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Abstract

We prove space hierarchy and separation results for randomized and other semantic models of
computation with advice. Previous works on hierarchy and separation theorems for such models
focused on time as the resource. We obtain tighter results with space as the resource. Our main
theorems are the following. Let s(n) be any space-constructible function that is Ω(log n) and
such that s(an) = O(s(n)) for all constants a, and let s′(n) be any function that is ω(s(n)).

There exists a language computable by two-sided error randomized machines using
s′(n) space and one bit of advice that is not computable by two-sided error random-
ized machines using s(n) space and min(s(n), n) bits of advice.

There exists a language computable by zero-sided error randomized machines in space
s′(n) with one bit of advice that is not computable by one-sided error randomized
machines using s(n) space and min(s(n), n) bits of advice.

The condition that s(an) = O(s(n)) is a technical condition satisfied by typical space bounds
that are at most linear. We also obtain weaker results that apply to generic semantic models of
computation.

1 Introduction

A hierarchy theorem states that the power of a machine increases with the amount of resources it can
use. Time hierarchy theorems on deterministic Turing machines follow by direct diagonalization:
a machine N diagonalizes against every machine Mi running in time t by choosing an input xi,
simulating Mi(xi) for t steps, and then doing the opposite. Deriving a time hierarchy theorem for
nondeterministic machines is more complicated because a nondeterministic machine cannot easily
complement another nondeterministic machine (unless NP=coNP). A variety of techniques can
be used to overcome this difficulty, including translation arguments and delayed diagonalization
[Coo73, SFM78, Žàk83].

In fact, these techniques allow us to prove time hierarchy theorems for just about any syntactic
model of computation. We call a model syntactic if there exists a computable enumeration of all
machines in the model. For example, we can enumerate all nondeterministic Turing machines by
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representing their transition functions as strings and then iterating over all such strings to discover
each nondeterministic Turing machine.

Many models of computation of interest are not syntactic, but semantic. A semantic model
is defined by imposing a promise on a syntactic model. A machine belongs to the model if it
is output by the enumeration of the underlying syntactic model and its execution satisfies the
promise on every input. Bounded-error randomized Turing machines are an example of a non-
syntactic semantic model. There does not exist a computable enumeration consisting of exactly
all randomized Turing machines that satisfy the promise of bounded error on every input, but we
can enumerate all randomized Turing machines and attempt to select among them those that have
bounded error. In general promises make diagonalization problematic because the diagonalizing
machine must satisfy the promise everywhere but has insufficient resources to determine whether
a given machine from the enumeration against which it tries to diagonalize satisfies the promise on
a given input.

Because of these difficulties there has yet to be a single non-trivial proof of a time hierarchy the-
orem for any non-syntactic model.1 A recent line of research [Bar02, FS04, GST04, FST05, MP07]
has provided progress toward proving time hierarchy results for non-syntactic models, including
two-sided error randomized machines. Each of these results applies to semantic models that take
advice, where the diagonalizing machine is only guaranteed to satisfy the promise when it is given
the correct advice. Many of the results require only one bit of advice, which the diagonalizing ma-
chine uses to avoid simulating a machine on an input for which that machine breaks the promise.

As opposed to the setting of time, fairly good space hierarchy theorems are known for certain
non-syntactic models. In fact, the following simple translation argument suffices to show that for
any constant c > 1 there exists a language computable by two-sided error randomized machines
using (s(n))c space that is not computable by such machines using s(n) space [KV87], for any
space-constructible s(n) that is Ω(log n). Suppose by way of contradiction that every language
computable by two-sided error machines in space (s(n))c is also computable by such machines
in space s(n). A padding argument then shows that in that model any language computable in
(s(n))c

2
space is computable in space (s(n))c and thus in space s(n). We can iterate this padding

argument any constant number of times and show that for any constant d, any language computable
by two-sided error machines in space (s(n))d is also computable by such machines in s(n) space.
For d > 1.5 we reach a contradiction with the deterministic space hierarchy theorem because
randomized two-sided error computations that run in space s(n) can be simulated deterministically
in space (s(n))1.5 [SZ99]. The same argument applies to non-syntactic models where s(n) space
computations can be simulated deterministically in space (s(n))d for some constant d, including
one- and zero-sided error randomized machines, unambiguous machines, etc.

Since we can always reduce the space usage by a constant factor by increasing the work-tape
alphabet size, the tightest space hierarchy result one might hope for is to separate space s′(n) from
space s(n) for any space-constructible function s′(n) = ω(s(n)). For models like nondeterminis-
tic machines, which are known to be closed under complementation in the space-bounded setting
[Imm88, Sze88], such tight space hierarchies follow by straightforward diagonalization. For generic
syntactic models, tight space hierarchies follow using the same techniques as in the time-bounded
setting. Those techniques all require the existence of an efficient universal machine, which presup-

1Time hierarchies for a few non-syntactic models follow directly from their equivalence in power to a syntactic
model. These hierarchies result from equalities such as PSPACE=IP, BP.⊕P=Σ2.⊕P, NEXP=MIP=PCP(poly,poly),
and NP=PCP(log n,1).
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poses the model to be syntactic. For that reason they fail for non-syntactic models of computation
such as bounded-error machines.

In this paper we obtain space hierarchy results that are tight with respect to space by adapting
to the space-bounded setting techniques that have been developed for proving hierarchy results for
semantic models in the time-bounded setting. Our results improve upon the space hierarchy results
that can be obtained by the simple translation argument.

1.1 Our Results

Space hierarchy results have a number of parameters: (1) the gap needed between the two space
bounds, (2) the amount of advice that is needed for the diagonalizing machine N , (3) the amount
of advice that can be given to the smaller space machines Mi, and (4) the range of space bounds
for which the results hold. We consider (1) and (2) to be of the highest importance. We focus
on space hierarchy theorems with an optimal separation in space – where any super-constant gap
in space suffices. The ultimate goal for (2) is to remove the advice altogether and obtain uniform
hierarchy results. As in the time-bounded setting, we do not achieve this goal but get the next
best result – a single bit of advice for N suffices in each of our results. Given that we strive for
space hierarchies that are tight with respect to space and require only one bit of advice for the
diagonalizing machine, we aim to optimize the final two parameters.

1.1.1 Randomized Models

Our strongest results apply to randomized models. For two-sided error machines, we can handle a
large amount of advice and any typical space bound between logarithmic and linear. We point out
that the latter is an improvement over results in the time-bounded setting, in the sense that there
tightness degrades for all super-polynomial time bounds whereas here the results remain tight for
a range of space bounds.

Theorem 1. Let s(n) be any space-constructible function that is Ω(log n) and such that s(an) =
O(s(n)) for all constants a, and let s′(n) be any function that is ω(s(n)). There exists a language
computable by two-sided error randomized machines using s′(n) space and one bit of advice that is
not computable by two-sided error randomized machines using s(n) space and min(s(n), n) bits of
advice.

For s(n) = log(n), Theorem 1 gives a bounded-error machine using only slightly larger than log n
space that uses one bit of advice and differs from all bounded-error machines using O(log n) space
and O(log n) bits of advice. The condition that s(an) = O(s(n)) for all constants a is a technical
condition needed to ensure the construction yields a tight separation in space. The condition is
true of all natural space bounds that are at most linear. More generally, our construction works
for arbitrary space bounds s(n) and space-constructible s′(n) such that s′(n) = ω(s(n+as(n))) for
all constants a.

Our second result gives a separation result with similar parameters as those of Theorem 1 but for
the cases of one- and zero-sided error randomized machines. We point out that the separation result
for zero-sided error machines is new to the space-bounded setting as the techniques used to prove
stronger separations in the time-bounded setting do not work for zero-sided error machines. In
fact, we show a single result that captures space separations for one- and zero-sided error machines
– that a zero-sided error machine suffices to diagonalize against one-sided error machines.
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Theorem 2. Let s(n) be any space-constructible function that is Ω(log n) and such that s(an) =
O(s(n)) for all constants a, and let s′(n) be any function that is ω(s(n)). There exists a language
computable by zero-sided error randomized machines using s′(n) space and one bit of advice that is
not computable by one-sided error randomized machines using s(n) space and min(s(n), n) bits of
advice.

1.1.2 Generic Semantic Models

The above results take advantage of specific properties of randomized machines that do not hold for
arbitrary semantic models. Our next results involve a generic construction of [MP07] that applies
to a wide class of semantic models which the authors term reasonable. We refer to Section 4.2 for
the precise definition; but besides randomized two-, one-, and zero-sided error machines, the notion
also encompasses bounded-error quantum machines [Wat03], unambiguous machines [BJLR91],
Arthur-Merlin games and interactive proofs [Con93], etc. When applied to the logarithmic space
setting, the construction yields the following.

Theorem 3 (follows from [MP07]). Let s′(n) be any function with s′(n) = ω(log n). For any
reasonable semantic model of computation, there exists a language computable using s(n) space and
one bit of advice that is not computable using O(log n) space and O(1) bits of advice.

The performance of the generic construction is poor on the last two parameters we mentioned
earlier – it allows few advice bits on the smaller space side and is only tight for s(n) = O(log n).
Either of these parameters can be improved for models that can be simulated deterministically with
only a polynomial blowup in space – models for which the simple translation argument works. In
fact, there is a trade-off between (a) the amount of advice that can be handled and (b) the range
of space bounds for which the result is tight. By maximizing the former we get the following.

Theorem 4. Fix any reasonable model of computation for which space O(log n) computations can
be simulated deterministically in space O(logd n) for some rational constant d. Let s′(n) be any
function with s′(n) = ω(log n). There exists a language computable using s′(n) space and one bit
of advice that is not computable using O(log n) space and O(log1/d n) bits of advice.

In fact, a tight separation in space can be maintained while allowing O(log1/d n) advice bits
for s(n) any poly-logarithmic function, but the separation in space with this many advice bits is
no longer tight for larger s(n). By maximizing (b), we obtain a separation result that is tight for
typical space bounds between logarithmic and polynomial.

Theorem 5. Fix any reasonable model of computation for which space s computations can be
simulated deterministically in space O(sd) for some constant d. Let s(n) be a space bound that is
Ω(log n) and such that s(n) ≤ nO(1); let s′(n) be a space bound that is constructible in space o(s′(n))
and such that s′(n+1) = O(s′(n)). If s′(n) = ω(s(n)) then there is a language computable in space
s′(n) with one bit of advice that is not computable in space s(n) with O(1) bits of advice.

The first two conditions on s′(n) are technical conditions true of typical space bounds in the
range of interest – between logarithmic and polynomial. When applied to randomized machines,
Theorem 5 gives a tight separation result for slightly higher space bounds than Theorems 1 and 2,
but the latter can handle more advice bits.
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1.1.3 Generic Promise Models

Our proofs use advice in a critical way to derive hierarchy theorems for languages computable
by semantic models. We can obviate the need for advice by considering promise problems rather
than languages. A promise problem only specifies the behavior of a machine on a subset of the
inputs; the machine may behave arbitrarily on inputs outside of this set. For semantic models
of computation, one can associate in a natural way a promise problem to each machine in the
underlying enumeration. For example, for randomized machines with bounded error, the associated
promise problem leaves the behavior unspecified on inputs where the randomized machine violates
the bounded-error condition. The ability to ignore problematic inputs allows traditional techniques
to demonstrate good space and time hierarchy theorems for the promise problems computable by
semantic models. This is a folklore result, but there does not appear to be a correct proof in the
literature; we include one in this paper.

Theorem 6 (folklore). Fix a reasonable model of computation. Let s(n) and s′(n) be space bounds
with s(n) = Ω(log n) and s′(n) space constructible. If s′(n) = ω(s(n + 1)) then there is a promise
problem computable within the model using space s′(n) that is not computable as a promise problem
within the model using space s(n).

1.2 Our Techniques

Recently, Van Melkebeek and Pervyshev [MP07] showed how to adapt the technique of delayed
diagonalization to obtain time hierarchies for any reasonable semantic model of computation with
one bit of advice. For any constant a, they exhibit a language that is computable in polynomial
time with one bit of advice but not in linear time with a bits of advice. Our results for generic
models of computation (Theorems 3, 4, and 5) follow from a space-efficient implementation and a
careful analysis of that approach.

Our stronger results for randomized machines follow a different type of argument, which roughly
goes as follows. When N diagonalizes against machine Mi, it tries to achieve complementary
behavior on inputs of length ni by reducing the complement of Mi at length ni to instances of
some hard language L of length somewhat larger than ni, say mi. N cannot compute L on those
instances directly because we do not know how to compute L in small space. We instead use a
delayed computation and copying scheme that forces Mi to aid N in the computation of L if Mi

agrees with N on inputs larger than mi. As a result, either Mi differs from N on some inputs larger
than mi, or else N can decide L at length mi in small space and therefore diagonalize against Mi

at length ni.
The critical component of the copying scheme is the following task. Given a list of randomized

machines with the guarantee that at least one of them satisfies the promise and correctly decides
L at length m in small space, construct a single randomized machine that satisfies the promise and
decides L at length m in small space. We call a procedure accomplishing this task a space-efficient
recovery procedure for L.

The main technical contributions of this paper are the design of recovery procedures for adequate
hard languages L. For Theorem 1 we use the computation tableau language, which is an encoding
of bits of the computation tableaux of deterministic machines; we develop a recovery procedure
based on the local checkability of computation tableaux. For Theorem 2 we use the configuration
reachability language, which is an encoding of pairs of configurations that are connected in a
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nondeterministic machine’s configuration graph; we develop a recovery procedure from the proof
that NL=coNL [Imm88, Sze88].

1.2.1 Relation to Previous Work

Our high-level strategy is most akin to the one used in [MP07]. In the time-bounded setting, [MP07]
achieves a strong separation for bounded-error randomized machines using the above construction
with satisfiability as the hard language L. Hardness of L follows from the fact that randomized
machines can be time-efficiently deterministically simulated using a randomized two-sided error
algorithm for satisfiability. The recovery procedure exploits the self-reducibility of satisfiability to
obtain satisfying assignments for satisfiable formulae. As the partial assignment must be stored
during the construction, this approach uses too much space to be useful in the setting of this paper.

[MP07] also derives a stronger separation for bounded-error quantum machines in the time-
bounded setting, with the hard language L being PSPACE-complete. A time-efficient recovery
procedure for L follows from the existence of instance checkers for L. The latter transformation
of instance checkers into recovery procedures critically relies on large memory space. Instance
checkers are only guaranteed to work when given a fixed oracle to test; their properties carry over
to testing randomized procedures by treating randomized procedures as probability distributions
over oracles. This works in the time-bounded setting because we can ensure consistent answers to
the oracle queries by storing the answers of the randomized procedure to all queries the first time
they are asked. In the space-bounded setting we do not have the resources to store the answers to
all queries, which implies we can no longer treat randomized procedures as probability distributions
over oracles. As a result, it is no longer obvious that an instance checker yields a recovery procedure.
Note that the other direction is not immediate either because a recovery procedure may rely on the
guarantee that the list of machines contains one that correctly computes the language, whereas an
instance checker needs to be able to detect misbehavior on a given input. The two notions seem
incomparable in the space-bounded setting. As the methods for designing recovery procedures
in the time-bounded setting do not carry over to the space-bounded setting, new ingredients are
required here.

We point out that some of our results can also be obtained using a different high-level strategy
than the one in [MP07], which can be viewed as delayed diagonalization with advice. Some of
the results of [MP07] in the time-bounded setting can also be derived by adapting translation
arguments to use advice [Bar02, FS04, GST04, FST05]. It is possible to derive our Theorems 1
and 2 following a space-bounded version of the latter strategy. However, the proofs still rely on the
recovery procedure as a key technical ingredient and we feel that our proofs are simpler. Moreover,
for the case of generic semantic models, our approach yields results that are strictly stronger.

1.3 Organization

Section 3 contains the proofs of our separation results for randomized models (Theorems 1 and 2).
Section 4 contains the proofs of our separation results for generic semantic models (Theorems 3,
4 and 5). Section 5 contains a proof of the hierarchy theorem for promise problems of semantic
models (Theorem 6).
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2 Preliminaries

We assume familiarity with standard definitions for randomized complexity classes, including two-,
one-, and zero-sided error machines. For each machine model requiring randomness, we allow the
machine one-way access to the randomness and only consider computations where each machine
always halts in finite time. The default for bounded-error machines is that the probability of error
on every input is bounded by 1/3.

Our separation results apply to machines that take advice. We use α and β to denote infinite
sequences of advice strings. Given a machine M , M/β denotes the machine M taking advice β.
Namely, on input x, M is given both x and β|x| as input. When we are interested in the execution
of M/β on inputs of length n, we write M/b where b = βn.

We consider semantic models of computation, with an associated computable enumeration
(Mi)i=1,2,3,... and an associated promise. A machine falls within the model if it is contained in
the enumeration and its behavior satisfies the promise on all inputs.

For a machine M/β∗ that takes advice, we only require that M satisfies the promise when given
the “correct” advice sequence β∗. We note that this differs from the Karp-Lipton notion of advice
of [KL82], where the machine must satisfy the promise no matter which advice string is given. A
hierarchy for a semantic model with advice under the stronger Karp-Lipton notion would imply
the existence of a hierarchy without advice.

3 Randomized Machines with Bounded Error

In this section we give the constructions for Theorems 1 and 2. We first describe the high-level
strategy used for these results. Most portions of the construction are the same for both, so we
keep the exposition general. We aim to construct a randomized machine N and advice sequence
α witnessing Theorems 1 and 2 for some space bounds s(n) and s′(n). N/α should always satisfy
the promise, run in space s′(n), and differ from Mi/β for randomized machines Mi and advice
sequences β for which Mi/β behaves appropriately, i.e., for which Mi/β satisfies the promise and
uses at most s(n) space on all inputs.

As with delayed diagonalization, for each Mi we allocate an interval of input lengths [ni, n
∗
i ] on

which to diagonalize against Mi. That is, for each machine Mi and advice sequence β such that
Mi/β behaves appropriately, there is an n ∈ [ni, n

∗
i ] such that N/α and Mi/β decide differently

on at least one input of length n. The construction consists of three main parts: (1) reducing the
complement of the computation of Mi on inputs of length ni to instances of a hard language L of
length mi, (2) performing a delayed computation of L at length mi on inputs of length n∗

i , and (3)
copying this behavior to smaller and smaller inputs down to input length mi. These will ensure
that if Mi/β behaves appropriately, either N/α differs from Mi/β on some input of length larger
than mi, or N/α computes L at length mi allowing N/α to differ from Mi/b for all possible advice
strings b at length ni. We describe how to achieve (1) for two-sided error machines in section 3.1
and for one- and zero-sided error machines in section 3.2. For now, we assume a hard language
L and describe (2) and (3). Figure 1 contains an illustration of the construction; the reader is
encouraged to refer to this figure while reading the rest of this section.

Let us first try to develop the construction without assuming any advice for N or for Mi and
see why N needs at least one bit of advice. On an input x of length ni, N reduces the complement
of Mi(x) to an instance of L of length mi. Because N must run in space not much more than
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Input

Length ni mi

N

Mi y

y 0`y

0`y

n∗
i = mi + `

L

mi + `
−1

0ni−|b|.b

0ni−|b|.b

ni + 1

y

Figure 1: Illustration of the construction for Theorems 1 and 2. The solid arrow indicates that on
input 0`y, N deterministically computes L(y) for each y of length mi. The dotted arrows indicate
that for `′ ∈ [0, ` − 1], on input 0`′y with advice bit 1, N attempts to compute L(y) by using the
recovery procedure and making queries to Mi on padded inputs of one larger length. The dashed
line indicates that on input 0ni−|b|b with advice bit 1, N complements Mi(0

ni−|b|b)/b by reducing
to an instance y of L and simulating N(y).

s(n) and we do not know how to compute the hard languages we use with small space, N cannot
directly compute L at length mi. However, L can be computed at length mi within the space N
is allowed to use on much larger inputs. Let n∗

i be large enough so that L at length mi can be
deterministically computed in space s′(n∗

i ). We let N at length n∗
i perform a delayed computation

of L at length mi as follows: on inputs of the form 0`y where ` = n∗
i −mi and |y| = mi, N uses

the above deterministic computation of L on input y to ensure that N(0`y) = L(y).
Since N performs a delayed computation of L, Mi must as well – otherwise N already computes

a language different than Mi. We would like to bring this delayed computation down to smaller
padded inputs. The first attempt at this is the following: on input 0`−1y, N simulates Mi(0

`y). If Mi

behaves appropriately and performs the initial delayed computation, then N(0`−1y) = Mi(0
`y) =

L(y), meaning that N satisfies the promise and performs the delayed computation of L at length mi

at an input length one smaller than before. However, Mi may not behave appropriately on inputs
of the form 0`y; in particular Mi may fail to satisfy the promise, in which case N would also fail to
satisfy the promise by performing the simulation. If Mi does not behave appropriately, N does not
need to consider Mi and could simply abstain from the simulation. If Mi behaves appropriately
on inputs of the form 0`y, it still may fail to perform the delayed computation. In that case N
has already diagonalized against Mi at input length mi + ` and can therefore also abstain from the
simulation on inputs of the form 0`−1y.

N has insufficient resources to determine on its own if Mi behaves appropriately and performs
the initial delayed computation. Instead, we give N one bit of advice at input length mi + ` − 1
indicating whether Mi behaves appropriately and performs the initial delayed computation at length
n∗

i = mi + `. If the advice bit is 0, N acts trivially at this length by always rejecting inputs. If the
advice bit is 1, N performs the simulation so N(0`−1y)/α = Mi(0

`y) = L(y).
If we give N one bit of advice, we should give Mi at least one advice bit as well. Otherwise, the

hierarchy result is not fair (and is trivial). Consider how allowing Mi advice effects the construction.
If there exists an advice string b such that Mi/b behaves appropriately and Mi(0

`y)/b = L(y) for
all y with |y| = mi, we set N ’s advice bit for input length mi+`−1 to be 1, meaning N should copy
down the delayed computation from length mi + ` to length mi + `− 1. Note, though, that N does
not know for which advice b the machine Mi/b appropriately performs the delayed computation
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at length mi + `. N has at its disposal a list of machines, Mi with each possible advice string
b, with the guarantee that at least one Mi/b behaves appropriately and Mi(0

`y)/b = L(y) for all
y with |y| = mi. With this list of machines as its primary resource, N wishes to ensure that
N(0`−1y)/α = L(y) for all y with |y| = mi while satisfying the promise and using small space.

N can accomplish this task given a space-efficient recovery procedure for L at length mi: on
input 0`−1y, N removes the padding and executes the recovery procedure to determine L(y), for each
b simulating Mi(0

`y′)/b when the recovery procedure makes a query y′. As the space complexity
of the recovery procedures we give in sections 3.1 and 3.2 is within a constant factor of a single
simulation of Mi, this process uses O(s(n)) space. We point out that for Theorem 1, the recovery
procedure may have two-sided error, while for Theorem 2, the recovery procedure must have zero-
sided error.

Given a recovery procedure for L, N/α correctly performs the delayed computation on inputs
of length mi + ` − 1 if there is an advice string causing Mi to behave appropriately and perform
the initial delayed computation at length mi + `. We repeat the process on padded inputs of the
next smaller size. Namely, N ’s advice bit for input length mi + ` − 2 is set to indicate if there
is an advice string b such that Mi/b behaves appropriately on inputs of length mi + ` − 1 and
Mi(0

`−1y)/b = L(y) for all y with |y| = mi. If so, then on inputs of the form 0`−2y, N/α uses the
recovery procedure for L to determine the value of L(y), for each b simulating Mi(0

`−1y′)/b when
the recovery procedure makes a query y′. By the correctness of the recovery procedure, N/α thus
correctly performs the delayed computation on padded inputs of length mi + ` − 2. If the advice
bit is 0, N/α acts trivially at input length mi + `− 2 by rejecting immediately.

We repeat the same process on smaller and smaller padded inputs. We reach the conclusion
that either there is a largest input length n ∈ [mi + 1, n∗

i ] where for no advice string b, Mi/b
appropriately performs the delayed computation of L at length n; or N/α correctly computes L
on inputs of length mi. If the former is the case, N/α performs the delayed computation at length
n whereas for each b either Mi/b does not behave appropriately at length n or it does but does
not perform the delayed computation at length n. In either case, N/α has diagonalized against
Mi/b for each possible b at length n. N ’s remaining advice bits for input lengths [ni, n− 1] are set
to 0 to indicate that nothing more needs to be done, and N/α immediately rejects inputs in this
range. Otherwise N/α correctly computes L on inputs of length mi. In that case N/α diagonalizes
against Mi/b for all advice strings b at length ni by acting as follows. On input xb = 0ni−|b|b, N
reduces the complement of the computation Mi(xb)/b to an instance y of L of length mi and then
simulates N(y)/α, so N(xb)/α = N(y)/α = L(y) = ¬Mi(xb)/b.

We have given the major points of the construction, with the notable exception of the recovery
procedures. We develop these in the next two sections. We save the resource analysis of the
construction for section 3.3.

3.1 Two-sided Error Recovery Procedure – Computation Tableau Language

In this section we develop a space-efficient recovery procedure for the computation tableau language
(hereafter written COMP), the hard language used in the construction of Theorem 1.

COMP = {〈M,x, t, j〉 |M is a deterministic Turing machine, and in the tth time step of
executing M(x), the jth bit in the machine’s configuration is equal to 1}.

Let us see that COMP is in fact “hard” for two-sided error machines. For some input x, we would
like to know whether Pr[Mi(x) = 1] < 1

2 . For a particular random string, whether Mi(x) accepts
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or rejects can be decided by looking at a single bit in Mi’s configuration after a certain number
of steps – by ensuring that Mi enters a unique accepting configuration when it accepts. With
the randomness unfixed, we view Mi(x) as defining a Markov chain on the configuration space of
the machine. Provided Mi(x) uses at most s(n) space, a deterministic machine running in 2O(s)

time and space can estimate the state probabilities of this Markov chain to sufficient accuracy and
determine whether a particular configuration bit has probability at most 1/2 of being 1 after t time
steps. This deterministic machine and a particular bit of its unique halting configuration define
the instance of COMP we would like to solve when given input x.

We now present the recovery procedure for COMP. We wish to compute COMP on inputs of
length m in space O(s(m)) with bounded error when given a list of randomized machines with the
guarantee that at least one of the machines computes COMP on all inputs of length m using s(m)
space with bounded error. Let y = 〈M,x, t, j〉 be an instance of COMP with |y| = m that we wish
to compute. Pseudo-code is given in Figure 2, which the reader may find helpful to consult while
reading the remainder of this section.

A natural way to determine COMP(y) is to consider each machine in the list one at a time and
design a test that determines whether a particular machine computes COMP(y). The test should
have the following properties:

(i) if the machine in question correctly computes COMP on all inputs of length m, the test
declares success with high probability, and

(ii) if the test declares success with high probability, then the machine in question gives the
correct answer of COMP(y) with high probability.

Given such a test, the recovery procedure consists of iterating through each machine in the list
in turn. We take the first machine P to pass testing, simulate P (y) some number of times and
output the majority answer. Given a testing procedure with properties (i) and (ii), correctness
of this procedure follows using standard probability arguments (Chernoff and union bounds) and
the assumption that we are guaranteed that at least one machine in the list of machines correctly
computes COMP at length m.

The technical heart of the recovery procedure is the testing procedure to determine if a given
machine P correctly computes COMP(y) for y = 〈M,x, t, j〉. This test is based on the local
checkability of computation tableaux – the jth bit of the configuration of M(x) in time step t is
determined by a constant number of bits from the configuration in time step t − 1. For each bit
(t, j) of the tableau, this gives a local consistency check – make sure that the value P claims for
〈M,x, t, j〉 is consistent with the values P claims for each of the bits of the tableau that this bit
depends on. We implement this intuition as follows.

1. For each possible t′ and j′, simulate P (〈M,x, t′, j′〉) a large number of times and fail the test
if the acceptance ratio lies in the range [3/8, 5/8].

2. For each possible t′ and j′, do the following. Let j′1, ..., j′k be the bits of the configuration
in time step t′ − 1 that bit j′ in time step t′ depends on. Simulate each of P (〈M,x, t′, j′〉),
P (〈M,x, t′ − 1, j′1〉), ..., P (〈M,x, t′ − 1, j′k〉) a large number of times. If the majority values
of these simulations are not consistent with the transition function of M , then fail the test.
For example, if the bit in column j′ should not change from time t′ − 1 to time t′, but P has
claimed different values for these bits, fail the test.
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Input: y = 〈M,x, t, j〉 of length m; machines P1, P2, ..., Pq

Output: COMP(y)
(1) foreach d = 1..q Try using Pd to compute COMP(y)
(2) foreach t′ and j′ Bounded-error checks
(3) (A,R)←(#accept, #reject) runs of 2O(s(m)) simulations of Pd(〈M,x, t′, j′〉)
(4) if A

A+R ∈ [3/8, 5/8] then Try next value of d (line 1) Pd fails
(5) foreach j′ Check base case – start configuration
(6) A← majority of 2O(s(m)) simulations of Pd(〈M,x, j′, 0〉)
(7) if A 6= j′th bit of start configuration
(8) then Try next value of d (line 1) Pd fails
(9) foreach t′ > 0 and j′ Local consistency checks
(10) bit j′ in time step t′ depends on bits j′1, j

′
2, ..., j

′
k in time step t′ − 1

(11) foreach c = 1, 2, ..., k
(12) Aj′c,t

′−1 ← majority of 2O(s(m)) simulations of Pd(〈M,x, j′c, t
′ − 1〉)

(13) Aj′,t′ ← majority of 2O(s(m)) simulations of Pd(〈M,x, j′, t′〉)
(14) if Aj′,t′ , Aj′1,t′−1, Aj′2,t′−1, ..., Aj′k ,t′−1 violate transition function of M
(15) then Try next value of d (line 1) Pd fails

Pd passed all tests
(16) Output majority of 2O(s(m)) simulations of Pd(〈M,x, j, t〉) and halt
(17) Reject No machines passed testing

Figure 2: Pseudo-code for the two-sided error recovery procedure for the computation tableau
language. The list of machines is guaranteed to contain at least one computing COMP at length
m with two-sided error in space s(m). Lines 2, 5, and 9 loop over all t′ and j′ valid for M using
2O(s(m)) time and space, and indices t, j, t′, and j′ are padded so that all instances of COMP of
interest are of length m.

The first test, given by lines 2-4 in Figure 2, checks that P has error bounded away from 1/2 on
input 〈M,x, t, j〉 and on all other bits of the computation tableau of M(x). This allows us to amplify
the error probability of P to exponentially small in 2s(m). For some constants 0 < γ < δ < 1/2,
the first test has the following properties: (A) If P passes the test with non-negligible probability
then for any t′ and j′, the random variable P (〈M,x, t′, j′〉) deviates from its majority value with
probability less than δ, and (B) if the latter is the case with δ replaced by γ then P passes the test
with overwhelming probability. The second test, given by lines 5-15 in Figure 2, verifies the local
consistency of the computation tableau claimed by P . Note that if P computes COMP correctly at
length m then P passes each consistency test with high probability, and if P passes each consistency
test with high probability then P must compute the correct value for COMP(y). This along with
the two properties of the first test guarantee that we can choose a large enough number of trials
for the second test so that properties (i) and (ii) from above are satisfied.

Consider the space usage of the recovery procedure, given in pseudo-code in Figure 2. The main
tasks are the following: (a) cycle over all machines in the list of machines, and (b) for each t′ and
j′ determine the bits of the tableau that bit (t′, j′) depends on and for each of these run 2O(s(m))

simulations of P . The first requirement depends on the representation of the list of machines. For
our application, we will be cycling over all advice strings for input length m, and this takes O(s(m))
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space provided advice strings for Mi are of length at most s(m). The second requirement takes an
additional O(s(m)) space by the fact that we only need to simulate P while it uses s(m) space and
the fact that the computation tableau bits that bit (t′, j′) depends on are constantly many and can
be computed very efficiently.

Finally, we note that a result corresponding to Theorem 1 also applies to space-bounded quan-
tum machines [Wat03]. The key properties needed for this proof to apply to a model are: (1) the
behavior of unbounded-error s(n) space bounded machines is computable in deterministic time and
space 2O(s(n)), and (2) taking the majority of 2O(s(n)) many trials can be done in O(s(n)) space and
the model is closed under O(s(n)) space function composition. Space-bounded quantum machines
with two-sided error satisfy both of these properties.

3.2 Zero-sided error Recovery Procedure – Configuration Reachability

In this section we develop a space-efficient recovery procedure for the configuration reachability
language (hereafter written CONFIG), the hard language used in the construction of Theorem 2.

CONFIG = {〈M,x, c1, c2, t〉 |M is a nondeterministic Turing machine, and on input x,
if M is in configuration c1, then configuration c2 is reachable within t time steps}.

We point out that CONFIG is “hard” for one-sided error machines since a one-sided error machine
can also be viewed as a nondeterministic machine. That is, if we want to know whether Pr[Mi(x) =
1] < 1

2 for Mi a one-sided error machine that uses s(n) space, we can query the CONFIG instance
〈

Mi, x, c1, c2, 2
O(s(|x|))

〉

where c1 is the unique start configuration, and c2 is the unique accepting
configuration.

We now present the recovery procedure for CONFIG. We wish to compute CONFIG on inputs
of length m with zero-sided error and in space O(s(m)) when given a list of randomized machines
with the guarantee that at least one of the machines computes CONFIG on all inputs of length
m using s(m) space with one-sided error. Let y = 〈M,x, c1, c2, t〉 be an instance of CONFIG with
|y| = m that we wish to compute. Pseudo-code is given in Figure 3, which the reader may find
helpful to consult while reading the remainder of this section.

As we need to compute CONFIG with zero-sided error, we can only output a value of “yes” or
“no” if we are sure this is correct. The outer loop of our recovery procedure is the following: cycle
through each machine in the list of machines, and for each execute a search procedure that attempts
to verify whether configuration c2 is reachable from configuration c1. The search procedure may
output “yes”, “no”, or “fail”, and should have the following properties:

(i) if the machine in question correctly computes CONFIG at length m, the search procedure
comes to a definite answer (“yes” or “no”) with high probability, and

(ii) when the search procedure comes to a definite answer, it is always correct, no matter what
the behavior of the machine in question.

We cycle through all machines in the list, and if the search procedure ever outputs “yes” or “no”,
we halt and output that response. If the search procedure fails for all machines in the list, we
output “fail”. Given a search procedure with properties (i) and (ii), the correctness of the recovery
procedure follows from the fact that we are guaranteed that one of the machines in the list of
machines correctly computes CONFIG at length m.
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Input: y = 〈M,x, c1, c2, t〉 of length m; machines P1, P2, ..., Pq

Output: CONFIG(y)
(1) if c1 = c2 then Output “yes” and halt Trivial cases
(2) else if t = 0 then Output “no” and halt
(3) foreach d = 1..q Try using Pd to compute CONFIG(y)
(4) k0 ← 1 Number of configurations w/in distance 0 of c1

(5) for ` = 1 to t Compute k` given k`−1

(6) k` ← 0
(7) foreach configuration c Is c w/in distance ` of c1?
(8) k′

`−1 ← 0 Re-experience all configurations w/in distance `− 1
(9) foreach configuration c′

(10) if V erify(〈M,x, c1, c
′, `− 1〉, Pd) = “yes” c′ w/in distance `− 1 of c1

(11) if c reachable from c′ in one time step by M on input x
c w/in distance ` of c1

(12) if c = c2 then Output “yes” and halt
(13) else k` ← k` + 1, and Try next c (line 7)
(14) else
(15) k′

`−1 ← k′
`−1 + 1

(16) if k′
`−1 6= k`−1

Failed to re-experience all configurations w/in distance `− 1
(17) if d < q then Try next d (line 3) Pd fails
(18) else Output “fail” and halt All machines have failed
(19) Output “no” and halt kt computed correctly and c2 not found

Figure 3: Pseudo-code for the zero-sided error recovery procedure for the configuration reachability
language. The list of machines is guaranteed to contain at least one computing CONFIG at length
m with one-sided error in space s(m). Configurations c1, c2, and c′ and time values t and `− 1 are
padded so that all instances of CONFIG of interest are of length m. The code for Verify used on
line 10 is given in Figure 4.

The technical heart of the recovery procedure is a search procedure with properties (i) and (ii).
Let P be a randomized machine under consideration, and y = 〈M,x, c1, c2, t〉 an input of length
m we wish to compute. Briefly, the main idea is to mimic the proof that NL=coNL to verify
reachability and un-reachability, replacing nondeterministic guesses with simulations of P . If P
computes CONFIG at length m correctly, there is a high probability that we have correct answers
to all nondeterministic guesses, meaning property (i) is satisfied. Property (ii) follows from the
fact that the algorithm can discover when incorrect nondeterministic guesses have been made. For
completeness, we explain how the nondeterministic algorithm of [Imm88, Sze88] is used in our
setting. The search procedure works as follows.

1. Let k0 be the number of configurations reachable from c1 within 0 steps, i.e., k0 = 1.

2. For each value ` = 1, 2, ..., t, compute the number k` of configurations reachable within ` steps
of c1, using only the fact that we have remembered the value k`−1 that was computed in the
previous iteration.
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Verify
Input: y = 〈M,x, c0, c

′, t〉 with |y| = m; machine P
Output: “yes” if verified that c′ reachable from c0 by M on input x in ≤ t time steps,
“fail” otherwise
(1) if c0 = c′ then Output “yes” and halt Trivial cases
(2) else if t = 0 then Output “fail and halt
(3) c← c0 Current configuration on path from c0 to c′

(4) for j = t− 1 down to 0 Try to move w/in distance j of c′

(5) foreach configuration c′′ Is c′′ neighbor of c and one step closer to c′?
(6) if c′′ reachable from c in one time step by M on input x c′′ neighbor of c
(7) if c′′ = c′ Have already reached c′

(8) Output “yes” and halt
(9) else if any of 2O(s(m)) simulations of P (〈M,x, c′′, c′, j〉) outputs 1
(10) c← c′′ and try next j (line 4) Now c is one step closer
(11) Output “fail” and halt Unable to move one step closer to c′

(12) Output “fail” After t steps, have not reached c′

Figure 4: Pseudo-code for the verification subroutine used in the zero-sided error recovery procedure
of Figure 3. If configuration c′ is within distance t of configuration c0 and P appropriately computes
CONFIG at length m, then with high probability a path is verified and “yes” is returned. “Yes” is
only returned when a path of length at most t has been verified. Configurations c0, c′, and c′′, as
well as time values t and j are padded so that all queries to CONFIG of interest are of length m.

3. While computing kt, experience all of these configurations to see if c2 is among them.

Consider the portion of the second step where we must compute k` given that we have already
computed k`−1. We accomplish this, lines 6-18 of Figure 3, by cycling through all configurations
c and for each one re-experiencing all configurations reachable from c1 within ` − 1 steps and
verifying whether c can be reached in at most one step from at least one of them. To re-experience
configurations reachable within distance ` − 1, we try all possible configurations and query P to
verify a nondeterministic path to each. The verification of a nondeterministic path is given in Figure
4. To check if c is reachable within one step of a given configuration, we use the transition function
of M . If we fail to re-experience all k`−1 configurations or if P gives information inconsistent with
the transition function of M at any point we consider the search for reachability/un-reachability
failed with machine P .

An examination of the algorithm, given in pseudo-code in Figure 3, reveals that it has property
(ii) from above: if the procedure reaches a “yes” or “no” conclusion for reachability, it must be
correct. Further, by using a large enough number of trials each time we simulate P , we can ensure
that we get correct answers on every simulation of P with high probability if P correctly computes
CONFIG at length m. This implies property (i) from above.

Consider the space usage of the recovery procedure. A critical component is to be able to cycle
over all configurations and determine whether two configurations are “adjacent”. As the instances
of CONFIG we are interested in correspond to a machine which uses s(n) space, these two tasks can
be accomplished in O(s(m)) space. The remaining tasks of the recovery procedure take O(s(m))
space for similar reasons as given for the recovery procedure for the computation tableau language
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in the previous section.

3.3 Analysis

In this section we explain how we come to the parameters given in the statements of Theorems 1
and 2. First, consider the space usage of the construction. The recovery procedures use O(s(m))
space when dealing with inputs of size m, and the additional tasks of the diagonalizing machine N
also take O(s(m)) space. For input lengths n where N is responsible for copying down the delayed
computation of the hard language L, N executes the recovery procedure using Mi on padded inputs
of one larger length. Thus for such input lengths, the space usage of N is O(s(n + 1)). For input
length ni, N produces an instance y of the hard language corresponding to complementary behavior
of Mi on inputs of length ni and then simulates N(y). For two-sided error machines, we reduce to
the computation tableau language COMP. When Mi is allowed s(n) space, the resulting instance
of COMP is of size n+O(s(n)). For one- and zero-sided error machines, we reduce to configuration
reachability, and the resulting instance is also of size n + O(s(n)). In both cases, the space usage
of N on inputs of length ni is O(s(ni + O(s(ni)))). We have chosen COMP and CONFIG as hard
languages over other natural candidates (such as the circuit value problem for Theorem 1 and
st-connectivity for Theorem 2) because COMP and CONFIG minimize the blowup in input size
incurred by using the reductions.

The constant hidden in the big-O notation depends on things such as the alphabet size of Mi.
If s′(n) = ω(s(n + as(n))) for all constants a, N operating in space s′(n) has enough space to
diagonalize against each Mi for large enough n. To ensure the asymptotic behavior has taken
effect, we have N perform the construction against each machine Mi infinitely often. We set N ’s
advice bit to zero on the entire interval of input lengths if N does not yet have sufficient space.
Note that this use of advice obviates the need for s′(n) to be space constructible.

Now consider the amount of advice that the smaller space machines can be given. As long as the
advice is at most s(n), the recovery procedure can efficiently cycle through all candidate machines
(Mi with each possible advice string). Also, to complement Mi for each advice string at length ni,
we need at least one input for each advice string of length ni. Thus, the amount of advice that can
be allowed is min(s(n), n).

Finally, we point out that a slightly weaker version of Theorem 2 – namely a separation between
the two different models of zero-sided error and one-sided error machines – would follow even if
we had only demonstrated a zero-sided error machine that diagonalizes against zero-sided error
machines. Suppose otherwise, namely that for appropriate choices of s′ and s there is a zero-sided
error machine N using space s′(n) and one bit of advice that computes a language different than
any zero-sided error machine using s(n) space and min(s(n), n) bits of advice, but that all languages
decided by zero-sided error machines using s′(n) space and one bit of advice can be decided by one-
sided error machines using s(n) space and a(n) bits of advice, for some function a(n). In particular,
both the language decided by N/α and its complement can be decided by one-sided error machines
using s(n) space and a(n) bits of advice. Consider the following algorithm for computing the same
language as that of N/α: (1) execute the one-sided error algorithm for deciding N/α which uses
s(n) space and a(n) bits of advice, and output “yes” if this algorithm outputs “yes”, (2) execute
the one-sided error algorithm for deciding the complement of N/α which uses s(n) space and a(n)
bits of advice, and output “no” if this algorithm outputs “yes”, (3) otherwise output “fail”. Given
the correct advice strings for the algorithms in (1) and (2), this is a zero-sided error algorithm for
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Figure 5: Illustration of delayed diagonalization on a syntactic model of computation. The solid
arrows indicate that on inputs of the form 0jx, N simulates Mi(0

j+1x). The dashed line indicates
that on input 0n∗

i −nix, N outputs the complement of Mi(x).

deciding N/α; it uses s(n) space and 2a(n) bits of advice. This contradicts the assumed hardness of
N/α against zero-sided error machines provided 2a(n) ≤ min(s(n), n), and we conclude that there
is a language computable by zero-sided error algorithms using s′(n) space and one bit of advice
that is not computable by one-sided error algorithms using s(n) space and 1

2 min(s(n), n) bits of
advice. Note that the notion of advice we use – a zero-sided error algorithm is only required to
maintain zero-sided error when given the correct advice string – is critical for this argument to
hold. Also note that the maximum amount of advice that can be handled with this argument is a
factor of two smaller than that given by Theorem 2.

4 Separation Results for Generic Semantic Models

In this section, we prove our separation results for generic semantic models (Theorems 3, 4, and
5). The basic construction is the same for each, with only the analysis differing. We start with the
basic construction having some specific semantic models in mind. We analyze the construction in
section 4.1 and distill the precise properties required of a generic semantic model in section 4.2.

As the basic construction is an adaptation of delayed diagonalization to handle advice, we
first review delayed diagonalization on syntactic models. We wish to demonstrate a machine N
using slightly more than s(n) space which differs from all machines that use s(n) space. For each
machine Mi, N allocates an interval of input lengths [ni, n

∗
i ] on which to diagonalize against Mi.

The construction consists of two main parts: (1) a delayed complementation at length n∗
i of Mi’s

behavior at length ni, and (2) a scheme to copy this behavior down to smaller and smaller padded
input lengths all the way to ni. For (1), we choose n∗

i large enough so that N has sufficient space at
length n∗

i to complement the behavior of Mi at length ni. N performs a delayed complementation
by ensuring that N(0n∗

i −nix) = ¬Mi(x) for x with |x| = ni. For (2), on inputs of the form 0jx with
|x| = ni and 0 ≤ j < n∗

i − ni, N simulates Mi(0
j+1x) while Mi uses at most s(n) space, outputs

a value if Mi does, and outright rejects if Mi uses more than s(n) space. Suppose that Mi is a
machine which uses at most s(n) space and computes the same language as N on all input lengths
in [ni, n

∗
i ]. This assumption and N ’s definition imply the following set of equalities for every input

x of length ni:

Mi(x) = N(x) = Mi(0x) = N(0x) = Mi(0
2x) = ... = Mi(0

n∗
i −nix) = N(0n∗

i −nix) = ¬Mi(x).

As Mi(x) must take some definite value, we have reached a contradiction. Either Mi differs from
N on some input of length in [ni, n

∗
i ], or Mi uses more than s(n) space. An illustration of delayed

16



diagonalization is given in Figure 5.

Consider the case of a semantic model of computation, where N must use not much more than
s(n) space, satisfy the promise on all inputs, and differ from each machine Mi which behaves ap-
propriately, i.e., which satisfies the promise and uses at most s(n) space on all inputs. We keep
a few specific semantic models in mind during the development and analysis of the construction
– Arthur-Merlin games for Theorem 3, and unambiguous machines for the stronger separations of
Theorems 4 and 5. We use certain closure properties of these models in the analysis; we refer to
section 4.2 for the precise properties required of a generic semantic model. The delayed diagonal-
ization construction given in the previous paragraph fails for such non-syntactic models: it may be
the case that Mi breaks the promise on inputs of the form 0jx, and N would also break the promise
by performing the simulations described above. However, if Mi breaks the promise on some input,
then N does not need to consider Mi and may simply abstain from working against Mi. We give
N one bit of advice at each input length to indicate if performing the simulations at that length
would cause N to break the promise. If the advice bit is 1, then N/α performs the simulation. If
the advice bit is 0, N/α abstains by immediately rejecting.

As N is allowed one bit of advice, Mi should also be allowed at least one advice bit. With
Mi allowed one bit of advice, N now has two different machines at each input length that it is
concerned with – Mi/0 and Mi/1. N should perform a given simulation if at least one of these
behaves appropriately and copies N ’s behavior. This can be done by giving N two advice bits – one
each to indicate whether each of Mi/0 and Mi/1 behaves appropriately and copies N ’s behavior
on inputs of one larger length. In general, if Mi is allowed a(n) bits of advice, N would require
2a(n+1) advice bits to specify whether Mi with each advice string behaves appropriately and copies
N ’s behavior on inputs of one larger length. The construction of section 3 avoided this problem
by considering a particular behavior that Mi might have – computing a hard language – and using
this behavior to handle Mi with many advice strings at once. This entailed a recovery procedure
for the hard language, a process that does not apply to generic semantic models. In this section,
we use a different approach that does apply to generic semantic models, which can be thought of as
a copying scheme that allows N to spread the 2a(n+1) advice bits needed to appropriately simulate
Mi at a given length over many input lengths.

Consider the simulations of Mi at length n∗
i which N is responsible for copying to smaller

padded inputs. We would like to give N one advice bit for each of Mi’s possible advice strings at
length n∗

i , indicating for each whether Mi with that advice string behaves appropriately. We spread
these advice bits across multiple input lengths. That is, for each of Mi’s possible advice strings b
at length n∗

i , we allocate a distinct slightly smaller input length from which N is responsible for
simulating Mi/b at length n∗

i . For the input length responsible for advice string b, N ’s advice bit is
set to indicate if Mi/b behaves appropriately at length n∗

i . If the advice bit is 1, N/α performs the
simulation of Mi/b at length n∗

i . If the advice bit is 0, N abstains by immediately rejecting. Now
N/α satisfies the promise on all inputs, and for each advice string that causes Mi to appropriately
copy N ’s behavior at length n∗

i , N/α copies that behavior to a slightly smaller input length.
As with delayed diagonalization on syntactic models, we repeat the same process to copy the

behavior at length n∗
i to smaller and smaller inputs. This is best visualized by a tree of input

lengths with n∗
i being the root node. The tree node corresponding to n∗

i has one child input length
for each possible advice string at length n∗

i as described above. Each of these input lengths is also
considered a node of the tree of input lengths with as many children as different advice strings
at that length. This is repeated until reaching a level of leaf nodes. The tree of input lengths is
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Figure 6: Illustration of N ’s execution for generic semantic models, shown for the case where Mi

receives 1 bit of advice. Solid lines indicate that on the smaller input, N simulates Mi on padded
inputs of the larger length, using the advice bit specified on the arrow. The dashed line indicates
that on padded inputs of length n∗

i , N complements the behavior of Mi on inputs corresponding
to the leaves of the tree of input lengths.

illustrated in Figure 6. We now give more details on the construction.
First consider an internal node corresponding to some input length np. This node must have a

child node for all possible advice strings at length np. Each of these child nodes is responsible for
simulating Mi on inputs of length np using a different advice string. Let nv be a child node of node
np that is responsible for simulating Mi with advice string b. The advice string b can be efficiently
computed from the input length nv – we describe an encoding scheme with this property in the
next section. N ’s advice bit at length nv indicates whether Mi/b behaves appropriately at length
np. If the advice bit is 1, then on inputs x of length nv, N simulates Mi(0

np−nvx)/b; otherwise, N
abstains and rejects all inputs of length nv.

Consider an input length n` that corresponds to a leaf node ` in the tree. It is the responsibility
of the root node of the tree to complement the behavior of Mi on inputs of length n` for all possible
advice strings for input length n`. The complementation is realized using inputs x`,b of length n`

for each possible advice string b at length n`. The inputs are chosen in such a way that they are
distinct for all leaf nodes ` and advice strings b and such that they remain distinct when they
are padded with zeros to length n∗

i . In particular, we set x`,b = 10n`−1−|b|b, and N(0n∗
i −n`x`,b)

complements Mi(x`,b)/b. Note that n∗
i must be large enough so that space s(n∗

i ) suffices for N to
safely complement the behavior of Mi on all leaf nodes. By the latter we mean that N satisfies
the promise no matter Mi’s behavior and that N complements the behavior of Mi on leaf nodes
for which Mi behaves appropriately. A safe complementation in general incurs a blowup in space,
even for models such as two-sided error machines which are closed under complementation, because
N must avoid breaking the promise when working against a machine Mi which does. One way to
achieve this is for N at length n∗

i to deterministically simulate Mi at the leaf nodes and flip the
result. For Arthur-Merlin games this can be accomplished with an exponential blowup in space,
and for unambiguous machines a quadratic blowup is sufficient.

On all input lengths in [ni, n
∗
i ] that are not used in the tree of input lengths, N acts trivially

by rejecting all inputs of that length.
We claim that N/α constructed in this way satisfies the promise on all inputs and differs
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from Mi/β for all machines Mi and advice sequences β for which Mi/β behaves appropriately.
N/α satisfies the promise on all inputs by setting the advice bits appropriately on all nodes of
the tree. Suppose there is an advice sequence β causing Mi to compute the same language as
N while satisfying the promise on all inputs and using s(n) space. The construction of the tree
guarantees that there is a chain of inputs present in the tree for this advice sequence from the
root node down to a leaf node. If we assume Mi/β computes the same language as N on all
these inputs, then the complementary behavior initiated at the root node is copied down all the
way to the leaf node, which is impossible. More precisely, let h be the height of the tree and
n∗

i = ni,h > ni,h−1 > ni,h−2 > . . . > ni,0 = n` denote the path from the root of the tree to the leaf
` induced by β. By construction, we have for b = βn`

that

¬Mi(x`,b)/b = N(0ni,h−n`x`,b)/α = Mi(0
ni,h−n`x`,b)/βni,h

=

N(0ni,h−1−n`x`,b)/α = Mi(0
ni,h−1−n`x`,b)/βni,h−1

= . . . =

N(0ni,1−n`x`,b)/α = Mi(0
ni,1−n`x`,b)/βni,1 = N(x`,b)/α = Mi(x`,b)/b,

which is a contradiction. We conclude that N/α succeeds in differing from each machine Mi which
satisfies the promise and uses at most s(n) space on all inputs. It remains to show that N needs
space not much more than s(n) and determine the amount of advice the construction can handle.

4.1 Analysis

In this section, we give remaining details of the construction of the copying tree, ensuring N/α uses
small space and determining the amount of advice bits that can be given Mi, proving Theorems 3,
4, and 5.

For clarity we focus on the case where s(n) = log n for now; we consider larger space bounds
at the end of this section. Let a(n) denote the amount of advice we allow Mi, and let σ(n) be the
smallest value such that log n space computations can be complemented within the model using
σ(n) space. To ensure that N/α requires not much more than log n space, we must balance two
competing requirements – that n∗

i is large enough to be able to efficiently complement the behavior
of the leaf nodes, and that each node in the tree is close enough to its parent node to be able to
simulate it efficiently.

Each node in the tree corresponds to some input length in the interval [ni, n
∗
i ], where n∗

i corre-
sponds to the root of the tree. We separate the tree into consecutive levels. We call the bottom-most
level of leaf nodes “level 0”, its parent nodes “level 1”, and so on. Let h denote the number of
non-leaf levels in the tree, so the root node at input length n∗

i is at level h.
To ensure the simulations take O(log n) space, we impose the restriction that a node nv’s parent

np can correspond to an input length that is only polynomially larger: N incurs only a constant
factor overhead in simulating Mi, and if Mi uses space at most log n and np ≤ nc

v for some constant
c, then the simulation requires O(log np) = O(log(nc

v)) = O(log nv) space. To ensure each node is
separated by its parent’s input length by at most a polynomial amount, we embed each level of the
tree within an interval that is polynomially long. That is, for each j = 0, 1, ..., h−1, we embed level
j of the tree in the interval [ncj

i , ncj+1

i ) for some constant c to be chosen later. Because each internal
node must have as many children as possible advice strings at that length, each internal node in
the tree would have a different degree. We simplify the construction and analysis by rounding up
the amount of advice given to Mi to ensure that all nodes in the same level have the same degree.

That is, all nodes in level j have degree 2a(ncj+1

i ).
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For completeness, we give the encoding scheme that identifies which input lengths in the tree
correspond to a given node’s children. Consider an input length n that is an internal node at level
j in the tree, so n = ncj

i +∆ for some ∆ < ncj+1

i −ncj

i . We must specify which input lengths in level

j − 1 correspond to n’s children for each advice string of length a(ncj+1

i ). We use the most obvious
encoding scheme, filling in the children for level j nodes from left to right within level j−1. That is,

n’s child corresponding to advice string b is at input length ncj−1

i + 2a(ncj+1

i ) ·∆ + b. This encoding
scheme allows N to efficiently determine where any given input length falls within the tree, so N
can efficiently determine which padded input and with which advice string it is to simulate Mi.

The above encoding scheme can only be realized if the interval [ncj

i , ncj+1

i ) contains as many
input lengths as there are nodes in level j of the tree, for each j = 0, 1, 2, ..., h−1. The bottom-most
level contains the largest number of nodes and has the smallest number of input lengths to work
with, so the tree can be embedded into [ni, n

∗
i ] exactly when the bottom-most level fits within the

interval [ni, n
c
i). Because we have rounded up the degrees of the nodes, we get a simple expression

for the number of leaf nodes in the tree: 2a(nct

i )
∏t

j=2 2a(ncj

i ). By taking logarithms, there are enough
input lengths in level 0 for these nodes exactly when

a(nch

i ) +

h
∑

j=2

a(ncj

i ) ≤ log(nc
i − ni). (1)

Now consider the space usage of the construction. We have already guaranteed the simulations
represented by the tree can be performed using O(log n) space. We must also ensure that the root
node operates in O(log n∗

i ) space. Because the root must complement all leaf nodes, the root node
runs in O(log n∗

i ) space if
log n∗

i = Ω(σ(nc
i )). (2)

If we can simultaneously satisfy both (1) and (2), we ensure the construction can be implemented
correctly and in space s′(n) for any s′(n) = ω(log n). We now finish the analysis separately for two
cases.

1. For some semantic models, such as Arthur-Merlin games, the most efficient safe complementa-
tion known within the model incurs an exponential blowup in space. We handle such models
using Theorem 3.

2. For some semantic models, such as unambiguous machines, a safe complementation within
the model is known with only a polynomial blowup in space. We handle these models using
Theorem 4.

Complementation with Exponential Blowup (Theorem 3)

We first complete the analysis for the more general setting where there is a safe complementation
within the model with an exponential blowup in space, which is typically achieved by using a
deterministic simulation of the model and flipping the result. We now assume a semantic model
where log n space computations can be complemented within the model in space O(nd′) for some
constant d′. In this case, (2) becomes

log n∗
i = log nch

i = Ω(ncd′
i ). (3)
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In other words, n∗
i = 2O(ncd′

i ), and we must set h = dlog(
ncd′

i
log ni

)/ log ce = Ω(log ni) to ensure (3). To
fit the leaves of a tree that has depth Ω(log ni) within the interval [ni, n

c
i ), the degree at each node

can be at most some constant. Let a(n) = k for some constant k. Then (1) becomes

k +
h

∑

j=2

k = h · k ≤ log(nc
i − ni). (4)

As the right-hand side grows faster with c than the left-hand side, we can pick c sufficiently large
so that both (3) and (4) are satisfied. The construction works for any constant k, and we have
shown that N/α uses O(log n) space where the constant depends on Mi and k. Standard techniques
similar to those used in section 3.3 suffice to conclude Theorem 3 for the case of semantic models
such as Arthur-Merlin games. Section 4.2 contains a definition of the precise properties needed of
a semantic model for Theorem 3 to hold.

Complementation with Polynomial Blowup (Theorem 4)

We now complete the analysis for semantic models where there is a safe complementation within
the model with only a polynomial blowup in space. We assume now that Mi’s behavior at length n
while using space log n can be complemented within the model using σ(n) = O(logd n) space. For
example, d = 2 for unambiguous machines. Thus (2) becomes log n∗

i = Ω(logd(nc
i )), or equivalently,

n∗
i = 2Ω(logd(nc

i )). Now consider the first term of (1). Plugging in the above equality for n∗
i tells

us that we must at least satisfy a(2Ω(logd(nc
i ))) < log(nc

i ) if we are to satisfy (1). This imposes an
upper bound on a(n) of O(log1/d n).

In fact we can achieve a(n) = Θ(log1/d n) while still satisfying both (1) and (2), as follows. Let
a(n) = k log1/d n for some integer k > 0. Substituting into (1) yields

k log1/d(nch

i ) + k

h
∑

j=2

log1/d(ncj

i ) ≤ log(nc
i − ni). (5)

For technical reasons, we aim to satisfy (2) by ensuring

c3 log n∗
i = c3 log(nch

i ) ≥ logd(nc
i), (6)

which we satisfy by setting h = d(log(cd−3 logd−1 ni)/ log ce.

Using the fact that h ≤ log(cd−3 logd−1(ni))
log c + 1, we bound the first term of the left-hand side of

inequality (5).

k log1/d(nch

i ) = k(ch log ni)
1/d ≤ k(cd−2 logd ni)

1/d = kc(d−2)/d log ni.

Assuming we pick c large enough such that c1/d − 1 ≥ 1, we now bound the second term.

k
∑h

j=2 log1/d(ncj

i ) = k c2/d(c(h−1)/d−1)

c1/d−1
log1/d ni ≤ kc2/d(ch−1)1/d log1/d ni

≤ kc2/d(cd−3 logd−1 ni)
1/d log1/d ni = kc(d−1)/d log ni.

Adding up these two values satisfies inequality (5) for large enough c.
We have shown that the space usage of N/α is O(log n) where the constant depends on Mi

and k. Using standard techniques similar to those used in section 3.3, s′(n) space is sufficient for
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N/α for any s′(n) = ω(log n), completing the proof of Theorem 4 for semantic models such as
unambiguous machines. Section 4.2 contains a definition of the precise properties required of a
model for Theorem 4 to hold.

Larger Space Bounds (Theorem 5)

So far we have only considered the case with s(n) = log n, where we have shown separation results
that are tight with respect to space – that s′(n) space suffices to differ from s(n) space machines
for any s′(n) = ω(s(n)). Tightness with respect to space follows from satisfying: (1) each node of
the copying tree is close enough to its parent so the simulations incur only a constant overhead in
space, and (2) nodes are far enough apart so the height of the tree required to allow the root node
to complement leaf nodes does not result in more leaf nodes than input lengths allocated in the
bottom-most level of the copying tree. In the general setting where safe complementation requires
an exponential blowup in space, these cannot be simultaneously met for super-logarithmic space
bounds – our construction still works but gives a result that is not tight with respect to space for
s(n) = ω(log n).

In the setting where safe complementation incurs only a polynomial blowup in space, we have
more wiggle room and can derive a tight separation for space bounds up to any polynomial. In fact,
an examination of the analysis for Theorem 4 shows the construction as given remains tight with
respect to space for s(n) any poly-logarithmic function. For larger space bounds the construction
as given is not tight. To handle these the main idea is to place nodes of the copying tree closer to
their parent nodes to satisfy (1); this can be achieved for space bounds up to polynomial without
breaking (2).

We now prove Theorem 5. Fix a semantic model where Mi’s behavior while it uses s(n) space
can be complemented within the model using space O(s(n)d). We first consider space bounds of
the form s(n) = nr for r a rational constant. We would like to demonstrate a language computable
within the model using s′(n) space and one bit of advice that is not computable using s(n) space and
O(1) bits of advice, for any s′(n) = ω(s(n)). As alluded to above, we accomplish this by modifying
the generic construction so that each level of the copying tree is embedded within a smaller interval
of input lengths: we embed level j of the copying tree within input lengths [cjni, c

j+1ni) where c is
a constant we may choose. This ensures that for each nv, np ≤ c ·nv and performing the simulation
of Mi on inputs of length np uses space O(nr

p) ≤ O((c · nv)
r) = O(crnr

v) = O(nr
v) = O(s(nv)). Let

h be the height of the copying tree. To ensure the root node has sufficient space to complement
the leaf nodes, it must be that

(chni)
r = Ω(((c · ni)

r)d),

which we achieve by setting h = dlog(nd−1
i )/ log ce. If Mi is allowed k advice bits the total number

of leaf nodes is 2h·k = n
k(d−1)/ log c
i , which must be smaller than c · ni − ni to ensure the leaf nodes

fit within the range of input lengths we have allocated for them. We can choose c large enough to
ensure this holds, which combined with standard techniques similar to those of section 3.3 gives
Theorem 5 for space bounds of the form s(n) = nr.

Having derived Theorem 5 for polynomial space bounds, we derive the result for smaller space
bounds using a simple padding argument.

Let s(n) and s′(n) be space bounds such that s′(n) = o(nr) for a rational constant r, s′(n) =
ω(s(n)), and s(n) = Ω(log n). Suppose by way of contradiction that all languages computable
within the model with s′(n) space, and therefore also O(s′(n)) space, and one bit of advice are
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computable with s(n) space and O(1) bits of advice. We use this assumption to violate the separa-
tion already proved for the space bound nr. The argument above gives a language computable with
nr space and one bit of advice that is not computable with o(nr) space and O(1) bits of advice.
Let L be such a language.

Let m(n) be the smallest integer such that s′(m(n)) ≥ nr, and define the language Lpad =
{0m(n)−1−n#x|x ∈ L}. Assuming s′(n) is space-constructible Lpad can be decided in space O(s′(n))
with one bit of advice, which by assumption means Lpad is also computable in space s(n) with O(1)
bits of advice by some machine M . Consider the following method for computing L: on input x of
length n, form the input y = 0m(n)−1−n#x, simulate M(y) and output the result. The simulation
of M(y) takes s(m(n)) = o(s′(m(n))) space and requires O(1) bits of advice. Assuming s′(n) is
constructible in space o(s′(n)), computing the padded input also takes o(s′(m(n))) space. Assuming
s′(n + 1) = O(s′(n)) for all n, s′(m(n)) = O(nr). Thus we have reached the contradiction that L
can be decided with space o(nr) and O(1) bits of advice, meaning our original assumption was false
and Theorem 5 is proved.

4.2 Generic Semantic Models

Consider the properties of the machine model used in the above analysis of Theorems 3, 4, and 5.
First, N can simulate any other machine Mi with only a constant factor overhead in space. This is
needed to ensure that N needs only slightly more space than Mi. Second, N can efficiently perform
certain deterministic tasks – e.g., for an input of length n, N performs arithmetic to determine
which interval of inputs [ni, n

∗
i ] and which node within the copying tree n corresponds to. Third,

the analysis of section 4.1 was broken up into two cases depending on the efficiency with which
complementation is possible within the model. Semantic and syntactic models can in general be
complemented with an exponential blowup in space, and then Theorem 3 applies. The following is
a precise definition of the properties required for Theorem 3 to hold.

Definition 1. Let (Mi)i=1,2,3,... be a computable enumeration associated with a semantic model of
computation. The semantic model is called reasonable if it satisfies the following conditions:

1. There exists an efficient universal machine U such that for each i ≥ 1, x ∈ {0, 1}∗, and
s ≥ sMi(x), U satisfies the promise on input 〈Mi, x, 0s〉 whenever Mi satisfies the promise on
input x, and if so, U(〈Mi, x, 0s〉) = Mi(x). U must run in space O(s + log(|x|+ |Mi|)).

2. Let D be a deterministic transducer, i.e. a deterministic machine D that executes and either
outputs an answer a(x) or a query q(x) to some machine M . For each such D and machine
Mi, there must exist a machine Mi′ such that on each input x: if D(x) outputs an answer
a(x), then Mi′(x) = a(x) and satisfies the promise; and if D(x) outputs a query q(x) on which
Mi satisfies the promise, then Mi′(x) = Mi(q(x)) and satisfies the promise. In addition,
the space usage of Mi′(x) must be O(sD(x)) when D(x) outputs an answer, and must be
O(sD(x) + sMi(q(x))) when D(x) outputs a query q(x).

If this holds, we say the model is efficiently closed under deterministic transducers.

3. The efficient universal machine U can be safely complemented with an exponential blowup in
space. That is, there is a machine S that satisfies the promise on every input, and such that
S(x) = ¬U(x) for every input x ∈ {0, 1}∗ on which U satisfies the promise. S(x) runs in
space 2O(s(x)), where s(x) is the space used by U(x).
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As pointed out in the introduction, Definition 1 includes a wide class of semantic models, and in
particular includes models such as Arthur-Merlin games for which the simple translation argument
of [KV87] does not apply.

Theorems 4 and 5 apply to any reasonable semantic model that satisfies the first two conditions
of Definition 1 and can be complemented more efficiently, as follows.

Definition 2. Fix a semantic model that is reasonable according to Definition 1. We call the model
easily complementable if there exists a safe complementation S of U(〈Mi, x, 0s〉) that runs in space
O(sd(n) + log(n + |Mi|)) for some rational constant d ≥ 1.

Note that due to the space-bounded derandomization of [SZ99], randomized two-sided, one-
sided, and zero-sided error machines are easily complementable models of computation with d =
3/2. Nondeterministic and unambiguous machines are easily complementable with d = 2 due to
Savitch’s Theorem. We point out that Arthur-Merlin games are unlikely to be easily comple-
mentable as a deterministic simulation of Arthur-Merlin games with polynomial overhead in space
would imply that NC lies in DSPACE(logd n) for some constant d [FL93].

5 Promise Problems

We have proved space hierarchy theorems for semantic models by allowing one bit of advice. Hier-
archy theorems can also be proved for semantic models by relaxing the requirement that a machine
must satisfy the promise on all inputs. Formally, for a model of computation defined by an under-
lying computable enumeration (Mi)i=1,2,3,... and a promise, we define a promise problem within the
model as a pair of sets (ΠY ,ΠN ) that has the following properties: ΠY are the set of “yes” instances
while ΠN are the set of “no” instances, ΠY ∩ ΠN = ∅, and there is a machine M ∈ (Mi)i=1,2,3,...

that computes the correct value and satisfies the promise on all inputs in ΠY ∪ΠN . Notice that M
can behave arbitrarily for x /∈ ΠY ∪ΠN . We would like to use this property to prove a tight space
hierarchy for the promise problems of semantic models

An examination of our proofs in the above sections shows that they yield hierarchies for the
promise problems of semantic models. However, we shall see that promise hierarchy theorems can
be proved without much of the complexity of our arguments – delayed diagonalization suffices to
derive Theorem 6.

For concreteness, consider two-sided error randomized machines. A first attempt at proving
the hierarchy is to use direct diagonalization. Namely, construct a diagonalizing machine that
enumerates all probabilistic machines Mi, chooses a certain input xi for machine Mi, and simulates
Mi(xi) and does the opposite. But suppose Mi(xi) does not have bounded error. Then any promise
associated with Mi must ignore input xi, and the promise for our diagonalizing machine must as
well since it simulates Mi(xi). As xi has the same status with respect to both promise problems,
we have not diagonalized against Mi after all.

Another complication arises when considering promise problems. In the context of two-sided
error for a randomized machine, the natural promise problem for that machine is to set ΠY =
{x|Pr[M(x) = 1] ≥ 2/3} and ΠN = {x|Pr[M(x) = 1] ≤ 1/3}. However, there are many other valid
promise problems that M decides by ignoring certain inputs even though M has bounded error on
these. The diagonalizing machine we construct must work against each Mi in such a way that the
promise problem we specify is different than any valid promise problem over Mi. We solve both
this problem and the above by using delayed diagonalization, as follows.
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Let N be the machine we build to diagonalize against promise problems computable by two-
sided error space s(n) machines. For each probabilistic machine Mi, we allocate an interval of
input lengths [ni, n

∗
i ] on which to diagonalize against Mi. The first part of the construction is

a delayed complementation, which is achieved on input 0n∗
i . Let n∗

i be large enough so that N
can deterministically compute the acceptance probability of Mi(0

ni) using space s(n∗
i ). N(0n∗

i )
should do the opposite of Mi(0

ni). This is ensured by placing 0n∗
i within the promise of N and

having N(0n∗
i ) output 1 with probability 1 if Pr[Mi(0

ni) = 1] < 1
2 , and output 0 with probability

1 otherwise. Notice that regardless of the status of Mi(0
ni) in terms of a promise problem (either

ni is in ΠY , ΠN , or neither), N(0n∗
i ) does something different.

The second part of the construction copies down the complementary behavior to smaller and
smaller padded inputs. On input 0ni+j for 0 ≤ j < n∗

i − ni, N simulates Mi(0
ni+j+1) while it uses

at most s(n) space, and we define N ’s promise to be the natural one on each of these inputs – the
input is within the promise (either ΠY or ΠN ) when its probability of acceptance is either at least
2/3 or at most 1/3. On inputs other than those of the form 0ni+j, N rejects and halts immediately
(these inputs are not used in the diagonalization).

Suppose there is a promise problem defined on Mi with Mi using at most s(n) space which
computes the same promise problem as N on all inputs in the interval [ni, n

∗
i ]. Because 0n∗

i is in
the promise of N , this is also true for Mi. N(0n∗

i −1) by construction simulates Mi(0
ni), and an

input has been defined to be in the promise of N iff N has bounded error on the input. So 0n∗
i −1 is

in the promise of N , and therefore must also be in the promise of Mi. If we continue this argument
through the entire interval, we conclude that each 0ni+j is contained within the promise of both N
and Mi for j = 0, 1, ..., n∗

i − ni. By the assumption that Mi computes the same promise as N , the
fact that each input is in the promise of Mi and N , and the construction of N to simulate Mi, we
have the following set of equalities:

Mi(0
ni) = N(0ni) = M(0ni+1) = N(0ni+1) = Mi(0

ni+2)

= ... = Mi(0
n∗

i −1) = N(0n∗
i −1) = Mi(0

n∗
i ) = N(0n∗

i ).

However, we have constructed N(0n∗
i ) so that it explicitly differs from Mi(0

ni): if 0ni is in the
promise of Mi, then N flips the output; otherwise 0ni is not in the promise of Mi even though 0n∗

i

is in the promise of N . In either case, N(0n∗
i ) 6= Mi(0

ni) where 6= means the promise problem is
different on each. We have reached a contradiction, so there can be no promise problem defined on
Mi that corresponds to the natural promise problem of N . Further, standard techniques guarantee
that s′(n) space is sufficient for N to carry out this construction against all probabilistic machines
Mi, for any s′(n) with s′(n) = ω(s(n + 1)). Namely, equip N with a mechanism to ensure it
never uses more than s′(n) space, and use an enumeration of probabilistic machines where each
machine appears infinitely often to ensure that for each machine M ′, at least once while working
against M ′ the asymptotic behavior of s′ and s has taken effect so that N successfully completes
the construction against M ′.

The above proof requires only a basic set of properties and holds for any reasonable semantic
model as defined in section 4.2. The proof also gives time hierarchies for promise classes, yielding
the following.

Theorem 7 (folklore). Fix a reasonable model of computation. Let t(n) and t′(n) be time bounds
with t(n) = Ω(n) and t′(n) time constructible. If t′(n) = ω(t(n + 1) · log t(n + 1)) then there is a
promise problem computable within the model using time t′(n) that is not computable as a promise
problem within the model using time t(n).
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