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Abstract

We study graphical games where the péyanction of each player satisfies one of four types of
symmetries in the actions of his neighbors. We establisidiseiding the existence of a pure Nash equi-
librium is NP-hard in graphical games with each of the foyety of symmetry. Using a characterization
of games with pure equilibria in terms of even cycles in thigineorhood graph, as well as a connec-
tion to a generalized satisfiability problem, we identifgdrable subclasses of the games satisfying the
most restrictive type of symmetry. In the process, we chiareze a satisfiability problem that remains
NP-hard in the presence of a matching, a result that may belependent interest. Finally, games with
symmetries of two of the four types are shown to possess a synemixedequilibrium which can
be computed in polynomial time. We have thus identified asctdggames where the pure equilibrium
problem is computationally harder than the mixed equilibriproblem, unless=FNP.

1 Introduction

The idea underlying graphical games (Kearns et al., 200thgisin games with a large number of players,
the paydrf of any particular player will often depend only on the acéiaf a small number of other players
in a local neighborhood. A graphical game is any game inejratform such that there exists a (directed
or undirected) graph on the set of players, and the fiafeeach player depends only on the actions of his
neighbors in this graph. If neighborhood sizes are boungieghhical games can be represented using space
polynomial in the number of players.

One of the best-known solution concepts for strategic gasigash equilibrium (Nash, 1951). A vector
of strategies, one for each player, is called Nash equilibrif no player can increase his (expected) ghyo
by unilaterally changing his strategy.

Problem and Related Work The computational problem of finding Nash equilibria in drapl games
with degree bounded bg > 3 has recently been shown equivalent to the same problemefoergln-
player gamesn > 4 (Goldberg and Papadimitriou, 2006), and thus completeHercomplexity class
PPAD (Daskalakis et al., 2006). It is not surprising thatdha&ph structure plays an important role for the
complexity of the equilibrium problem. PPAD-hardness Boéen if the underlying graph has constant
pathwidth, but becomes tractable for graphs of degraee2 for paths(Elkind et al., 2006). All known
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algorithms for the more general caseteshave exponential worst-case running time even on trees with
bounded-degree and pathwidth 2.

A different line of research has investigated the problem of tieritie existence gbure Nash equilib-
ria, i.e., equilibria where the support of each strategy containg argingle action. The pure equilibrium
problem has been shown NP-complete for graphical gamesrentell graphs with outdegree bounded
by d > 2 and with only two actions for each player and twéfetient payf's, and tractable for graphs with
bounded treewidth (Gottlob et al., 2005; Fischer et al. 6200nlike Nash equilibria imixedstrategiesi.e.,
probabilistic combinations of actions, pure Nash equditare not guaranteed to exist. They nevertheless
form an interesting subset of equilibria for three reasdfisst, requiring randomization in order to reach a
stable outcome has been criticized on various grounds. It-player games, where action probabilities in
equilibrium can be irrational numbers, randomization idipalarly questionable. Secondly, the computa-
tion of pure equilibria, if they exist, may be tractable irsea where that of mixed ones is not. Finally, pure
equilibria as computational objects are usually much smail size than mixed ones.

Symmetric games are characterized by the fact that playgrsot, or need not, distinguish between
other players. Brandt et al. (2007) analyze foufatent classes of symmetric games, and show that the
pure equilibrium problem is tractable if the number of ag$iags a constant, and complete for NP or PLS,
respectively, if the number of actions grows logarithmlicah the number of players. One of the classes
is guaranteed to possess a symmetric equilibriuen,one where all players play the same strategy. This
equilibrium is not necessarily pure, but can be foufiitiently if the number of actions is not too large
compared to the number of players. A strictly larger classeaently been found to still admit a PTAS,
i.e.,, an dficient way to compute approximate equilibria (Daskalakid Bapadimitriou, 2007).

This fuels hope that tractability results can be obtainedldoger classes of games satisfying some
kind of symmetry. In this regard, Daskalakis and Papadimit(2005) consider games ordadimensional
undirected torus or grid with pagffunctions that are identical for all players and symmetrithie actions of
the players in the neighborhood (a condition that will bdeckdtrong symmetrin this paper). In particular,
they show that deciding the existence of a pure Nash eduilibin such a game is NL-complete when
d = 1 and NEXP-complete fod > 2. In this paper, we investigate the pure equilibrium protden
graphical games that satisfying the kinds of symmetriesicened by Brandt et al. (2007). Our work can
thus be seen as a refinement of the work of Gottlob et al. (28@%pf Daskalakis and Papadimitriou (2005).

Paper Structure and Results We begin by formally defining the necessary game-theoreticepts in
Section 2. In Section 3, we then investigate the computatioomplexity of the pure equilibrium problem in
graphical games satisfying fourftiirent types of symmetries. The question for tractable etagkgraphical
games is answered mostly in the negative. For three of thesfgumetry classes, deciding the existence
of a pure equilibrium is NP-hard already for the case of twioas, two payés, and neighborhoods of
size two. Assuming the most restricted type of symmetry,piludlem becomes NP-hard when there are
three diferent payés, or neighborhoods of size four. The latter class has sotagesting connections to
the problem of finding even cycles in a directed graph, ancetterplized satisfiability. In particular, we
identify tractable classes of games by showing that theyspond to graphs with even cycles, or to tractable
satisfiability instances. As a corollary, we a satisfiapiitoblem that remains NP-hard in the presence of a
matching,i.e., a bijective mapping between variables and clauses. Wempr#sis result, which may be of
independent interest, in Section 4. Finally, in Section &,slow that mixed equilibria in games with two
of the above symmetry types can be found in polynomial tinthéfnumber of actions grows only slowly
in the neighborhood size. Quite interestingly, there exastlass of games where deciding the existence of
a pure equilibrium problem is likely to be harder than findengixed equilibrium.

We assume the reader to be familiar with the well-known cexipl classes P and NP and the notion
of polynomial-time reducibility (seee.g, Papadimitriou, 1994). P and NP are the classes of problems



that can be solved in polynomial time by deterministic anddeierministic Turing machines, respectively.
Furthermore, #P is the class of counting problems assdciaith polynomially balanced polynomial-time
decidable relations.

2 Preliminaries

An accepted way to model situations of strategic interadsdoy means of a normal-form game (sedy,
Luce and Rdfa, 1957).

Definition 1 (normal-form game) A game in normal-forms a tupleI’ = (N, (A)ien, (P)ien) Where N is

a set of playersand for each player i€ N, A is a nonempty set o&ctionsavailable to player i, and

P : (Xien Al) — Ris a function mapping each action profile of the gaire, combination of actions, to a
real-valuedpaydt for player i.

A vector s € Xy A Of actions is also called a profile plire strategies This concept can be generalized
to (mixed) strategy profiles s S = X,y Si, by letting players randomize over their actions. We h@ye
denote the set of probability distributions over playgractions, omixed) strategiesvailable to player.
We further writen = |N| for the number of players in a gamg,for theith strategy in profiles, ands: for
the vector of strategies for all players in a suliSat N.

A graphical game is given by a graph on the set of players, thathihe payf of a player only depends
only on his own action, and on the actions of his neighbordiingraph. In the following definition, the
underlying graph is directed, corresponding to a neightimdhrelation that is not necessarily symmetric.

Definition 2 (graphical game) LetT" = (N, (A)ien, (Pi)ien) be a normal-form game; : N — 2N, T'is a
graphical gamevith neighborhood if for alli € N, s s’ € AN, pi(s) = pi(S) whenever i) = 5’9(0' where
v(i) = v(i) U {i}.

A gamd has k-bounded neighborhoods if there existdN — 2N such thaf" is a graphical game with
neighborhoodr and for all i € N, [v(i)| < k.

Let us now turn to symmetries in games as considered by Bedradt (2007). A normal-form game is
symmetric if paydts depend on the number of players playing thEedent actions. For ease of exposition,
we will assume that all players have the same set of actiottseatdisposal, and not only those that are
neighbors of the same player. It should be noted that this doerestrict the expressiveness of our results.
The following definition uses a notion introduced by ParikBg6) in the context of context-free languages.
Let A be a set of actions. Thbmmutative imagef an action profiles € AN is given by #6) = (#(a, 9))aca
where #4,5) = |{ie N | 5 = a}|.

Definition 3 (symmetries) LetT" = (N, (A)ien, (Pi)ien) be a graphical game, A a set of actions such that
foralli € N, A = A. T is said to satisfy

e weak symmetryf for alli € N and all ss' € AN, pi(s) = pi(S) whenever s= s and for all a€ A,
#(S,(), @) = #(S)(;), @);

e strong symmetryf for alli,j € N and all s € AN, pi(9) = pj(s) whenever js= s] and for all
a € A, #(s,), a) = #(s;), a);

e weak anonymityif foralli e N and all ss' € AN, pi(s) = pi(S) whenever for all a A, #(Sy(iy, @) =
#(si(i), a); and
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e strong anonymityif for all i,j € N and all ss € AN, pi(s) = pj(s) whenever for all ac A,
#(Sy(i). @) = #(S};)» @)-

Weak symmetry has recently been referred to as anonymityolme scomputer scientists. We stick with
the distinction between weak and strong symmetry used irgémee theory literature, and use the term
anonymity to refer to the remaining two classes. When tglldbout games with anonymity, we write
pi(J) = pi(s) where #§&), 1) = ] for the paydt of playeri when| players in his neighborhood, includimg
himself, play action 1, and; = (pi(j))o<j<s() for the vector of payfis for the possible values ¢f

One of the best-known solution concepts for strategic gamékash equilibrium (Nash, 1951). In a
Nash equilibrium, no player is able to increase his g unilaterally changing his strategy.

Definition 4 (Nash equilibrium) A strategy profile s S is called aNash equilibriumif for each player
i € N and each strategy; = Sj, pi(s) = pi((sn\i}» §))- A Nash equilibrium is calleghureif it is a pure
strategy profile.

3 Complexity of the Pure Equilibrium Problem

For graphical games with neighborhoods of size one, syniesaio not impose any restrictions. The pure
equilibrium problem for such games can be decided in polyiabtime (seeg.g, Fischer et al., 2006). On
the other hand, the game used by Schoenebeck and Vadhar) (@@®w NP-completeness of the pure
equilibrium problem in general graphical games satisfiemvgymmetry. We thus have the following initial
result.

Corollary 1 Deciding whether a graphical game has a pure Nash equiliariss NP-complete, even if every
player has only two neighbors, two actions, and twgedeént payg@s, and when restricted to games with
weak symmetry.

3.1 Strong Symmetry and Strong Anonymity

We now consider a more restrictive kind of symmetry. In gaifar, the following theorem concerns games
where the utility functions of all players are identical.€Tproof of this theorem is similar to a construction
used by Schoenebeck and Vadhan (2006) where each gate ofeaB@ircuit corresponds to a player in a
graphical game. Depending on the output of the circuit &mithl players either play a game with or without
a pure equilibrium. The greatestfiiliulty in our case is to model the circuit using only a singlgqgtia
function.

Theorem 1 Deciding whether a graphical game has a pure Nash equilibris NP-complete, even if every
player has only two actions and twaofféirent paygs, and when restricted to games with strong symmetry
and two djferent paygs, or to games with strong anonymity and thregedent paygs.

Proof: Membershign NP is obvious. We can simply guess an action profile andyérat the action of
each player is a best response to the actions of the playbis ineighborhood.

For hardnesswe provide a reduction from the NP-complete problem cirsatisfiability (CSAT) (see,
e.g, Papadimitriou, 1994). For a sbt of players with appropriately defined neighborhoods I'gt) =
(N, {0, }N, (p)ien) be a graphical game with neighborhoedind payds satisfying strong symmetry or
strong anonymity as given by Figure* M/e observe the following:

11t was shown by Brandt et al. (2007) that every symmetric gaibie two actions per player can be reduced to an anonymous
game while preserving pure equilibria.
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Figure 1: NAND payds p;j(s) for the symmetric and the anonymous case. Columns comesfmothe
different values of the commutative imagesaf.r.t. v(i) andv{i), respectively. In the symmetric case, rows
correspond to the fferent actions of player
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Figure 2: Output gadget. A directed edge between vertieesl j denotes thaj € v(i). All players have
paydts as in Figure 1. Playetmust play action 0O in every pure equilibrium of the game.

1. LetN be a set of player$lN| = 3, and for alli € N, #(i) = N. Then, an action profilsof I'(N) is a pure
equilibrium if and only if #§ 1) = 2. In particular, for every € N, there exists a pure equilibrium
where playei plays action 0 and a pure equilibrium where he plays action 1.

2. LetN andN’ be two sets of players with neighborhoods such that for allN, v(i) € N, and for
alli € N, v(i) € N’. Then,sis a pure equilibrium of (N U N’) if and only if sy and sy, are pure
equilibria of I'(N) andI'(N’), respectively.

3. LetN be a set of players such thB{N) has a pure equilibrium and consider two playarb € N.
Further consider an additional playeg N with v(c) = {a, b}. Then the gam&(N U {c}) has a pure
equilibrium, and in every pure equilibriusiof '(NU{c}), s = 0if s = § = 1, ands; = 1 otherwise.
In other words, playec always plays the NAND of the actions played by playsendb.

4. Let N be a set of players and consider a particular player N. Further consider five additional
playersa, b, c,d, e ¢ N with neighborhoods according to Figure 2, and demte- N U {a, b, c, d, €}.
ThenI'(N’) has a pure equilibrium if and only If(N) has a pure equilibriunrs wheres, = 0. Assume
thatT'(N) has a pure equilibriurs wheres, = 0 and extend this to an action profile 16(N’) by letting
sa = 0ands, = 5 = g = S = 1. On the other hand, consider an action pragifer I'(N’) where
sy = 0. If s, = 0, then action 1 is the unique best response for playaredd, after which action 0
is the unique best response for playkei@nde. In this case, playes can change his action to 1 to get
a higher payfi. If s, = 1, then the unique best response for playeasidd and for playerd ande
becomes action 0 and 1, respectively. Again, playean change his action to get a higher pgyo

5. LetN; = {X,y,2 be an instance dfl in Property 1, andN, an instance oN’ in Property 4 withN =
{x}. Let N be a set of players such thE{N) has a pure equilibriuma € N, and denoteN’ =
N; U N> U N. Further consider an additional playeg N’ with v(c) = {a,y}. Then,I'(N’ U {c}) has a
pure equilibrium and in every pure equilibriusof I'(N’ U {c}), sc = 1 — s,. To see this, observe that
by Property 1 exactly two players Iy must play action 1, which, by Property 4, have to be players
andz. By Property 3, and sinag NAND true = —¢, the claim follows.

Now consider an instanag of CSAT, and assume w.l.0.g. tha@tconsists exclusively of NAND gates
and that no variable appears more than once as the input gathe gate. The latter assumption can be



made by Property 5. We construct a gathe I'(N) as follows. For every input af we augmeniN by
three players (Property 1). We then inductively defingy adding, for a gate with inputs corresponding to
playersa, b € N, a playerc as described in Property 3. Finally, we construct a playeotng to Property 5
who plays the opposite action as the one corresponding toutipeit ofC, and identify this player witkx in

a new instance of 4. It is now easily verified that a pure elguilim of I" corresponds to a computation ©f
which outputgrue, and that such an equilibrium exists if and onlyihas a satisfying assignment. 0O

3.2 Weak Anonymity and Two Different Paydts

Theorem 1 allowed for a uniform proof, but its shortcomingh mot have gone unnoticed. The result is not
tight in that three dferent payé's are required to show NP-hardness in the anonymous caseaitural to
enquire what happens for games with anonymity and only tfferdint payé's. In this section we will prove
a tight result for most restricted caseveéakanonymity,i.e., the case with two diierent payf functions.

The problem with anonymity and the construction used in tto®fpof Theorem 1 is that two ffierent
paydts are not enough to make a player care about his own action ttermdnich actions are played by
his neighbors. With four dierent values for #;), 1), there will either be an equilibrium where all players
play the same action, or a situation where a player idli@dint between both of his actions. When we
want to use games to compute a function, suchfliedénce is clearly undesirable. The key idea that will
enable us to prove the following theorem is to isolate punglibgia that are themselvesymmetridn the
actions of a subset of the player®., in which these players all play the same action. To enfdraétivo
particular players play the same action in every equililinwve will add two additional players, each of
which observes the other as well as one of the original ptayBepending on the actions of the original
players, the new players will either play a game with a unjgure equilibrium, or a game that is prototypical
both for anonymous games and for games without pure edailibamely matching pennies. We proceed
with the statement of the theorem.

Theorem 2 Deciding whether a graphical game has a pure Nash equilibris NP-complete, even if every
player has only two neighbors, two actions, and twfedent paygs, and when restricted to games with
weak anonymity and tworent payg functions.

Proof: Membershipn NP is again obvious.

For hardness we again provide a reduction from circuit satisfiability S&T). Let T'(N) =
(N, {0, 1}V, (pi)ien) denote a graphical game for a $étof players with neighborhood and paydf func-
tions p; satisfying weak anonymity. We observe the following:

1. LetN be a set of players, b € N, and consider two additional playexsy ¢ N with neighborhoods
and payds according to Figure 3. We claim tHaiNU{x, y}) has a pure equilibrium if and onlyif(N)
has a pure equilibriung wheres; = 5. Assume thal’(N) has a pure equilibriung wheres, = g
and extend this to an action profile fo(N’) by letting s, = 0 ands, = 1. It is easily verified
that under this action profile playersandy both receive the maximum paffaf 1, such that the
equilibrium condition is trivially satisfied. On the otheard, assume that one of the playgm@ndy
observes action 0 being played by plager b, while the other one observes action 1. Then players
andy effectively play the well-known matching pennies game. Moecely, the player observing 0
receives a paybof 1 if and only if #(5xy,) is odd, while the same is true for the player observing 1 if
and only if this number is even. Since both players can chbetyeeen the two outcomes by changing
their own action, there is no pure equilibrium.

2. LetN = {a,b,c} with v(i) = N for all i € N, and paydffs according to Figure 3. It is then easily
verified thatswith s, = 5 = 5 = L orwiths; = 5 = 0 ands; = 1 is an equilibrium off’(N). In
particular, there exist equilibria whesg = 0 ands,; = 1, respectively.

6
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Figure 4: NAND gadget. The construction of Figure 3 is usedrtsure that players connected by play
the same action in every pure equilibrium.

3. LetN andN’ be two sets of players with neighborhoods such that for allN, v(i) € N, and for
alli € N, v(i) € N’. Again, sis a pure equilibrium of (N U N’) if and only if sy and sy are pure
equilibria of I'(N) andI'(N’), respectively.

4. LetN = {a,b,c} with neighborhoods and paffe as in Property 2, and assume by Property 1 that
every pure equilibriuns of I'(N) is symmetricj.e, S3 = § = &. Then,swiths; =5 =5 =11s
the unique pure equilibrium df(N). Clearly, sis an equilibrium of"(N), since all players receive the
maximum pay€ of 1. In the only other symmetric action profile, all playetaypaction 0 and receive
a paydr of 0. Either one of them can change his action to 1 to receiviglteeh payd.

5. Let N be a set of players such thB(N) has a pure equilibrium, let,b € N, and consider three
additional playerss,y,z ¢ N with neighborhoods and paffs according to Figure 4. Theh(N U
{X,y,2}) has a pure equilibrium, and for every pure equilibrigrof '(N U {X,y,2}), sy = 0 if 55 =
s = 1, ands, = 1 otherwise. It is easily verified that playexsy, andz get the maximum payb
of 1, and thus will not deviate, under any action profilewheres, = s, = s, = 1 and #§ap,1) < 1
or wheres, = s, = 5, = 0 ands; = 5, = 1. On the other hand, letbe an arbitrary action profile
of I'(N U {x,y,Z}). By Property 1scannot be an equilibrium unlesg=5,/=s,. If 5=5=5,=0
ors; = S = S, = 1, then player can change his action to receive a higher paybotherwises,; # s,
ands, = s, = 0, then there existise {x, y} such that #%), 1) = 0, and player will deviate.

6. LetN a set of playersp € N. Let N’ = {a, b, ¢} with neighborhoods as in PropertyM; = {x, y} with
v(X) = {a,y} andv(y) = {0, x}. Then,I'(N U N’ U N”’) has a pure equilibrium if and only If(N) has
a pure equilibriums with s, = 1. Clearly, an action profile that is not an equilibriumI@N) cannot
be extended to an equilibrium B{N U N’ U N””). On the other hand, assume tisas an equilibrium
of [(NUN’UN"). Then, by Property 45, = 1. Furthermore, by Property & = &, and thuss, = 1.

Now consider an instanag of CSAT. We assume w.l.0.g. th&tconsists exclusively of NAND gates.
Sincep NAND true = -, and using Property 4, we can further assume that no varsgigears more than
once as an input to the same gate. We construct a §amgE(N) as follows: For every input of, we add
three players according to Property 2. For every gat€ wfith inputs corresponding to playessb € N,
we add three players according to Property 5. Finally, wefagdplayers according to Property 6, where
is the player corresponding to the outpuidflt is now readily appreciated thithas a pure equilibrium if
and only ifC is satisfiable. |



Figure 5: Neighborhood graph of a graphical game with sevayeps (left), corresponding to the three-
uniform square hypergraph given by the lines of the Fanoegp{eight).

3.3 Strong Anonymity and Two Different Paydfs

Let us return to games with strong anonymity. Strongly anomys games as studied by Brandt et al. (2007)
always possess a pure Nash equilibrium due to the fact thgtate common-payb This is not the case
for graphical games with strong anonymity, even when thezeoaly two diferent payffs. In particular,
there exists a graphical seven-player game with strongyamidynand without a pure equilibrium, such that
each player has exactly two actions and two neighbors. Itheilinstructive to view a graphical game
as a hypergraph, with each vertex corresponding to a playgreach edge to the set of players in the
neighborhood of one particular playiecludingthe player himself. Corresponding to the set of games with
m-neighborhood is the set afn(+ 1)-uniform hypergraphs that possess a matching in the sdr&eymour
(1974),i.e., a bijective mapping from the set of vertices to the set ofesdgThen, a game with strong
anonymity andp; = (0,1,1,0) for alli € N has a pure Nash equilibrium if and only if the corresponding
hypergraph is two-colorable. Given a two-coloring, evelgypr observes either one or two players in his
neighborhood, including himself, who play action 1. Evelgyer thus obtains the maximum pdfof 1.

On the other hand, if there is no two-coloring, then there Isea@st one player for every action profile who
plays the same action as all of his neighbors and can dewviatbtain a higher payth Figure 5 shows
the neighborhood of a graphical game with seven playerswadeighbors for each player. This graph
induces the 3-uniform square hypergraph correspondingeddites of the Fano plane, which cannot be
two-colored (seee.g, Seymour, 1974). We leave it to the reader to verify thatehemo game with the
above properties and less than seven players.

The neighborhood graph on the left of Figure 5 does not hayeyaies of even length. We will begin
our investigation of the pure equilibrium problem in gamaghvstrong anonymity by generalizing this
observation to games with arbitrary neighborhoods @gnd (0,1,1,...,1,0) for alli € N. The following
lemma characterizes games with pure equilibria in the abolelass in terms of cycles in the neighborhood
graph. Seymour (1974) provides a similar characterizaticthe minimal uniform square hypergraphs that
do not have a two-coloring.

Lemma 1 LetI" be a graphical game with strong anonymity, two actions pay@f, and paygs p such
that forallie N,p; = (0,1, 1,...,1,0). Then,I" has a pure Nash equilibrium if and only if for alld N,
there exists g N reachable from i that lies on a cycle of even length.

Proof: For the implication from left to right, assume that theresexa pure equilibrium,e., a two-coloring
c: N — {0, 1} of the neighborhood graph such that the neighborhood of/gayer contains some player
playing action 0 and some player playing action 1. Now cars@h arbitrary playev; € N. Using the
above property ot, we can construct a path, Vs, ...,Vn+1, Vi € N, such that for alii, 1 < i < |N]|,



c(vi) = 1 - c(vi+1). By the pigeonhole principle, there must exist, 1 < i < j < [N| + 1, such that; = v;
and forallj’, i < j" < j,vj #Vi. Theny;,vi,1,...,Vj is a cycle of even length.

For the implication from right to left, IelN” C N be a set of players such that for every N there exists
a directed path to somge N’ and such thaN’ induces a set of vertex-disjoint cycles of even length. We
construct a two-coloring : N — {0, 1}, corresponding to an assignment of actions to players,|asvin
First color the members df’ such that for ali € N’ andj € v(i) n N’, ¢(i) = 1 — c(j). While there are
uncolored vertices left, find j € N such thatj € (i), i is uncolored, and is colored. Such a pair of
vertices must always exist, since for every memidehere is a directed path to some membeN6f and
thus to a vertex that has already been colored. Godorch thatc(i) = 1 — ¢(j). It is now easily verified
that at any given time, and for alke N that have already been colored, there ekit € ¥(i) with ¢(j) = 0
andc(j’) = 1. If all vertices have been colored, then every neighbatheil contain at least one player
playing action 0, and at least one player playing action le d¢rresponding action profile is a pure Nash
equilibrium. m|

Thomassen (1985) has shown that for everthere exists a directed graph without even cycles where
every vertex has outdegré&eTogether with Lemma 1, this means that the pure equilibjiuablem for the
considered class of games is nontrivial.

Corollary 2 For every me N, m> 0, there exist graphical gamé&sI” with strong anonymity where for all
ieN, (i) =mandp; =(0,1,1,...,1,0), such thaf" has a pure Nash equilibrium arid does not.

We are now ready to identify several classes of graphicabgamiere the existence of a pure equilibrium
can be decided in polynomial time.

Theorem 3 LetTI be a graphical game with with strong anonymity and pgy/@. The pure equilibrium
problem forI" can be decided in polynomial time if one of the following jeries holds:

(i) foralli € N, pi(0) = pi(1) or for alli € N, pi(Iv(i)) = pi(Iv(i)l — 1);

(i) foralli e Nandall j,1 < j < (i)l pi(j — 1) > pi(j) andpi(j + 1) > pi(j), or pi(j — 1) < pi(j) and
pi(j +1) < pi());
(iii) foralli e Nandall j,1< j < @), pi(j) = pi(j + 1).

Proof: It is easy to see that a gamiesatisfying () possesses a pure equilibriusin which #(s,0) = 0 or
#(s 1) = 1.

For a gamd" satisfying (i), we observe that in every equilibriusy pj(s) = 1 for alli € N. The pure
equilibrium problem fol" thus corresponds to a variant of generalized satisfiabWitth clauses induced
by neighborhoods of. The constraints associated with this particular variaquire that the number of
variables in each clause set to true is odd, and can be waensystem of linear equations o&F(2).
Tractability of the pure equilibrium problem faorthen follows from Theorem 2.1 of Schaefer (1978).

Finally, a game satisfyingii{) but not {) can be transformed into a best response equivalent one that
satisfies the conditions of Lemma 1. We further claim that ae check in polynomial time whether for
everyi € N, there existg € N on a cycle of even length and reachable frorror a particulai € N, this
problem is equivalent to checking whether the subgraphdedwby the vertices reachable framontains
an even cycle. The latter problem has long been open, butegastty shown to be solvable in polynomial
time (Robertson et al., 1999). m]

It is readily appreciated that every strongly anonymous gjBwith two different payéfs and neigh-
borhoods of size two or three can be transformed into a daméth the same set of players and the same
neighborhoods, such thRtandI” have the same set of pure equilibria dHdatisfies one of the conditions
of Theorem 3. We thus have the following.



Figure 6: Neighborhood graph and p#goof a graphical game with eight players and neighborhoodzef s
four used in the proof of Theorem 4. The neighborhood grafikfi&s rotational symmetry, the neighbor-
hood of player 1 is highlighted.

Corollary 3 The problem of deciding whether a graphical game with strangnymity, two dierent pay-
offs, and three-bounded neighborhood has a pure equilibriuim 5

3.4 Strong Anonymity and Larger Neighborhoods

The remaining question is whether the pure equilibrium |gwbcan be solved in polynomial time for all
games with strong anonymity and two p#g or whether there is some bound on the neighborhood size
where it again becomes hard. We will show in this section ttmafatter is true, and that the correct bound
is indeed three, as suggested by Corollary 3.

To do so, we will essentially use the same tools as in Sectibhi will extract the necessary complexity
from only a single payfd function. The additional insight necessary for this extaacwill be that “constant”
players,i.e., players who play the same action in every pure equilibridra game, can be used to prune a
larger paydf table and &ectively obtain diterent payff functions for smaller neighborhoods that can then
be used to proceed with the original proof. Constructingdbwestant players will prove a ratherflitult
task in its own right. We are now ready to state the theorem.

Theorem 4 Deciding whether a graphical game with strong anonymity twaldifferent paygs has a pure
Nash equilibrium is NP-complete, even if every player hastxfour neighbors.

Proof: Membershipn NP is obvious. We can simply guess an action for each plagdrthen verify that
no player can increase his pdlyby playing a diferent action instead.

For hardnesswe again give a reduction from CSAT to the problem at hande ddmtral idea of this
proof will be to guarantee that some players in a neighbathordy play certain well-defined actions in
equilibrium. By this, the original paybtable is dfectively “pruned” to a smaller one that can then be used,
like in earlier proofs, to model the behavior of gates in alBan circuit.

As a first step, we will show how to construct “constantss’, players who play action 0 or action 1,
respectively, ireveryequilibrium of a game. To achieve this, we will construct eéour players, such that
in every equilibrium two of these players play action 0 and tif'them play action 1. A player observing
these four players can determine if the number of playerssiméighborhood, including himself, who play
action 1 is two or three. Clearly, such a player will play actl in every equilibrium. By a similar argument
as above, a player who observes four players who play actimnelrery equilibrium will himself play
action 0 in every equilibrium.

Consider the graphical ganiewith eight players and neighborhood of size four given byuFég6.
We will argue that in every pure equilibrium of this ganexactlytwo playersi, j € N play action 0 and
i —j =2 (mod8). We exploit the following properties of the neighborhagrdph:
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1. For anyN’ € N, IN’| = 3, there exists a playare N such thatN’ C ¥(i). Due to the rotational
symmetry of the neighborhood graph, we can assume w.llmaglte N’. The property then follows
by a straightforward if somewhat tedious case analysis.

2. ForanyN’ C N, |N’| = 3, there exists a playére N such thatN’ n (¥(i))| = 2. Showing this property
is again straightforward by assuming w.l.0.g. tha¢ IN’ and showing that for any pair of distinct
players, there exists a playiee N such that either(i) contains player 1 and exactly one element of
the pair, or both elements of pair but not player 1.

3. ForanyN’ € N, [N’| = 4, there exists a play@re N such thatN’ n (¥(i))| = 3. To show this property,
we can again assuming w.l.o.g. thaEIN’, and distinguishing neighborhoods that contain player 1
from neighborhoods that do not. The analysis is again sttfigvard.

Now consider an equilibriuns of I', and observe that, due to the structure of the flayd@ must be
the case thapi(s) = 1 foralli € N. If #(s,0) < 2 or #(5, 1) < 2, then there exists a playerr N such
that #6;(), 0) = 0 or #(s;5), 1) = 0. Now consider the case #(Q) = 2, and assume for contradiction that
s =0fori e N\{1,3,7}. Inspection of the neighborhood graph reveals that in thée ¢there exists a player
j € N such that #%,(j),0) = 0. If #(s,0) = 3, then by Property 1 there must exist a playerN such that
#(S;(i), 0) = 3 and thus #%;), 1) = 2, contradicting the assumption theis an equilibrium. By Property 3,
the same holds if #(0) = 4. If #(s,0) = 5 and thus #4 1) = 3, then by Property 2 there must yet again
exists a player € N such that # 1) = 2, a contradiction. The same trivially holds if$#{) = 2.

Now we augment by a set{9, ..., 13} of five additional players such that

{1,3,5,7} if i € {9,10}
v(i) =1{2,4,6,8} if i €{11,12}
{9,10,11, 12 ifi=13.

By construction of the original game with eight players,rgymure equilibrium has either two or four players
in the common neighborhood of players 9 and 10 play actionutthErmore, if players 9 and 10 observe
two players who play action 1, then players 11 and 12 will oleséour players who play action 1, anite
versa As a consequence, either players 9 and 10 will play actiam@® players 11 and 12 will play action 1,
or the other way round. In any case, exactly two players im#ighborhood of player 13 will play action 1
in every equilibrium of the augmented game, and player 13&lfwill therefore play action 1.

In the following, we will denote by, 05, 03 € N three players who play action 0 in every equilibrium,
and byl;, 1, € N two players that constantly play action 1. Using these ptaye prune the paybtable,
we will proceed to design games that simulate Boolean d¢gcilihese games will satisfy strong anonymity,
and the payfi of all players will therefore be determined by the table adiye used above and shown in
Figure 6. As for the inputs of the circuit, it is easily verdithat a game with playend, [N| = 5, such that
foralli € N, v(i) = N, has pure equilibriz ands’ such that for an arbitrarye N, § = 0 ands = 1.

As before, we will now construct a subgame that simulatesetfonally complete Boolean gate, in this
case NOR, and a subgame that has a pure equilibrium if andfamlyarticular player plays action 1. For
a setN of players with appropriately defined neighborhoodsI'®t) = (N, {0, 1}N, (p)ien) be a graphical
game with neighborhood and paydr functionsp; satisfying strong anonymity as in Figure 6. We observe
the following:

1. LetN and N’ be two sets of players with neighborhoods such that for allN, »(i) € N, and for
alli € N, v(i) € N’. Again, sis a pure equilibrium of (N U N’) if and only if sy and sy are pure
equilibria of '(N) andI'(N’), respectively.

11
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Figure 7: NOR gadget. Paffs are identical to those in Figure 6. A construction analsgouFigure 3 is
used to ensure that playexandz play the same action in every pure equilibrium.

2. Let N be a set of players such thBf(N) has a pure equilibrium, les,b € N, and consider two
additional playersx,y ¢ N with v(X) = {01,0,a,y}, andv(y) = {01,02,b,x}. Then every pure
equilibrium of '(N U {x, y}) satisfiess, = s,.

3. Lettingb = 1; in the previous construction, we have tii@N U {x, y}) has a pure equilibrium if and
only if s, = 1 in some pure equilibrium df.

4. Let N be a set of players such thE{N) has a pure equilibrium, led,b € N, and consider two
additional players, y ¢ N with neighborhoods given by(x) = {01, 02, 03, y} andv(y) = {01, 02, &, b}.
ThenT'(NU{x,y}) has a pure equilibrium, and every pure equilibrigiof I'(N U {X, y}) satisfiess, = 1
whenevers, = § = 0, ands, = 0 whenevers, # . For every pure equilibriuns with s, = s = 1,
there exists a pure equilibriusi such thats, # s, ands = § foralli € N.

5. Consider an additional playeg NU{x,y}, and letv(2) = {11, 1, a,b}. Then['(NU{X,y, z}) has a pure
equilibrium, and every pure equilibriumof I'(N U {Xx, y, z}) satisfiess, = 1 whenevers, = §, = 0,
ands, = 0 whenevers, = s, = 1. For every pure equilibriungs with s, # s, there exists a pure
equilibrium s’ such thats; # s, ands = s foralli € N.

6. By Property 2, we can assume that every equilibreiof I'(N U {Xx, y, z}) satisfiessy = s, and thus
thatsy = lifand only ifs; = 5, = 0.

Steps 4 through 6 are illustrated in Figure 7.

Now consider an instanag of CSAT. We assume w.l.0.g. th@tconsist exclusively of NOR gates and
that no variable appears more than once as an input to the gatime The latter assumption can be made
sincegp NORfalse = —¢, and since there exists a game with strong anonymity andyampia this game
who plays action 0 in every pure equilibrium. As before, wastauct a gam& by simulating every gate
of C according to Property 6 and identifying the player that esponds to the output of the circuit wigh
in Property 3. It is now readily appreciated thalhas a pure equilibrium if and only @ is satisfiable. o

Observing that in the constructions used in the proofs ofofdms 1, 2, and 4 there is a one-to-one
correspondence between satisfying assignments of a Booikait and pure equilibria of a game, we have
that counting the number of pure equilibria in the respectjames is as hard as computing the permanent
of a matrix.

Corollary 4 For graphical games with neighborhoods of size two, cogntite number of pure Nash equi-
libria is #P-hard, even when restricted to games with streggmetry and two glerent paygs, to games
with weak anonymity with two fierent payg’s and two dfferent payg functions, or to games with strong
anonymity and three fferent payg’s. The same holds for graphical games with neighborhoodgefaur,
strong anonymity, and two giierent paygs
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4 Interlude: Generalized Satisfiability in the Presence of Mitchings

The analysis at the end of the previous section allows ustigada corollary that may be of independent
interest. Schaefer (1978) completely characterizes wyagiants of the generalized satisfiability problem
are in P and which are NP-complete. Some of the variants niiteall-equal three-satisfiability, become
tractable if there exists a matchinigg., a bijective mapping from variables to clauses. This fodwom
the equivalence of this problem with two-colorability oféle-uniform hypergraphs and from the work of
Robertson et al. (1999). On the other hand, the proof of gt identifies a variant that is NP-complete
and remains so in the presence of matchings. We thus havellihwing.

Corollary 5 Generalized satisfiability is NP-complete, even if theiistexa matching and all clauses have
size five.

We leave a complete characterization for future work. Whike proof techniques developed in this
paper will certainly be useful in this respect, it should led¢ed that the equivalence between generalized
satisfiability and the pure equilibrium problem covered hedrem 4 may fail to hold for instances of the
latter wherep;(s) = pi(s’) = 0 for s, s" such that #%;;), 1) = #(s;(i), 1)+ 1.

5 Mixed Equilibria

Let us now briefly look at the problem of finding a mixed equilii;m. The following theorem states that
this problem is tractable in graphical games with strongragtny if the number of actions grows slowly in
the neighborhood size.

Theorem 5 LetT = (N, AN, (p)ien) be a graphical game with strong symmetry such that for al N,
A = O(log|v(1)l/ log log|v(i)]). Then, a Nash equilibrium &f can be computed in polynomial time.

Proof: We show thal” possesses a symmetric equilibriure,, one where all players play the same (mixed)
strategy, and that this equilibrium can be computéttiently. For this, choose an arbitrary playee N
and construct a ganE = (N’,AN/,(pi’)iEN) with playersN’ = (i), and for allj € N’, v(j) = N’, and
p](s’) = pi(s) if for all a € A, #(s,a) = #(S),a). Itis easily verified thal” is strongly symmetric
game, and must therefore possess a symmetric equili®iwvhich can be computed in polynomial time if
|Al = O(log|N’|/ log log|N’|) (Papadimitriou and Roughgarden, 2005).

Now define a strategy profileof I' by letting, for eachj € N, s; = 5/, and assume for contradiction
thatsis notan equilibrium. Then there exists a playjer N and some strategye A(A) for this player such
that pj(sny(j), t) > Pj(s). Then, by definition ofy, pi’(q\l/\{i},t) > pi(s), contradicting the assumption theit
is an equilibrium ofl™. m]

Observe that the above theorem applies in particular todee where both the number of actions and
the neighborhood size are bounded, and recall that the puitbeium problem in graphical games with
strong symmetry is NP-complete everkit 2. In other words, we have identified a class of games where
computing a mixed equilibrium is computationally easiartlieciding the existence of a pure one, unless
P=NP. A different class of games with the same property is implicit inoFben 3.4 of Daskalakis and
Papadimitriou (2005).

6 Open Problems

In this paper we have mainly considered neighborhoods dfteohsize. The construction used in the proof
of Theorem 4 can be generalized to arbitrary neighborhobd@wven size. It is unclear what happens for

13



odd-sized neighborhoods. The extreme case when the nefgidub of every player consists of all other
players yields ordinary symmetric games, and it is knowmftbe work of Brandt et al. (2007) that the pure
equilibrium problem is in P in these games when the numbectadizs is bounded. It is an open problem at
what neighborhood size the transition between memberatfpaind NP-hardness occurs.

Another interesting question concerns the complexity efifixed equilibrium problem games with
weak symmetry or weak anonymity. A promising direction fooying hardness would be to make the
construction of Goldberg and Papadimitriou (2006) syminetr

Finally, it would be interesting to study the complexity orgralized satisfiability problems in the
presence of matchings.
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