by B′). Using the
smoothing parameter [MR07], we can guarantee that the mass assigned by D to the translated
sublattice is essentially independent of the translation, and depends only on the distance between
the plane and the center c. Therefore it suffices for the algorithm to choose a plane with an
appropriate probability related to this distance, and proceed recursively.

Before proving Theorem 3.3, we develop some technical facts about the distribution DL(B),s,c

that make the above intuition more precise. Let B, B′, and b̃k 6= 0 be as in the algorithm above.
Define b′k = bk − b̃k ∈ span(B′), and partition L(B) into a collection of sets {Hz}z∈Z

, where

Hz = zbk + L(B′) = zb̃k + (L(B′) + zb′k).

For every w ∈ L(B), define ζ(w) = z where w ∈ Hz.

Lemma 3.4. Adopt the notation from above, let s > 0, and let t ∈ span(B) be arbitrary. Let
w← DL(B),s,t. Then for every z ∈ Z,

1. The probability that ζ(w) = z is proportional to

ρs/‖b̃k‖,t(z) · ρs,t′−zb′
k
(L(B′)),

where t = 〈t, b̃k〉/〈b̃k, b̃k〉 and t′ = t− tb̃k ∈ span(B′).

2. The conditional distribution of w − zbk, given ζ(w) = z, is exactly DL(B′),s,t−zbk
.

Proof. We start with the first claim. The probability that ζ(w) = z for any fixed z ∈ Z is simply
DL(B),s,t(Hz), which is proportional to ρs,t(Hz). Now we have

ρs,t(Hz) = ρs((z − t)b̃k + (L(B′) + zb′k − t′))

= ρs((z − t)b̃k) · ρs(L(B′) + zb′k − t′) (3.1)

= ρs/‖b̃k‖,t(z) · ρs,t′−zb′
k
(L(B′)) (3.2)

where (3.1) follows because because b̃k is orthogonal to span(B′), and (3.2) follows by definition of
ρ. This establishes the first claim.

For the second claim, consider the conditional distribution D of w′ = w − zbk ∈ L(B′), given
w ∈ Hz. This distribution is

D(w′) =
ρs,t(w)

ρs,t(zbk + L(B′))
=

ρs,t−zbk
(w − zbk)

ρs,t−zbk
(L(B′))

= DL(B′),s,t−zbk
(w′).

We now prove the main theorem.

Proof of Theorem 3.3. First recall that DL(B),s,c and DL(B),s,t are identical, where t is the projec-
tion of c onto span(B). Therefore it enough to prove that the algorithm samples from (a distribution
close to) DL(B),s,t.

The running time of the algorithm may be easily verified. The proof of correctness proceeds
by induction on the rank k of the lattice. When k = 0 (i.e, when B is empty), L(B) = {0} and
DL(B),s,c assigns probability 1 to 0. Therefore the base case is correct.

13



For k > 0, the inductive hypothesis is that the distribution of zbk + SampleD(B′, s, t − zbk)
is statistically close to zbk + DL(B′),s,t−zbk

, which by Lemma 3.4 is the conditional distibution of
a sample w ← DL(B),s,t given ζ(w) = z. Therefore it suffices to show that the algorithm samples
from the appropriate marginal distribution on ζ(w).

For every z ∈ Z, by Lemma 3.4 the marginal probability that ζ(w) = z is proportional to

ρs/‖b̃k‖,t(z) · ρs,t′−zb′
k
(L(B′)),

where t ∈ R and t′,b′k ∈ span(B′) are as in the lemma. Now because s ≥ ‖B′‖ · ω(
√

log n), there
is a negligible ε(n) such that s ≥ ηε(B

′) by Lemma 2.4. Thus, for every z ∈ Z we have

ρs,t′−zb′
k
(L(B′)) ∈

[

1−ε
1+ε , 1

]

· ρs(L(B′))

by Lemma 2.6. Therefore the distribution of ζ(w) is statistically close to D
Z,s/‖b̃k‖,t.

Now s/‖b̃k‖ ≥ s/ ‖bk‖ ≥ ω(
√

log n) ≥ ηε(Z) for some negligible ε(n) and by hypothesis on s.
Therefore by Lemma 3.2, the distribution of z chosen by SampleD is statistically close to D

Z,s/‖b̃k‖,t,
as desired.

3.3 Sampling with Independent Vectors

In certain applications, we will have a short set S of linearly independent lattice vectors that do
not necessarily form a basis of the lattice. While one can efficiently convert such a set into a basis
(using any basis B of arbitrary length), the resulting basis length may be up to a

√
n factor larger

than ‖S‖. Therefore, it will be more convenient to design an algorithm that can sample from the
discrete Gaussian distribution, given only a basis B (of arbitrary length) and a short set S ⊂ L(B)
of the same rank as B.

Overloading notation once again, we now describe an algorithm SampleD that, given some
n-dimensional basis B ∈ Z

n×k of rank k, a set S ⊂ L(B) of rank k, a sufficiently large Gaussian
parameter s (related to ‖S‖), and a center c ∈ R

n, efficiently produces a sample from (a distribution
very close to) DL(B),s,c. It proceeds as follows: on input (B,S, s, c),

1. Choose a lattice point v ∈ L(B) such that v mod L(S) is distributed uniformly in L(B)/L(S).
(This can be done in time polynomial in the representation of B and S; see [MG02].)

2. Choose y← DL(S),s,c−v, by calling SampleD(S, s, c− v) with the algorithm described above.

3. Output y + v.

Lemma 3.5. For B, S, and c as above, and any s ≥ ‖S‖ · ω(
√

log n), the output distribution
of SampleD(B,S, s, c) is within negligible statistical distance of DL(B),s,c. The running time of
SampleD is polynomial in n and the size of its input (B,S, s, c).

Proof. The running time of the algorithm is apparent. It suffices to show that the algorithm samples
from (close to) DL(B),s,c when y is chosen exactly according to the distribution DL(S),s,c−v; it then
follows by Theorem 3.3 that the output distribution changes by only a negligible amount when y
is chosen according to SampleD(S, s, c− v).

Suppose that z is chosen from DL(B),s,c. Because s ≥ ‖S‖ · ω(
√

log n), by Lemma 2.4 we
have s ≥ ηε(L(S)) for some negligible ε(n). Therefore by Lemma 2.7, the marginal distribution of
z mod L(S) is statistically close to uniform over L(B)/L(S).
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Now for any fixed v ∈ L(B), consider the conditional distribution D of z, given z = v mod L(S).
For each z ∈ v + L(S), this conditional distribution is

D(z) =
ρs,c(z)

ρs,c(v + L(S))
=

ρs,c−v(z− v)

ρs,c−v(L(S))
= DL(S),s,c−v(z− v).

Therefore z is distributed as v + DL(S),s,c−v.
In summary, the algorithm samples from (close to) both the appropriate marginal and condi-

tional distributions of DL(B),s,c, and the claim follows.

4 Trapdoors for Hard Random Lattices

In this section, we demonstrate trapdoors for certain random lattices that are, informally speaking,
“as hard as” worst-case lattices. We then develop some foundational tools and primitives that our
cryptographic applications will build upon.

4.1 Random Modular Lattices

We start by describing two kinds of modular lattices that have appeared in recent works. A modular
lattice is an integer lattice that is invariant under shifts by q in each of the coordinates, for some
fixed modulus q. In other words, whether a vector x ∈ Z

m is an element of the lattice is determined
entirely by x mod q. For all of our applications, we will need q to be prime.

More formally, let A ∈ Z
n×m
q for some positive integers n,m, q. In prior works (as in this one), n

is the natural security parameter and all other variables are functions of n; for example, m = m(n)
is typically O(n log n), and the modulus q = q(n) is some small polynomial, e.g., O(n2). We
consider two kinds of m-dimensional modular lattices defined by A. The first lattice is generated
by the (transposed) rows of A, and is defined as

Λ(A, q) =
{

y ∈ Z
m : y = AT s mod q for some s ∈ Z

n
}

.

The second lattice consists of those integer vectors that are “orthogonal” (modulo q) to the rows
of A, and is defined as

Λ⊥(A, q) = {e ∈ Z
m : Ae = 0 mod q} .

In the parlance of coding theory, AT is the “generator matrix” for the lattice Λ(A, q), and A is
the “parity check” matrix for the lattice Λ⊥(A, q). When A and q are implicit from context, we
sometimes omit them as arguments and just write Λ and Λ⊥.

Both lattices are modular and full-rank, because they contain the vectors q · ei for each i ∈ [m],
where {ei} is the standard basis of Z

m. It can be seen directly from their definitions that Λ and
Λ⊥ have a dual relationship; specifically, Λ⊥ = q · Λ∗ and Λ = q · (Λ⊥)∗. Another useful fact is
that the quotient group (Zm/Λ⊥) and the set of syndromes {u = Ae mod q : e ∈ Z

m} ⊆ Z
n
q are

in bijective correspondence, via the mapping (e + Λ⊥) 7→ Ae mod q.
Ajtai showed that for appropriate parameters, solving SVP on random instances of Λ⊥(A, q)

is as hard as approximately solving certain problems (e.g., SIVP and GapSVP) on any lattice of
dimension n to within poly(n) factors [Ajt96]. The first cryptographic application of this result was
a candidate collection of one-way functions; further works constructed candidate collision-resistant
hash functions, and improved the approximation factors in the underlying worst-case assumptions
to as small as Õ(n) [GGH96, CN97, Mic04, MR07].
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Regev [Reg05] proposed the learning with error (LWE) problem, which can be phrased in terms
of a unique decoding problem on a random lattice Λ(A, q). Regev showed that solving LWE on the
average is as hard as approximating SIVP and GapSVP on any lattice of dimension n, to within
Õ(n) factors, using a quantum algorithm. He also constructed a public-key cryptosystem based on
the LWE problem.

We now state a few important facts about these random lattices that will be used throughout
the rest of the paper. The first is a lemma on additive groups going back to [Ajt96]; the tightest
version we know of was proved in [Reg05].

Lemma 4.1. Let q be prime and let m ≥ 2n lg q. Then for all but an at most q−n fraction of
A ∈ Z

n×m
q , the subset-sums of the columns of A generate Z

n
q ; i.e., for every u ∈ Z

n
q there is a

e ∈ {0, 1}m such that Ae = u.10

The next lemma says that an integer error vector taken from an appropriate discrete Gaussian
over Z

m corresponds to a nearly-uniform syndrome. It also characterizes the conditional distribution
of the error vector, given its syndrome.

Lemma 4.2. Assume the columns of A ∈ Z
n×m
q generate Z

n
q , and let ε ∈ (0, 1

2) and s ≥
ηε(Λ

⊥(A, q)). Then for e ← DZm,s, the distribution of the syndrome u = Ae mod q is within
statistical distance 2ε of uniform over Z

n
q .

Furthermore, fix u ∈ Z
n
q and let t ∈ Z

m be an arbitrary solution to At = u mod q. Then the
conditional distribution of e← DZm,s given Ae = u mod q is exactly t + DΛ⊥,s,−t.

Proof. By hypothesis, the set of all syndromes {Ae mod q : e ∈ Z
m} = Z

n
q . Now by Lemma 2.7,

for e ← DZm,s the distribution of e mod Λ⊥ is within statistical distance 2ε of uniform over the
quotient group (Zm/Λ⊥). Because this quotient group is isomorphic to the set of syndromes Z

n
q

via the mapping (e + Λ⊥) 7→ Ae mod q, the first claim follows.
For the second claim, fix u ∈ Z

n
q and consider the distribution D of e ← DZm,s given Ae =

u mod q. The support of D is t + Λ⊥, and the distribution is

D(e) =
ρs(e)

ρs(t + Λ⊥)
=

ρs,−t(e− t)

ρs,−t(Λ⊥)
= DΛ⊥,s,−t(e− t).

Writing e = t + v for v = e− t distributed as DΛ⊥,s,−t, the claim follows.

We now show that a random lattice Λ(A, q) has large minimum distance (in `∞ norm) with
overwhelming probability; this implies that Λ⊥(A, q) has a very small smoothing parameter.

Lemma 4.3. Let n and q be positive integers with q prime, and let m ≥ 2n lg q. Then for all but
an at most q−n fraction of A ∈ Z

n×m
q , we have λ∞1 (Λ) ≥ q/4.

In particular, for such A and any ω(
√

log m) function, we have ηε(Λ
⊥(A, q)) ≤ ω(

√
log m) for

some negligible function ε(m).

Proof. The second claim follows by Lemma 2.5 and the fact that Λ = q · (Λ⊥)∗.
For the first claim, consider the open `∞ “cube” C of radius q/4 (hence edge length q/2). The

set Z = C ∩ Z
m contains at most (q/2)m points. Therefore for any fixed nonzero s ∈ Z

n
q , the

10In fact, the lemma is actually stronger, saying that a random subset-sum of A’s columns is statistically close to
uniform over Z

n
q for almost all A.
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probability over the uniform choice of A ∈ Z
n×m
q that AT s = v mod q for some v ∈ Z is at most

(q/2)m/qm = 2−m ≤ q−2n. Taking a union bound over all nonzero s ∈ Z
n
q , we conclude that the

probability that Λ contains any nonzero point in Z is at most q−n.

Combining the previous lemmas, we get the following main corollary:

Corollary 4.4. Let n and q be positive integers with q prime, and let m ≥ 2n lg q. Then for all
but a 2q−n fraction of all A ∈ Z

n×m
q and for any s ≥ ω(

√
log m), the distribution of the syndrome

u = Ae mod q is statistically close to uniform over Z
n
q , where e← DZm,s.

Proof. By Lemmas 4.1 and 4.3, for all but a 2q−n fraction of all A, the columns of A ∈ Z
n×m
q

generate Z
n
q , and s ≥ ηε(Λ

⊥(A, q)) for some negligible function ε(m). Now by Lemma 4.2, the
distribution of u = Ae mod q is statistically close to uniform over Z

n
q .

4.2 Hard-on-Average Problems

The hard-on-average problem first proposed by Ajtai [Ajt96] is to find a short nonzero integer
solution e ∈ Z

m to the homogeneous linear system Ae = 0 mod q for uniformly random A ∈ Z
n×m
q .

This is syntactically equivalent to finding some short nonzero vector in Λ⊥(A, q). The problem was
formalized as follows in [MR07].

Definition 4.5. The small integer solution problem SIS (in the `2 norm) is as follows: given an
integer q, a matrix A ∈ Z

n×m
q , and a real β, find a nonzero integer vector e ∈ Z

m such that
Ae = 0 mod q and ‖e‖2 ≤ β.

For functions q(n), m(n), and β(n), SISq,m,β is the ensemble over instances (q(n),A, β(n)) where

A ∈ Z
n×m(n)
q is uniformly random.

We now define a variant problem, which is to find a short solution to a random inhomogeneous
system, specifically, Ae = u mod q (where both A and u are uniformly random). As we will see,
the difference between the problems is analogous to the difference between SVP and CVP.

Definition 4.6. The inhomogeneous small integer solution problem ISIS (in the `2 norm) is as
follows: given an integer q, a matrix A ∈ Z

n×m
q , a syndrome u ∈ Z

n
q , and a real β, find an integer

vector e ∈ Z
m such that Ae = u mod q and ‖e‖2 ≤ β.

The average-case problem ISISq,m,β is defined similarly, where A and u are uniformly random
and independent.

The ISIS problem is phrased as a syndrome decoding problem, and is equivalent to the problem of
decoding an arbitrary integer target point t ∈ Z

m to within distance β on the lattice Λ⊥ = Λ⊥(A, q).
Specifically, the target point’s syndrome is u = At mod q, and solving ISIS on this syndrome yields
a short error vector e ∈ Z

m having the same syndrome u. This error vector yields a lattice point
v = t − e ∈ Λ⊥, because Av = At − Ae = 0 mod q; furthermore, v is within distance β of t.
Conversely, decoding t to some v ∈ Λ⊥ within distance β yields an error vector e = t−v such that
Ae = u mod q. In this work it will be more convenient to work with syndrome decoding, because
the lattice Λ⊥ is “modded out” of the instances. In other words, an instance of ISIS refers only to
a particular coset of Λ⊥, and carries no “extraneous” information (unlike target points t ∈ Z

m).
Of course, the SIS and ISIS problems are only meaningful if they admit valid solutions for the

particular choices of q, m, β. For β ≥ √m and m ≥ 2n lg q (for some prime q), Lemma 4.1
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implies that with overwhelming probability over the choice of A, there is an e ∈ {0, 1}m such that
Ae = u mod q for any u ∈ Z

n
q . Then because ‖e‖ ≤ √m ≤ β, we see that a random instance

of ISISq,m,β has a solution with overwhelming probability. For the same parameters, a pigeonhole
argument shows that SIS always admits a nonzero solution (even for non-prime q, though we will
not need this fact). From now on, q, m, and β will always implicitly satisfy the above contraints.

Using Gaussian techniques, Micciancio and Regev [MR07] showed that the SISq,m,β problem is
as hard (on the average) as approximating certain worst-case problems on lattices to within small
factors. We give a simpler and slightly tighter proof (also showing hardness for ISIS) that employs
our discrete Gaussian sampling algorithm, and which works for a smaller modulus q.

Proposition 4.7. For any poly-bounded m,β = poly(n) and for any prime q ≥ β ·ω(
√

n log n), the
average-case problems SISq,m,β and ISISq,m,β are as hard as approximating the problems SIVP and
GapSVP (among others) in the worst case to within certain γ = β · Õ(

√
n) factors.11

Note that Proposition 4.7 gives a “sliding scale” of hardness (and modulus q) depending on the
value of β. For the tightest value of β =

√
m, we can take q = Õ(n) and obtain approximation

factors γ = Õ(n) for the worst-case problems. However, for our trapdoor functions and other
cryptographic primitives, we will need to assume hardness of ISIS for larger values of β (e.g.,
β ≈ m1.5 = Õ(n1.5)). This is because our trapdoor inversion algorithm is only able to produce
preimages of length approximately

√
m times the length of the trapdoor for A; the shorter the

trapdoor, the smaller we may take β to be, and the weaker our underlying assumptions can be.
The proof of Proposition 4.7 appears in Section 8.

4.3 Trapdoor Functions

4.3.1 Definitions

We start by defining some enhanced variants of trapdoor functions with preimage sampling, which
are given by a tuple of probabilistic polynomial-time algorithms (TrapGen,SampleDom,SamplePre).

A collection of trapdoor one-way functions with preimage sampling satisfies the following:

1. Generating a function with trapdoor : TrapGen(1n) outputs (a, t), where a is the description
of an efficiently-computable function fa : Dn → Rn (for some efficiently-recognizable domain
Dn and range Rn depending on n), and t is some trapdoor information for fa.

For the remaining properties, fix some (a, t)← TrapGen(1n).

2. Domain sampling with uniform output : SampleDom(1n) samples an x from some (possibly
non-uniform) distribution over Dn, for which the distribution of fa(x) is uniform over Rn.

3. Preimage sampling with trapdoor : for every y ∈ Rn, SamplePre(t, y) samples from the condi-
tional distribution of x← SampleDom(1n), given fa(x) = y.

4. One-wayness without trapdoor : for any probabilistic poly-time algorithm A, the probability
that A(1n, a, y) ∈ f−1

a (y) ⊆ Dn is negligible, where the probability is taken over the choice of
a, the target value y ← Rn chosen uniformly at random, and A’s random coins.12

11It is possible to base the hardness of ISIS solely on the assumed hardness of SIS, but we only know of such a
reduction for slightly looser values of β. Because ISIS is interesting on its own, and might even be harder than SIS,
we elect to treat it as a separate problem and give a direct, tight reduction from worst-case lattice problems.

12This property can be easily adapted to non-uniform adversaries modelled as families of circuits.
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Note that trapdoor permutations (with uniform distribution over the domain) satisfy this definition,
becase the output distribution is uniform and every point has a unique inverse.

A collection of trapdoor collision-resistant hash functions with preimage sampling satisfies the
above properties, plus the following:

5. Preimage min-entropy : for every y ∈ Rn, the conditional min-entropy of x← SampleDom(1n)
given fa(x) = y is at least ω(log n).

6. Collision-resistance without trapdoor : for any probabilistic poly-time algorithm A, the prob-
ability that A(1n, a) outputs distinct x, x′ ∈ Dn such that fa(x) = fa(x

′) is negligible, where
the probability is taken over the choice of a and A’s random coins.

We point out that these two additional properties together imply one-wayness (Property 4). For if
not, then given a function fa one could find a collision as follows: choose an x← SampleDom(1n),
and obtain a preimage x′ of fa(x) from the adversarial inverter. Then because x has large min-
entropy given fa(x), we have x′ 6= x with overwhelming probability, so x, x′ are a collision.

It is also possible to define a trapdoor variant of universal one-wayness [NY89], which is implied
by collision-resistance. Because our constructions will be collision-resistant anyway, we omit a
precise definition.

A collection of claw-free pairs of one-way/collision-resistant trapdoor functions (with preimage
sampling) is defined similarly, with the following differences: TrapGen outputs a pair a, a′ describing
functions fa, fa′ : Dn → Rn (respectively), and their respective trapdoors t, t′. The preimage
sampler works the same way for both fa (given t) and fa′ (given t′). The hardness condition is
that no PPT algorithm A, given a, a′, can find a pair x, x′ ∈ Dn such that fa(x) = fa′(x′). Each
function fa, fa′ may itself also be collision-resistant in the usual way.

A needed relaxation. To be completely precise, the trapdoor functions we construct will actu-
ally satisfy a slightly relaxed definition in which the properties are satisfied only statistically. First,
the properties will hold only with overwhelming probability over the choice of a. Additionally,
SampleDom(1n) will output an x ∈ Dn only with overwhelming probability, and the distribution of
fa(x) will only be statistically close to uniform. Finally, SamplePre will sample from a distribution
over the preimages that is statistically close to the prescribed conditional distribution. None of
these relaxations will affect security in our applications.

4.3.2 Constructions

Before giving concrete constructions, we need to recall the result of Ajtai [Ajt99] that shows how
to sample an essentially uniform A ∈ Z

n×m
q , along with a short full-rank “trapdoor” set of lattice

vectors S ⊂ Λ⊥(A, q).

Proposition 4.8 ([Ajt99]). For any prime q = poly(n) and any m ≥ 5n lg q, there is a probabilistic
polynomial-time algorithm that, on input 1n, outputs a matrix A ∈ Z

n×m
q and a full-rank set

S ⊂ Λ⊥(A, q), where the distribution of A is statistically close to uniform over Z
n×m
q and the

length ‖S‖ ≤ L = m2.5.

By optimizing the construction and its analysis, the bound L on the length ‖S‖ of the trapdoor
can be improved to L = m1+ε for any ε > 0; we defer the details.
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We can now define a collection of trapdoor functions with preimage sampling based on the
average-case hardness of SIS and/or ISIS. Let q, m, and L be as in Proposition 4.8. The collection
is parameterized by some Gaussian parameter s ≥ L · ω(

√
log m).

• The function generator uses the algorithm from Proposition 4.8 to choose (A,S), where
A ∈ Z

n×m
q is statistically close to uniform and S ⊂ Λ⊥(A, q) is a full-rank set with ‖S‖ ≤ L.

The matrix A (and implicitly q) defines the function fA(·), and the matrix S is its trapdoor.

• The function fA is defined as fA(e) = Ae mod q, with domain Dn = {e ∈ Z
m : ‖e‖ ≤ s

√
m}

and range Rn = Z
n
q . The input distribution is DZm,s, which can be sampled using SampleD

with the standard basis for Z
m.

• The trapdoor inversion algorithm SampleISIS(A,S, s,u) samples from f−1
A

(u) as follows: first,
choose via linear algebra an arbitrary t ∈ Z

m such that At = u mod q (such a t exists for
all but an at most q−n fraction of A, by Lemma 4.1). Then sample v ← DΛ⊥,s,−t using the
SampleD algorithm with the trapdoor S, and output e = t + v.

Theorem 4.9. The algorithms described above give a collection of trapdoor one-way functions with
preimage sampling, if ISISq,m,s

√
m is hard on the average.

Furthermore, they give a collection of trapdoor collision-resistant hash functions with preimage
sampling, if SISq,m,2s

√
m is hard on the average.

Proof. First we note that s ≥ L · ω(
√

log m) ≥ ηε(Λ
⊥) for some negligible ε(n) by Lemma 2.4,

because L ≥ ‖S‖ ≥ λm(Λ⊥).
We start by showing domain sampling. A sample e ← DZm,s lands in the domain Dn (except

with exponentially small probability), by Lemma 2.8. Furthermore, for all but an exponentially
small fraction of A, fA(e) is statistically close to uniform over Rn, by Corollary 4.4.

We now demonstrate preimage sampling. Because s ≥ ‖S‖·ω(
√

log m), Lemma 3.5 implies that
SampleD samples from a distribution that is statistically close to DΛ⊥,s,−t. Then by the second
claim of Lemma 4.2, SampleISIS samples from the appropriate conditional distribution.

For one-wayness, inverting a random function fA on a uniform output u ∈ Rn = Z
n
q is syntac-

tically equivalent to solving ISISq,m,s
√

m.
The preimage min-entropy is at least m−1; this follows immediately from the fact that preimages

are distributed according to a discrete Gaussian (the second claim of Lemma 4.2), and by the min-
entropy of the discrete Gaussian (Lemma 2.9).

Finally, for collision-resistance, a collision e, e′ ∈ Dn for fA implies A(e − e′) = 0 mod q.
Because ‖e− e′‖ ≤ 2s

√
m by the triangle inequality and e − e′ 6= 0 because e, e′ are distinct,

finding a collision in a random fA implies solving SISq,m,2s
√

m.

Claw-free pairs. Constructing a collection of claw-free pairs of trapdoor functions is very similar.
The function generator produces (A,S) as above, as well as a uniform w ∈ Z

n
q . It outputs a pair of

functions fA(e) = Ae mod q and fA,w(e) = Ae + w mod q. The domains and input distributions
are the same as above. The preimage sampler for f−1

A
(u) works exactly as above, and the preimage

sampler for f−1
A,w(u) samples from the solutions to the system Ae = (u−w) mod q.

Claw-freeness is based on the average-case hardness of ISISq,m,2s
√

m. Given a claw (e, e′) ∈ D2
n

for the pair of functions fA, fA,w, we have A(e−e′) = w mod q. Because ‖e− e′‖ ≤ 2s
√

m by the
triangle inequality, (e − e′) is a solution to the random ISIS instance (q,A,w, 2s

√
m). As above,

the functions fA and fA,w are both collision-resistant assuming the hardness of SISq,m,2s
√

m.
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Alternate domains. For some applications, the definition of the domain Dn in terms of the `2

norm may be inconvenient. In such a case, the domain can also be defined in terms of the `∞ norm
as Dn =

{

e : ‖e‖∞ ≤ s · ω(
√

log m)
}

for some arbitrary ω(
√

log m) function. It can be shown
(e.g., using the tail inequality in Section 3.1) that a sample from DZm,s falls in this new domain
with overwhelming probability. (Note, though, that inputs still must be chosen from the Gaussian
DZm,s over the integers.)

5 Signature Schemes

The hash-and-sign paradigm for signature schemes, first suggested in [DH76], works as follows: the
public verification key is a trapdoor function f and the signing key is f−1. To sign a message m, first
hash m to some point y = H(m) in the range of a trapdoor function f , then output the signature
σ = f−1(y). To verify (m,σ), simply check that f(σ) = H(m). Bellare and Rogaway [BR93]
formalized this notion and showed that this basic scheme, called Full-Domain Hash (FDH), is
existentially unforgeable under chosen-message attacks when f is a trapdoor permutation and the
hash function H is modelled as a random oracle. Many variations on this theme have been proposed,
such as the Probabilistic Full-Domain Hash (PFDH) scheme of Coron [Cor00] and the Probabilistic
Signature Scheme (PSS) of Bellare and Rogaway [BR96]. These were proposed in part to improve
upon the exact security of FDH, which is quite loose when instantiated with a black-box trapdoor
permutation (the success probability of the reduction is a Qhash factor smaller than that of the
forger, where Qhash is the number of hash queries made by the forger).

All of the above schemes were intended to be instantiated with a collection of trapdoor per-
mutations, such as RSA. In this section, we show that they can be instantiated equally well using
our various notions of trapdoor functions with preimage sampling, and retain their tight security
reductions in the random oracle model. In fact, we are even able to give a tight security reduction
for FDH by exploiting collision resistance; this stands in constrast to the best known reductions
for FDH using trapdoor permutations (for black-box trapdoor permutations, the reduction must
lose a factor of Qhash [DR02]; for RSA and claw-free permutations, the known reductions still lose
a factor of Qsign [Cor00, DR02]). In addition, all of our instantiations are strongly unforgeable.

5.1 Full-Domain Hash Scheme

We start with a version of the FDH signature scheme using trapdoor collision-resistant hash func-
tions with preimage sampling; recall that such a collection can be constructed assuming that SIS

is hard on the average for appropriate parameters. In order for our security reduction to work, the
signer must give out at most one preimage of a given point. This can be implemented by making
the signer stateful, or by using a pseudorandom function to implement “repeatable randomness” in
a standard way. The PRF is used to generate the random coins of the preimage sampler, so if the
sampler’s randomness complexity is large, this solution may be impractical and the PFDH scheme
below may be a better option. For simplicity, we describe the stateful version of the scheme.

The scheme is built upon a collection of trapdoor collision-resistant hash functions given by
(TrapGen,SampleDom,SamplePre), and operates relative to a function H = Hn : {0, 1}∗ → Rn that
is modelled as a random oracle (recall that Dn and Rn are the domain and range, respectively, of
the collection for security parameter n).
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• SigKeyGen(1n): let (a, t)← TrapGen(1n), where a describes a function fa and t is its trapdoor.
The verification key is a and the signing key is t.

• Sign(t,m): if (m,σm) is in local storage, output σm. Else, let σm ← SamplePre(t,H(m)),
store (m,σm), and output σm.

• Verify(a,m, σ): if σ ∈ Dn and fa(σ) = H(m), accept. Else, reject.

Proposition 5.1. The scheme described above is SUF-CMA-secure.

Proof. It is clear that the scheme is complete, by the properties of the trapdoor collection.
Assume, for contradiction, that there is an adversary A that breaks the existential unforgeability

of the signature scheme with probability ε = ε(n). We construct a poly-time adversary S that breaks
the trapdoor collision-resistant hash function with probability negligibly close to ε. Given an index
a describing a function fa, S runs A on public key a, and simulates the random oracle H and
signing oracle as follows. Without loss of generality, assume that A queries H on every message m
before making a signing query on m.

• For every query to H on a distinct m ∈ {0, 1}∗, S lets σm ← SampleDom(1n), stores (m,σm),
and returns fa(σm) to A. (If H was previously queried on m, S looks up (m,σm) and returns
fa(σm).)

• Whenever A makes a signing query on m, S looks up (m,σm) in its local storage and returns
σ as the signature.

Now without loss of generality, assume that before outputting its attempted forgery (m∗, σ∗),
A queries H on m∗. When A produces (m∗, σ∗), S looks up (m∗, σm∗) in its local storage and
outputs (σ∗, σm∗) as a collision in fa.

We now analyze the reduction. First, we claim that the view of A in the real chosen-message
attack is identical to its view as provided by S. (This assumes that the trapdoor function properties
from Section 4.3.1 are perfect ; if they are only statistical, the views are statistically close.) For
each distinct query m to H, the value returned by S is fa(σm) where σm ← SampleDom(1n); by
the “uniform output” property of the collection, this is identical to the uniformly random value
of H(m) ∈ Rn in the real system. Now fix the value H(m). Then for every signature query
on the message m, S returns a single value σm which is distributed as SampleDom(1n), given
fa(σm) = H(m). In the real system, signature queries on m (even repeated ones) are answered by
a single value having the same distribution, by the preimage sampling property of SamplePre.

Therefore A outputs a valid forgery (m∗, σ∗) with probability (negligibly close to) ε. Because
σ∗ is a valid signature on m∗, we have σ∗ ∈ Dn and fa(σ

∗) = H(m∗) = fa(σm∗). It simply remains
to check that σ∗ 6= σm∗ , i.e., that they form a collision in fa. There are two cases to consider:

1. If A made a signature query on m∗, it received back the signature σm∗ . Because (m∗, σ∗) is
considered a forgery, we have σ∗ 6= σm∗ .

2. If A did not make a signature query on m∗, then for the query to H on m∗, S stored a
tuple (m∗, σm∗) for σm∗ ← SampleDom(1n), and returned fa(σm∗) to A. By the preimage
min-entropy property of the hash family, the min-entropy of σm∗ given fa(σm∗) (and the rest
of the view of A, which is independent of σm∗) is ω(log n). Thus, the signature σ∗ 6= σm∗ ,
except with negligible probability 2−ω(log n).

We conclude that S outputs a valid collision in fa with probability negligibly close to ε.
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5.2 Probabilistic FDH

The PFDH scheme replaces the statefulness of FDH with a random “salt” for each signature, and is
parameterized by the length k of the salt (for simplicity, we can set k = n, though any k = ω(log n)
will suffice for asymptotic security).

• SigKeyGen(1n): let (a, t)← TrapGen(1n), where a describes a function fa and t is its trapdoor.
The verification key is a and the signing key is t.

• Sign(t,m): choose r ← {0, 1}k at random, let σ ← SamplePre(t,H(m‖r)), and output (r, σ).

• Verify(a,m, (r, σ)): if σ ∈ Dn and r ∈ {0, 1}k and fa(σ) = H(m‖r), then accept. Else, reject.

Proposition 5.2. The scheme described above is SUF-CMA-secure.

Proof. The proof is almost identical the prior one, so we only give the main idea. Security can be
based on either collision-resistance as above (which can be based on the hardness of SIS), or on claw-
free pairs (which can be based on the hardness of ISIS). The essential idea is that repeated signature
queries on the same message m will all have distinct salts r (except with negligible probability
Q2

sign/2
k), so the signer will provide a preimage for independent hash values H(m‖r).

6 Trapdoor for Regev’s Cryptosystem

In this section we demonstrate a trapdoor for the cryptosystem of Regev based on LWE [Reg05].
We show that this trapdoor enables two powerful applications: efficient and universally composable
oblivious transfer, and identity-based encryption. The first application is the focus of a concurrent
work by Peikert et al. [PVW07], which relies on the results of this section. The second application
requires some additional machinery, which we develop in Section 7.

6.1 Variant Cryptosystem

We now describe a slight variant of Regev’s cryptosystem [Reg05] that will be easier to analyze
in our applications. Our version differs only in the encryption algorithm. The original algorithm
chooses a uniformly random 0-1 vector e ∈ Z

m
q (corresponding to a random subset of {1, . . . ,m})

and computes the corresponding subset sum Ae of the columns of A ∈ Z
n×m
q . Our encryption

algorithm instead chooses a random vector e from the discrete Gaussian DZm,r over the integer
lattice Z

m (using the SampleD algorithm from Section 3), and computes the syndrome Ae. The
particular value of the Gaussian parameter r will be a parameter of the scheme, and for our trapdoor
applications will correspond to the length of the trapdoor for A.

The cryptosystem is defined below. We define an optimized version of the system (also described
in [Reg05]), in which all users share a common matrix A ∈ Z

n×m
q chosen uniformly at random. All

operations are performed over Zq.

• LWEKeyGen: choose a secret decryption key s ← Z
n
q uniformly at random. The public key

is the vector p = AT s + x ∈ Z
m
q , where each xi is chosen independently from the error

distribution χ for i ∈ [m].

Note that the p component of the public key can be viewed as a uniform lattice point AT s ∈
Λ(A, q) mod q, perturbed by some (small) random error vector x.
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• LWEEnc(p, b): to encrypt a bit b ∈ {0, 1}, choose a vector e ∈ Z
m from the distribution DZm,r

(using the SampleD algorithm with the standard basis for Z
m), and output the ciphertext

(u, c) = (Ae,pT e + b · bq/2c) ∈ Z
n+1
q .

• LWEDec(s, (u, c)): compute b′ = c − sTu ∈ Zq. Output 0 if b′ is closer to 0 than to bq/2c
modulo q, otherwise output 1.

Proposition 6.1. For parameters r, q, m, and α satisfying the hypotheses of Lemmas 6.2 and 6.4,
the cryptosystem above is IND-CPA-secure, assuming that LWEq,Ψ̄α

is hard.

One possible choice of parameters is to let m = 6n lg n, r = log m, q ∈ [n
2

2 , n2] be prime,
and α = 1/(

√
m · log2 m). It can be verified that these choices satisfy the needed hypotheses. In

addition, we have q · α ≥ n for all sufficiently large n, so Proposition 2.10 implies that LWEq,Ψ̄α
is

hard unless there are poly-time quantum algorithms for approximating GapSVP and SIVP to within
Õ(n1.5) factors.

Proof. The proof is based on a similar line of reasoning as in prior works [AD97, Reg04, Reg05].
For completeness of the cryptosystem, we show in Lemma 6.2 that the decryption algorithm is
correct with overwhelming probability over the randomess of LWEKeyGen and LWEEnc.

We prove semantic security in three steps: first, by assumption on LWEq,χ, it is immediately

apparent that A′ = (A,pT ) ∈ Z
(n+1)×m
q , where p is the public key generated by LWEKeyGen, is

pseudorandom (i.e., indististinguishable from uniform). Second, we describe below the notion of
“messy” public keys, whose defining property is that the encryption algorithm statistically hides
the message bit when encrypting under such keys. Lastly, in Lemma 6.3 we describe an explicit
geometric condition that makes A′ messy, and in Lemma 6.4 we show that a uniformly random
choice of A′ meets this condition with overwhelming probability. (The last step is the novel part
of our proof, and is the only part that uses our modified encryption algorithm.)

Putting everything together, we see that no efficient adversary can distinguish between public
keys generated by LWEKeyGen and those that are messy. Therefore encrypting under keys generated
by LWEKeyGen hides the encrypted bit computationally.

Lemma 6.2 (Completeness). Let q ≥ 5rm, let α ≤ 1/(r
√

m · ω(
√

log n)), and let χ = Ψ̄α. Then
LWEDec decrypts correctly with overwhelming probability (over the random choices of LWEKeyGen

and LWEEnc).

Proof. Consider some secret key s ∈ Z
n
q and its public key p = AT s+x, for x← χm. Now consider

a ciphertext
(u, c) = (Ae,pT e + b · bq/2c) = (Ae, sT Ae + xTe + b · bq/2c)

of a bit b, where e ← DZm,r. The decryption algorithm computes c − sT u = xTe + b · bq/2c, so it
outputs b if xT e is at distance at most (say) q/5 from 0 (modulo q).

By Lemma 2.8, we have ‖e‖ ≤ r
√

m (except with exponentially small probability). Now by
definition of χ = Ψ̄α, we have xi = bq · yie mod q, where the yi are independent normal variables
with mean 0 and variance α2. Then ‖x− y‖ ≤ √m/2, and by the Cauchy-Schwarz inequality, xTe
is at most rm/2 ≤ q/10 away from q · (yT e mod 1). Therefore it suffices to show that

∣

∣yT e
∣

∣ < 1/10
with overwhelming probability.

Because the yi are independent, yT e is distributed as a normal variable with mean 0 and
standard deviation ‖e‖ · α ≤ r

√
m · α ≤ 1/ω(

√
log n). Therefore by the tail inequality on normal

variables, the probability that
∣

∣yT e
∣

∣ > 1/10 is negligible, and we are done.
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Message-lossy (“messy”) public keys. Let A ∈ Z
n×m
q be the fixed common matrix and

p ∈ Z
m
q be some fixed public key, forming A′ ∈ Z

(n+1)×m
q as described above. Define δ(p) to

be the statistical distance between the uniform distribution over Z
n+1
q and the distribution of

A′e = (Ae,pT e) ∈ Z
n+1
q , where e ← DZm,r. If δ(p) is negligible, we call p a messy public key,

because encrypting under p loses essentially all information (statistically) about the encrypted bit.
More formally, LWEEnc(p, 0) and LWEEnc(p, 1) are statistically close, because both distributions
are statistically close to uniform. (Of course, the correctness of LWEDec implies that the public
keys p generated by LWEKeyGen typically have large δ(p).)

Messy keys (though not named as such) have played a role in the security proofs for several prior
lattice-based cryptosystems, e.g., [AD97, Reg04, Reg05]. In all these works, it sufficed to demon-
strate that most keys are messy, without necessarily identifying their particular characteristics.
This was always done via a non-constructive, probabilistic argument.

In the proof of security for the oblivious transfer protocol in [PVW07], the simulator needs to
efficiently identify messy keys (with the help of a trapdoor). This calls for an explicit condition
that identifies a public key as messy. A two-part condition suffices: first, the columns of A′ should
generate all of Z

n+1
q ; second, the modular lattice Λ(A′, q) should have large minimum distance λ∞1

(in the `∞ norm).

Lemma 6.3 (Messy Description). Let A, p, and A′ be as above, and suppose that the columns of
A′ generate Z

n+1
q . Then for any ε ∈ (0, 1

2 ) and any Gaussian parameter r ≥ ηε(Λ
⊥(A′, q)) used by

LWEEnc, we have δ(p) ≤ 2ε.

In particular, if r ≥ q · ω(
√

log m)/λ∞1 (Λ(A′, q)), then p is messy.

Proof. The first claim is a direct consequence of Lemma 4.2 (for dimension n + 1 instead of n),
which implies that A′e = (Ae,pT e) is statistically close to uniform over Z

n+1
q for e← DZm,r.

The second claim follows directly from Lemma 2.5 and the duality between Λ⊥ and Λ.

Lemma 6.4 (Density of Messy Keys). Let m ≥ 2(n + 1) lg q and let r ≥ ω(
√

log m). Then for all
but an at most 2q−n fraction of (A,p), the public key p is messy for the cryptosystem with common
matrix A.

Proof. Let A′ ∈ Z
(n+1)×m
q be comprised of A and p as above. By an argument identical to the one

from Lemma 4.1, the columns of A′ generate Z
n+1
q for all but an at most q−n fraction of all A′.

Likewise, by an argument identical to the one from Lemma 4.3, we have λ∞1 (Λ(A′, q)) ≥ q/4 for all
but an at most q−n fraction of all A′. Therefore, for such A′ and for r ≥ ω(

√
log m), Lemma 6.3

implies that p is a messy key.

6.2 Identifying Messy Keys

We now present an algorithm that identifies (most) messy keys for the above cryptosystem, using
a trapdoor for the common matrix A. We start with a high-level overview of the intuition behind
the algorithm.

Consider a shared matrix A ∈ Z
n×m
q and public key p ∈ Z

m
q that together form A′ ∈ Z

(n+1)×m
q

as above, and recall that p is messy if: (1) the columns of A′ generate Z
n+1
q , and (2) the minimum

`∞ distance λ∞1 (Λ(A′, q)) is large enough, so that the Gaussian parameter r used in encryption
exceeds the smoothing parameter of the lattice Λ⊥(A′, q). The first condition is easy to check by
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computing the determinant of the lattice Λ⊥(A′, q). The second condition can be checked using
a trapdoor for A in the following way: first, by Lemma 4.3 we know that with high probability
the lattice Λ = Λ(A, q) has large minimum distance λ∞1 . Adjoining the vector p to Λ yields
the lattice Λ′ = Λ(A′, q), which still has large minimum distance λ∞1 as long as every nonzero
multiple k · p is far from Λ in `∞ norm, for k ∈ {1, . . . , q − 1}. Using techniques of Aharonov and
Regev [AR05] (extended to arbitrary `p norms by Peikert [Pei07]), one can efficiently check that
each of the multiples k · p is far from Λ (in `∞ norm), using samples from a discrete Gaussian
over Λ∗ = Λ⊥(A, q)/q. The Gaussian sampling algorithm with the trapdoor for A produces such
samples efficiently.

The actual algorithm and its analysis depend crucially on the proper relationship between the
cryptosystem’s Gaussian parameter r and the length L of the trapdoor. A tighter bound on L
means that we can use a smaller value of r and still correctly identify messy keys. A smaller r
means that the cryptosystem remains complete for larger values of the LWE error parameter α,
which in turn corresponds to weaker assumptions on lattice problems.

We also point out that we only know how to identify messy keys for the single-bit cryptosystem,
as opposed to the more efficient multi-bit system constructed in [PVW07]. The reason is that a
public key for the multi-bit system consists of several vectors pi, and the key is messy (meaning
encryption destroys the entire message) if the minimum distance remains large after adjoining all
the pis to the common lattice. Testing for this condition (at least naively) seems to require checking
all of the exponentially-many combinations of the pis.

We start by recalling the algorithm of [AR05] that distinguishes between points that are far
from a lattice and those that are close to it, given access to Gaussian samples over the dual lattice.
The meanings of “far” and “close” are determined by the Gaussian parameter s.

Proposition 6.5 ([AR05, Pei07]). There is a deterministic polynomial-time oracle machine V ·
that, on input a basis B for a full-rank lattice Λ = L(B) ⊂ R

m and a point x ∈ R
m, and given

access to an oracle that samples from the distribution DΛ∗,s for some s > 0, has the following
behavior:

• If dist∞(x,Λ) ≤ 1/(10s
√

m), then V outputs “close” with overwhelming probability.

• If dist∞(x,Λ) ≥
√

log m/s, then V outputs “far” with overwhelming probability.

The probabilities are taken over the samples produced by the oracle.

We now describe our algorithm IsMessy that identifies messy public keys, given a trapdoor for
A. The algorithm has the following properties:

1. For almost all shared matrices A, if IsMessy outputs “messy” on a public key p, then p is
indeed messy with overwhelming probability. More precisely, a non-messy key will only be
declared “messy” with negligible probability over IsMessy’s randomness.

2. For all A, IsMessy outputs “messy” on an overwhelming fraction of all public keys p.

Note that IsMessy has two very different kinds of error. Suppose that A is “unexceptional,” and fix
some particular public key p. If p is “leaky” (non-messy), then IsMessy will mistakenly declare it
to be messy with only negligible probability (over its own randomness). On the other hand, if p is
indeed messy, we still have no guarantee — IsMessy might still might output “not sure” on p most
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of the time. Nevertheless, most messy keys are identified as such, and this will be good enough for
the applications in [PVW07].

The IsMessy algorithm is parameterized by a Gaussian parameter s = L ·ω(
√

log m)/q for some
ω(
√

log m) function, and is defined as follows: on input A ∈ Z
n×m
q , a full-rank set S ⊂ Λ⊥(A, q) of

length ‖S‖ ≤ L, and a public key p ∈ Z
m
q ,

1. Let Λ = Λ(A, q) and Λ⊥ = Λ⊥(A, q). (Recall that Λ∗ = Λ⊥/q.) Below we abuse notation
and use Λ and Λ⊥ as arguments to algorithms, rather than (arbitrary) bases for them.

2. For each k ∈ {1, . . . , q − 1}, run V(Λ, k ·p). Whenever V asks for a sample from DΛ∗,s, provide
it with the output of an independent execution of SampleD(Λ⊥/q,S/q, s,0).

3. If every execution of V outputs “far,” then output “messy.” Otherwise, output “not sure.”

Lemma 6.6. Let r ≥ q · s√m · ω(
√

log m) be the Gaussian parameter used by LWEEnc, for some
arbitrary ω(

√
log m) function. Then for all but a q−n fraction of all A ∈ Z

n×m
q , if p is not a messy

public key for LWEEnc, then IsMessy(A,S,p) errs (i.e., outputs “messy”) with only negligibly small
probability.

Proof. As above, let A′ ∈ Z
(n+1)×m
q have the rows of A as its first n rows and pT as its (n + 1)st

row. Let Λ = Λ(A, q), Λ′ = Λ(A′, q), and note that Λ′ ⊆ Λ.
Now if p is not messy, by the contrapositive of Lemma 6.3 we have

λ∞1 (Λ′) <
q ·O(

√
log m)

r
≤ 1

10s
√

m

for all large enough m.
Now for all but a q−n fraction of A, by Lemma 4.3 we have λ∞1 (Λ) ≥ q/4 > λ∞1 (Λ′). Let A be

such a matrix. Then it must be the case that for some integer k,

dist∞(k · p,Λ) = λ∞1 (Λ′).

Furthermore, because q · p ∈ Λ, such k must be nonzero modulo q, and the above distance is
determined by k mod q. We conclude that there must be some k ∈ {1, . . . , q − 1} such that

dist∞(k · p,Λ) ≤ 1

10s
√

m
.

By Proposition 6.5, V outputs “close” for that choice of k (except with negligible probability),
assuming its oracle samples from DΛ∗,s. Because S/q is a full-rank set of vectors from Λ∗ =
Λ⊥(A, q)/q and s ≥ ‖S/q‖ · ω(

√
log n), by Lemma 3.5 the algorithm SampleD samples from a

distribution that is statistically close to DΛ∗,s, and the claim follows.

We now show that IsMessy almost always outputs “messy” for a random choice of public key p
(and arbitrary A).

Lemma 6.7. Let q be prime, let m ≥ (n + 1) lg q, and let A, S be as above where ‖S‖ ≤ L. Then
the fraction of p ∈ Z

m
q such that IsMessy(A,S,p) outputs “not sure” with some non-negligible

probability is at most
(

4
√

log m

q · s

)m

.
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In particular, for any s = L · ω(
√

log m)/q, IsMessy outputs “messy” with overwhelming probability
on all but a negligible fraction of p ∈ Z

m
q .

Proof. We proceed by a counting argument. Let A ∈ Z
n×m
q be arbitrary and let Λ = Λ(A, q). Let C

be the open `∞ cube in R
m of radius

√
log m/s. Let Z = (Λ+C)∩Z

m
q be the set of integer points in

Z
m
q that are close to Λ in `∞ norm. By Proposition 6.5, any p ∈ Z

m
q such that IsMessy outputs “not

sure” with non-negligible probability is containted in (k−1 · Z) mod q for some k ∈ {1, . . . , q − 1}.
(For if not, every multiple k · p is of `∞ distance at least

√
log m/s from Λ, so IsMessy outputs

“messy” with overwhelming probability.)
Now the number of integer points in Λ mod q is bounded from above by qn, and the number of

integer points in any translate of C is bounded from above by (2
√

log m/s)m. Therefore the total
number of points in (k−1 · Z) mod q for some k is at most

qn+1 ·
(

2
√

log m

s

)m

≤
(

4
√

log m

s

)m

.

The claim follows by taking the probability over a uniform choice of p ∈ Z
m
q .

6.3 Extracting Secret Keys

We also show that it is possible to extract the secret key s from a properly-generated public key
p = AT s + x for Regev’s cryptosystem, using a trapdoor for the shared matrix A. Extracting
secret keys is equivalent to solving a bounded-distance (unique) decoding problem on the lattice
Λ(A, q). Whereas distinguishing messy keys from properly-generated ones is a decision problem,
extracting the secret key from a public key is essentially the correspoding search problem.

Building on the techniques of Aharonov and Regev [AR05], Liu, Lyubashevsky, and Miccian-
cio [LLM06] gave a deterministic “hill-climbing” algorithm that solves the bounded-distance de-
coding problem on any lattice, given samples from a discrete Gaussian over the dual lattice. Their
algorithm was generalized to all `p norms in [Pei07].

Proposition 6.8 ([LLM06, Pei07]). There is a deterministic poly-time oracle algorithm that, given:

• access to an oracle that samples from the distribution DΛ∗,s for some s > 0,

• a basis B for a full-rank lattice Λ = L(B) ⊂ R
m such that λ∞1 (Λ) ≥ 10

√
log m/s,

• a point x ∈ R
m such that dist∞(x,Λ) ≤ 1/(10s

√
m), and

outputs the unique y ∈ Λ closest (in `∞ norm) to x.

As we have already seen, for a random lattice Λ = Λ(A, q) with Λ∗ = Λ⊥(A, q)/q, we can
implement the oracle in the above lemma for any s = L ·ω(

√
log m)/q using the SampleD algorithm

with any full-rank set S ⊂ Λ⊥(A, q) such that ‖S‖ ≤ L.

Lemma 6.9. Let s = L · ω(
√

log m)/q as above, and let χ = Ψ̄α for α ≤ 1/(q · s√m · ω(
√

log m)).
Let Λ = Λ(A, q), and let p denote a public key produced by LWEKeyGen. Then with overwhelming
probability over the choice of A and the randomness of LWEKeyGen,

• λ∞1 (Λ) ≥ 10
√

log m/s, and
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• dist∞(p,Λ) ≤ 1/(10s
√

m)

In particular, by Proposition 6.8 one can efficiently extract the secret key s from the public key
p using a full-rank trapdoor S ⊂ Λ⊥(A, q) such that ‖S‖ ≤ L.

Proof. By Lemma 4.3, for all but an at most q−n fraction of all A, we have λ∞1 (Λ) ≥ q/4 ≥
10
√

log m/s for sufficiently large m.
Now say p = AT s + x where x ← χm is the noise term. By the tail inequality on normal

variables and the definition of χ = Ψ̄α, each coordinate xi of x is at distance at most q · α · g(m)
from 0 modulo q, with overwhelming probability for any g(m) = ω(

√
log m). Therefore for an

appropriate choice of g(m) we get dist∞(p,Λ) ≤ 1/(10s
√

m).

Remarks. We point out that Lemma 6.9 applies to both Regev’s original scheme and our variant,
as it depends only on the distribution of public keys, and not on the distribution of the randomness
used in encryption.

We also remark that the above results imply another kind of trapdoor function. Define f ′
A

(s,x) =
AT s+x, where s← Z

n
q and x← χm is the input distribution. Then for almost all A, the function

f ′
A

has the following properties: (1) with overhwhelming probability over the input s,x, the output
fA(s,x) has a unique preimage, in the sense that all other preimages are exponentially unlikely un-
der the input distribution; (2) the unique preimage can be recovered with an appropriate trapdoor
for A; (3) assuming that LWE is hard, f ′

A
is hard to invert, and (A, f ′

A
(s,x)) is indististinguishable

from uniform over the choice of A, s, x.

7 Identity-Based Encryption

In this section, we construct an identity-based encryption (IBE) system whose security is based
on the hardness of the LWE problem, in the random oracle model. More precisely, it relies on a
non-standard “interactive” assumption on the hardness of LWE, in the presence of a signing oracle
for our full domain hash signature scheme from Section 5.

In the previous section, we saw that a single lattice Λ(A, q) can support the public keys of many
users, and that a trapdoor for A allows one to extract the secret key from any well-formed public
key. At first glance, it may seem that this is all that is needed for an identity-based cryptosystem.
However, the situation is not so simple. Well-formed public keys in that system are exponentially
sparse, because they correspond to points very close to the lattice Λ(A, q). It is not at all clear
how a hash function or random oracle could securely map identities to valid public keys.

To remedy this situation, we construct a “dual” of the cryptosystem from the previous section,
in which the generation and encryption algorithms are essentially swapped. More specifically, in
the dual system, the secret key is a vector e distributed according to DZm,r, and the corresponding
public key is its syndrome u = fA(e) ∈ Z

n
q . The encryption algorithm chooses a pseudorandom

LWE vector p = AT s + x (for a uniform secret s ∈ Z
n
q and error vector x ← χm), and uses the

syndrome u to generate one more LWE instance p = uT s+x as a “pad” to hide the message (where
x← χ). Because the public key syndrome u is statistically close to uniform, the adversary’s view
in the dual system is indistinguishable from uniform, under the hardness of LWE. For the same
reason, the scheme (and its identity-based version below) is also anonymous; that is, a ciphertext
hides the identity to which it was encrypted.
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The crucial feature of the dual cryptosystem is that its public keys are dense; in fact, every
syndrome u ∈ Z

n
q is a valid public key that has many essentially equivalent decryption keys e ∈ Z

m
q .

We therefore have all the properties we need to implement an IBE system. Identities are hashed to
syndromes in Z

n
q , with the assurance that every such syndrome is a well-defined public key for the

dual scheme. Furthermore, a trapdoor for A allows a trusted authority to efficiently sample a secret
key e corresponding to any syndrome u, under the same distribution as in the dual cryptosystem.

We first describe the dual cryptosystem and prove that it is secure based on the hardness of
LWE. We then show how to use this to construct an IBE system.

7.1 Dual Cryptosystem

Our public-key dual cryptosystem is defined below. It is parameterized by some r ≥ ω(
√

log m),
which specifies the discrete Gaussian distribution DZm,r from which secret keys are chosen. As in
Section 6.1, all users share a common matrix A ∈ Z

n×m
q (an implicit input to all algorithms) chosen

uniformly at random, which is the index of the function fA(e) = Ae mod q defined in Section 4.3.
(Each user may also generate her own matrix A, included in the public key). The trapdoor for A
will not be needed here, and is only used in the IBE below. All operations are performed over Zq.

• DualKeyGen: Choose an error vector e← DZm,r (i.e., the input distribution to fA), which is
the secret key. The public key is the syndrome u = fA(e).

• DualEnc(u, b): to encrypt a bit b ∈ {0, 1}, choose s← Z
n
q uniformly and p = AT s + x ∈ Z

m
q ,

where x← χm. Output the ciphertext (p, c = uT s + x + b · bq/2c) ∈ Z
m
q × Zq, where x← χ.

• DualDec(e, (p, c)): compute b′ = c − eTp ∈ Zq. Output 0 if b′ is closer to 0 than to bq/2c
modulo q, otherwise output 1.

The above cryptosystem can be extended to encrypt messages of length k = poly(n) bits,
with ciphertexts of Õ(m + k) bits and public keys of size Õ(kn) bits. The idea is to include k
independent syndromes u1, . . . ,uk in the public key, and to encrypt to each of them using the same
s and p = AT s+x. (This is similar to an amortized construction from [PVW07] for Regev’s original
system, and to the IBE from [BGH07]). For k = Ω(m), this yields amortized encryption/decryption
time of Õ(n) bit operations per message bit, and ciphertext expansion factor of O(log n). It is also
possible to securely encrypt Ω(log n) bits per syndrome under essentially the same assumption
on LWE, which yields a ciphertext expansion factor of O(1). (These measures of complexity are
asymptotically the same as those achieved in [PVW07].)

Theorem 7.1. Let q ≥ 5r(m + 1), α ≤ 1/(r
√

m + 1 · ω(
√

log n)) and χ = Ψ̄α, and m ≥ 2n lg q.
Then the above system is IND-CPA-secure and anonymous, assuming that LWEq,χ is hard.

Furthermore, for all but a negligible fraction of shared matrices A, the distribution of public
keys generated by DualKeyGen is statistically close to uniform over Z

n
q .

Proof. The claim on the distribution of public keys follows directly from Corollary 4.4.
We show that DualDec is correct with overwhelming probability (over the randomness of

DualKeyGen and DualEnc). Consider a ciphertext

(p, c) = (AT s + x, eTAT s + x + b · bq/2c)
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of a bit b under a public key u = Ae. The decryption algorithm computes c − eTp = x − eTx +
b · bq/2c, so it outputs b if x − eTx is at distance at most (say) q/5 from 0 (modulo q). By an
essentially identical argument as in Lemma 6.2, this occurs with overwhelming probability for our
choice of q and α.

Semantic security follows almost immediately from the presumed hardness of LWE. We claim
that for a ciphertext (p, c) of either b = 0 or 1, the entire view (A,p,u, c) of the adversary is
indistinguishable from uniform, assuming hardness of LWEq,χ. Indeed, for almost all fixed choices
of A and because m ≥ 2n lg q, the public key syndrome u = fA(e) is statistically close to uniform
by Theorem 4.9. Then the view (A,p = AT s+x,u, c = uT s+x+b ·bq/2c) simply consists of m+1
samples from the LWE distribution As,χ (for s ← Z

n
q ), which are indistinguishable from uniform

assuming the hardness of LWEq,χ. For anonymity, it is enough to see that a ciphertext (p, c) alone
is indistinguishable from uniform, and as such, it computationally hides the particular public key
u under which it was generated.

The proof easily generalized to the multi-bit extension, because each syndrome ui is independent
and statistically close to uniform (for almost all choices of A).

7.2 IBE System

Our IBE system uses a random orace H : {0, 1}∗ → Z
n
q that maps identities to public keys of

the dual cryptosystem, which is instantiated with a Gaussian parameter r ≥ L · ω(
√

log m) so as
to guarantee the preimage sampling property as proved in Theorem 4.9. As with the full-domain
hash signature scheme from Section 5, we describe a stateful secret key extractor (to prevent a
re-querying attack), which can be made stateless via pseudorandom functions in a standard way.

• IBESetup(1n): generate A ∈ Z
n×m
q and trapdoor S ⊂ Λ⊥(A, q) according to the trapdoor

generator from Section 4.3. The master public key is A, which is taken as the shared matrix
for the dual cryptosystem, and the master secret key is S.

• IBEExtract(A,S, id): if the pair (id, e) is in local storage (from a prior query on id), then
return e. Otherwise, let u = H(id) and choose a decryption key e ← f−1

A
(u) using the

preimage sampler with trapdoor S. Store (id, e) locally and return e.

• IBEEnc(A, id, b): to encrypt a bit b ∈ {0, 1} to identity id, let u = H(id) ∈ Z
n
q , and output a

ciphertext (p, c)← DualEnc(u, b).

• IBEDec(e, (p, c)): Output DualDec(e, (p, c)).

A multi-bit IBE follows in the same way from the multi-bit extension of the dual cryptosystem,
with the same measures of complexity. Identities are simply mapped by H to multiple uniform
syndromes in Z

n
q , one for each bit of the message.

Theorem 7.2. Suppose that Theorem 7.1 holds, i.e., the dual cryptosystem is IND-CPA-secure
and anonymous in the standard model, and that its public keys are statistically close to uniform
over Z

n
q for all but a negligible fraction of shared matrices A.

Then the IBE system described above is ANON-IND-CPA-secure in the random oracle model.

Proof. First we show completeness. Note that for any identity id and its syndrome u = H(id),
IBEExtract samples from f−1

A
(u) and produces a secret key e whose distribution is statistically close
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to that of a secret key for the public key u in the dual cryptosystem. Therefore IBEDec decrypts
correctly as long as DualDec does. Furthermore, the system is anonymous because IBEEnc simply
returns the output of DualEnc.

We now show semantic security in the random oracle model. Let A be a PPT adversary that
attacks the IBE scheme and has advantage ε using Qhash distinct queries to H. We will construct
an adversary S that attacks the dual cryptosystem by simulating the view of A, and has advantage
negligibly close to ε/Qhash.

The adversary S works as follows. On input a shared matrix A ∈ Z
n×m
q and a public key

u∗ ∈ Z
n
q for the dual cryptosystem, S chooses an index i ← [Qhash] uniformly at random and

simulates the view of A as follows:

• Hash queries: on A’s jth distinct query idj to H, do the following: if j = i, then locally store
the tuple (idj ,u

∗,⊥) and return u∗ to A. Otherwise for j 6= i, generate a public/secret key
pair (uj , ej)← DualKeyGen, locally store the tuple (idj ,uj , ej), and return uj to A.

• Secret key queries: when A asks for a secret key for the identity id, assume without loss of
generality that A already queried H on id. Retrieve the unique tuple (id,u, e) from local
storage. If e = ⊥, then output a random bit and abort, otherwise return e to A.

• Challenge ciphertext : when A produces a challenge identity id∗ (distinct from all its secret
key queries) and messages m0,m1, assume without loss of generality that A already queried
H on id∗. If id∗ 6= idi, i.e., if the tuple (id∗,u∗,⊥) is not in local storage, then output a
random bit and abort. Otherwise, relay the messages m0,m1 to the challenger, receive a
challenge ciphertext c∗, and return c∗ to A.

When A terminates with some output, S terminates with the same output.
We now analyze the reduction. By a standard argument, the probability that S does not abort

during the simulation is 1/Qhash (this is proved by considering a game in which S can answer all
secret key queries, so that the value of i is perfectly hidden from A). Conditioned on S not aborting,
we claim that the view it provides to A is statistically close to the view of the real IBE system.
Indeed, the answers to the hash queries are independent public keys of the dual cryptosystem,
which are statistically close to uniform (for almost all A) by assumption. Furthermore, as we have
already seen, the answers to the secret key queries in the real system are statistically close to those
generated by DualKeyGen. Finally, we observe that S’s advantage is the same as A’s, conditioned
on S not aborting.

Interactive LWE assumption. Instead of an analysis in the random oracle model, we can also
construct an IBE and prove its security under an “interactive” assumption about the hardness of
LWE in the presence of a signing oracle for the (stateful) FDH signature scheme from Section 5. A
similar “interactive quadratic residuosity assumption” was used for the IBE of [BGH07]. We sketch
the assumption and proof of security here.

The interactive LWEq,χ problem is this: the input is a matrix A ∈ Z
n×m
q chosen uniformly at

random, a vector p ∈ Z
m
q , a hash function H : {0, 1}∗ → Z

n
q , and access to an oracle that, on input

z, returns a sample from f−1
A

(H(z)) (the same value is returned for repeated queries on the same
z). The goal is to distinguish whether p is either an LWE instance or uniform, i.e., between the
case that p = AT s+x for some s← Z

n
q and x← χm, and the case that p← Z

m
q is uniform. When

32



H is modelled as a random oracle, the interactive LWE problem is hard as long as the standard
LWE problem is hard.

The main idea for proving security of the IBE under the interactive assumption is as follows:
the simulator is given A, p, hash function H, and access to the signing oracle. It simulates an IBE
system having public parameter A and H, and answers secret key queries by simply querying the
signing oracle. When given the challenge identity id∗ and challenge message m0,m1, the simulator
additionally queries the signing oracle on id∗ and obtains a secret key e∗. It then constructs
a challenge ciphertext by encrypting a random mb “with the secret key e∗.” Specifically, the
ciphertext is made up of p and a “pad” eTp ∈ Zq that hides the message mb in the standard way.
If p is uniform, it can be shown that the pad is essentially uniform and independent of the other
variables, thus the adversary has no advantage. If p = AT s+x is an LWE instance, the ciphertext
is distributed as in the real IBE system. Note that the simulated pad eTp = uT s+eT x is correlated
with the length ‖x‖; therefore, the encryption algorithm in the real IBE system will also choose a
pad using an error distribution whose standard deviation is determined by ‖x‖.

The full proof of security is somewhat subtle, and is more convenient when the error terms in
the LWE problem are continuous quantities, not rounded off (this is actually the main form of the
problem studied in [Reg05]). When “encrypting with the secret key,” the simulator also needs to
add a small amount of continuous Gaussian error to the pad eTp, in order to ensure that its overall
distribution is close to a continuous Gaussian; this technique is also used in the main reduction
of [Reg05]. We defer the details.

8 Hardness of SIS and ISIS

The results of this section are very similar to the main worst-case to average-case reduction of
Micciancio and Regev [MR07] (which in turn inherits from the original work of Ajtai [Ajt96]). The
main difference is the use of our discrete Gaussian sampling algorithm to simplify and slightly
tighten the reduction. The discrete sampling algorithm avoids certain complications associated
with using continuous Gaussian distributions, and the looseness that comes with “rounding off”
real-valued samples to nearby lattice points. The net effect is that our reduction works for values
of the modulus q = Õ(n) that are almost linear, versus Õ(n2) as shown in [MR07].

We start by introducing a worst-case lattice problem that acts as an intermediary between
our average-case decoding problem and more standard problems like SIVP and GapSVP. The new
problem is similar to the intermediate incremental guaranteed distance decoding (IncGDD) problem
defined in [MR07], but has a somewhat simpler formulation.

Definition 8.1 (Incremental Independent Vectors Decoding). An input to IncIVDφ
γ,g is a tuple

(B,S, t), where B is a basis for a full-rank lattice in R
n, S ⊂ L(B) is a full-rank set of lattice

vectors such that ‖S‖ ≥ γ(n) · φ(B), and t ∈ R
n is a target point. The goal is to output a lattice

vector v ∈ L(B) such that ‖v− t‖ ≤ ‖S‖ /g. (The norm ‖·‖ is arbitrary, and is implicitly taken to
be the Euclidean `2 norm unless otherwise specified.)

As shown in [MR07], the IncGDD problem is as hard as approximating several other worst-case
problems (such as SIVP), via standard worst-case to worst-case reductions. All of these reductions
can easily be adapted to work for our problem IncIVD as well. Therefore it will suffice to show that
IncIVD reduces to the average-case problem SIS or ISIS for appropriate choices of parameters.
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Before stating the main theorem, we observe that SIS can be viewed essentially as a special case
of ISIS. An instance of ISIS is given by (q,A,u, β) where A ∈ Z

n×m
q and u ∈ Z

n
q are uniformly

random, and the goal is to find an e ∈ Z
m such that Ae = u mod q and ‖e‖ ≤ β. Note that

u 6= 0 except with q−n probability, so without loss of generality we can assume that a valid solution
e 6= 0. Now by instead always setting u = 0 and explicitly requiring e 6= 0, we get exactly the
homogeneous SIS problem. Therefore, in the reduction we will choose u ∈ Z

n
q to be either uniform

or 0 as appropriate, and the analysis will only use the hypothesis that the solution e 6= 0.

Theorem 8.2. For any g(n) > 1 and negligible ε(n), there is a probabilistic poly-time reduction
from solving IncIVDηε

γ,g in the worst case for γ(n) = g(n) · β(n) · √n to solving either SISq,m,β

or ISISq,m,β on the average with non-negligible probability, for any q(n) ≥ γ(n) · ω(
√

log n) and
m(n), β(n) = poly(n).

Using analysis techniques of [Pei07], the theorem can be generalized to solve IncIVDηε
γ,g in any

`p norm, 1 ≤ p < ∞, for an approximation factor γ(n) = cp · g(n) · β(n) · n1/p where cp is a fixed
constant depending only on p. (For p =∞, the proof goes through with c∞ = O(

√
log n).)

Proof of Theorem 8.2. Suppose that oracle O solves either ISISq,m,β or SISq,m,β on the average with
non-negligible probability (the difference between the two problems is limited to the first step of
the reduction). The reduction that solves IncIVDηε

γ,g works as follows: on input (B,S, t),

1. (Setup.) Choose an index j ← [m] and α← {−β, . . . ,−1, 1, . . . , β} uniformly at random.

Let cj = t · q/α ∈ R
n, and let ci = 0 ∈ R

n otherwise for i ∈ [m].

For reducing to ISIS, choose u← Z
n
q uniformly and independently.

For reducing to SIS, let u = 0 ∈ Z
n
q .

Let xj = u · α−1 mod q, and xi = 0 otherwise. Define the matrix X = [x1, . . . ,xm] ∈ Z
n×m
q .

2. (Sample lattice points.) Let s = ‖S‖ · q/γ. For each i ∈ [m], let yi ← DL(B),s,ci
, where the

sample is produced using SampleD(B,S, s, ci). Define the matrix Y = [y1, . . . ,ym] ∈ R
n×m.

Let A = (B−1Y + X) mod q.

3. (Invoke oracle and combine lattice points.) Invoke oracle O on (q,A,u, β), yielding e ∈ Z
m.

Output the vector v = Ye/q.

It is apparent that the reduction runs in time polynomial in n and the size of (B,S, t). The
correctness of the reduction (with non-negligible probability) will follow from the following claims.

Claim 8.3. For any values of j, α chosen by the reduction, the distribution of A is statistically close
to uniform over Z

n×m
q . In particular, O outputs a nonzero solution e ∈ Z

m (i.e., Ae = u mod q
with ‖e‖ ≤ β) such that ej = α with non-negligible probability.

Proof. We have s = ‖S‖ · q/γ ≥ ‖S‖ · ω(
√

log n), so by Lemma 3.5, the distribution sampled by
SampleD is statistically close to DL(B),s,ci

.
By hypothesis, we also have ‖S‖ ≥ γ · ηε(L(B)), so s ≥ q · ηε(L(B)) = ηε(qL(B)). Therefore

by Lemma 2.7, yi mod qL(B) is statistically close to uniform over L(B)/qL(B). Hence ai =
(B−1yi + xi) mod q is statistically close to uniform over Z

n/(qZ)n = Z
n
q . Because the yi are

independent and m = poly(n), the entire matrix A is statistically close to uniform by the triangle
inequality. Therefore O outputs a valid solution e with non-negligible probability.
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Finally, by the discussion above we may assume that the solution e 6= 0, so e has some nonzero
coordinate ek ∈ {−β, . . . ,−1, 1, . . . , β} for some k ∈ [m]. Because O’s input is statistically close to
uniform for any values of α, j chosen by the reduction, the probability that j = k and α = ek is
negligibly close to 1/(2βm) = 1/poly(n). The claim follows.

Claim 8.4. If e is a valid solution and ej = α, then the output v ∈ L(B).

Proof. It suffices to show that B−1Ye ∈ qZ
m. By definition, B−1Y = A−X mod q, so it suffices

to show that Ae = Xe mod q. Indeed, if ej = α then Xe = α · xj = u mod q. If e is a valid
solution, then Ae = u mod q as well, as desired.

Claim 8.5. If e is a valid solution and ej = α, then ‖v − t‖ ≤ ‖S‖ /g(n) with overwhelming
probability.

Proof. If ej = α, we have t = Ce/q where C = [c1, . . . , cm]. Now for each yi, let wi = yi mod
qL(B) and define W = [w1, . . . ,wm]. Then conditioned on any fixed value of wi, yi is distributed
as wi + DqL(B),s,ci−wi

. The input to the oracle O depends only on W and X. Therefore for any
fixed e returned by O, the vector v − t = (Y −C)e/q is distributed as

1

q

(

(W −C)e +
∑

i∈[m]

ei ·DqL(B),s,ci−wi

)

.

Because s ≥ ηε(qL(B)), the summation is distributed essentially as a Gaussian centered at 0 with
parameter

‖e‖ · s
q
≤ β · ‖S‖

γ
≤ ‖S‖

g · √n
,

which with overwhelming probability will have length at most ‖S‖ /g, as desired. A more formal
analysis (also for arbitrary `p norms) can be done using the results of [Pei07] on the sums of discrete
Gaussians over lattices.

By standard repetition techniques, the reduction can be made correct with overwhelming proba-
bility. This completes the proof of Theorem 8.2.
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