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Abstract

We study graphical games where the payoff function of each player satisfies one of four types of
symmetries in the actions of his neighbors. We establish that deciding the existence of a pure Nash equi-
librium is NP-hard in graphical games with each of the four types of symmetry. Using a characterization
of games with pure equilibria in terms of even cycles in the neighborhood graph, as well as a connec-
tion to a generalized satisfiability problem, we identify tractable subclasses of the games satisfying the
most restrictive type of symmetry. In the process, we characterize a satisfiability problem that remains
NP-hard in the presence of a matching, a result that may be of independent interest. Finally, games with
symmetries of two of the four types are shown to possess a symmetric mixedequilibrium which can
be computed in polynomial time. We have thus identified a class of games where the pure equilibrium
problem is computationally harder than the mixed equilibrium problem, unless P=NP.

1 Introduction

The idea underlying graphical games (Kearns et al., 2001) isthat in games with a large number of players,
the payoff of any particular player will often depend only on the actions of a small number of other players
in a local neighborhood. A graphical game is any game in strategic form such that there exists a (directed
or undirected) graph on the set of players, and the payoff of each player depends only on the actions of his
neighbors in this graph. If neighborhood sizes are bounded,graphical games can be represented using space
polynomial in the number of players.

One of the best-known solution concepts for strategic gamesis Nash equilibrium (Nash, 1951). A vector
of strategies, one for each player, is called Nash equilibrium if no player can increase his (expected) payoff

by unilaterally changing his strategy.

Problem and Related Work The computational problem of finding Nash equilibria in graphical games
with degree bounded byd ≥ 3 has recently been shown equivalent to the same problem for generaln-
player games,n ≥ 4 (Goldberg and Papadimitriou, 2006), and thus complete forthe complexity class
PPAD (Daskalakis et al., 2006). It is not surprising that thegraph structure plays an important role for the
complexity of the equilibrium problem. PPAD-hardness holds even if the underlying graph has constant
pathwidth, but becomes tractable for graphs of degree 2,i.e., for paths(Elkind et al., 2006). All known

∗This material is based upon work supported by the Deutsche Forschungsgemeinschaft under grant BR 2312/3-2.

1

Electronic Colloquium on Computational Complexity, Report No. 136 (2007)

ISSN 1433-8092




algorithms for the more general case oftreeshave exponential worst-case running time even on trees with
bounded-degree and pathwidth 2.

A different line of research has investigated the problem of deciding the existence ofpureNash equilib-
ria, i.e., equilibria where the support of each strategy contains only a single action. The pure equilibrium
problem has been shown NP-complete for graphical games on directed graphs with outdegree bounded
by d ≥ 2 and with only two actions for each player and two different payoffs, and tractable for graphs with
bounded treewidth (Gottlob et al., 2005; Fischer et al., 2006). Unlike Nash equilibria inmixedstrategies,i.e.,
probabilistic combinations of actions, pure Nash equilibria are not guaranteed to exist. They nevertheless
form an interesting subset of equilibria for three reasons.First, requiring randomization in order to reach a
stable outcome has been criticized on various grounds. In multi-player games, where action probabilities in
equilibrium can be irrational numbers, randomization is particularly questionable. Secondly, the computa-
tion of pure equilibria, if they exist, may be tractable in cases where that of mixed ones is not. Finally, pure
equilibria as computational objects are usually much smaller in size than mixed ones.

Symmetric games are characterized by the fact that players can not, or need not, distinguish between
other players. Brandt et al. (2007) analyze four different classes of symmetric games, and show that the
pure equilibrium problem is tractable if the number of actions is a constant, and complete for NP or PLS,
respectively, if the number of actions grows logarithmically in the number of players. One of the classes
is guaranteed to possess a symmetric equilibrium,i.e., one where all players play the same strategy. This
equilibrium is not necessarily pure, but can be found efficiently if the number of actions is not too large
compared to the number of players. A strictly larger class has recently been found to still admit a PTAS,
i.e., an efficient way to compute approximate equilibria (Daskalakis and Papadimitriou, 2007).

This fuels hope that tractability results can be obtained for larger classes of games satisfying some
kind of symmetry. In this regard, Daskalakis and Papadimitriou (2005) consider games on ad-dimensional
undirected torus or grid with payoff functions that are identical for all players and symmetric in the actions of
the players in the neighborhood (a condition that will be calledstrong symmetryin this paper). In particular,
they show that deciding the existence of a pure Nash equilibrium in such a game is NL-complete when
d = 1 and NEXP-complete ford ≥ 2. In this paper, we investigate the pure equilibrium problems in
graphical games that satisfying the kinds of symmetries considered by Brandt et al. (2007). Our work can
thus be seen as a refinement of the work of Gottlob et al. (2005)and of Daskalakis and Papadimitriou (2005).

Paper Structure and Results We begin by formally defining the necessary game-theoretic concepts in
Section 2. In Section 3, we then investigate the computational complexity of the pure equilibrium problem in
graphical games satisfying four different types of symmetries. The question for tractable classes of graphical
games is answered mostly in the negative. For three of the four symmetry classes, deciding the existence
of a pure equilibrium is NP-hard already for the case of two actions, two payoffs, and neighborhoods of
size two. Assuming the most restricted type of symmetry, theproblem becomes NP-hard when there are
three different payoffs, or neighborhoods of size four. The latter class has some interesting connections to
the problem of finding even cycles in a directed graph, and to generalized satisfiability. In particular, we
identify tractable classes of games by showing that they correspond to graphs with even cycles, or to tractable
satisfiability instances. As a corollary, we a satisfiability problem that remains NP-hard in the presence of a
matching,i.e., a bijective mapping between variables and clauses. We present this result, which may be of
independent interest, in Section 4. Finally, in Section 5, we show that mixed equilibria in games with two
of the above symmetry types can be found in polynomial time ifthe number of actions grows only slowly
in the neighborhood size. Quite interestingly, there exists a class of games where deciding the existence of
a pure equilibrium problem is likely to be harder than findinga mixed equilibrium.

We assume the reader to be familiar with the well-known complexity classes P and NP and the notion
of polynomial-time reducibility (see,e.g., Papadimitriou, 1994). P and NP are the classes of problems

2



that can be solved in polynomial time by deterministic and nondeterministic Turing machines, respectively.
Furthermore, #P is the class of counting problems associated with polynomially balanced polynomial-time
decidable relations.

2 Preliminaries

An accepted way to model situations of strategic interaction is by means of a normal-form game (see,e.g.,
Luce and Raiffa, 1957).

Definition 1 (normal-form game) A game in normal-formis a tupleΓ = (N, (Ai)i∈N, (pi)i∈N) where N is
a set of playersand for each player i∈ N, Ai is a nonempty set ofactionsavailable to player i, and
pi : (
�

i∈N Ai)→ R is a function mapping each action profile of the game,i.e., combination of actions, to a
real-valuedpayoff for player i.

A vector s ∈
�

i∈N Ai of actions is also called a profile ofpure strategies. This concept can be generalized
to (mixed) strategy profiles s∈ S =

�
i∈N Si , by letting players randomize over their actions. We haveSi

denote the set of probability distributions over playeri’s actions, or(mixed) strategiesavailable to playeri.
We further writen = |N| for the number of players in a game,si for the ith strategy in profiles, andsC for
the vector of strategies for all players in a subsetC ⊆ N.

A graphical game is given by a graph on the set of players, suchthat the payoff of a player only depends
only on his own action, and on the actions of his neighbors in the graph. In the following definition, the
underlying graph is directed, corresponding to a neighborhood relation that is not necessarily symmetric.

Definition 2 (graphical game) Let Γ = (N, (Ai )i∈N, (pi)i∈N) be a normal-form game,ν : N → 2N. Γ is a
graphical gamewith neighborhoodν if for all i ∈ N, s, s′ ∈ AN, pi(s) = pi(s′) whenever ŝν(i) = s′

ν̂(i), where
ν̂(i) = ν(i) ∪ {i}.

A gameΓ has k-bounded neighborhoods if there existsν : N → 2N such thatΓ is a graphical game with
neighborhoodν and for all i ∈ N, |ν(i)| ≤ k.

Let us now turn to symmetries in games as considered by Brandtet al. (2007). A normal-form game is
symmetric if payoffs depend on the number of players playing the different actions. For ease of exposition,
we will assume that all players have the same set of actions attheir disposal, and not only those that are
neighbors of the same player. It should be noted that this does not restrict the expressiveness of our results.
The following definition uses a notion introduced by Parikh (1966) in the context of context-free languages.
Let A be a set of actions. Thecommutative imageof an action profiles ∈ AN is given by #(s) = (#(a, s))a∈A

where #(a, s) = |{ i ∈ N | si = a }|.

Definition 3 (symmetries) Let Γ = (N, (Ai )i∈N, (pi)i∈N) be a graphical game, A a set of actions such that
for all i ∈ N, Ai = A. Γ is said to satisfy

• weak symmetryif for all i ∈ N and all s, s′ ∈ AN, pi(s) = pi(s) whenever si = s′i and for all a ∈ A,
#(sν(i), a) = #(s′

ν(i), a);

• strong symmetryif for all i , j ∈ N and all s, s′ ∈ AN, pi(s) = p j(s′) whenever si = s′j and for all
a ∈ A, #(sν(i), a) = #(s′

ν( j), a);

• weak anonymityif for all i ∈ N and all s, s′ ∈ AN, pi(s) = pi(s′) whenever for all a∈ A, #(sν̂(i), a) =
#(s′
ν̂(i), a); and
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• strong anonymityif for all i , j ∈ N and all s, s′ ∈ AN, pi(s) = p j(s′) whenever for all a∈ A,
#(sν̂(i), a) = #(s′

ν̂( j), a).

Weak symmetry has recently been referred to as anonymity by some computer scientists. We stick with
the distinction between weak and strong symmetry used in thegame theory literature, and use the term
anonymity to refer to the remaining two classes. When talking about games with anonymity, we write
pi( j) = pi(s) where #(sν̂(i), 1) = j for the payoff of player i when j players in his neighborhood, includingi
himself, play action 1, andpi = (pi( j))0≤ j≤ν̂(i) for the vector of payoffs for the possible values ofj.

One of the best-known solution concepts for strategic gamesis Nash equilibrium (Nash, 1951). In a
Nash equilibrium, no player is able to increase his payoff by unilaterally changing his strategy.

Definition 4 (Nash equilibrium) A strategy profile s∈ S is called aNash equilibriumif for each player
i ∈ N and each strategy s′i ∈ Si, pi(s) ≥ pi((sN\{i}, s′i )). A Nash equilibrium is calledpure if it is a pure
strategy profile.

3 Complexity of the Pure Equilibrium Problem

For graphical games with neighborhoods of size one, symmetries do not impose any restrictions. The pure
equilibrium problem for such games can be decided in polynomial time (see,e.g., Fischer et al., 2006). On
the other hand, the game used by Schoenebeck and Vadhan (2006) to show NP-completeness of the pure
equilibrium problem in general graphical games satisfies weak symmetry. We thus have the following initial
result.

Corollary 1 Deciding whether a graphical game has a pure Nash equilibrium is NP-complete, even if every
player has only two neighbors, two actions, and two different payoffs, and when restricted to games with
weak symmetry.

3.1 Strong Symmetry and Strong Anonymity

We now consider a more restrictive kind of symmetry. In particular, the following theorem concerns games
where the utility functions of all players are identical. The proof of this theorem is similar to a construction
used by Schoenebeck and Vadhan (2006) where each gate of a Boolean circuit corresponds to a player in a
graphical game. Depending on the output of the circuit additional players either play a game with or without
a pure equilibrium. The greatest difficulty in our case is to model the circuit using only a single payoff
function.

Theorem 1 Deciding whether a graphical game has a pure Nash equilibrium is NP-complete, even if every
player has only two actions and two different payoffs, and when restricted to games with strong symmetry
and two different payoffs, or to games with strong anonymity and three different payoffs.

Proof: Membershipin NP is obvious. We can simply guess an action profile and verify that the action of
each player is a best response to the actions of the players inhis neighborhood.

For hardness, we provide a reduction from the NP-complete problem circuit satisfiability (CSAT) (see,
e.g., Papadimitriou, 1994). For a setN of players with appropriately defined neighborhoods, letΓ(N) =
(N, {0, 1}N, (pi)i∈N) be a graphical game with neighborhoodν and payoffs satisfying strong symmetry or
strong anonymity as given by Figure 1.1 We observe the following:

1It was shown by Brandt et al. (2007) that every symmetric gamewith two actions per player can be reduced to an anonymous
game while preserving pure equilibria.
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#(sν(i), 1) 0 1 2
0 0 0 1
1 1 1 0

#(sν̂(i), 1) 0 1 2 3
0 1 2 0

Figure 1: NAND payoffs pi(s) for the symmetric and the anonymous case. Columns correspond to the
different values of the commutative image ofsw.r.t. ν(i) andν̂(i), respectively. In the symmetric case, rows
correspond to the different actions of playeri.

x

a
e

d c

b

Figure 2: Output gadget. A directed edge between verticesi and j denotes thatj ∈ ν(i). All players have
payoffs as in Figure 1. Playerx must play action 0 in every pure equilibrium of the game.

1. LetN be a set of players,|N| = 3, and for alli ∈ N, ν̂(i) = N. Then, an action profilesof Γ(N) is a pure
equilibrium if and only if #(s, 1) = 2. In particular, for everyi ∈ N, there exists a pure equilibrium
where playeri plays action 0 and a pure equilibrium where he plays action 1.

2. Let N andN′ be two sets of players with neighborhoods such that for alli ∈ N, ν(i) ⊆ N, and for
all i ∈ N′, ν(i) ⊆ N′. Then,s is a pure equilibrium ofΓ(N ∪ N′) if and only if sN and sN′ are pure
equilibria ofΓ(N) andΓ(N′), respectively.

3. Let N be a set of players such thatΓ(N) has a pure equilibrium and consider two playersa, b ∈ N.
Further consider an additional playerc < N with ν(c) = {a, b}. Then the gameΓ(N ∪ {c}) has a pure
equilibrium, and in every pure equilibriumsof Γ(N∪{c}), sc = 0 if sa = sb = 1, andsc = 1 otherwise.
In other words, playerc always plays the NAND of the actions played by playersa andb.

4. Let N be a set of players and consider a particular playerx ∈ N. Further consider five additional
playersa, b, c, d, e < N with neighborhoods according to Figure 2, and denoteN′ = N ∪ {a, b, c, d, e}.
ThenΓ(N′) has a pure equilibrium if and only ifΓ(N) has a pure equilibriumswheresx = 0. Assume
thatΓ(N) has a pure equilibriumswheresx = 0 and extend this to an action profile forΓ(N′) by letting
sa = 0 andsb = sc = sd = se = 1. On the other hand, consider an action profiles for Γ(N′) where
sx = 0. If sa = 0, then action 1 is the unique best response for playersc andd, after which action 0
is the unique best response for playersb ande. In this case, playera can change his action to 1 to get
a higher payoff. If sa = 1, then the unique best response for playersc andd and for playersb ande
becomes action 0 and 1, respectively. Again, playera can change his action to get a higher payoff.

5. Let N1 = {x, y, z} be an instance ofN in Property 1, andN2 an instance ofN′ in Property 4 withN =
{x}. Let N be a set of players such thatΓ(N) has a pure equilibrium,a ∈ N, and denoteN′ =
N1 ∪ N2 ∪ N. Further consider an additional playerc < N′ with ν(c) = {a, y}. Then,Γ(N′ ∪ {c}) has a
pure equilibrium and in every pure equilibriumsof Γ(N′ ∪ {c}), sc = 1− sa. To see this, observe that
by Property 1 exactly two players inN1 must play action 1, which, by Property 4, have to be playersy
andz. By Property 3, and sinceϕNAND true= ¬ϕ, the claim follows.

Now consider an instanceC of CSAT, and assume w.l.o.g. thatC consists exclusively of NAND gates
and that no variable appears more than once as the input to thesame gate. The latter assumption can be
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made by Property 5. We construct a gameΓ = Γ(N) as follows. For every input ofC we augmentN by
three players (Property 1). We then inductively defineΓ by adding, for a gate with inputs corresponding to
playersa, b ∈ N, a playerc as described in Property 3. Finally, we construct a player according to Property 5
who plays the opposite action as the one corresponding to theoutput ofC, and identify this player withx in
a new instance of 4. It is now easily verified that a pure equilibrium ofΓ corresponds to a computation ofC
which outputstrue, and that such an equilibrium exists if and only ifC has a satisfying assignment. �

3.2 Weak Anonymity and Two Different Payoffs

Theorem 1 allowed for a uniform proof, but its shortcomings will not have gone unnoticed. The result is not
tight in that three different payoffs are required to show NP-hardness in the anonymous case. It is natural to
enquire what happens for games with anonymity and only two different payoffs. In this section we will prove
a tight result for most restricted case ofweakanonymity,i.e., the case with two different payoff functions.

The problem with anonymity and the construction used in the proof of Theorem 1 is that two different
payoffs are not enough to make a player care about his own action no matter which actions are played by
his neighbors. With four different values for #(sν̂(i), 1), there will either be an equilibrium where all players
play the same action, or a situation where a player is indifferent between both of his actions. When we
want to use games to compute a function, such indifference is clearly undesirable. The key idea that will
enable us to prove the following theorem is to isolate pure equilibria that are themselvessymmetricin the
actions of a subset of the players,i.e., in which these players all play the same action. To enforce that two
particular players play the same action in every equilibrium, we will add two additional players, each of
which observes the other as well as one of the original players. Depending on the actions of the original
players, the new players will either play a game with a uniquepure equilibrium, or a game that is prototypical
both for anonymous games and for games without pure equilibria, namely matching pennies. We proceed
with the statement of the theorem.

Theorem 2 Deciding whether a graphical game has a pure Nash equilibrium is NP-complete, even if every
player has only two neighbors, two actions, and two different payoffs, and when restricted to games with
weak anonymity and two different payoff functions.

Proof: Membershipin NP is again obvious.
For hardness, we again provide a reduction from circuit satisfiability (CSAT). Let Γ(N) =

(N, {0, 1}N, (pi)i∈N) denote a graphical game for a setN of players with neighborhoodν and payoff func-
tions pi satisfying weak anonymity. We observe the following:

1. Let N be a set of players,a, b ∈ N, and consider two additional playersx, y < N with neighborhoods
and payoffs according to Figure 3. We claim thatΓ(N∪{x, y}) has a pure equilibrium if and only ifΓ(N)
has a pure equilibriums wheresa = sb. Assume thatΓ(N) has a pure equilibriums wheresa = sb

and extend this to an action profile forΓ(N′) by letting sx = 0 and sy = 1. It is easily verified
that under this action profile playersx andy both receive the maximum payoff of 1, such that the
equilibrium condition is trivially satisfied. On the other hand, assume that one of the playersx andy
observes action 0 being played by playera or b, while the other one observes action 1. Then playersx
andy effectively play the well-known matching pennies game. More precisely, the player observing 0
receives a payoff of 1 if and only if #(s{x,y}) is odd, while the same is true for the player observing 1 if
and only if this number is even. Since both players can changebetween the two outcomes by changing
their own action, there is no pure equilibrium.

2. Let N = {a, b, c} with ν(i) = N for all i ∈ N, and payoffs according to Figure 3. It is then easily
verified thats with sa = sb = sc = 1 or with sa = sb = 0 andsc = 1 is an equilibrium ofΓ(N). In
particular, there exist equilibria wheresa = 0 andsa = 1, respectively.
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#(sν̂(i), 1) 0 1 2 3
pi(s) 0 1 0 1

Figure 3: Equality gadget. A pure equilibrium exists if and only if playersa andb play the same action.

a

x y z

b

= =

#(sν̂(i), 1) 0 1 2 3
pi(s) 0 1 1 0

Figure 4: NAND gadget. The construction of Figure 3 is used toensure that players connected by “=” play
the same action in every pure equilibrium.

3. Let N andN′ be two sets of players with neighborhoods such that for alli ∈ N, ν(i) ⊆ N, and for
all i ∈ N′, ν(i) ⊆ N′. Again, s is a pure equilibrium ofΓ(N ∪ N′) if and only if sN andsN′ are pure
equilibria ofΓ(N) andΓ(N′), respectively.

4. Let N = {a, b, c} with neighborhoods and payoffs as in Property 2, and assume by Property 1 that
every pure equilibriums of Γ(N) is symmetric,i.e., sa = sb = sc. Then,s with sa = sb = sc = 1 is
the unique pure equilibrium ofΓ(N). Clearly,s is an equilibrium ofΓ(N), since all players receive the
maximum payoff of 1. In the only other symmetric action profile, all players play action 0 and receive
a payoff of 0. Either one of them can change his action to 1 to receive a higher payoff.

5. Let N be a set of players such thatΓ(N) has a pure equilibrium, leta, b ∈ N, and consider three
additional playersx, y, z < N with neighborhoods and payoffs according to Figure 4. Then,Γ(N ∪
{x, y, z}) has a pure equilibrium, and for every pure equilibriums of Γ(N ∪ {x, y, z}), sx = 0 if sa =

sb = 1, andsx = 1 otherwise. It is easily verified that playersx, y, andz get the maximum payoff
of 1, and thus will not deviate, under any action profiles wheresx = sy = sz = 1 and #(s{a,b},1) ≤ 1
or wheresx = sy = sz = 0 andsa = sb = 1. On the other hand, lets be an arbitrary action profile
of Γ(N ∪ {x, y, z}). By Property 1,s cannot be an equilibrium unlesssx = sy = sz. If sa = sb = sz = 0
or sa = sb = sz = 1, then playerzcan change his action to receive a higher payoff. If otherwisesa , sz

andsx = sy = 0, then there existsi ∈ {x, y} such that #(sν̂(i), 1) = 0, and playeri will deviate.

6. LetN a set of players,o ∈ N. Let N′ = {a, b, c} with neighborhoods as in Property 4,N′′ = {x, y} with
ν(x) = {a, y} andν(y) = {o, x}. Then,Γ(N ∪ N′ ∪ N′′) has a pure equilibrium if and only ifΓ(N) has
a pure equilibriums with so = 1. Clearly, an action profile that is not an equilibrium ofΓ(N) cannot
be extended to an equilibrium ofΓ(N ∪ N′ ∪ N′′). On the other hand, assume thats is an equilibrium
of Γ(N∪N′ ∪N′′). Then, by Property 4,sa = 1. Furthermore, by Property 1,sa = so, and thusso = 1.

Now consider an instanceC of CSAT. We assume w.l.o.g. thatC consists exclusively of NAND gates.
SinceϕNAND true = ¬ϕ, and using Property 4, we can further assume that no variableappears more than
once as an input to the same gate. We construct a gameΓ = Γ(N) as follows: For every input ofC, we add
three players according to Property 2. For every gate ofC with inputs corresponding to playersa, b ∈ N,
we add three players according to Property 5. Finally, we addfive players according to Property 6, whereo
is the player corresponding to the output ofC. It is now readily appreciated thatΓ has a pure equilibrium if
and only ifC is satisfiable. �
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Figure 5: Neighborhood graph of a graphical game with seven players (left), corresponding to the three-
uniform square hypergraph given by the lines of the Fano plane (right).

3.3 Strong Anonymity and Two Different Payoffs

Let us return to games with strong anonymity. Strongly anonymous games as studied by Brandt et al. (2007)
always possess a pure Nash equilibrium due to the fact that they are common-payoff. This is not the case
for graphical games with strong anonymity, even when there are only two different payoffs. In particular,
there exists a graphical seven-player game with strong anonymity and without a pure equilibrium, such that
each player has exactly two actions and two neighbors. It will be instructive to view a graphical game
as a hypergraph, with each vertex corresponding to a player and each edge to the set of players in the
neighborhood of one particular playerincluding the player himself. Corresponding to the set of games with
m-neighborhood is the set of (m+ 1)-uniform hypergraphs that possess a matching in the senseof Seymour
(1974), i.e., a bijective mapping from the set of vertices to the set of edges. Then, a game with strong
anonymity andpi = (0, 1, 1, 0) for all i ∈ N has a pure Nash equilibrium if and only if the corresponding
hypergraph is two-colorable. Given a two-coloring, every player observes either one or two players in his
neighborhood, including himself, who play action 1. Every player thus obtains the maximum payoff of 1.
On the other hand, if there is no two-coloring, then there is at least one player for every action profile who
plays the same action as all of his neighbors and can deviate to obtain a higher payoff. Figure 5 shows
the neighborhood of a graphical game with seven players and two neighbors for each player. This graph
induces the 3-uniform square hypergraph corresponding to the lines of the Fano plane, which cannot be
two-colored (see,e.g., Seymour, 1974). We leave it to the reader to verify that there is no game with the
above properties and less than seven players.

The neighborhood graph on the left of Figure 5 does not have any cycles of even length. We will begin
our investigation of the pure equilibrium problem in games with strong anonymity by generalizing this
observation to games with arbitrary neighborhoods andpi = (0, 1, 1, . . . , 1, 0) for all i ∈ N. The following
lemma characterizes games with pure equilibria in the abovesubclass in terms of cycles in the neighborhood
graph. Seymour (1974) provides a similar characterizationof the minimal uniform square hypergraphs that
do not have a two-coloring.

Lemma 1 Let Γ be a graphical game with strong anonymity, two actions per player, and payoffs pi such
that for all i ∈ N, pi = (0, 1, 1, . . . , 1, 0). Then,Γ has a pure Nash equilibrium if and only if for all i∈ N,
there exists j∈ N reachable from i that lies on a cycle of even length.

Proof: For the implication from left to right, assume that there exists a pure equilibrium,i.e., a two-coloring
c : N → {0, 1} of the neighborhood graph such that the neighborhood of every player contains some player
playing action 0 and some player playing action 1. Now consider an arbitrary playerv1 ∈ N. Using the
above property ofc, we can construct a pathv1, v2, . . . , v|N|+1, vi ∈ N, such that for alli, 1 ≤ i ≤ |N|,
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c(vi ) = 1− c(vi+1). By the pigeonhole principle, there must existi, j, 1 ≤ i < j ≤ |N| + 1, such thatvi = v j

and for all j′, i < j′ < j, v j′ , vi . Then,vi , vi+1, . . . , v j is a cycle of even length.
For the implication from right to left, letN′ ⊆ N be a set of players such that for everyi ∈ N there exists

a directed path to somej ∈ N′ and such thatN′ induces a set of vertex-disjoint cycles of even length. We
construct a two-coloringc : N → {0, 1}, corresponding to an assignment of actions to players, as follows.
First color the members ofN′ such that for alli ∈ N′ and j ∈ ν(i) ∩ N′, c(i) = 1 − c( j). While there are
uncolored vertices left, findi, j ∈ N such that j ∈ ν(i), i is uncolored, andj is colored. Such a pair of
vertices must always exist, since for every memberN there is a directed path to some member ofN′, and
thus to a vertex that has already been colored. Colori such thatc(i) = 1 − c( j). It is now easily verified
that at any given time, and for alli ∈ N that have already been colored, there existj, j′ ∈ ν̂(i) with c( j) = 0
andc( j′) = 1. If all vertices have been colored, then every neighborhood will contain at least one player
playing action 0, and at least one player playing action 1. The corresponding action profile is a pure Nash
equilibrium. �

Thomassen (1985) has shown that for everyk, there exists a directed graph without even cycles where
every vertex has outdegreek. Together with Lemma 1, this means that the pure equilibriumproblem for the
considered class of games is nontrivial.

Corollary 2 For every m∈ N, m> 0, there exist graphical gamesΓ, Γ′ with strong anonymity where for all
i ∈ N, |ν(i)| = m andpi = (0, 1, 1, . . . , 1, 0), such thatΓ has a pure Nash equilibrium andΓ′ does not.

We are now ready to identify several classes of graphical games where the existence of a pure equilibrium
can be decided in polynomial time.

Theorem 3 Let Γ be a graphical game with with strong anonymity and payoffs pi . The pure equilibrium
problem forΓ can be decided in polynomial time if one of the following properties holds:

(i) for all i ∈ N, pi(0) ≥ pi(1) or for all i ∈ N, pi(|ν̂(i)|) ≥ pi(|ν̂(i)| − 1);

(ii) for all i ∈ N and all j,1 ≤ j ≤ |ν(i)|, pi( j − 1) > pi( j) andpi( j + 1) > pi( j), or pi( j − 1) < pi( j) and
pi( j + 1) < pi( j);

(iii) for all i ∈ N and all j,1 ≤ j < |ν(i)|, pi( j) = pi( j + 1).

Proof: It is easy to see that a gameΓ satisfying (i) possesses a pure equilibriums in which #(s, 0) = 0 or
#(s, 1) = 1.

For a gameΓ satisfying (ii ), we observe that in every equilibriums, pi(s) = 1 for all i ∈ N. The pure
equilibrium problem forΓ thus corresponds to a variant of generalized satisfiability, with clauses induced
by neighborhoods ofΓ. The constraints associated with this particular variant require that the number of
variables in each clause set to true is odd, and can be writtenas a system of linear equations overGF(2).
Tractability of the pure equilibrium problem forΓ then follows from Theorem 2.1 of Schaefer (1978).

Finally, a game satisfying (iii ) but not (i) can be transformed into a best response equivalent one that
satisfies the conditions of Lemma 1. We further claim that we can check in polynomial time whether for
every i ∈ N, there existsj ∈ N on a cycle of even length and reachable fromi. For a particulari ∈ N, this
problem is equivalent to checking whether the subgraph induced by the vertices reachable fromi contains
an even cycle. The latter problem has long been open, but was recently shown to be solvable in polynomial
time (Robertson et al., 1999). �

It is readily appreciated that every strongly anonymous game Γ with two different payoffs and neigh-
borhoods of size two or three can be transformed into a gameΓ′ with the same set of players and the same
neighborhoods, such thatΓ andΓ′ have the same set of pure equilibria andΓ′ satisfies one of the conditions
of Theorem 3. We thus have the following.
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#(sν̂(i), 1) 0 1 2 3 4 5
pi(s) 0 1 0 1 1 0

Figure 6: Neighborhood graph and payoffs of a graphical game with eight players and neighborhood of size
four used in the proof of Theorem 4. The neighborhood graph satisfies rotational symmetry, the neighbor-
hood of player 1 is highlighted.

Corollary 3 The problem of deciding whether a graphical game with stronganonymity, two different pay-
offs, and three-bounded neighborhood has a pure equilibrium isin P.

3.4 Strong Anonymity and Larger Neighborhoods

The remaining question is whether the pure equilibrium problem can be solved in polynomial time for all
games with strong anonymity and two payoffs, or whether there is some bound on the neighborhood size
where it again becomes hard. We will show in this section thatthe latter is true, and that the correct bound
is indeed three, as suggested by Corollary 3.

To do so, we will essentially use the same tools as in Section 3.2 but will extract the necessary complexity
from only a single payoff function. The additional insight necessary for this extraction will be that “constant”
players,i.e., players who play the same action in every pure equilibrium of a game, can be used to prune a
larger payoff table and effectively obtain different payoff functions for smaller neighborhoods that can then
be used to proceed with the original proof. Constructing theconstant players will prove a rather difficult
task in its own right. We are now ready to state the theorem.

Theorem 4 Deciding whether a graphical game with strong anonymity andtwo different payoffs has a pure
Nash equilibrium is NP-complete, even if every player has exactly four neighbors.

Proof: Membershipin NP is obvious. We can simply guess an action for each playerand then verify that
no player can increase his payoff by playing a different action instead.

For hardness, we again give a reduction from CSAT to the problem at hand. The central idea of this
proof will be to guarantee that some players in a neighborhood only play certain well-defined actions in
equilibrium. By this, the original payoff table is effectively “pruned” to a smaller one that can then be used,
like in earlier proofs, to model the behavior of gates in a Boolean circuit.

As a first step, we will show how to construct “constants,”i.e., players who play action 0 or action 1,
respectively, ineveryequilibrium of a game. To achieve this, we will construct a set of four players, such that
in every equilibrium two of these players play action 0 and two of them play action 1. A player observing
these four players can determine if the number of players in his neighborhood, including himself, who play
action 1 is two or three. Clearly, such a player will play action 1 in every equilibrium. By a similar argument
as above, a player who observes four players who play action 1in every equilibrium will himself play
action 0 in every equilibrium.

Consider the graphical gameΓ with eight players and neighborhood of size four given by Figure 6.
We will argue that in every pure equilibrium of this game,exactlytwo playersi, j ∈ N play action 0 and
i − j = 2 (mod8). We exploit the following properties of the neighborhoodgraph:

10



1. For anyN′ ⊆ N, |N′| = 3, there exists a playeri ∈ N such thatN′ ⊆ ν̂(i). Due to the rotational
symmetry of the neighborhood graph, we can assume w.l.o.g. that 1∈ N′. The property then follows
by a straightforward if somewhat tedious case analysis.

2. For anyN′ ⊆ N, |N′| = 3, there exists a playeri ∈ N such that|N′ ∩ (ν̂(i))| = 2. Showing this property
is again straightforward by assuming w.l.o.g. that 1∈ N′ and showing that for any pair of distinct
players, there exists a playeri ∈ N such that either ˆν(i) contains player 1 and exactly one element of
the pair, or both elements of pair but not player 1.

3. For anyN′ ⊆ N, |N′| = 4, there exists a playeri ∈ N such that|N′ ∩ (ν̂(i))| = 3. To show this property,
we can again assuming w.l.o.g. that 1∈ N′, and distinguishing neighborhoods that contain player 1
from neighborhoods that do not. The analysis is again straightforward.

Now consider an equilibriums of Γ, and observe that, due to the structure of the payoffs, it must be
the case thatpi(s) = 1 for all i ∈ N. If #(s, 0) < 2 or #(s, 1) < 2, then there exists a playeri ∈ N such
that #(sν̂(i), 0) = 0 or #(sν̂(i), 1) = 0. Now consider the case #(s, 0) = 2, and assume for contradiction that
si = 0 for i ∈ N \ {1, 3, 7}. Inspection of the neighborhood graph reveals that in this case there exists a player
j ∈ N such that #(sν( j), 0) = 0. If #(s, 0) = 3, then by Property 1 there must exist a playeri ∈ N such that
#(sν̂(i), 0) = 3 and thus #(sν̂(i), 1) = 2, contradicting the assumption thats is an equilibrium. By Property 3,
the same holds if #(s, 0) = 4. If #(s, 0) = 5 and thus #(s, 1) = 3, then by Property 2 there must yet again
exists a playeri ∈ N such that #(s, 1) = 2, a contradiction. The same trivially holds if #(s, 1) = 2.

Now we augmentΓ by a set{9, . . . , 13} of five additional players such that

ν(i) =



























{1, 3, 5, 7} if i ∈ {9, 10}

{2, 4, 6, 8} if i ∈ {11, 12}

{9, 10, 11, 12} if i = 13.

By construction of the original game with eight players, every pure equilibrium has either two or four players
in the common neighborhood of players 9 and 10 play action 1. Furthermore, if players 9 and 10 observe
two players who play action 1, then players 11 and 12 will observe four players who play action 1, andvice
versa. As a consequence, either players 9 and 10 will play action 0,and players 11 and 12 will play action 1,
or the other way round. In any case, exactly two players in theneighborhood of player 13 will play action 1
in every equilibrium of the augmented game, and player 13 himself will therefore play action 1.

In the following, we will denote by01, 02, 03 ∈ N three players who play action 0 in every equilibrium,
and by11, 12 ∈ N two players that constantly play action 1. Using these players to prune the payoff table,
we will proceed to design games that simulate Boolean circuits. These games will satisfy strong anonymity,
and the payoff of all players will therefore be determined by the table already used above and shown in
Figure 6. As for the inputs of the circuit, it is easily verified that a game with playersN, |N| = 5, such that
for all i ∈ N, ν̂(i) = N, has pure equilibriasands′ such that for an arbitraryi ∈ N, si = 0 ands′i = 1.

As before, we will now construct a subgame that simulates a functionally complete Boolean gate, in this
case NOR, and a subgame that has a pure equilibrium if and onlyif a particular player plays action 1. For
a setN of players with appropriately defined neighborhoods, letΓ(N) = (N, {0, 1}N, (pi)i∈N) be a graphical
game with neighborhoodν and payoff functionspi satisfying strong anonymity as in Figure 6. We observe
the following:

1. Let N andN′ be two sets of players with neighborhoods such that for alli ∈ N, ν(i) ⊆ N, and for
all i ∈ N′, ν(i) ⊆ N′. Again, s is a pure equilibrium ofΓ(N ∪ N′) if and only if sN andsN′ are pure
equilibria ofΓ(N) andΓ(N′), respectively.
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Figure 7: NOR gadget. Payoffs are identical to those in Figure 6. A construction analogous to Figure 3 is
used to ensure that playersx andzplay the same action in every pure equilibrium.

2. Let N be a set of players such thatΓ(N) has a pure equilibrium, leta, b ∈ N, and consider two
additional playersx, y < N with ν(x) = {01, 02, a, y}, and ν(y) = {01, 02, b, x}. Then every pure
equilibrium ofΓ(N ∪ {x, y}) satisfiessa = sb.

3. Lettingb = 11 in the previous construction, we have thatΓ(N ∪ {x, y}) has a pure equilibrium if and
only if sa = 1 in some pure equilibrium ofΓ.

4. Let N be a set of players such thatΓ(N) has a pure equilibrium, leta, b ∈ N, and consider two
additional playersx, y < N with neighborhoods given byν(x) = {01, 02, 03, y} andν(y) = {01, 02, a, b}.
ThenΓ(N∪{x, y}) has a pure equilibrium, and every pure equilibriumsof Γ(N∪{x, y}) satisfiessx = 1
wheneversa = sb = 0, andsx = 0 wheneversa , sb. For every pure equilibriums with sa = sb = 1,
there exists a pure equilibriums′ such thatsx , s′x, andsi = s′i for all i ∈ N.

5. Consider an additional playerz < N∪{x, y}, and letν(z) = {11, 12, a, b}. ThenΓ(N∪{x, y, z}) has a pure
equilibrium, and every pure equilibriums of Γ(N ∪ {x, y, z}) satisfiessz = 1 wheneversa = sb = 0,
and sz = 0 wheneversa = sb = 1. For every pure equilibriums with sa , sb, there exists a pure
equilibrium s′ such thatsz , s′z, andsi = s′i for all i ∈ N.

6. By Property 2, we can assume that every equilibriums of Γ(N ∪ {x, y, z}) satisfiessx = sz, and thus
that sx = 1 if and only if sa = sb = 0.

Steps 4 through 6 are illustrated in Figure 7.
Now consider an instanceC of CSAT. We assume w.l.o.g. thatC consist exclusively of NOR gates and

that no variable appears more than once as an input to the samegate. The latter assumption can be made
sinceϕNORfalse = ¬ϕ, and since there exists a game with strong anonymity and a player in this game
who plays action 0 in every pure equilibrium. As before, we construct a gameΓ by simulating every gate
of C according to Property 6 and identifying the player that corresponds to the output of the circuit witha
in Property 3. It is now readily appreciated thatΓ has a pure equilibrium if and only ifC is satisfiable. �

Observing that in the constructions used in the proofs of Theorems 1, 2, and 4 there is a one-to-one
correspondence between satisfying assignments of a Boolean circuit and pure equilibria of a game, we have
that counting the number of pure equilibria in the respective games is as hard as computing the permanent
of a matrix.

Corollary 4 For graphical games with neighborhoods of size two, counting the number of pure Nash equi-
libria is #P-hard, even when restricted to games with strongsymmetry and two different payoffs, to games
with weak anonymity with two different payoffs and two different payoff functions, or to games with strong
anonymity and three different payoffs. The same holds for graphical games with neighborhoods of size four,
strong anonymity, and two different payoffs
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4 Interlude: Generalized Satisfiability in the Presence of Matchings

The analysis at the end of the previous section allows us to derive a corollary that may be of independent
interest. Schaefer (1978) completely characterizes whichvariants of the generalized satisfiability problem
are in P and which are NP-complete. Some of the variants, likenot-all-equal three-satisfiability, become
tractable if there exists a matching,i.e., a bijective mapping from variables to clauses. This follows from
the equivalence of this problem with two-colorability of three-uniform hypergraphs and from the work of
Robertson et al. (1999). On the other hand, the proof of Theorem 4 identifies a variant that is NP-complete
and remains so in the presence of matchings. We thus have the following.

Corollary 5 Generalized satisfiability is NP-complete, even if there exists a matching and all clauses have
size five.

We leave a complete characterization for future work. Whilethe proof techniques developed in this
paper will certainly be useful in this respect, it should be noted that the equivalence between generalized
satisfiability and the pure equilibrium problem covered by Theorem 4 may fail to hold for instances of the
latter wherepi(s) = pi(s′) = 0 for s, s′ such that #(sν̂(i), 1) = #(s′

ν̂(i), 1)+ 1.

5 Mixed Equilibria

Let us now briefly look at the problem of finding a mixed equilibrium. The following theorem states that
this problem is tractable in graphical games with strong symmetry if the number of actions grows slowly in
the neighborhood size.

Theorem 5 Let Γ = (N,AN, (pi)i∈N) be a graphical game with strong symmetry such that for all i∈ N,
A = O(log |ν(i)|/ log log|ν(i)|). Then, a Nash equilibrium ofΓ can be computed in polynomial time.

Proof: We show thatΓ possesses a symmetric equilibrium,i.e., one where all players play the same (mixed)
strategy, and that this equilibrium can be computed efficiently. For this, choose an arbitrary playeri ∈ N
and construct a gameΓ′ = (N′,AN′ , (p′i )i∈N) with playersN′ = ν̂(i), and for all j ∈ N′, ν( j) = N′, and
p′j(s

′) = pi(s) if for all a ∈ A, #(s′, a) = #(sν(i), a). It is easily verified thatΓ′ is strongly symmetric
game, and must therefore possess a symmetric equilibriums′, which can be computed in polynomial time if
|A| = O(log |N′|/ log log |N′|) (Papadimitriou and Roughgarden, 2005).

Now define a strategy profiles of Γ by letting, for eachj ∈ N, sj = s′i , and assume for contradiction
thats is not an equilibrium. Then there exists a playerj ∈ N and some strategyt ∈ ∆(A) for this player such
that p j(sN\{ j}, t) > p j(s). Then, by definition ofp′, p′i (s

′
N′\{i}, t) > p′i (s), contradicting the assumption thats′

is an equilibrium ofΓ′. �

Observe that the above theorem applies in particular to the case where both the number of actions and
the neighborhood size are bounded, and recall that the pure equilibrium problem in graphical games with
strong symmetry is NP-complete even ifk = 2. In other words, we have identified a class of games where
computing a mixed equilibrium is computationally easier than deciding the existence of a pure one, unless
P=NP. A different class of games with the same property is implicit in Theorem 3.4 of Daskalakis and
Papadimitriou (2005).

6 Open Problems

In this paper we have mainly considered neighborhoods of constant size. The construction used in the proof
of Theorem 4 can be generalized to arbitrary neighborhoods of even size. It is unclear what happens for
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odd-sized neighborhoods. The extreme case when the neighborhood of every player consists of all other
players yields ordinary symmetric games, and it is known from the work of Brandt et al. (2007) that the pure
equilibrium problem is in P in these games when the number of actions is bounded. It is an open problem at
what neighborhood size the transition between membership in P and NP-hardness occurs.

Another interesting question concerns the complexity of the mixed equilibrium problem games with
weak symmetry or weak anonymity. A promising direction for proving hardness would be to make the
construction of Goldberg and Papadimitriou (2006) symmetric.

Finally, it would be interesting to study the complexity of generalized satisfiability problems in the
presence of matchings.
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