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Abstract

We introduce the notion of a Canonical Tester for a class of properties, that is, a tester strong and
general enough that “a property is testable if and only if the Canonical Tester tests it”. We construct
a Canonical Tester for the class of symmetric properties of one or two distributions, satisfying a certain
weak continuity condition. Analyzing the performance of the Canonical Tester on specific properties
resolves several open problems, establishing lower bounds that match known upper bounds: we show
that distinguishing between entropy < α or > β on distributions over [n] requires nα/β−o(1) samples, and
distinguishing whether a pair of distributions has statistical distance < α or > β requires n1−o(1) samples.
Our techniques also resolve a conjecture about a property that our Canonical Tester does not apply to:
distinguishing identical distributions from those with statistical distance > β requires Ω(n2/3) samples.
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1 Introduction

Property testing has been extensively investigated in a variety of setting, in particular, program checking
(starting with [7, 8]), testing of algebraic properties (starting with [20]), and graph testing (starting with
[12]). This advanced state of knowledge is evidenced by the emergence of general structural theorems, most
the characterization by Alon et. al. of those graph properties testable in constant time [2]

By contrast, the emerging and significant subfield of distribution testing is currently a collections of
beautiful but specific results, without a common framework.

Distribution Testing and Symmetric Properties. The quintessential question in distribution testing
can be so expressed:

Given black-box access to samples from one or more distributions and a property of interest for such
distributions, how many samples must one draw to become confident whether the property holds?

Such questions have been posed for a wide variety of distribution properties, including monotonicity, indepen-
dence, identity, and uniformity [1, 6, 4], as well as “decision versions” of support size, entropy, and statistical
and L2 distance[3, 5, 10, 13, 9, 15, 18, 16].

The properties of the latter group, and the uniformity property of the former one, are symmetric. Sym-
metric properties are those preserved under renaming the elements of the distribution domain, and in a
sense capture the “intrinsic” aspects of a distribution. For example, entropy testing asks one to distinguish
whether a distribution has entropy less than α or greater than β, and is thus independent of the names of
the elements. As for a second example, uniformity testing asks whether all elements in the distribution have
the same probability, or whether this is far from being the case. Again, it is clear that this property does not
depend on the specific naming scheme for the domain elements.

Lower- and Upper-Bounds. Answering a distribution testing question requires two components, an
upper-bound and a lower-bound, each expressed as functions of n, the number of elements in the distribution
domain. Ideally, such upper- and lower-bounds would differ by a factor of no(1), so as to yield tight answers.
This is rarely the case in the current literature, however. For instance, the upper- and lower-bounds of
statistical-distance testing differ by a factor of n1/6. Similar gaps exist in the published bounds for many
other symmetric properties. Perhaps intuitively, the techniques developed for the upper-bounds differ from
those developed for the lower-bounds. In the first case, they look for an “algorithm”, in the second case, an
“impossibility proof”.

1.1 Our Results

We prove the following three informally stated results, the first and third resolving open problems from
[5, 3, 18]:

Theorem 1. Distinguishing identical distributions from distributions with statistical distance 1
2 requires

O(n2/3) samples.

Theorem 2. For any constants 0 < α < β < 2, distinguishing between distribution pairs with statistical
distance less than α from those with distance greater than β requires n1−o(1) samples.

Theorem 3. For real numbers α < β, distinguishing between distributions with entropy less than α from
those with entropy greater than β requires nα/β−o(1) samples.

More importantly, perhaps, we prove Theorems 2 and 3 by developing a unified framework for optimally
answering distribution testing questions for a large class of properties.1

1We note that our techniques are general enough that they may be further used to reproduce the main result of [18].
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The Canonical Tester. We focus our attention on the class of symmetric properties satisfying the following
continuity condition: informally, there exists (ε, δ) such that changing the distribution by δ induces a change
of at most ε in the property.2 For such symmetric properties, we essentially prove that there is no difference
between proving an upper bound and proving a lower bound. To formalize this notion we make use of a
Canonical Tester.

The Canonical Tester is a specific algorithm that, on input (the description of) of a property π and f(n)
samples from the to-be-tested distribution, answers YES or NO. If the Canonical Tester successfully tests
the property, then clearly the property is testable with f(n) samples; if the Canonical Tester does not test
the property, then the property is not testable with f(n)/no(1) samples. Thus to determine the number of
samples needed to test π, one need only “use the Canonical Tester to binary-search for f”.

1.2 Our Techniques

To prove our contributions, we rely on results from a variety of fields, including multivariate analysis and
linear algebra. However, rather than directly applying these techniques, we are forced to forge two specific
tools, described below, that may be of independent interest.

Wishful Thinking. Prior lower-bounds for testing symmetric properties of distributions have relied on the
following crucial observation: since the property is invariant under permutation of the actual frequencies, the
tester may as well be invariant under permutation of the observed frequencies. In other words, the identities
of the samples received do not matter, only how many elements appear once, twice, etc. We summarize this
as “collisions describe all”.

However, analyzing when different types of collisions appear has proven to be very difficult. One of
our main technical contributions is what we call the Wishful Thinking Theorem. Analyzing the statistics
of collisions would be easy if the distributions involved were independent gaussians. The Wishful Thinking
Theorem guarantees that treating the collision statistics as independent gaussians does not introduce any
meaningful error, thus making collision analysis “as easy as we might wish”.

Importantly, the Wishful Thinking Theorem does not require any continuity condition, and thus can be
used for general symmetric properties. Indeed, we apply this result directly to show the bound of Theorem
1.

Low-Frequency Blindness. Prior work on testing properties of distributions noted that the frequencies of
the high-frequency elements of a distribution (typically with frequency at least log n

n ) will be well-approximated
by the observed frequencies of these items in the drawn sample. (If we are interested in a continuous property
of the distribution, then an approximation of the distribution is meaningful information.) The question,
however, is what to do with the low-frequency elements, which may not even appear in the given sample,
despite being in the support of the distribution. Clearly the approximation of the elements not appearing in
the sample cannot be taken to be 0, else the distribution may essentially disappear or be distorted beyond
recognition.

Our second technique leverages continuity to show that, no matter how we analyze them, there is no
way to meaningfully extract information from low-frequency items: we call this the Low-Frequency Blindness
Theorem. This result considerably simplifies our Canonical Tester: the high-frequency elements it can well-
approximate; the low-frequency ones it may ignore.

Continuity and Approximations. We note that, given a function f from distributions to real numbers,
there are essentially two ways to formulate a “property” from f : we can ask for testers to distinguish between
the cases when f(p) = a (YES) and f(p) = b (NO), or we can ask for testers to distinguish between the
cases when f(p) < a (YES) and f(p) > b (NO). In this paper we take the second option —approximation

2Technically this is uniform continuity and not continuity ; however, since the space of probability distributions over [n] is
compact, every continuous function here is also uniformly continuous.
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properties— for the simple reason that this is the domain where continuity can be leveraged. Continuity
yields statements of the form “if I nudge p by δ then f(p) will change by at most ε.” In order to allow
for these “nudges” to f we work mainly with approximation properties instead of the strict = a or = b
properties.3 An interesting illustration of the distinction between these types of properties is given by the
case of statistical distance: [5] exhibited an algorithm for the strict version taking roughly n2/3 samples, a
result which we show tight in Theorem 1. however, for the distance approximation problem we show that
the optimal tester takes roughly n samples.

Roadmap For reasons of space, much of the technical material is moved to the appendix. Each of the
main sections in the body of the paper has a section in the appendix that contains the technical details. The
sections are arranged as follows: After a quick review of definitions, we introduce and discuss the Canonical
Tester as an algorithm. The remaining sections lead up to the proof that is is also a lower bound. We start
this process with a review of some elements of the standard toolkit for lower-bounding property testers, which
we summarize as the Generalized Positive-Negative Distance Lemma. Following this, we derive the Wishful
Thinking Theorem, which has as an immediate application the proof of the O(n2/3) lower bound for strict
statistical distance testing. The next step is the Matching Moments Theorem. In the final section we prove
the Low Frequency Blindness Theorem, which implies the Canonical Testing Theorem; we conclude with
applying these results to establish the sample complexity of approximating statistical distance and entropy.

2 Definitions

For positive integers n we let [n] denote the integers {1, . . . , n}. For real numbers a, b we let [a, b] denote
the interval containing all x between a and b, inclusive. Logarithms are base 2 unless denoted “loge”. We
denote elements of vectors with functional notation —as v(i) for the ith element of v— to limit proliferation
of subscripts.

Definition 1. A distribution on [n] is a function p : [n]→ [0, 1] such that
∑

i p(i) = 1. A distribution pair is
a pair of distributions with the same support. We use Dn to denote the set of all distributions, and Dn ×Dn

to denote the set of distribution pairs.

Throughout this work we use n to denote the size of the domain of a distribution.

Definition 2. A property of a single distribution is a function π : Dn → R;
a property of a distribution pair is a function π : Dn ×Dn → R.

As we do not expect a tester to distinguish between a continuum of possible output values, we ask testers
to decide binary properties:

Definition 3. A binary property of a single distribution is a function π : Dn → {“yes”,“no”, ∅};
a binary property of a distribution pair is a function π : Dn ×Dn → {“yes”,“no”, ∅}.

Any property π and pair of real numbers α < β induces a binary property π′ defined as: if π(p) > β then
π′(p) =“yes”; if π(p) < α then π′(p) =“no”, otherwise π′(p) = ∅.

Definition 4. Given a binary property π on pairs of distributions, real numbers 0 < a < b < 1, and a function
k : Z

+ → Z
+, an algorithm T is a “(a, b) U -tester with sample complexity k(·)” if, for any distribution pair

p1, p2, algorithm T on input k(n) random samples from p1 and k(n) random samples from p2 will accept
with probability at least b if π(p1, p2) =“yes”, and accept with probability at most a if π(p1, p2) =“no”. The
behavior is unspecified when π(p1, p2) = ∅.

3Of course, any strict property can be converted into an approximation property by changing f , but this change may not
preserve continuity.
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When a and b are not specified, we take them to be 1
3 and 2

3 respectively. We may refer to b− a as the
soundness of a tester.

The metric we use on probability distributions p, and vectors more generally is the L1 norm, |p| , ∑
i |pi|.

In particular, for two probability distributions p+, p− we may define the statistical distance as |p+− p−|. (In
some references there is a normalization constant of 1

2 here.) We may now define our notion of continuity:

Definition 5. A property π of a single distribution is (ε, δ)-weakly-continuous if for all distributions p+, p−

satisfying |p+ − p−| ≤ δ we have |π(p+) − π(p−)| ≤ ε. A property π of a distribution pair is (ε, δ)-weakly-
continuous if for all distributions p+

1 , p+
2 , p−1 , p−2 satisfying |p+

1 − p−1 | + |p+
2 − p−2 | ≤ δ we have |π(p+

1 , p+
2 ) −

π(p−1 , p−2 )| ≤ ε.

Finally, we define symmetric properties:

Definition 6. A property π of a single distribution is symmetric if for all distributions p and all permutations
σ we have π(p) = π(p ◦ σ). A property of a distribution pair is symmetric if for all distributions p1, p2 and
all permutations σ we have π(p1, p2) = π(p1 ◦ σ, p2 ◦ σ).

3 The Canonical Tester

We introduce Canonical Testing by way of the following observation: given a distribution p and an index i,
the number of times the ith element of p will occur in k samples is modeled by the binomial distribution
Bin(k, p(i)), which has the property that for p(i)� 1

k , the distribution will return a value close to p(i)
k with

high probability; on the other hand if p(i) � 1
k the distribution will return 0 with high probability. Thus

elements of a distribution fall into essentially two regimes: any high-frequency element is well-approximable
from random samples, and any low-frequency element is almost invisible to random samples. This naturally
motivates a tester that, when an element i is sampled a large number of times, estimates p(i) from this
number, and for those elements that are not sampled often, it declares the elements to be low-frequency but
inapproximable beyond that; if these estimates for the high-frequency elements and smallness bounds for
the low-frequency elements uniquely specify the property to be tested, then it returns this as the answer.
We define this tester more formally as follows, where since we primarily work with properties of distribution
pairs we define the tester for distribution pairs.4

Definition 7 (Canonical Tester). Given a property π on distribution pairs with support [n], and supposing k
samples are drawn from each of a pair of such distributions, with s1(i) counting the number of times element
i is sampled from the first distribution and s2(i) counting the number of times i is sampled from the second
distribution, then the k-sample T c

ε tester for distinguishing π < a from π > b returns an answer “< a” or
“> b” from s according to the following steps.

(1) For each i such that s1(i) > c or s2(i) > c insert the constraints p1(i) = s1(i)
k and p2(i) = s2(i)

k .

(2) For the remaining i insert the constraints p1(i), p2(i) ∈ [0, c
k ]

(3) Insert the constraints
∑

i p1(i) = 1 and
∑

i p2(i) = 1.

(4) Let P be the set of solutions to these constraints.

(5) If ∀(p1, p2) ∈ P, π(p1, p2) ≥ a + ε then return “> b”; if ∀(p1, p2) ∈ Pπ(p1, p2) < b− ε then return “< a”;
if both or neither of these conditions apply, return an arbitrary answer.

We refer to the portions of p1, p2 specified exactly by the constraints in Step 1 as the c-high-frequency ap-
proximation, and to P as the set of low-frequency extensions to the c-high-frequency approximation.

For symmetric, (ε, δ)-weakly-continuous properties we will see that the proper parameters of T are ε = ε
and c = 600 log n

δ2 .5

To provide some justification for why the system of constraints is reasonable we have the following:

4It is syntactically straightforward to extend this tester to apply to cases with greater or fewer distributions by simply changing
the set of subscripts on s and p from {1, 2} to a different set.

5See the theorems of the final section.
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Lemma 1. Given a distribution pair (p1, p2) and constant c, drawing k random samples from each distribu-
tion, with probability at least 1− 4

n the set of low-frequency extensions to the c-high-frequency approximation

of (p1, p2) will include a pair (p̄1, p̄2) such that |p1 − p̄1|+ |p2 − p̄2| ≤ 24
√

log n
c .

The proof is elementary, using Chernoff bounds for each i and then applying the union bound to combine
the bounds. We defer it to the appendix.

Discussion. It is not immediately clear why or when this tester will work (i.e. achieve the conditions of
Definition 4). Further, this tester is described as a function, not an algorithm, completely bypassing issues of
computational complexity. Nevertheless, we show in the course of this work that for any symmetric weakly-
continuous property π and suitably chosen c, ε, if the k-sample T c

ε tester does not correctly test between
π < α and π > β, essentially nothing will.6 It is for this reason that we call T canonical.

It is also not immediately clear why symmetric and weakly-continuous are related to T , since the tester
could conceivably be applied to a much wider class of properties.7 Indeed we suspect that this tester —or
something very similar— may be shown optimal for more general properties. However, neither the symmetry
or the continuity condition can be relaxed entirely:

• Consider the problem of determining whether a (single) distribution has more weight on its first half or its
second half. Specifically, on distributions of support [n] let π(p) = |p({1, . . . , bn2 c})|−|p({bn2 c+1, . . . , n})|.
We note that π is continuous but not symmetrical. It is fairly clear that π can be easily approximated
from a constant(!) number of samples s by taking the difference between the number of samples in
the first half of the distribution and the number in the second half of the distribution, and dividing
by the total number of samples. Further, this tester will often return the correct answer even when
each frequency in p is in [0, 2

n ]. However, the Canonical Tester will discard all such frequencies unless
c
k < 2

n , that is, if the number of samples is essentially n. Thus there is a gap of roughly n between the
performance of the Canonical Tester and that of the best tester for this property.

• The problem of determining whether a distribution pair is identical or far apart was analyzed in [5],
where they constructed a θ̃(n2/3)-sample tester. (Recall our Theorem 1 for the definition and a matching
lower-bound.) This problem can be transformed into an approximation problem by defining π(p1, p2) to
be −1 if p1 = p2 and |p1 − p2| otherwise, where π is seen to be symmetric, but not continuous. It can
be seen that the Canonical Tester for π requires θ̃(n) samples (this follows trivially from our Theorem
2), which is ∼ n1/3 worse than the optimal tester.

4 Step 0: The Generalized Positive-Negative Distance Lemma

The Positive-Negative Distance Lemma states for general symmetric properties a result that appears in the
literature in the context of specific properties such as entropy [3]. This lemma provides a general condition
for when properties are not testable; in the rest of the paper build up a sequence of results that lets us apply
this condition in those cases where the Canonical Tester fails.

The proof of this lemma synthesizes three different techniques. These techniques address in turn three
evident difficulties in deriving lower-bounds: (1) when taking k samples from a distribution, the number of
times the first element is sampled is (anti-) correlated with the number of times the second, third, and other
elements are sampled; (2) the complete record of each of the 2k samples is a lot of data to analyzes; and (3)
we have no idea how the tester will make its decision from this data.

This material appears in full in the appendix; we omit all but the crucial definitions here.

Definition 8. A Poisson process with parameter λ ≥ 0 is a distribution over the nonnegative integers where
the probability of choosing c is defined as poi(c;λ) , e−λλc

c! . We denote the random variable as Poi(λ). For

6The qualifier “essentially” is made precise in Theorem 7 (we lose a small factor in k and small constants in α and β).
7We note that if a property is drastically discontinuous then essentially anything is a “Canonical Tester” for it, since such

a property is not testable at all. So the tester we present is canonical for weakly-continuous and “drastically discontinuous”
properties. The situation in between remains open.
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vectors λ ∈ R
+k for k ∈ Z

+ we let Poi(λ) denote the k-dimensional random variable whose ith component is
drawn from the univariate Poi(λ(i)) for each i.

Given a tester T with sample complexity k on distributions p1, p2, we modify it in an essentially trivial
way, but one which changes the analysis drastically. The following process is called Poissonization:

1. Draw two numbers k1, k2 from the Poisson process Poi(k).

2. Draw k1 samples from p1 and k2 samples from p2.

3. If either k1 < k or k2 < k, FAIL.

4. Otherwise, return the result of running T on the first k samples drawn from each distribution.

Definition 9. Given two multisets of samples S1, S2 drawn from distributions with finite support set X, the
fingerprint of S1, S2 is a function f : Z

+×Z
+ → Z

+ such that f(i, j) is number of elements of X that appear
exactly i times in S1 and j times in S2.

Lemma 2. For any symmetric property U and random variable κ, if there exists a κ-sample tester T then
there exists a κ-sample tester T ′ which takes as input only the fingerprint of κ samples drawn from each
distribution.

For the rest of this paper when we refer to a tester we will generally consider its input to be in fingerprint
form.

Definition 10. Given distributions p1, p2 with support [n] and a positive integer k, define Dk
p1,p2

to be the
distribution of fingerprints of the following sampling process:

1. Draw two numbers k1, k2 from the Poisson process Poi(k).

2. Draw k1 samples from p1 and k2 samples from p2.

Lemma 3 (Positive-Negative Distance). If π is a symmetric property testable in k samples then for any
positive distribution pair p+

1 , p+
2 and any negative distribution pair p−1 , p−2 , we have |Dk

p+
1 ,p+

2

−Dk
p−1 ,p−2

| ≥ 1
12 .

5 Step 1: The Wishful Thinking Theorem

In this section we derive a general theorem for upper-bounding expressions of the form |Dk
p+
1 ,p+

2

− Dk
p−1 ,p−2

|.
Specifically, we focus on the case where each of the probabilities in p+

1 , p+
2 , p−1 , p−2 are (sufficiently) less than

1
k . (We will analyze the case of larger frequencies in the final section. As we will see there, Lemma 12 allows
us essentially to analyze these low and high frequency cases separately.)

The Wishful Thinking Theorem yields a bound in terms of the moments of each distribution pair, de-
fined as follows: (We use a normalization constant k so as to keep the moments of a reasonable size when
distributions’ frequencies are all on the order of 1

k .)

Definition 11. Given a distribution pair p1, p2 and a positive number k, then for each pair of nonnegative
integers (a, b) define the k-based (a, b) moment of (p1, p2) as

∑
i k

α+βp1(i)
αp2(i)

β .

We motivate the result of this section and its name with the following “wishful thinking” analysis, of
|Dk

p+
1 ,p+

2

−Dk
p−1 ,p−2

|. None of the following derivation is technically correct except for its conclusion, which we

prove via a different (technically correct!) method in the rest of this section.

Recalling the alternative definition of Dk
p1,p2

provided by Lemma 12, consider the contribution to
the (a, b) fingerprint entry provided by the ith elements of p1 and p2: by definition this will be
1 with probability poi(a, k · p1(i)) · poi(b, k · p2(i)). Taking small liberties with the definition of
the Poisson distribution, we will approximate this as ka+bp1(i)

ap2(i)
b. Thus the expected value

of the (a, b) fingerprint entry is (roughly) ka+b
∑

i p1(i)
ap2(i)

b, which is the (a, b)th moment of
the pair (p1, p2). Applying further wishful thinking, we approximate the distribution of (a, b) as
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being a gaussian with mean and variance exactly this moment, and take it to be independent of
all of the other fingerprint entries. Having modeled Dk

p1,p2
as independent gaussians, and using

the approximation that a gaussian with mean and variance α, and a gaussian with mean and
variance β have statistical distance roughly |α−β|√

max{α,β}
, we propose the following theorem:

Theorem 4 (Wishful Thinking). Given probability distribution pairs p+
1 , p+

2 and p−1 , p−2 and positive number
ε and integer k such that each probability of any element in each distribution is bounded by ε

k , let m+
a,b be the

k-based (a, b) moment of (p+
1 , p+

2 ) for each a, b ≥ 0, with m−
a,b defined correspondingly for (p−1 , p−2 ). Then

|Dk
p+
1 ,p+

2

−Dk
p−1 ,p−2

| ≤ 40ε + 10
∑

a,b

|m+
a,b −m−

a,b|
ba2c!b b

2c!
√

1 + max{m+
a,b,m

−
a,b}

.

We note that the expression
|m+

a,b−m−
a,b|√

1+max{m+
a,b,m−

a,b}
is bounded by several simpler expressions, including |m+

a,b−

m−
a,b|,

|m+
a,b−m−

a,b|√
max{m+

a,b,m−
a,b}

, and |
√

m+
a,b −

√
m−

a,b|, either of which could be used instead in the theorem for the

sake of convenience; similarly, the ba2c!b b
2c! term could be dropped. In this paper we do not need the full

strength of the Wishful Thinking Theorem, but since it may be useful in other contexts, we prove the full
theorem.

We start towards a proof of this theorem by noting that the distribution Dk
p1,p2

as constructed via Lemma
12 is an example of what is sometimes known as a generalized multinomial distribution, defined in general as
the distribution of the histogram of the sum of independent random variables.

Definition 12. The generalized multinomial distribution parameterized by matrix ρ, denoted Mρ, is defined
by the following random process: for each row of ρ, draw a column from the distribution ρi; return a row
vector recording the total number of samples falling into each column.

Lemma 4. For any distributions p1, p2 with support [n] and positive integer k, the distribution Dk
p1,p2

is the
generalized multinomial distribution Mρ where matrix ρ has n rows, columns indexed by pairs of nonnegative
fingerprint indices (a, b), and (i, (a, b)) entry equal to poi(a; k · p1(i))poi(b; k · p2(i)) for each i ∈ [n] and
a, b ∈ Z

+.

Proof. Clear from the definition of Dk
p1,p2

in Lemma 12.

We introduce here the main result from Roos[19] which states that generalized multinomial distributions
may be well-approximated by multivariate Poisson processes.

Roos’s Theorem [19]. Given a matrix ρ, with the vector of column sums defined as λ(d) =
∑

i ρ(i, d), then

|Mρ − Poi(λ)| ≤ 8.8
∑

d

∑
i ρ(i, d)2

λ(d)
.

Applying this theorem and the previous lemma we see that Dk
p1,p2

may be well-approximated by a mul-
tivariate Poisson process. The bound is shown in the following lemma:

Lemma 5. Given a probability distribution pair p1, p2, a real number ε > 0 and a positive integer k such
that each probability is at most ε

k , let ρ be the matrix such that Dk
p1,p2

= Mρ, and let λ(d) =
∑

i ρ(i, d). Then

|Dk
p1,p2

− Poi(λ)| ≤ 20ε provided ε ≤ 1
30 .

See the appendix for the proof.
To complete our analysis of |Dk

p+
1 ,p+

2

− Dk
p−1 ,p−2

| we derive bounds on the distance between the Poisson

approximations of Dk
p+
1 ,p+

2

and Dk
p−1 ,p−2

, and apply the triangle inequality. See the appendix for details. We

note that the higher-order moments vanish rapidly, so under slightly modified conditions we can show that it
is sufficient to bound only the sum of those moments of degree at most

√
log n see the appendix for details.
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The Closeness Testing Lower Bound The proof of Theorem 1 is a realization of the outline that
appeared in [5], making crucial use of the Wishful Thinking Theorem. See the appendix for details.

6 Step 2: The Matching Moments Theorem

In the previous section we showed that the moments capture essentially all the information that can be
extracted from the low-frequency elements of a distribution. In short, moments are all that matter in the
low-frequency setting. In this section we go further and show that even moments do not matter for the
important special case of weakly-continuous properties. In essence, no useful information can be extracted
from the low-frequency portion of a distribution. We will use these results in the next section to conclude
that distribution testing is possible if and only if it can be done solely using the high-frequency elements.

The main result of this section is the Matching Moments Theorem which states that for any constants k,w
we can modify the ≤ 1

k -frequency portion of any distribution pair p1, p2 by shifting at most w weight so as to
rewrite the moments of p1, p2 —if we slightly relax the ≤ 1

k frequency condition on the output distributions.
Since any weakly-continuous property of p1, p2 will be preserved under such small changes, moments do not
help test properties.

As in the previous section, for the sake of simplicity we present the main result for the case where there
are no high-frequency elements. In the next section we show how to apply the Matching Moments Theorem
to general distributions.

Theorem 5 (Matching Moments Theorem). There is a function M parameterized by w ≤ 1 and k > 1
mapping distribution pairs p1, p2 whose frequencies all lie below 1

k to distribution pairs (p̄1, p̄2)←Mk
w(p1, p2)

and a function f mapping such w, k to matrices of moments m̃ ← f(w, k) such that, letting k̄ = kw
100·26

√
log n

we have

• For all i ∈ [n], both p̄1(i), p̄2(i) ≤ 1
k̄
;

• |p1 − p̄1|+ |p2 − p̄2| ≤ w

• The k̄-based (a, b) moments of (p̄1, p̄2), for a + b ≤ √log n equal m̃ to within 1
10000 log n .

The key observation that lets us rewrite the moments of p1, p2 while changing the distributions only
slightly is the following: the zeroth moment of (p1, p2) equals n and the first moments equal k times the
sum of p1 or p2, namely just k so thus only the second and higher moments are relevant (with respect to an
application of the Wishful Thinking Theorem); since the second and higher moments depend on high powers
of the frequencies in (p1, p2), if we shift roughly w weight from elements with probabilities at most 1

k to
frequencies more than 1

w factor higher, the new moments will dwarf the old moments, and thus be (roughly)
independent of the moments of the original distribution.

A crucial step of our construction is to set up linear equations whose solution will tell us exactly how to
shift the weight so as to cancel out the original moments. Because moments of a distribution are defined
as linear combinations of the powers of the probabilities in the distribution, the coefficients of the linear
transform we use will be a Vandermonde matrix.

Definition 13. Given a vector z of length µ, the Vandermonde matrix generated by z is the µ × µ matrix
with entries z(i)j .

Here we work with a particular special class of Vandermonde matrices.

Definition 14. For positive integer µ let `µ be the µ × µ matrix with entries ij for columns indexed by
1 ≤ i ≤ µ and rows indexed by 0 ≤ j ≤ µ− 1.

We use this matrix to compute moments of single distribution as shown by the following trivial lemma.

Lemma 6. Let p be a probability distribution such that there exists a positive real number α and a vector of
integers c of length µ such that for each t ∈ [µ], p contains c(t) entries equal to α · t and zeros elsewhere. Let
m = `µ · c. Then the t’th k-based moment of p equals (kα)tm(t).
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In this work we deal with moments of distribution pairs, instead of single distributions, and for this reason
we do not work with ` directly, but rather with its tensor product with itself.

For completeness’ sake we include the following:

Definition 15. Given a matrix X with rows and columns indexed respectively by a and u, and a matrix Y
indexed by b and t, the tensor product X ⊗ Y is defined to be the matrix with rows indexed by pairs (a, b),
columns indexed by pairs (t, u), and ((a, b), (t, u)) entry defined by the product of the original entries from X
and Y as X(a, t) · Y (b, u).

Definition 16. For positive integer µ let L(µ) = `µ ⊗ `µ be the µ2 × µ2 matrix with entries taub for columns
indexed by pairs 1 ≤ (t, u) ≤ µ and rows indexed by pairs 0 ≤ (a, b) ≤ µ− 1.

The generalization of Lemma 6 is:

Lemma 7. Let p1, p2 be a probability distribution pair such that there exists a positive real number α and a
vector of integers c indexed by pairs 1 ≤ (t, u) ≤ µ such that for each (t, u), there are c((t, u)) indices such
that p1(i) = α · t and p2(i) = α · u and zeros elsewhere. Let m = Lµ · c. Then the (t, u)th k-based moment of
(p1, p2) equals (kα)t+um((t, u)).

Now that we have expressed moments by linear equations, and aiming to solve these linear equations for
the “target” moments f(w, k) of the Matching Moments Theorem, it remains to bound the size of elements
of the inverse of Lµ and then assemble the pieces. See the appendix.

7 Step 3: The Canonical Testing Theorem

In this section we prove the main results of this work. First we show how to combine the results of the previous
three sections to show a general class of lower-bounds for testing symmetric weakly-continuous properties.
Then we show that these lower-bounds apply in almost exactly those cases where the Canonical Tester fails,
providing a tight characterization of the sample complexity for any symmetric weakly-continuous property.

The lower-bound we present completes the argument we have been making in the last few sections that
testers cannot make use of the low-frequency portion of distributions. Explicitly, if we have two distribution
pairs (p−1 , p−2 ) and (p+

1 , p+
2 ) that are identical on their high-frequency indices then the tester may as well

return the same answer for both pairs. Thus if a property takes very different values on (p−1 , p−2 ) and (p+
1 , p+

2 )
then it is not testable.

Definition 17. Given a distribution pair p1, p2 and positive integer k, the k-high-frequency indices are those
i ∈ [n] such that max{p1(i), p2(i)} ≥ 1

k .

Theorem 6 (Low Frequency Blindness). Given a property π on pairs of distributions on [n] that is (ε, δ)-
weakly-continuous and two pairs of distributions, (p−1 , p−2 ) and (p+

1 , p+
2 ) that are identical for any k-high-

frequency index i but where π(p−1 , p−2 ) < a and π(p+
1 , p+

2 ) > b, then no tester can distinguish between π < a+ε
and π > b− ε in kδ

100000·26
√

log n
samples.

See the appendix for the proof.

Theorem 7 (Canonical Testing Theorem). Given a property π on pairs of distributions on [n] that is (ε, δ)-
weakly-continuous such that the Canonical Tester T c

ε for c = 600 log n
δ2 fails to distinguish between π < a and

π > b in k samples, then no tester can distinguish between π < a+2ε and π > b−2ε in kδ
100000·26

√
log n

samples.

Proof. Without loss of generality assume that the Canonical Tester fails by saying “< a” at least a third of the
time when the correct answer is “> b”. From the definition of the Canonical Tester, this occurs when there is
a distribution pair (p1, p2) with π(p1, p2) > b such that with probability greater than 1

3 the c-high-frequency
sampling approximation approximate has a low-frequency completion (p−1 , p−2 ) with property < a + ε. From
Lemma 1, with probability at least 1− 4

n the sampling approximation has a low-frequency completion (p+
1 , p+

2 )
within statistical distance δ from (p1, p2). Thus by the union bound there exists p−1 , p−2 , p+

1 , p+
2 with the same

c-high-frequency components. Since π is (ε, δ)-weakly-continuous, π(p+
1 , p+

2 ) > b − ε. Applying the Low
Frequency Blindness Theorem yields the desired result.
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The Statistical Distance Approximation Bound.

Proof of Theorem 2. We note that statistical distance is a symmetric property, and by the triangle in-
equality is (ε, ε)-weakly-continuous for any ε > 0. We invoke the Low Frequency Blindness Theorem as
follows: Let p+

1 = p+
2 be the uniform distribution on [n], let p−1 be uniform on [n2 ], and let p−2 be uniform on

{n
2 + 1, . . . , n}. We note that the statistical distance of p−1 from p−2 is 0, since they are identical, while p+

1

and p+
2 have distance 2. Further, each of the frequencies in these distributions is at most 2

n . We apply the
Low Frequency Blindness Theorem with ε = δ = min{α, 2−β} and k = nθ for any θ < 1 to yield the desired
result.

The Entropy Approximation Bound.

Lemma 8. The entropy is (1, 1
2 log n)-weakly-continuous.

See the appendix for the proof. We now prove a more formal statement of Theorem 3.

Lemma 9. For any real number γ > 1, the entropy of a distribution on [n] cannot be approximated within
γ factor using O(nθ) samples for any θ < 1

γ2 , even restricting ourselves to distributions with entropy at least
log n
γ2 − 2.

Proof. Given a real number γ > 1, let p− be the uniform distribution on 1
4n1/γ2

elements, and let p+ be

the uniform distribution on all n elements. We note that p− has entropy log n
γ2 − 2 and p+ has entropy log n.

Further, all of the frequencies in p+ and p− are less than 1
k where k = 1

4n1/γ2

. We apply the Low Frequency
Blindness Theorem with ε = 1, using Lemma 8, to see that no tester can distinguish distributions with

entropy at least (log n) − 1 from those with entropy at most log n
γ2 − 1 using fewer than n1/γ2

800000·26
√

log n log n

queries. This implies the desired result.
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APPENDIX

Appendix to Section 3

Proof of Lemma 1. This proof is elementary, using Chernoff bounds for each i and then applying the
union bound to combine these bounds. Explicitly, the Chernoff bounds we use have the following form:
given k independent {0, 1} random variables where each one takes value 1 with probability σ, denoting their
sum by Sσ the Chernoff bounds state that for any δ ∈ [0, 1] we have Pr[Sσ > (1 + δ)kσ] ≤ e−δ2kσ/3 and
Pr[Sσ < (1− δ)kσ] ≤ e−δ2kσ/2.

For either distribution p1, p2 —we work with p1 here for notational convenience— and any i, the proba-
bility that a sample draws i is p1(i) by definition, and all the samples are independent, so thus the Chernoff
bounds state that if S1,i represents the random variable that counts the number of times i occurs in k samples

then Pr[|S1,i

k − p1(i)| > δp1(i)] ≤ 2 · e−δ2kp1(i)/2. Given k samples from each distribution we will show how,
with probability 2

3 we can construct p∗1, p
∗
2 that satisfy all the desired conditions except the condition that

their sums be 1; as a final step we correct their sums. The construction of p∗1, p
∗
2 will be done separately for

each i. Explicitly, for each i we will divide the possible outcomes into two classes: a success case where the
number of times i is drawn from each distribution closely approximates kp1(i) and kp2(i) respectively and
our approximation contributes at most ei error, and a failure case which occurs with probability at most fi.
The analysis consists of two cases.

Case 1: p1(i), p2(i) < c
k . Suppose element i appears in s1 samples from the first distribution and s2

samples from the second distribution. If s1, s2 ≤ c then from Step 2 of the Canonical Tester, i is constrained
to be “low-frequency”, which means we may let p∗1(i) = p1(i) and p∗2(i) = p2(i), with no error and no
failure probability. Otherwise, the constraints of Step 1 dictate that p∗1(i) = s1

k and p∗2(i) = s2

k . Letting

δ = (2
√

log n)
√

1
kp1(i)

we have Pr[|s1

k − p1(i)| > 2
√

log n

√
p1(i)√

k
] ≤ 2 · e−2 log n, with a similar expression

holding for the second distribution. We call the case when either of these conditions is violated the failure
case, which occurs with probability at most fi = 4 · e−2 log2 n; otherwise, p∗1(i) approximates p1(i) to within
2
√

log n
√

p1(i)√
k

≤ 2
√

log n
√

c
k , and by a symmetric argument p∗2(i) approximates p2(i) to this bound too. Let

e(i) = 4
√

log n
√

c
k .

Case 2: p1(i) > c
k or p1(i) > c

k . As above, let s1, s2 denote the number of times i is sampled from
each distribution. For the sake of simplicity we let p∗1(i) = s1

k and p∗2(i) = s2

k regardless of whether the

constraint of Step 1 or Step 2 applies. Applying Chernoff bounds as above with the same δ = 2
√

log n
√

1
kp1(i)

we have Pr[|s1

k − p1(i)| > 2
√

log n

√
p1(i)√

k
] ≤ 2 · e−2 log n, with corresponding expression for p2. Thus we let

fi = 4 · e−2 log2 n and ei = 2
√

log n

√
p1(i)+

√
p2(i)√

k
.

Having analyzed these cases we now combine the errors and failure probabilities. Note that in every case
the failure probability was bounded by 4·e−2 log n = 4

n2 , so thus by the union bound the total failure probability
is at most n times this, namely 4

n . We now bound
∑

i ei. We note that Case 1 consists of two sub-cases: if

s1, s2 ≤ c then ei = 0; otherwise ei = 4
√

log n
√

c
k . Note that since the total number of samples is k, the situation

s1 > c may occur at most k
c times, and thus this subcase may occur at most 2k

c times yielding a contribution

to
∑

i ei of at most 8
√

log n√
c

. To bound the contribution from Case 2, let I denote the set of i that fall into case

2. We note that |I| ≤ 2k
c since for each such i, p1(i) + p2(i) ≥ c

k and the total weight of p1 and p2 is 2. We

apply Cauchy-Schwarz with one vector consisting of
√

p1(i) and
√

p2(i) for all i ∈ I, and the second vector

the all-ones vector to yield
∑

i∈I

√
p1(i) +

√
p2(i) ≤

√∑
i∈I p1(i) + p2(i)

√∑
i∈I 1 + 1 ≤

√
2
√

2|I| ≤
√

8k
c .

Thus
∑

i∈I ei ≤ 4
√

log n√
c

and in total we have
∑

i ei ≤ 12
√

log n
c . Thus we have constructed p∗1 and p∗2 that

satisfy all the desired properties with the possible exception that their sums may not be 1, and their total

distance from p1 and p2 is at most 12
√

log n
c . We note that the total amount that these sum constraints is
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violated equals | |p∗1| − |p1| | + | |p∗2| − |p2| |, which by the triangle inequality is at most |p∗1 − p1| + |p∗2 − p2|,
which we just bounded as 12

√
log n

c . Thus if we define p̄1, p̄2 as the closest distributions to p∗1, p
∗
2 that satisfy

all the constraints, this rounding will change the distributions by at most 12
√

log n
c in total. Thus by a final

application of the triangle inequality, |p̄1 − p1| + |p̄2 − p2| ≤ 24
√

log n
c , as desired, and this is guaranteed as

long as no failures occur, which happens with probability at least 1− 4
n .

Appendix to Section 4

The proof of the Positive-Negative Distance Lemma synthesizes three different techniques. These techniques
address in turn three evident difficulties in deriving lower-bounds: (1) when taking k samples from a distri-
bution, the number of times the first element is sampled is (anti-) correlated with the number of times the
second, third, and other elements are sampled; (2) the complete record of each of the 2k samples is a lot of
data to analyzes; and (3) we have no idea how the tester will make its decision from this data.

Poissonization In order to resolve (1), we follow [3] and apply a “Poissonization” technique. Recall the
Poisson distribution, defined in Definition 8.

Given a tester T with sample complexity k on distributions p1, p2, we modify it in an essentially trivial
way, but one which changes the analysis drastically. The following process is called Poissonization:

1. Draw two numbers k1, k2 from the Poisson process Poi(k).

2. Draw k1 samples from p1 and k2 samples from p2.

3. If either k1 < k or k2 < k, FAIL.

4. Otherwise, return the result of running T on the first k samples drawn from each distribution.

Lemma 10. If T is a (1
3 , 2

3) tester, then the Poissonized T is a tester with soundness at least 1
12 .

Proof. Note that when Step 3 does not fail, the procedure exactly simulates the original tester T , since the
first k samples drawn from each of p1, p2 will be independent and identically distributed regardless of k1, k2.

We note the standard property of Poisson distributions that the median of Poi(λ) is at least bλc. Thus
in our case the median of Poi(k) is at least k, and thus the probability that k1 ≥ k is at least 1

2 , and the
probability that both k1, k2 ≥ k is at least 1

4 . Thus Step 3 fails with probability at most 3
4 , and thus the

resulting tester has soundness at least 1
12 .

The purpose of modifying T in this manner is revealed by the following fact, which is standard in balls-
and-bins arguments:

Lemma 11. The distribution of samples at Step 2 of a k-Poisson tester equals that generated by the following
process:

For each i ∈ [n] draw s1(i) ← Poi(k · p1(i)), creating s1(i) samples “i” for the first distribution,
and draw s2(i)← Poi(k · p2(i)), creating s2(i) samples “i” for the second distribution.

(For a proof of a variant of this see [17] page 100.)

Fingerprints We now make use of the fact that we test symmetric properties to greatly reduce the di-
mension and information content of the samples the tester must analyze. In essence, we claim that a set of
samples is completely described by its collision statistics – for the purposes of symmetric property testing.
For example, if p1 and p2 are distributions with support {a, b, c, d} and we draw the 5 samples (a, a, a, b, c)
from p1, and the 5 samples (a, b, b, c, d) from p2, then we could describe the samples by saying that there
is a (3, 1)-way collision on the a’s, a (2, 1)-way collision on the b’s, a (1, 1)-way collision on the c’s, and a
(0, 1)-way collision on the d’s. Because we consider symmetric properties, there is no real distinction between
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a, b, c, or d, and thus we may simplify this description to: there is 1 (3, 1) collision, one (1, 2) collision, one
(1, 1) collision, and one (0, 1) collision. We formalize this for the case where the number of samples drawn is
a random variable, so that we may extend the results on Poissonization:
[Definition 9.] Given two multisets of samples S1, S2 drawn from distributions with finite support set X,
the fingerprint of S1, S2 is a function f : Z

+ × Z
+ → Z

+ such that f(i, j) is number of elements of X that
appear exactly i times in S1 and j times in S2.
[Lemma 2.] For any symmetric property U and random variable κ, if there exists a κ-sample tester T then
there exists a κ-sample tester T ′ which takes as input only the fingerprint of κ samples drawn from each
distribution.

Proof. Given T and a fingerprint f(·, ·) of κ samples each from distributions p1 and p2 on [n] we produce
such a T ′ as follows:

1. Initialize empty lists s1, s2.

2. For each nonzero pair (i, j), pick f(i, j) arbitrary new values in [n] and append these i times to the list
s1 of “simulated samples for the first distribution”, and j times to the list s2.

3. Construct a random permutation π over [n].

4. Return T (π(s1), π(s2), namely, apply π to rename the elements of s1, s2, and run the original tester T
on these simulated samples.

We note that the distribution of the lists we give to T is identical to that produced by the process of
picking a random permutation γ on n elements and drawing κ samples each from the distributions p1 ◦γ and
p2 ◦ γ. Furthermore, since T is a (1

3 , 2
3 ) tester, it will work for arbitrary input distributions, including p1 ◦ γ

and p2 ◦ γ for any fixed γ. Thus T will also operate correctly when γ is drawn randomly, which implies that
T ′ is a tester for U , as desired.

For the rest of this paper when we refer to a tester we will generally consider its input to be in fingerprint
form.

One of the principal objects of analysis of this paper is the fingerprint function applied to Poisson-
distributed samples in the sense of the previous subsection. We define: [Definition 10.] Given distributions
p1, p2 with support [n] and a positive integer k, define Dk

p1,p2
to be the distribution of fingerprints of the

following sampling process:

1. Draw two numbers k1, k2 from the Poisson process Poi(k).

2. Draw k1 samples from p1 and k2 samples from p2.

We note that we may apply Lemma 11 to reexpress this distribution in a form that is often more easy to
work with.

Lemma 12. For any distributions p1, p2 with support [n] and positive integer k, Dk
p1,p2

is identical to the
following:

1. Initialize a fingerprint as the function mapping pairs of nonnegative integers to 0.

2. For each i ∈ [n] draw a← Poi(k · p1(i)) and b← Poi(k · p2(i)) and increment the fingerprint’s value at
(a, b) by 1.

The Statistical Distance Testing Bound. The third standard technique we apply consists of the follow-
ing observation: if T is a k-sample tester for property U with soundness c then the view of T on any positive
distribution pair p+

1 , p+
2 and the view of T on any negative distribution p−1 , p−2 must have statistical distance

at least c. Explicitly, the view of a tester consists of its input, which by the results of the previous section is
a fingerprint. So we conclude that the statistical distance between the distributions of k-sample-fingerprints
for any positive and any negative distribution pairs for U is at least c. For the case of Poisson testers we have

Lemma 13. If π is a symmetric property testable by a k-Poisson tester with soundness γ then for any
positive distribution pair (p+

1 , p+
2 ) and any negative distribution pair (p−1 , p−2 ), we have |Dk

p+
1 ,p+

2

−Dk
p−1 ,p−2

| ≥ γ.
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Combining this with Lemma 10 yields:
[The Positive-Negative Distance Lemma.] If π is a symmetric property testable in k samples then for
any positive distribution pair p+

1 , p+
2 and any negative distribution pair p−1 , p−2 , we have |Dk

p+
1 ,p+

2

−Dk
p−1 ,p−2

| ≥ 1
12 .

Appendix to Section 5

Proof of Lemma 5. For any i ∈ [n] and fingerprint index (a, b) (note that this is a single index into λ, or
columns of ρ) we have that

ρi,(a,b) = poi(a; k · p1(i))poi(b; k · p2(i)) =
e−k(p1(i)+p2(i))(k · p1(i))

a(k · p2(i))
b

a!b!
≤ (k · p1(i))

a(k · p2(i))
b ≤ εa+b.

Thus for each (a, b) we have

∑
i ρ(i, (a, b))2

λ((a, b))
≤

∑
i ε

a+bρ(i, (a, b))

λ((a, b))
= εa+b

∑
i ρ(i, (a, b))∑
i ρ(i, (a, b))

= εa+b.

Thus by Roos’s Theorem and Lemma 4 we have

|Dk
p1,p2

− Poi(λ)| = |Mρ − Poi(λ)| ≤ 8.8
∑

(a,b)

∑
i ρ(i, (a, b))2

λ(d)
≤ 8.8

∑

a+b≥1

εa+b.

We recognize this last expression as a two-dimensional geometric series, which we can evaluate via the
variable substitution γ = a + b as

8.8
∑

γ≥1

(1 + γ)εγ ≤ 8.8


2ε + ε2

∑

γ≥0

3(1 + γ)εγ


 = 8.8

[
2ε +

3ε2

(1− ε)2

]
≤ 20ε,

where the last inequality applies when ε ≤ 1
30 since in this case 3ε2 ≤ ε

10 , and (1 − ε)2 ≥ 1
2 so 3ε2

(1−ε)2
≤ ε

5 ,

implying the desired result.

For the sake of completeness, we derive a bound for the statistical distance between two multivariate
Poisson processes. (We are unaware of a similar derivation in the literature, but surely one exists. Please let
us know if there is a suitable reference!)

We present the univariate case first.

Lemma 14. The statistical distance between two univariate Poisson distributions with parameters λ, λ′ is
bounded as

|Poi(λ)− Poi(λ′)| ≤ 2
|λ− λ′|√

1 + max{λ, λ′}
.

Proof. Without loss of generality, assume λ ≤ λ′. We have two cases.
Case 1: λ′ ≥ 1 We estimate the distance via the relative entropy of Poi(λ) and Poi(λ′), defined for general
distributions p, p′ as

D(p||p′) =
∑

i

p(i) loge

p(i)

p′(i)
.

We compute the relative entropy of the Poisson processes as

D(Poi(λ)||Poi(λ′)) =
∑

c≥0

poi(c;λ) loge
e−λλc

e−λ′λ′c =
∑

c≥0

poi(c;λ)

[
λ′ − λ + c loge

λ

λ′

]
= λ′ − λ + λ loge

λ

λ′ ,
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where the last equality is because the Poisson distribution of parameter λ has total weight 1 and expected
value λ. Further, since loge x ≤ x− 1 for all x we have

λ′ − λ + λ loge

λ

λ′ ≤ λ′ − λ + λ loge

λ

λ′ − λ(loge

λ

λ′ −
λ

λ′ + 1) =
(λ′ − λ)2

λ′ .

Thus D(Poi(λ)||Poi(λ′)) ≤ (λ′−λ)2

λ′ . We recall that statistical distance is related to the relative entropy as

|p− p′| ≤
√

2D(p||p′) (see [11] p. 300), and thus we have |Poi(λ)− Poi(λ′)| ≤
√

2|λ−λ′|√
λ′ . Since λ′ ≥ 1

2(1 + λ′)

for λ′ ≥ 1 we conclude |Poi(λ)− Poi(λ′)| ≤ 2 |λ−λ′|√
1+λ′ , as desired.

Case 2: λ′ < 1 We note that for i ≥ 1 we have poi(0;λ) − poi(0;λ′) = e−λ − eλ′ ≤ λ′ − λ where the last
inequality is because the function ex has derivative at most 1 for x ∈ [λ, λ′], since λ ≤ λ′ < 1. Further,
we note that poi(i;λ) − poi(i;λ′) = 1

i! [e
−λλi − eλ′

λi < 0 where the last inequality is because the function
f(x) = e−xxi has derivative e−xxi−1(i− x) which is positive for x ∈ [λ, λ′] since both are less than 1. Since
both Poisson processes have total weight 1, the negative difference between the i ≥ 1 terms exactly balances
the positive difference between the i = 0 terms, and thus the statistical difference equals this difference,
which we bounded as λ′ − λ.

Thus, |Poi(λ)−Poi(λ′)| ≤ λ′− λ < 2 |λ−λ′|√
1+λ′ as desired, and we have proven the lemma for both cases.

We generalize this lemma to the multivariate case by means of the following:

Lemma 15. Statistical distance is subadditive on independent distributions: given multivariate distributions
p(i, j) = p1(i) · p2(j) and p′(i, j) = p′1(i) · p′2(j) we have |p− p′| ≤ |p1 − p′1|+ |p2 − p′2|.

Proof. We have

|p − p′| =
∑

i,j

|p1(i)p2(j) − p′1(i)p
′
2(j)|

≤
∑

i,j

|p1(i)p2(j) − p′1(i)p2(j)| +
∑

i,j

|p′1(i)p2(j)− p′1(i)p
′
2(j)| = |p1 − p′1|+ |p2 − p′2|.

Lemma 16. The statistical distance between two multivariate Poisson distributions with parameters λ, λ′ is
bounded as

|Poi(λ)− Poi(λ′)| ≤ 2
∑

d

|λd − λ′
d|√

1 + max{λd, λ
′
d}

.

Proof. Immediate from repeated application of Lemmas 14 and 15.

Combining Lemmas 5 and 16 almost achieves the Wishful Thinking Theorem.

Lemma 17. Given two probability distribution pairs p+
1 , p+

2 , p−1 , p−2 , a positive number ε and integer k such

that each frequency is at most ε
k , let ρ+, ρ− be the matrices such that Dk

p+
1 ,p+

2

= Mρ+

and Dk
p−1 ,p−2

= Mρ−,

and let λ+
d =

∑
i ρ

+(i, d), λ−
d =

∑
i ρ−(i, d). Then

|Dk
p1,p2

−Dk
p1,p2
| ≤ 40ε + 2

∑

d

|λ+(d) − λ−(d)|√
1 + max{λ+(d), λ−(d)}

. (1)

Proof. Immediate: if ε < 1
30 then apply Lemma 5 to both Dk

p+
1 ,p+

2

and Dk
p−1 ,p−2

to approximate them by Poisson

processes Poi(λ+) and Poi(λ−) respectively, bound |Poi(λ+) − Poi(λ−)| via Lemma 5, and combine these
bounds via the triangle inequality; otherwise 40ε > 1 ≥ |Dk

p+
1 ,p+

2

−Dk
p−1 ,p−2

| trivially.
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To prove the Wishful Thinking Theorem it remains to reexpress this bound in terms of the moments m
instead of the Poisson coefficients λ.

Proof of the Wishful Thinking Theorem. We note that if ε ≥ 1
40 the theorem is trivially true. In what

follows we assume the converse.
We start from Equation 1, expanding both the numerator and denominator of the last term via Taylor

series expansions. Recall the definition λa,b = 1
a!b!

∑
i k

a+be−k(p1(i)+p2(i))p1(i)
ap2(i)

b. For the numerator of
the term d = (a, b) we have from Taylor expansions and the triangle inequality that

|λa,b − λ′
a,b| =

k(a+b)/2

√
a!b!

∣∣∣∣∣
∑

i

[
e−k(p1(i)+p2(i))/2p1(i)

ap2(i)
b − e−k(p′1(i)+p′2(i))p′1(i)

ap′2(i)
b
]∣∣∣∣∣

=
1

a!b!

∣∣∣∣∣∣

∑

j

∑

γ,δ

(−1)γ+δ

γ!δ!
ka+b+γ+δ

[
p1(i)

a+γp2(i)
b+γ − p′1(i)

a+γp′2(i)
b+γ

]
∣∣∣∣∣∣

=
1

a!b!

∣∣∣∣∣∣

∑

γ,δ

(−1)γ+δ

γ!δ!
[m+

a+γ,b+δ −m−
a+γ,b+δ]

∣∣∣∣∣∣

≤ 1

a!b!

∑

γ,δ

1

γ!δ!

∣∣∣m+
a+γ,b+δ −m−

a+γ,b+δ

∣∣∣ .

We now bound terms in the denominator of Equation 1. Note that in the definition of λa,b and the fact

that p1(i), p2(i) ≤ 1
10k we have e−k(p1(i)+p2(i)) ≥ e−

2
10 > .92. Thus λa,b ≥ .92

a!b!m
+
a,b by definition of m, with

corresponding expression holding for λ′ and m−. Thus we bound terms in the denominator of Equation 1 as

√
1 + max{λa,b, λ

′
a,b} ≥

.9√
a!b!

√
1 + max{m+

a,b,m
−
a,b}.

Combining the bounds for the numerator and denominator, noting that (since p1(i), p2(i) ≤ 1
k ) both m+

and m− are decreasing functions of a and b, and making the variable substitutions µ = a + γ, and ν = b + δ
yields

∑

a,b

|λa,b − λ′
a,b|√

1 + max{λa,b, λ
′
a,b}
≤

∑

a,b

∑

γ,δ

∣∣∣m+
a+γ,b+δ −m−

a+γ,b+δ

∣∣∣

.9γ!δ!
√

a!b!
√

1 + max{m+
a,b,m

−
a,b}

≤
∑

a,b

∑

γ,δ

∣∣∣m+
a+γ,b+δ −m−

a+γ,b+δ

∣∣∣

.9γ!δ!
√

a!b!
√

1 + max{m+
a+γ,b+δ,m

−
a+γ,b+δ}

=
∑

µ,ν

∑

γ≤µ

δ≤ν

∣∣m+
µ,ν −m−

µ,ν

∣∣

.9γ!δ!
√

(µ− γ)!(ν − δ)!
√

1 + max{m+
µ,ν ,m−

µ,ν}

=
∑

µ,ν

∣∣m+
µ,ν −m−

µ,ν

∣∣
√

1 + max{m+
µ,ν ,m

−
µ,ν}

1

.9




∑

γ≤µ

1

γ!
√

(µ− γ)!







∑

δ≤ν

1

δ!
√

(ν − δ)!


 .

We bound the expression
∑

γ≤µ
1

γ!
√

(µ−γ)!
as follows: note that the sum of the squares of the terms is

bounded as
∑

γ≤µ
1

γ!2(µ−γ)! ≤
µ!
µ!

∑
γ≤µ

2
2γγ!(µ−γ)! = 21.5µ

µ! by the binomial theorem. Having bounding the

sum of the squares of the terms, Cauchy-Schwarz bounds the original sum as
√

2(µ + 1)1.5µ

µ! . We note

that µ! ≥ bµ2 c!2 · 2n/2, as can be seen by comparing the elements of each factorial term-by-term. Thus
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√
2(µ + 1)1.5µ

µ! ≤ 1
bµ

2
c! for large enough µ; evaluating for small µ we see that in fact

√
2(µ + 1)1.5µ

µ! ≤ 3
bµ

2
c!

for all µ, which is our bound on the γ sum; consequently the “δ ≤ ν” sum is bounded by 3
b ν

2
c! , and since

1
.93 · 3 = 10 we have the theorem.

We will find it convenient to work with a finite subset of the moments in the Section 6, so we prove as a
corollary to the Wishful Thinking Theorem that if we have an even tighter bound on the frequencies of the
elements, then we may essentially ignore all moments beyond the first

√
log n.

Corollary 1. Given probability distribution pairs p+
1 , p+

2 and p−1 , p−2 and positive number ε ≤ 1
10·2

√
log n

and
integer k such that each probability of any element in each distribution is bounded by ε

k , define the (a, b)-order
moments as m+

a,b = ka+b
∑

i p
+
1 (i)a · p+

2 (i)b and m−
a,b = ka+b

∑
i p

−
1 (i)a · p−2 (i)b. Then

|Dk
p+
1 ,p+

2

−Dk
p−1 ,p−2

| ≤ .04 + 40ε + 10
∑

2≤a+b≤
√

log n

|m+
a,b −m−

a,b|

ba2c!b b
2c!

√
1 + max{m+

a,b,m
−
a,b}

.

Proof. We show that this follows from the bound of the Wishful Thinking Theorem. We note that for any
distributions p+

1 , p+
2 , p−1 , p−2 , we have m+

0,0 = m−
0,0 = n, and m+

1,0 = m+
0,1 = m−

1,0 = m−
0,1 = k, so thus the terms

for a + b < 2 vanish. To bound the terms for a + b > max{2,√log n} we note that for such an a, b we have

m+
a,b ≤ ka+bn( ε

k )a+b = nεa+b ≤ .1a+b Thus, since
|m+

a,b−m−
a,b|

ba
2
c!b b

2
c!

√
1+max{m+

a,b,m−
a,b}
≤ |m+

a,b − m−
a,b|, we can bound

the contribution of the (a, b) term by .1a+b, and the sum of these terms by
∑

a+b≥2 .1a+b < .04, yielding the
corollary.

Proof of Theorem 1. Let x, y be distributions on [n] defined as follows: for 1 ≤ i ≤ n2/3 let xi = yi = 1
2n2/3 ;

we refer to these elements as the “large” elements. For n/2 < i ≤ 3/4n let xi = 2
n ; and for 3n/4 < i ≤ n let

yi = 2
n ; we refer to these indices as the “small” elements. The remaining elements of x and y are zero.

Let p+
1 = p+

2 = p−1 = x, and p−2 = y and k = n2/3

800 . We note that each frequency defined is at most
1

1600k , and we let ε = 1
1600 . Let m+

a,b and m−
a,b be defined as in the Wishful Thinking Theorem. We note that

since x and y are permutations of each other, whenever one of a = 0 or b = 0 we have m+
a,b = m−

a,b, so the
corresponding terms from the Wishful Thinking Theorem vanish. For the remaining terms, a, b ≥ 1 and we

explicitly compute m−
a,b = n2/3

1600a+b and m+
a,b = n2/3

1600a+b + n
4(400n1/3)a+b , so thus

∑

a,b

|m+
a,b −m−

a,b|√
1 + max{m+

a,b,m
−
a,b}
≤

∑

a,b≥1

n
4(400n1/3)a+b

√
n2/3

1600a+b

=
∑

a,b≥1

n2/3

4(10n1/3)a+b
=

1

400

∑

a,b

1

(10n1/3)a+b

≤ 1

400

∑

a,b

1

10a+b
< .003.

Thus the Wishful Thinking Theorem yields |Dk
p+
1 ,p+

2

− Dk
p−1 ,p−2

| ≤ 40ε + 10 · .003 = .055 < 1
12 . From the

Positive-Negative Distance Lemma we conclude that no tester can distinguish (p+
1 , p+

2 ) from (p−1 , p−2 ) in k
samples, as desired.

Appendix to Section 6

Proving the Matching Moments Theorem: Because matrix inversion commutes with the tensor product,
to bound inv(L

√
log n) we need only bound elements of inv(`

√
log n) and square the answer. We make use of

a standard (if slightly unwieldy) formula to compute the inverse of Vandermonde matrices:
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Lemma 18 (From [14]). The inverse of the Vandermonde matrix generated by z has (i, j)th entry

(−1)i+1
∑

1≤s1<s2<...<sµ−i≤µ

∀q,sq 6=j

µ−i∏

q=1

zsq

∏

q∈{1,...,µ}−{j}
(zq − zj)

. (2)

We apply this lemma to bound the inverse of `µ and from there, Lµ.

Lemma 19. Each element of inv(`µ) has magnitude at most (2e)µ.

Proof. We bound the magnitudes of the numerator and denominator of Equation 2 when z = {1, . . . , µ}. Note
that the magnitude of the denominator equals (j− 1)!(µ− j)!. We bound this using Stirling’s approximation
to the factorial function, n! ≥ S(n) ,

√
2πnnn

en , which we note has convex logarithm. Thus

(j − 1)!(µ− j)! ≥ 1

µ
j!(µ− j)! ≥ 1

µ
S(j)S(µ − j) ≥ 1

µ
S(

µ

2
)2 = π

µµ

(2e)µ
≥ µµ

(2e)µ
,

where the third inequality is Jensen’s inequality, applied to the logarithm of S.
The sum in the numerator has at most

( µ
µ−i

)
=

(µ
i

)
≤ µi terms, where the summand is a product

bounded by µµ−i, so the numerator has magnitude at most µµ. Comparing our bounds on the numerator
and denominator yields the lemma.

Lemma 20. Each element of inv(Lµ) has magnitude at most 30µ.

Proof. Since matrix inversion and tensor products commute, inv(Lµ) = inv(`µ) ⊗ inv(`µ), immediately
yielding this lemma as a corollary of Lemma 19, since (2µ)2 < 30.

Definition 18. Define the function M mapping distribution pairs p1, p2 on n elements and real numbers
0 < w ≤ 1 and k < n to distribution pairs (p̄1, p̄2) ← Mk

w(p1, p2) via the following sequence of modifications
to p1, p2

1. Let w′ = w
6 ; let I be the set of bw′nc indices i such that p1(i) + p2(i) is smallest. Change p1, p2 to

the nearest distribution pair p̄1, p̄2 such that ∀i ∈ I, p̄1(i) = p̄2(i) = 0, ∀i /∈ I, p̄1(i), p̄2(i) ∈ [0, 1
k ], and∑

i p̄1(i) =
∑

i p̄2(i) = 1− w′.

2. Let µ = 1 + b√log nc, and let κ = kw′

µ230µ ; for integers 0 ≤ a, b ≤ µ− 1 let ma,b =
∑

i p̄1(i)
a · p̄2(i)

b · κa+b

be the κ-based moments of this modified vector, with m0,0 = m1,0 = m0,1 = 0 being defined separately.
Let c = inv(Lµ) ·m.

3. Let m̄a,b be an upper-bound on m which has value 0 when a + b < 2 and value κ2

k otherwise. Let L̄µ

be an element-by-element upper-bound on the magnitudes of the elements in inv(Lµ): a matrix of the
same size as Lµ with entries 30µ, and let c̄ = L̄µ · m̄.

4. For each 0 ≤ γ, δ < µ choose bc̄(γ, δ)−c(γ, δ)c indices i ∈ I with zero entries and let p̄1(i) = γ
κ , p̄2(i) = δ

κ
for these indices.

5. Make
∑

p̄1(i) = 1 by filling in the unassigned entries p̄1(i) for i ∈ I with identical constants, and
perform the corresponding operation on p̄2.

Define m̃ , f(w, k) to be the (k-based) moments of the result of applying the above procedure to a pair of
uniform distributions.
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Proof of the Matching Moments Theorem. We show that M and f from Definition 18 satisfy the con-
ditions of the theorem. We examine each stage of Definition 18 in turn, showing that certain invariants are
satisfied.
1. Consider the set of indices I defined in Stage 1. We note that since

∑
i p1(i) + p2(i) = 2, the bw′nc

smallest indices, I must have total frequency at most 2 bw′nc
n . We note that if we ignore the condition that

p̄1(i), p̄2(i) ∈ [0, 1
k ], then clearly the conditions have a solution where |p1− p̄1|+ |p2− p̄2| ≤ 4w′ since zeroing

out the entries i ∈ I changes the distributions by at most 2w′ (from above), each distribution now has total
weight in [1− 2w′, 1], so changing each distribution from here so as to have total weight 1−w′ changes each
distribution by at most w̄. After this process, the average frequency of each index not in I is at most 1

n in
either distribution. Since 1

n ≤ 1
k we can find a solution with all the frequencies at most 1

k that is as close to
p1, p2 as the above by shifting weight from those elements where p̄∗(i) > 1

n to elements where p̄∗(i) < 1
n .

2+3. We note that m̄ is indeed an upper-bound on m: the a + b < 2 cases are by definition; otherwise,
without loss of generality assume a ≥ 1, in which case ma,b ≤

∑
i p̄1(i)(

1
k )a+b−1 · κa+b ≤ κ2

k

∑
i p̄1(i) ≤ κ2

k , as
desired. The fact that L̄µ bounds the magnitudes of the elements of inv(Lµ) is Lemma 20. Since m̄ and L̄µ

respectively bound the magnitudes of inv(Lµ) and m, their product c̄ bounds the magnitudes of c.
4. Since c̄ upper-bounds c, each of the expressions bc̄(γ, δ) − c(γ, δ)c is non-negative. To show that the new
entries “fit in I”, we bound the total frequency contribution of the new elements in the first distribution.
Note that this equals 1

κ times the κ-based (1, 0) moment of the portion of the distribution in I, which we
bound via Lemma 7 as the (1, 0) entry of 1

κLµ · bc̄ − cc ≤ 1
κ [Lµ · (c̄ − c)] = 1

κLµ · c̄, all of whose entries

equal (µ2 − 3)30µ κ
k = (µ2−3)w′

µ2 ≤ w′. Similarly, the total number of entries added to either distribution

is at most
∑

γ,δ c̄(γ, δ) − c(γ, δ), which is the (0, 0) entry of Lµ · (c̄ − c) = Lµ · c̄, all of whose entries are

(µ2 − 3)30µ κ2

k ≤ w′n
30 ≤ bw′nc = |I|, so thus the new entries “fit”.

We estimate the moments of the distribution again via another application of Lemma 7: note that (for
a + b ≥ 2) the moments of the portion of the distribution outside I are described by m, while the moments
for the portion in I are described by Lemma 7 as Lµ · bc̄− cc. Letting Lµ

(a,b) denote the (a, b) row of Lµ, we

note that Lµ · bc̄− cc is at most |Lµ
(a,b)| less than Lµ · (c̄− c) = Lµ · c̄−m. Thus the κ-based moments for the

entirety of p̄1, p̄2 are between Lµ · c̄ and |Lµ
(a,b)| less than this (for a + b ≥ 2).

5. We bound the change to the moments induced by the fifth step. We note that the sum of the row (0, 0) of

Lµ equals µ2, and the sum of either the (1, 0) or (0, 1) rows of Lµ equals µ3(µ+1)
2 ≤ µ4. Let x = (µ2−3)w′

µ2 . A
tighter analysis of the bounds found in the previous step yields that the number of entries added in Step 4 is
between the (0, 0) entries of Lµ · (c̄− c− 1) and Lµ · (c̄− c), namely in the range [xκ− µ2, xκ], and the total
weight added to p̄1 in Step 4 is similarly between 1

κ times the (1, 0) entries of Lµ · (c̄− c− 1) and Lµ · (c̄− c),

namely in the range [x− µ4

κ , x]. Thus the total number of entries of I unallocated until Step 5 is in the range
[bw′nc − xκ, bw′nc − xκ + µ2] and the amount of weight added to the first distribution in Step 5 is in the

range [ 3
µ2 w′, 3

µ2 w′ + µ4

κ ]. We note that, if we represent these last two intervals as [y, y′] and [z, z′] respectively,

then the κ-based (a, b) moment will be between za+b

y′a+b−1 κa+b and z′a+b

ya+b−1 κa+b, whose ratio is bounded as

(z/z′)a+b(y/y′)a+b−1 ≥ 1 − (a + b)[z
′−z
z′ + y′−y

y′ ]. Here we have y′ = bw′nc − xκ ≥ w′n − 1 − w′n
30 ≥ w′n

2 and

z′ = 3
µ2 w′ we have that the ratio between the minimum and maximum contributions of Step 5 to this moment

is at least 1−(a+b)[ 2µ2

w′n + µ6

3w′κ ] ≥ 1−(a+b) µ6

w′κ . We note that since 2 ≤ a+b ≤ µ, the maximum contribution

is at most z′a+b

ya+b−1 κa+b ≤ (4w′/µ2)a+b

(w′n/2)a+b−1 κa+b ≤ 8a+bw′κ
µ4 (κ

n)a+b−1 ≤ 8µw′κ
µ4

1
µ230µ , and thus the difference between

the maximum and minimum contributions is at most (a + b) µ6

w′κ
8µw′κ

µ4
1

µ230µ ≤ µ7

w′κ
8µw′κ
µ68µ2µ ≤ 1.

Thus, for any fixed a, b such that 2 ≤ a + b < µ the difference between the maximum and minimum
κ-based moments reached by this construction, from any starting distribution, is at most 1 + |Lµ

(a,b)| (recall
that for a + b < 2 the moments are invariant). Recall that the elements of the (a, b) row of Lµ are values
ta · ub for 1 ≤ t, u ≤ µ, so thus there are µ2 integer elements, all at most µa+b and some strictly less, so
1 + |Lµ

(a,b)| ≤ µa+b+2.

To convert this to a bound on the k̄-based moments we multiply by ( k̄
κ)a+b. We have k̄

κ = kwµ230µ

kw′·150·26
√

log n
≥
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µ230µ

15·64µ ≥ 1
100µ2 , where the last equality follows by inspection for small integer values of µ. Thus the bound

on the variation of the k̄-based moments is µa+b+2( 1
100µ2 )a+b ≤ 1

10000µ2 for a + b ≥ 2, and 0 for a + b < 2, as
desired.

We note that the other two results of the theorem follow easily from the construction: by construction,
the maximum frequency in p̄1, p̄2 is at most µ

κ ≤ 1
k̄
, as desired. And we note that we showed that Step

1 modifies the distributions by at most 4w′; since at the end of Step 1 the distributions have total weight
2 − 2w′ and we only increase frequencies in the remaining steps, the total change is at most 6w′ = w, as
desired.

Appendix to Section 7

Proof of the Low Frequency Blindness Theorem. Assume for the sake of contradiction that there were
a tester T that distinguishes between π < a + ε and π > b− ε in kδ

100000·26
√

log n
samples.

Let H be the set of k-high-frequency indices of (p−1 , p−2 ) (which are identical to those of (p+
1 , p+

2 ) by
definition), and let L = [n] − H. Let `1 = |p1(L)|, namely the probability that p1 draws a low-frequency
index, and let `2 = |p2(L)|. Consider the following property π′ on distributions (pL

1 , pL
2 ) with support L:

construct the distribution p1 such that p1(L) = `1p
L
1 and p1(H) = p−1 (H), with p2 defined analogously, and

return π(p1, p2).
We construct a tester for π′ based on T . From Lemma 10 we conclude that the Poissonized version of T

is a tester with soundness 1
12 . We note that by Lemma 11, when the Poissonized T is applied to distributions

(p1, p2) constructed as above, the distribution of samples from p1 that lie in L is identical to that of drawing
t ← Poi(k · `1) and drawing t independent samples from pL

1 , with corresponding statements holding for p2

and the H indices. Thus letting ` = max{`1, `2} we may define a k`-Poissonized tester T ′ for π′ as follows,
assuming without loss of generality that `1 ≥ `2:

• Draw integers tH1 ← Poi(k(1− `1)), t
H
2 ← Poi(k(1− `2)), and then simulate drawing tH1 samples from (a

rescaled) p−1 (H), and tH2 samples from (a rescaled) p−2 (H).

• For each sample from pL
2 with probability 1− `2

` discard it.

• Run the Poissonized T on all the simulated samples, the remaining samples from pL
2 and the (unaltered)

samples from pL
1 .

By construction this procedure exactly simulates how a k-Poissonized T would run on (p1, p2), so thus T ′

is a tester for π′ with soundness at least 1
12 .

To reach the desired contradiction, we now show that in fact no such tester can exist. Note that by
definition, π′(p−1 (L), p−2 (L)) < a and π′(p+

1 (L), p+
2 (L)) > b. Consider the distributions obtained by applying

the Moments Matching Theorem to each of these pairs. Explicitly, letting w = δ we define (p̄−1 (L), p̄−2 (L))←
Mk`

δ (p−1 (L), p−2 (L)) and (p̄+
1 (L), p̄+

2 (L)) ← Mk`
δ (p+

1 (L), p+
2 (L)). From the Moments Matching Theorem’s

three conclusions we have (1) that the modified distributions are k̄ = kδ
100·26

√
log n

-low frequency; (2) that the
statistical distance between each modified pair and the corresponding original pair is at most δ, which, since
π is (ε, δ)-weakly-continuous implies that π′(p̄−1 (L), p̄−2 (L)) < a + ε and π′(p̄+

1 (L), p̄+
2 (L)) > b − ε; and (3)

that that the k̄-based moments of (p̄−1 (L), p̄−2 (L)) and (p̄+
1 (L), p̄+

2 (L)) up to degree
√

log n are equal to within
2

10000 log n . Applying the corollary to the wishful thinking theorem for k equal to the number of samples T ′

takes, namely k̄
1000 , we have that the statistical distance between the distributions of samples returned when

testing (p−1 (L), p−2 (L)) versus (p−1 (L), p−2 (L)) is at most .04 + 40
1000 + 10

∑
a+b≤

√
log n

2
10000 log n ≤ .081, which

by the Positive-Negative Distance Lemma implies that T ′ cannot exist, the desired contradiction.

Proof of Lemma 8. Let p+ and p− be distributions at most 1
2 log n far apart. Then the difference in their
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entropies is bounded as

∣∣∣∣∣
∑

i

p+(i) log p+(i)− p−(i) log p−(i)

∣∣∣∣∣ ≤
∑

i

|p+(i) log p+(i)− p−(i) log p−(i)|

≤
∑

i

−|p+(i)− p−(i)| log |p+(i)− p−(i)|

≤ −|p+ − p−| log
[

1

n
|p+ − p−|

]
≤ (2 log n)|p+ − p−| ≤ 1,

where the first inequality is the triangle inequality, the second inequality results from the fact that the
function x log x is convex, the third inequality is Jensen’s inequality applied to the convex function x log x,
and the last inequality is from the fact that |p+ − p−| ≥ 1

2 log n ≥ 1
n .
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