Electronic Colloguium on Computational Complexity, Report No. 137 (2007)

Lower Bounds for Kernelizations
Yijia Chen* Jorg Flum'

Shanghai Jiaotong University Albert-Ludwigs-Universiat Freiburg

Moritz Mller *
Albert-Ludwigs-Universiat Freiburg

Abstract

Among others, refining the methods of [5] we improve a result of thi€papd show for any parameterized
problem with a “linear weak OR” and with NP-hard underlying classicabfmm that there is no polynomial
reduction from the problem to itself that assigns to every instanagth parametek an instancey with |y| =
KO . |]' = unless the polynomial hierarchy collapses to its third level (aéseany given real number greater
than zero).

1. Introduction

Often, if a computationally hard problem must be solved iacfice, one tries, in a preprocessing step, to reduce
the size of the input data. This approach has been widelyestuhd applied in parameterized complexity and it is
known askernelizatiorthere. We recall the basic concepts.

Parameterized complexity is a refinement of classical cerityltheory, in which one measures the complexity
of an algorithm not only in terms of the total input lengthbut also takes into account other aspects of the input
codified as the parametkr Central to parameterized complexity theory is the notidiixed-parameter tractability.

It relaxes the classical notion of tractability by allowialgjorithms whose running time can be exponential but only
in terms of the parameter. This is based on the idea to chbegwrameter in such a way that it can be assumed to
be small for the instances one is interested in. To be pregipeoblem is said to bfixed-parameter tractabli it

can be decided by dpt-algorithm that is, an algorithm whose running timefigk) - p(n), wheref is an arbitrary
computable function anga polynomial.

A kernelizationof a parameterized problem is a polynomial time algorifkrthat computes for every instance

x of the problem an equivalent instank€x) of a size bounded in terms &f (the parameter of the instanag.
This suggests a new method for designing fpt-algorithmsddcide a given instance, we compute the kernel
K(z) and then decide iK(x) is a yes-instance by brute-force. The converse holds, teeryHixed-parameter
tractable problem has a kernelization. The proof of thisigeasy; however it gives only a “trivial” kernel with no
algorithmic impact.

Besides efficient computability, an important quality ofaod kernelization ismall kernel sizeThe notion of
polynomial kernelization is an abstract model for smalllatisize. A kernelizatiorK is polynomialif there is a
polynomialp such that for all instances (with parametek), the size ofK(z) is bounded by (k).

Polynomial kernelizations are known for many parameterip@blems (compare [10]). However, till recently,
besides artificial problems, only few natural problems wamewn to haveno polynomial kernelization. This
has changed, since Fortnow and Santhanam [5] showed thatobtem “closed under OR” has a polynomial
kernelization (unless the polynomial hierarchy collaps&bey give various applications, in particular, they sbdw
that the problem 8t parameterized by the number of propositional variables@friput formula has no polynomial
kernelization. Further applications of the main resultgifdre given in Bodlaender et al. [3].

In this paper we refine the machinery developed by FortnowSatthanam to obtain better lower bounds.
Applied to the SAT problem we show:

*Email:yi j i a. chen@s. sj tu. edu. cn
tEmail:j oer g. f| um@rat h. uni - f rei bur g. de
tEmail:mori t z. muel | er @mat h. uni -frei burg. de

ISSN 1433-8092

Assume that the polynomial hierarchy does not collapsenTbieeverye > 0 there is no polynomial
time algorithm that for every instanee of SAT with & variables computes an equivalent instan¢e
with

/| < KON o' e, 1)

This result is a particular instance of a general theoremmfaye Theorem 26 for the precise statement) that yields
lower bounds of the type in (1) for every problem “closed urlohear weak OR.” For problems satisfying a weaker
condition, namely only being “closed under weak OR,” wel gflt quite good lower bounds; in case ok1Sit
would be:

jof| < KO - Jao). 2)

As already mentioned, concrete kernelizations yield dligaors for solving parameterized problems efficiently
for small parameter values. Conceptually similar are casgion algorithms, even though the intention is slightly
different: the question is whether one can efficiently cogsprevery “long” instance of a problem@ with “a
short witness” to a shorter equivalent instant¢ef a problem@’ (here equivalent means thate (@ if and only
if 2/ € Q). “Such compression enables to succinctly store instamatisa future setting will allow solving them,
either via a technological or algorithmic breakthrough ion@y until enough time has elapsed” (see [8]). By
suitably generalizing the notion of a kernelization of agmaeterized problem to the notion of a kernelization from
some parameterized problem to another one, Fortnow anth&wsarh [5] introduce a framework which allows to
deal with kernelizations and compressions at the same iim&](a different terminology is used). Nevertheless
we stick to the traditional notion of kernelization as we niyaiaddress problems of parameterized complexity.

More precisely, the content of the different sections isfthlewing. After recalling some definitions and fixing
our notation in Section 2, we consider and analyze some basistions concerning kernelizations in Section 3. In
particular, we shall see that “most” parameterized prokleave a polynomial kernelization if and only if they are
self-compressible.

A kernelization isstrongif the parameter oK (x) is less than or equal to the parametercofit is known that
every parameterized problem that has a kernelization@jrbas a strong kernelization. In Section 4 we derive a
general result (Corollary 11) that shows that parametdn@eblems satisfying certain conditions have no strong
polynomialkernelizations. As an application we get that the problexn Bas no strong polynomial kernelization
if P £ NP and no strong subexponential kernelization if the exptiaktime hypothesis (ETH) holds.

In Section 5 we recall the results of Fortnow and Santhandr(aftdl of Bodlaender et al. [3]) relevant in our
context. Section 6 and Section 7 are devoted to the geratializ of these results of type (2) and of type (1),
respectively, already mentioned above.

2. Preliminaries

The set of natural numbers (that is, nonnegative integsrdenoted byN. For a natural numben let [n] :=
{1,...,n}. By log n we mean[log n] if an integer is expected. Fer = 0 the term logn is undefined. We trust
the reader’'s common sense to interpret such terms reagonabl

We identify problems (or languages) with subs@tef {0,1}*. Clearly, as done mostly, we present concrete
problems in a verbal, hence uncodified form or as a set ofgstriver an arbitrary finite alphabet. We use both P
and PTIME to denote the class of proble@such that: € @ is solvable in polynomial time.

A reduction from a problem) to a problem?’ is a mappingr : {0, 1}* — {0, 1}* such that for all: € {0,1}*
we have(z € Q <= R(z) € Q). We writeR : Q <P Q' if R is a reduction fromQ to Q' computable in
polynomial time, and) <? @’ if there is a polynomial time reduction frof to Q.

2.1. Parameterized Complexity. A parameterized problens a pair(Q, «) consisting of a classical problem
Q@ C {0,1}* and aparameterizatiork : {0,1}* — N, which is required to be polynomial time computable even if
the result is encoded in unary.

We introduce some parameterized problems, which will bd leger, thereby exemplifying our way to represent
parameterized problems. We denoteph$AT the parameterized problem

p-SAT
Instance: A propositional formulax in conjunctive normal form.
Parameter: Number of variables of.
Question: Is « satisfiable?

By p-PATH andp-CLIQUE we denote the problems:

p-PATH
Instance: A graphG andk € N.
Parameter: k.
Question: DoesG have a path of length?

p-CLIQUE
Instance: A graphG andk € N.
Parameter: k.
Question: DoesG have a clique of siz&?

Similarly we definep-DOMINATING -SET.

We recall the definitions of the classes FPT, EXPT, EPT andERJIB A parameterized problef®,) is fixed-
parameter tractabléor, in FPT) ifz € Q is solvable in timef (k(z)) - || for some computablg : N — N. If
f can be chosen such thitk) = 2@ then(Q, k) is in EXPT. If f can be chosen such thftk) = 20,
then(Q, «) is in EPT. If f can be chosen such thatk) = 2" *), then(Q,) is in SUBEPT.

Here o™ denotes the effective version of little oh: For computabiectionsf,g : N — N we say thatf is
effectively little oh ofy and write f = 0°%(g) if there is acomputable nondecreasing and unbounded function
¢t : N — N such that for sufficiently largé € N

(k)
v(k)

As usual we often writgf (k) = 0° (g(k)) instead off = 0°(g).

Q

f(k) <

oy

At some places in this paper, it will be convenient to consjdeparameterized problenthese are pairg, «),
where agairQ is a classical problem andis apreparametrizationthat is, an arbitrary function frorfi0, 1}* to
the seR>, of nonnegative real numbers.

3. Kernelizations

In this section we start by recalling the notion of kernelima and by introducing some refinements. We study
some basic properties of kernelizations and its relatipnshthe notion of compression.

Definition 1. Let (Q, k) be a parameterized problem afid N — N be a function. Anf-kernelizationfor (Q, x)
is a polynomial time algorithriK that on inputc € {0, 1}* outputsK(z) € {0, 1}* such that
(reQ <= K(z)e Q) and |K(z)| < f(k(x)).

In particularK is a reduction fron to itself. If in addition for allz € {0, 1}*

r(K(z)) < k()

thenkK is astrong f-kernelization.

We say tha(Q,) has dinear, polynomial, subexponential, simply exponentalkl exponential kernelization
if there is anf-kernelization for(Q, k) with f(k) = O(k), f(k) = kO, f(k) = 2°™"®) f(k) = 20%) and
F(k) = 287" respectively.

The following result is well-known:

Proposition 2. Let(Q,) be a parameterized problem. The following statements awésalgnt.
(1) (Q, k) is fixed-parameter tractable.
(2) (Q, k) has anf-kernelization for some computabjfe
(3) (@, k) has a strongf-kernelization for some computahfe

The recent survey [7] contains examples of natural probleimase currently best known kernelizations are
polynomial, simply exponential and exponential.

We are mainly interested in polynomial kernelizationsstive show that the notions of polynomial kerneliza-
tion and of strong polynomial kernelization are distinct:

Proposition 3. There is a parameterized problgf@,) that has a polynomial kernelization but no strong polyno-
mial kernelization.

Proof: Let Q be a classical problem that is not solvable in ti2%#!*)). We define a parameterized probl¢m «)
with P C {0,1}* x {1}* and withx((x, 1¥)) = k. By 1* we denote the string consisting binany 1s. For each
k € N we define thé:-projection P[k] := {z | (z,1*) € P} of P by:

— Ifk=20+1,then
Pkl :=Q=¢ ((={z € Q| |z| = 1£}).

Hence, all elements iR?[k] have lengtl?.

— If k=24, then ,
Plk] := {x12 |z € Q:z},

wherez12" is the concatenation of with the string12’. Hence, all elements if?[k] have lengthl + 2¢.

Intuitively, an element in theé/-projection is an element in th@¢ + 1)-projection padded witR* many 1s. Itis
not hard to see thd? has a linear kernelization (which on the even projectionssiases the parameter).
We claim thatP has no strong polynomial kernelization. AssuRié such a kernelization ande N such that

[K((z, 1)) <m®.

We useK to solvez € Q in time 2€(=D:
Letx be an instance df and let/ := |z|. We may assume that

(20)° < 2°
(note that there are only finitely maaynot satisfying this inequality). We compute (in tid@(®)
(u, k) := K (212", 20)).

We know thatk < 2¢ and|u| < (2¢)¢ < 2°. If u does not have the length of the strings/ifk], then(u, k) ¢ P
and thereforer ¢ Q. In particular, this is the caseif= 2¢ (as|u| < 2%). If u has the length of the strings []
and hence: < 24, then it is easy to read off from an instancey with |[y| < |z and ¢y € Q <= z € Q). We
then apply the same procedurejto]

Remark 4. Letc € N. Itis not hard to generalize the previous example and to gshawthere is a parameterized
problem with a polynomial kernelization but with no polyniafrkernelizationK satisfying for allz € {0, 1}*

k(K(z)) < k(z)°.

The next result shows that a parameterized prol§l@m:) in FPT\EXPT with@ € NP cannot have polynomial
kernelizations. We show a little bit more. Recall that EXRhis class of classical problemgssuch thatr € Q is

. e e o(1)
solvable in deterministic timg/*I"" "

Proposition 5. Assume that the proble(, x) has a polynomial kernelization and th@te EXP. Then(Q,) €
EXPT.

Proof: Let K be a polynomial kernelization dip, k). As Q € EXP there is a deterministic algorithfa solving
z € Qintime2/71°" The algorithm that om € {0,1}* first compute(x) and then applied to K(x) solves
z € Qintime |z|0W 4 2K@)7Y = 9ls@)[7D 5 10(1), o

The model-checking of monadic second-order logic on thescta trees is in EXP. By a result of [6] the
corresponding parameterized problem with the length ofdimaula as parameter is in FREXPT unless P= NP.
Hence, by the preceding proposition, it has no polynomietédization (unless = NP).

In later sections, under some complexity-theoretic assiam@ we will present various examples of natural
problems that are in EPT and have no polynomial kernelinatidere we give a simple, artificial example with-
out polynomial kernelizations which holds unconditiogalBodlaender et al. [3] even construct an example of a
problem in EPT without subexponential kernelizations.

Example 6. Let Q be a classical problem not in PTIME but solvable in tiégz|'°9 121). Let x be the parameteri-
zation mapping: to (log |=|)2. Then(Q,) € EPT, becausg®(®) = |z|°9 I=I,

For the sake of contradiction assume tf@f <) has a polynomial kernelizatidd. Then to decide it € Q it
suffices to decide iK(z) € Q. Since|K(z)| = (log |=|)°™) this can be done in time

K ()| K@) < (log |z|)Ot0a sl < loglog|e)?™ 1, 100)

Thus@ € PTIME, a contradiction.
Next we show that the different degrees of kernelizabilityaduced in Definition 1 are indeed different.

Proposition 7. The classes of parameterized problems with a linear, a pohjal, a subexponential, a simply
exponential, and an exponential kernelization are paiergferent.

The claim immediately follows from the following lemma.

Lemma 8. Letg : N — N be nondecreasing and unbounded ghdN — N such thatf (k) < g(k — 1) for all
sufficiently largek. Then there is & C {0, 1}* and a preparameterization such that @,) has ag-kernelization
but no f-kernelization.

If in addition g is increasing and time-constructible, then we can choosebe a parameterization.

Proof: Let g and f be as in the statement. We chodgesuch thatf (k) < g(k — 1) for all kK > kq. We consider the
“inverse function”, of g given by

tg(m) :=min{s € N | g(s) > m}.

Thenforalln € N
n < g(tg(n)) and ifeg(n) > 1,then g(t4(n) — 1) < n. (3)

Let Q be a problem not in PTIME and define the parameterizatiby x(x) := ¢4(|z|). By the first inequality in
(3) the identity is g-kernelization of @,).
Assume that there is afrkernelizationk of (Q,). Ast, is unbounded, we havg(|z|) > ko for sufficiently
longz € {0,1}*. Then
[K(z)| < f(r(2)) = Feg(|2])) < geg(z]) = 1) < 2.

Thus applyingK at most|z| times we get an equivalent instance of length at nfg&t). Therefore € PTIME,
a contradiction.

If ¢ is increasing and time-constructible, thgris polynomial time computable and hencés a parameteriza-
tion. |

Polynomial Kernelization and Compression. Most natural problemg) € NP have acanonicalrepresentation
of the form

reQ <= thereisy c {0,1}9“) such tha(z,y) € Qo (4)

for some polynomial time computable functign: {0,1}* — N and some&, € PTIME. In [2] the problem
(@, g) has been called theanonical parameterizatioof) (more precisely, one should speak of the canonical

parameterization induced by the representation (4)pfClearly (Q, g) is fixed-parameter tractable, it is even in
EPT. If (Q, k) was a parameterized problem, th&p, ¢) is called thecanonical reparameterizatioof (Q,).

The canonical reparameterizationBfSAT is p-SAT itself; the canonical reparameterizations of the problems
p-PATH, p-CLIQUE andp-DOMINATING - SET are the problemsni-PATH, uni-CLIQUE anduni-DOMINATING -SET,
respectively, where in the three cases, we ha¥€&', k)) = k - log |V|; hence in particular,

uni-PATH
Instance: A graphG = (V, E) andk € N.
Parameter: k- log |V].
Question: DoesG have a path of length?

Many fixed-parameter tractable problems, namely all in EX4RT hence, in particulgp; PATH, have a polyno-
mial kernelization if and only if their canonical reparaerations have. This is shown by the following proposi-
tion.

Proposition 9. Let (Q, k) € EXPT and let(Q, g) be the canonical reparameterization @,). Assume thag
has the form
g(x) = k(z) - log h(z) with h(z) = ||

andh(z) > 2 for sufficiently larger. Then

(Q, k) has a polynomial kernelization iff), g) has a polynomial kernelization.

Proof: Clearly, every polynomial kernelization 66, x) is a polynomial kernelization af@, g). Conversely, leK
be a polynomial kernelization dfy, g). Chooser, ¢ € N and an algorithm solvingz € Q in time 25(=)°|z|¢",
We define a polynomial kernelizatid®' for (Q, x).

Fixzy € Qandz_ ¢ Q. (If Q is trivial, that is,Q = () or @ = {0,1}*, we letK’ always output the empty
string.) Letz € {0,1}*. If x(z) < (log |z|)'/¢, the algorithmA on inputz needs at mosz|<+! steps. In
this case we leK’(z) bex or z_ according to the answer @f. Otherwisex(z)¢ > log |z|. Then|K(z)| =
(k(z) - log h(z))°M) = (k(z) - log |2])°M) = k(x)°™M), so we can s€K' () := K(z). i

The reader familiar with the paper of [8] will realize thaisthiesult shows that any parameterized problem
(@, k) in EXPT has a polynomial kernelization if and only if the plerin () is self-compressible.

4. Excluding strong kernelizations

In this section we exemplify how self-reducibility can beedgo rule outstrongpolynomial kernelizations. This
method is very simple and works under the assumption that IRP. We use it to give two natural examples of
problems in EPT that do not hag&rongpolynomial kernelizations.

We will revisit these examples in section 5. There we will gex these problems do not even have polynomial
kernelizations using the stronger assumption that thenpohyjal hierarchy does not collapse to its third level.

Lemma 10. Let (Q, x) be a parameterized problem and assume that the Oth@{6¢ := {z € Q | k(z) =0} is
in PTIME. If there is a polynomial (subexponential) kernelizati@rsuch that for allz ¢ Q(0)

r(K(z)) < w(z), (5)
then@ € PTIME ((Q, x) € SUBEPT,.

Proof: Let K be a kernelization satisfying (5). The following algorithindecides@ (using a polynomial time
decision procedurB for Q(0)). Given an instance of @, the algorithmA computesK(z), K(K(x)),...; by (5)
after at mosk(x) steps we obtain an instangawith x(y) = 0; hence(x € Q <= y € Q(0)); now A simulates
B ony.

If K was a polynomial kernelization, sd¥ (z)| < «(z)°, then, again by (5), all dK (K (x))|, |IK(K(K(x)))], . . .
are bounded by (z)¢. Recall that parameterizations are computable in polyabtinie even if the result is encoded
in unary. Hences:(x) = |z|°(). It follows thatA runs in polynomial time.

If K was a subexponential kernelization, s#(z)| < 2+(®)/«~()) with computable, nondecreasing and
unbounded andK(z) is computable in timéz|¢, thenA needs to compute the equivalent instapes most

[4 2R/ 1)) | 9 () 1) () 1)y 9 (s()=2)1ls()=2) 4 4 gd1/u(1))

many steps. As we can assume that the funcfier j/.(j) is increasing, this number of steps is bounded by
|2|? + k(z) - 2¢#@)/ =) 'which shows thatQ,) € SUBEPT. O

Corollary 11. Let (Q, <) be a parameterized problem with(0) € PTIME. Assume that there is a polynomial
reductionR from @ to itself which isparameter decreasinthhat is, for allz ¢ Q(0),

k(R(z)) < k().

— If (@, k) has a strong polynomial kernelization, th@nc PTIME.
— If (Q, k) has a strong subexponential kernelization, tfiénx) € SUBEPT

Proof: Let R be as in the statement and [Etbe a strong polynomial (subexponential) kernelizatiof @f).
Then the compositioff o R, that is, the mapping — K(R(z)), is a polynomial (subexponential) kernelization of
(Q, k) satisfying (5); hence, by the previous lemma, we@et PTIME (Q € SUBEPT).]

Examples 12. The classical problems underlying
p-SAT and p-POINTED-PATH

have parameter-decreasing polynomial reductions to telees where

p-POINTED-PATH
Instance: AgraphG = (V, E), avertexv € V, andk € N.
Parameter: k.
Question: DoesG have a path of length starting at?

Proof: p-SAT: We define a parameter-decreasing polynomial redudtiémom p-SAT to itself as follows: Lety be
a CNF formula. Ifa has no variables, we s&(«a) := «. Otherwise letX be the first variable imv. We let R(«)

be a formula in CNF equivalent to
TRUE FALSE

where, for exampley 7525 is the formula obtained from by replacingX by TRUE everywhere. Clearlyz(«) can
be computed frona: in polynomial time.

p-POINTED-PATH: We define a parameter-decreasing polynomial redudtiémom p-POINTED-PATH to itself
as follows: Let(G, v, k) be an instance qgf-POINTED-PATH and assumé > 3. For any pathP : v, v1(P), v2(P)
of length2 starting fromw let G p be the graph obtained froi by deleting the two vertices, v, (P) (and all the
edges incident with one of these vertices). Hebe the graph obtained from the disjoint union of all the gs@lih
(whereP ranges over all paths of length 2 startingiby adding a new vertex and all edgegw, v2(P)}. Then
H has a path of lengttk — 1) starting atw if and only if G has a path of length starting atv. Hence we can set
R((G,v,k)) = (H,w,k —1). O

Corollary 13. (1) If P # NP, thenp-SAT has no strong polynomial kernelization.
(2) If ETH holds, themp-SAT has no strong subexponential kernelization.
(3) If P #£ NP, thenp-POINTED-PATH has no strong polynomial kernelization.
(4) If ETH holds, therp-PoINTED-PATH has no strong subexponential kernelization.
Proof: Part (1) and (3) are immediate by Corollary 11. Moreover, wevk by this corollary that if one of the two

problems has a strong subexponential kernelization, thisnin SUBEPT. However then ETH would fail in the
case ofp-SAT by [9] and in the case gf-POINTED-PATH by [1]. |

5. Excluding polynomial kernelizations

The following type of reductions that preserve polynomigiriels was introduced in [5] (based on a notion of [8])
under the namel¥ -reductions.”

Definition 14. Let (Q, x) and(Q’, ') be parameterized problems.pélynomial reductiorirom (Q, k) to (Q’, k')
is a polynomial reductio® from @ to @’ such that

K (R(z)) = k()W)

We then writeR : (Q, <) <P (Q',). Furthermord @, x) <P (@', x’) means that there is a polynomial reduction
from (Q, k) to (Q’,).
Example 15. uni-PATH <P p-SAT.

Proof: Let (G, k) with G = (V, E) be an instance dfini-PaTH. We may assume that = [0,n — 1] and (by
adding isolated points if necessary) that a power of 2. We will assign t0&, k) a formula« in CNF containing
variablesX, ; with s € [log n] andi € [k] with the intended meaning “theth bit of theith vertex of a path of
lengthk is 1.” Fori,j € [k], ¢ # j one has to express by a clause that the selected verti¢dsasd;jth point of

the path are distinct and férc [k — 1] that theith and the(i + 1)th selected vertices are related by an edge. For
example the second one may be expressed by letting be foregeik — 1] and everyu, v € V with {u,v} ¢ E

VY e,
s€(log n] s€[log n]

a clause ofa, where bifs, u) denotes thesth bit in the binary representation of of length log » and where
X!:= X andX? := - X for every variableX.

ThenG has a path of length if and only if « is satisfiable. Asy hask - log |V| variables, the mapping
(G, k) — «is a polynomial reduction.]
Example 16 ([8]). p-SAT <P uni-DOMINATING -SET.

Polynomial reductions preserve polynomial kernelizagionthe following sense:

Lemma 17. Let(Q, k) and(Q’, ') be parameterized problems. with
(@ k) <" (Q,+") and Q<" Q.

If (@', k") has a polynomial kernelization, théf),) has a polynomial kernelization.
Note thatQ’ <P @ is always satisfied for NP-complete proble@and(Q’.

Proof of Lemma 17Let R : (Q, k) <P (Q',«') andS : Q' <P Q. Assume thaK is a polynomial kernelization for
(Q',x"). ThenS o K o R is a polynomial kernelization fofQ, «), as for allz € {0,1}*

IS(K(R(2)))| = [K(R(x))|?") = &' (R(2))°") = k(2)°V).
O

In order to exclude polynomial kernelizations using thevimes lemma one needs a primal problem without
a polynomial kernelization. The key to obtain such problemas found by Fortnow and Santhanam [5]. It is
contained in the following theorem. It has been applied ir8]5

Definition 18. Let Q,Q" C {0,1}* be classical problems. AMistillation from @ in Q" is a polynomial time
algorithmD that receives as inputs finite sequenges (z1,...,2¢) with z; € {0,1}* for ¢ € [t] and outputs a
stringD(z) € {0,1}* such that

o),
)

(1) D(@)] = (maXepylzil)
(2) D(z) € @' ifand only if for somei € [t] : z; € Q.

If Q" = Q we speak of aelf-distillation We say that) has a distillationif there is a distillation fromQ in Q’ for

someq)’.

Theorem 19 (Fortnow and Santhanam [5]).No NP-hard problem has a distillation unle®®H = £ (that is,

unless the polynomial hierarciH collapses to its third leveL?).

To see how this result (and the polynomial reductions) candsel to exclude polynomial kernelizations we
include applications from [3] and [5].

Corollary 20 ([3]). p-PATH has no polynomial kernelization unleBsi = 3:f.

Proof: We assume that-PATH has a polynomial kernelizatidd and show that then the (classical) problenT?
has a self-distillation to itself. In fact, €1, k1), ..., (G, k) be instances of &H. We assume that all;, = &
for somek (if this is not the case let := 1 + 2 - maxc;k; and add to everys; a path of lengthk — k; — 1
with one endpoint connected to all vertices@f). Let G be the disjoint union of all the graphs,;. Clearly, G
has a path of length if and only if there exists an € [t] such thatG; has a path of length. As |K((G,k))| is
polynomially bounded ik and hence in max,||(G;, k;) ||, the mappind Gy, k1), . . ., (G, k) — K((G, k)) is a
self-distillation of RATH. m]

Corollary 21 ([5]). The problems
p-SAT and uniDOMINATING-SET

have no polynomial kernelization unleBsl = XF.

Proof: Assume PH£ YE. By the previous corollary we know thatPATH has no polynomial kernelization. Hence,
asp-PATH € EPT, its canonical reparametrizationi-PATH has no polynomial kernelization by Proposition 9. The
remaining claims follow from examples 15 and 16 by Lemma 17. |

We know that no NP-hard problem has a self-distillation ¢sslPH= YF). Clearly each problem in PTIME
has a self-distillation.
Proposition 22. If NE # E, then there is a problem iNP\ P that has a self-distillation.

By E and NE we denote the class of problefhsuch thatr € @ is solvable by a deterministic algorithm and a
nondeterministic algorithm, respectively, in tip@(=D,

Proof of Proposition 22 Let Qo C {0,1}* be a language in NE E. We assume that each yes instanc&)ef
starts with a 1, and can thus be viewed as a natural numbenanybi Forn € N let bin(n) denote its binary
representation. We set

Q= {1" | bin(n) € Qo}.
Itis easy to see th&@) € NP\ P. Now letQ’ be the “OR-closure” of), that is

Q' ={(x1,...,2y) | m>1andz; € Q for somei € [m]} .

Again it is easy to see th&)' € NP\ P. We claim that)’ has a self-distillation.
Let (11, Timy)s-- -5 (T41,- .., Tem,) DE @ sequence of instances@f. We can assume that all; are
sequences of 1s (otherwise we simply ignore those whichatjelretn be the maximal length of the;;. Then

{xlla---7x1m1a"'7xt11"-axtmt} :{y17"'ayq}

for someg < n. Thus(yi, ..., y,) has lengthO(n?). Clearly (v, ..., y,) isin Q' if and only if (z;1, ..., Tim,) €
Q' for somei € [¢]. O

6. Strong lower bounds

In this section and the next one, by a careful analysis of thefpf Theorem 19, we obtain improvements, which
yield better lower bounds for kernelizations. In partieudtar the path problem we will show:

Theorem 23. Lete > 0 and assum®@H # X}. Then there isopolynomial reduction fronPATH to itself computing
for each instancéG, k) of PATH an instancqG’, k') with

16" = kW |G|t

This result will be a special instance of a more general tesating similar lower bounds for problems sharing
the following property:

Definition 24. Let (Q, x) be a parameterized problem.liAear weak OR fofQ,) is a polynomial time algorithm
O that for every finite tuple& = (x4, ..., ;) of instances of) outputs an instand®(z) of @ such that

L) 10(@)| =t - (maxeplzi) s

(2) K(O(x)) = (maxeylz:])

(3) O(z) € Q if and only if for somei € [t]: z; € Q.
Examples 25. (a) The parameterized problempPATH has a linear weak OR. This can be seen using the construc-
tion in Corollary 20.
(b) The parameterized problepaSAT has a linear weak OR.

Proof: We define a linear weak OR. Letaq,...,a; be CNF formulas, sayy; a formula withn; variables. We
set

n = MaX%cyn; and m = maXey|al.

We may assume that all; have variables if X1, ..., X,,} and that log is a natural number (if is not a power of
two we duplicate one of the formulas for an appropriate nurobémes).

If £ > 2™, the algorithmO proves whether one of the;s is satisfiable (by systematically checking all assign-
ments) and outputs a CNF formulx«;, . . ., o) satisfying condition (3) of the preceding definition.

Assumet < 2". We introduce log new variables, .. ., Yioq. Fori € [t] we set
B; = /\ Ysbit(s,i)
s€(log t]

(recall that bis, 7) denotes theth bit in the binary representation oand thatX! = X and X° = - X for every
variableX).
We bring each(3; — «;) into conjunctive normal form: Assume; = A, \/, Ae with literals Ay, then

(B; — «;) is equivalent to
i = /\ (\/ y1-bit(s.i) \/ Aeer)-
£ sellogt] Y

We let~ be the CNF formulay := /\ie[t] ~vi. We setO(ay, ..., qq) := 7.

ClearlyQ is computable in polynomial time. Furthermore, by congtarcthe formula®(ay, . .., a;) is equiv-
alent to/\iem (8i — ;). Because any assignmentY®, ..., Yoy Satisfies exactly one of thgs, the formula
O(au, ..., aq) is satisfiable if and only if there is ane [¢] such thaty; is satisfiable; hence condition (3) of Defini-
tion 24 is satisfied . Furthermor®, also satisfies the conditions (1) and (2). For (2) note thasn + log t vari-
ables. By our assumption enwe haven+log t < 2n < 2m. For (1) note that each has lengtfO(m-(m-+log t))

and henceQ(ay, . .., o) has lengttO(m?). 0
(c) The parameterized problemmi-CLIQUE has a linear weak OR.
Proof: Let(G1, k1), . . ., (G, ki) be instances afni-CLIQUE. Of course, we can assume that< |V;|, whereV is

the set of vertices afr;. Letk := maxc |, k;. By adding a clique ok —k; new vertices t@-; and connecting all new
vertices to all old vertices ifV; we can pass to an instan@@;, k) equivalent ta G;, k;). Letm := maxepq|V;/| (<
2-maxe(y|Vil).

If t > 2™, by exhaustive search the algorittiinchecks whether one of th&,s has a clique of sizg; if this is
the caseD outputs(G;, k;) for such a&;, and otherwise it outputs, say1, k1).

Assume that < 2™. We setO((G1, k1), ..., (G, k) := (G, k), whereG denotes the disjoint union of the
graphsG’. Clearly,O is computable in polynomial time and condition (3) is sagidfi For condition (1) note that
we have for the sel’ of vertices ofG the inequality|V'| < ¢ - m. The parameter dD((G1, k1), .- ., (Gt, kt)) is
k-log|V| <k-log (t -m) <k-(m+logm)=0(m?). |

(d) The parameterized probleumi-DOMINATING -SET has a linear weak OR.

Proof: Let (G, k1), ..., (G4, kt) be instances afini-DOMINATING -SET. Letk := maxc(k;. By addingk — k;
isolated vertices, we can pass to equivalent instaf@ésk), . . ., (G}, k). Let G} = (V/, E!). We may assume that
t > k and that the vertex setd’ are pairwise disjoint.

If £ > 2™, wherem := max;|V/|, the algorithmO checks by exhaustive search whether one offehas
a dominating set of sizk; if so O outputs(G;, k;) for such aG’, and otherwise it outputs=, k7).

10

Assume that < 2™. Fori € [t] andj € [0,k] := {0, 1,...,k} letV/(j) be a copy ofV’/, say,
Vi) =A{(v,j) [veV}

Let G = (V, E) be the graph with vertex set

vi= J {s(=)s0),syu | VG
s€[log] i€(t],j€[0,k]
The edge seE contains
— edges that makgs(—), s(0), s(1)} a clique fors € [log t];
— for s € [log t] andi € [t] edges froms(1) to all vertices inV;/(0) if bit(s,7) = 0 and edges from(0) to all
vertices inV;(0) if bit (s,) = 1;
— fori, i’ € [t],v e V/, w € V), andj, j' € [0, k] the edge{(v, j), (w, j')} if
—i#4idandj =35>0 or
—i=1¢and{v,w} € E; or
—i=1,j# j andv = w.
We claim that

(G, k +log t) € uni-DOMINATING-SET <= thereis an € [t]: (G}, k) € uni-DOMINATING-SET. (6)
For the backward direction assume fof [¢] that{vy, ..., v} is @ dominating set id;. Then
{(v1,1),..., (v, k) } U {s(bit(s,)) | s € [log t]}

is a dominating set ofs.

For the forward direction leX be a dominating set @ of sizek + log t. For s € [log t] in order to dominate
the points(—) we see that at least one point of the cliqué—), s(0), s(1)} has to be contained iX .

Clearly, ask < t, there is ariy € [t] such that

xn J Vi) =0

JE[0,K]

Forj € [k] (in particularj # 0), in order to dominate the elementsigf (;), the setX must contain an element of
the form(v;, j) with v; € V;/ for somei; # io. Moreover, asX only containsk + log ¢ elements, the vertex;
(and hence;) are uniquely determined by Then it is not hard to see that the get | j € [k] andi; =i} isa
dominating set ir; . This finishes the proof of the equivalence (6).

We setO((G1, k1), - .-, (G, kt)) := (G, k). ThatO also satisfies condition (2) of a linear weak OR is shown
as in the case afni-CLIQUE. O

(e) The problenalpha-LCS has a linear weak OR. Headpha-LCS denotes the canonical parameterization of the
longest common subsequence problem:

alphaLCS
Instance: An alphabet, stringsXy,..., X, € ¥*, andm € N.
Parameter: m -log |X|.
Question: Is there a common subsequenceXaf, . . . , X, of lengthm?

Proof: Let (X1, X11,..., X10,,m1) ... (Z¢, X1, ..., Xte,, m¢) be instances ollphaLCS. We can assume that
6 =--- ={, = { (by repeating a sequence if necessary) andrithat= - - - = m; = m (by addingc;" ™" to each
X, for some new letter;). Moreover we can assume that the alphabgtare disjoint. Now we consider the
strings ove; U... U Y,

)(11)(21...)(7517 X12X22...Xt2, XngQZ...th

11

and the stringXy; X(;_1)1 - - - X11-

One easily verifies that the$é+ 1) strings have a common subsequence of lengthand only if for some €
[t] the stringsX1, . . ., X,¢, have one (for the forward direction note that a common subsaze 0fX11 Xo; ... X4
and X1 X ;1)1 ... X11 is a sequence ovel; for somei € [t]). Now, if £ > maxc[4|X;|™ we determine the value
of O by exhaustive search and otherwise, we use the set of sjusigsonstructed. a

Even though we could add further examples of parameterizgulgms with a linear weak OR, there are also many
problems where we do not know whether they have a linear wéak& just mention one example, the problem
uni-RED/BLUE-NONBLOCKER, the canonical reparametrization of the problerRED/BLUE-NONBLOCKER.

As we have seen thatPATH has a linear weak OR, Theorem 23 follows from:

Theorem 26. Lete > 0. Let(Q,) be a parameterized problem with a linear weak OR and with IdRH4).
UnlessPH = XF, there isno polynomial reduction frong) to itself that assigns to every instancef (an instance
y with

Iyl = r(2)0D - fa] 7.

As we have seen thatPATH has a linear weak OR, Theorem 23 is a special instance of &wep6. It will be
convenient to reformulate Theorem 26. For this purpose vee seme further notions.

Definition 27. A function f : N — R is pseudo-lineaif there is some: € N and some € R with € > 0 such
that for allt € N
ft) <c-t'e.

The property that we need of pseudo-linear functions isainatl in the following lemma. It is easy to prove.

Lemma 28. Lete > 0 and f : N — R>(be a pseudo-linear function. Then for everg N there exists & € N
such that for sufficiently large we have
f(n?) -nf+1<nd,

Remark 29. As f will determine the lower bound stated in Theorem 26, it istiwahile to note that a weak
converse of the above lemma holds: Ifetatisfy the conclusion of Lemma 28. Then there is seme0 such that
f(t) < tt== for infinitely manyt.

To see this writef (¢) = t9() for someg. Then forc = 1 there arel, ng € N such that?9(") < nd=1 for all
n >ng. Thusg(t) < 1 —1/d,i.e. f(t) <t'=Y4 fort = nd, (ng + 1)%, (ng +2)%.

For a parameterized problef®, «), a constant € N, and a functiory : N — R, consider the preparameter-
ized problem

(Q,r° % f)
Instance: z € {0,1}*.
Parameter: x(x)¢- f(|z|).
Question: z € Q?

Theorem 26 follows from:

Lemma 30. Letc € Nand f : N — Rx(be pseudo-linear. L&,) be a parameterized problem with a linear
weak OR and with NP-har@. Then(Q, k¢ x f) has no linear kernelization, unle®H = 3f.

We prove this lemma by generalizing Theorem 19.

Definition 31. Let Q,Q" C {0,1}* be classical problems and I¢t: N — R be a function. Alinear f-
distillation from@ in @’ is a polynomial time algorithrid that receives as inputs finite sequenges (z1, ..., z)
with z; € {0,1}* for i € [¢] and outputs a strin§(z) € {0, 1}* such that

(1) D(@)] = £(¢) - (maxepy|a:) 7T

(2) D(z) € Q' ifand only if for some: € [t] : z; € Q.
We say that) has a linearf-distillation if there is a linearf-distillation fromQ in Q’ for some problent)’.
Lemma 32. Let f : N — Rxq be pseudo-linear. No NP-hard problem has a lingadistillation unlessPH = £,

12

Proof: Let f : N — Rx(be pseudo-linear an@ C {0, 1}* be NP-hard. Assume thatis an f-distillation from@Q
in some problen®)’. We choose a constante N such that

D@)| < £(t) - (maxeqy|zil) ™)

for all t € N and all sequencesof ¢ instances of).

Let@ := {0,1}*\ Q be the complement @ and similarlyQ’ the complement of)’. ClearlyQ is coNP-hard.
We show that) < NP/pon and hence, coNE NP/pon. This yields our claim, as then PH X by a result of
Yap [11, Theorem 2]. Note that for all = (x,. .., x;) we have

D(7) € Q) «— forallic|t]: z; € Q. (8)

To prove@ € NP/poly it suffices to show that for sufficiently largec N there is & = n°() and a sef of

strings with||S|| := " ¢ |z| = n°M such that for alk: € {0,1}"

re€Q <+ Fai,...,m,€{0,1}": (me{ml,...,xt}and]D)(xl,...,xt)ES).

In other words,S can be viewed as a polynomial size advice string for instauiaféengthn. As we will see, the
elements of5 are strings irnR)’, more precisely, we will choos@-values “with many preimages.”

For everym € N, we havg{0,1}=™| < 2™+ in particular,
{0, 1}=Ftmmy < gftmmed ()

As f is pseudo-linear, by Lemma 28 there is a constastN such that for all sufficiently large € N

f(n?) e 41
Forn > 1 we set
t:=n

Then (9) and (10) imply fob” := Q' N {0, 1}=/()"" that
Y|Vt <2. (11)
Recall thatQ_,, := Q N {0, 1}". By (7) we can define a function: (Q_,,)! — Y by
9(z) = D(a).
We construct the advice strirfgjinductively. First we letX, := Q_,,. Choosey, € Y such that
97 (yo) = {z € X | 9(2) = o}
contains at leagtX|*/|Y'| many tuples. Lestring(g~!(yo)) be the set components of tuplesgin! (yo), that is,

string(g ™" (vo)) := {z € X, | there exists somexy, ..., z;) € g~ (yo) such thatr € {z1,...,2:}}.

It follows thatg—*(yo) C (string(g—l(yo)))t and hence

1/t
Xov) " Xl

|string(g~" (y0))| = |9~ (yo)|"/* > < Y| 2

2 K

the last inequality holding by (11). K, # string(g~*(vo)), then letX; := X, \ string(g~*(yo)). Now, we view
g as a function ofX; to Y and, by the same argument as above, we chgpseY such thatstring(g~!(y1))| >
| X1]/2. We iterate this process until we reach the first N with X, = string(¢ ! (y¢)). We let

S :={yo,.-.,ye}

13

ThenS C Y C Q" and|S| = ¢ < log | Xo| < n and thug|S|| < n - f(t) - n¢ < ndt! (by (10)). Hence|S|| is
polynomially bounded im.

We show the equivalence (9). Letc {0,1}". If 2 € @, by our construction of, there is a tuples containing
x as a component such thgit) = D(z) € S.

Conversely, assume¢ Q. Then for everys := (z1,...,2¢) Withzy,..., 2, € {0,1}" andz € {z1,..., 7},
we have, by (8), thab(z) ¢ Q' and henc®(z) ¢ S C Q'. |

Proof of Lemma 30Let ¢ € N and f be pseudo-linear, sgi(t) = O(t'~¢). Assume that@,) is a parameterized
problem with a linear weak OR) and NP-hard). AssumeXf; # PH. For the sake of contradiction assume that
(Q, k¢ x f) has alinear kernelizatiok. By Lemma 32 it suffices to show th@ has a lineaif-distillation D.

We defineD on finite sequences = (x4, ...,x) by

D(z) := K(O(2)).
It is clear that
D(z) € Q < forsomei € [t] : z; € Q.

Write n := max[4|z;|. Then, becausK is a linear kernelization fof@, x° x f),
D(@)] = O(K(O(@))° - F(I0(@)])) = OMOD - 10(&)'~%) = n°D - |0()* %,

where the second equality follow from Definition 24 (2). Nday, Definition 24 (1) we knowO(z)| = t - n®M),
HenceD(z)| = t'== - n°(") and thereford is a linearf-distillation fromQ in itself. 0

7. Lower bounds for problems with a weak OR

In the previous section we have seen how to exclumar kernelizations for certain reparameterizations of param-
eterized problems having a linear weak OR (Lemma 30). Thisweproved Theorem 26.

In this section we show how to exclugelynomialkernelizations of these reparameterized problems. This ca
be done under a weaker condition than that of having a lineakvOR:

Definition 33. Let (Q, x) be a parameterized problem. weak OR for(@, «) is a polynomial time algorithn®
that for every finite tupl& = (x4, ..., z;) of instances of) outputs an instand®(z) of @ such that
(1) K(0(z)) = (Maxepy|a:|)OW;
(2) O(z) € Q ifand only if for somei € [t]: z; € Q.
Hence, the notion of weak OR is obtained from that of a lineaakvOR by omitting in Definition 24 condition

(1), the condition on the size of the output.
The corresponding result reads as follows:

Theorem 34. Let(Q,) be a parameterized problem with a weak OR and with NP-lgartnlessPH = XF, there
is no polynomial reduction frond) to itself that assigns to every instancef () an instance; with
[yl = K ()7 -],

Recall the reparameterizati¢®, x° x f) of (Q,x) forc € Nandf : N — Rx. Clearly(Q,x° x f) has a
polynomial kernelization if and only ifQ, x x f), the problem for = 1, has one.

For the purposes of the proof of Theorem 34 we call a funcfioN — R, goodif f(t) = t°M forallt € N
(that s, if we can writef (t) = t'/*®) for some functiorh : N — R with lim;_ o, h(t) =).

The statement of Theorem 34can equivalently be formulated a

Lemma 35. Let (Q, k) be a parameterized problem with a weak OR and with NP-tiardrhen for every good
f:N — R the problem@, x x f) has no polynomial kernelization, unleBsl = Xf.

Proof: Let (Q,) be a parameterized problem with a weak ORnNd with NP-hard). Let f : N — R, be good.
One easily sees that there is a good increasing fungtiolN — R of the form

f/(t) _ 2Iog t/u(log t) 12)

14

with a nondecreasing and unbounded functiotN — Rx, such thatf (¢) < f’(¢) for all (sufficiently large}.
Assume PH#£ YF. For the sake of contradiction assume also fidat x f) has a polynomial kernelization.
Of course, theri@, x x f’) has a polynomial kernelizatidd. By Lemma 32 it suffices to show th@thas a linear
f"'-distillation D for some pseudo-linegi” : N — Rx.
We defineD on finite sequences = (x4, ..., x:) by

D(z) := K(O(Z)).

Clearly,(D(z) € @ if and only if for somei € [t] : z; € Q). Write n := maxc|z;|. We will show that for some
d € N we have

ID(z)| < (f'(t) -). (13)
HenceD is a linearf” -distillation for f”(t) := f'(t)? of Q in itself.We thus get our desired contradiction, because
f" is pseudo-linear.
As K is a polynomial kernelization df@, x f’), we know

o)
=n

D(@)] = (+(0@)) - F'(0@))) o p(jo(@)°W,

where the last equality holds by Definition 33 (1). To prov@)(tsuffices to show that' (|O(z)|) = (f'(t)-n)°W.
As O is polynomial time computable we kno@(z)| < ¢ - n© for some constant € N. Sincef’ is increasing, it
is enough to show
F1(t - n®) < (F(8) - m)*.
By (12)
c-logt+c-logn
£t - n¢) = gt(c-logt+c-logn)

We distinguish two cases.
- If t > n, then, as is nondecreasing, we get
2¢-logt
[ney <2 01098 = pripye

- If t <n, then
f/(tc . nc) < 22c~log n _ p2c

O

Remark 36. Let f : N — Rx(. One easily verifies that the property of good functions eeed the previous
section (see Lemma 28) holds for all the functions f<(¢) with ¢ € Nif and only if for allc € Nthereisal € N
such that for sufficiently large we have
f(n®)e-nc+1<nd

We show that this implies that is “nearly” good. Leth : N — R be a function such that(t) = ¢/ for every
t € N. Then for every: € N we haveh(t) > ¢ for infinitely manyt. Why? We know that there are), d € N such
that for alln > ng

f(nd)c _ nc-d/h(nd) < nd’

Thenh(t) > cfort = nd, (ng + 1)%, (ng +2)4,.. .. .

15

References

[1] Y. Chen and J. Flum. On parameterized path and chordkgbsgooblems. IiProceedings of the 22nd IEEE
Conference on Computational Complexity (CCC;Q@gge 250 — 263, 2007

[2] Y. Chen and J. Flum. Subexponential time and fixed-patanteactability: exploiting the miniaturization
mapping. InProceedings of the 21st International Workshop on Compsitéence Logic (CSL'07).ecture
Notes in Computer Science 4646, page 389 — 404, 2007.

[3] H.L.Bodlaender, R. G. Downey, M. R. Fellows, and D. HelimeOn Problems Without Polynomial Kernels
in preparation, 2007.

[4] J. Flum and M. GroheParameterized Complexity Theo§pringer, 2006.

[5] L. Fortnow and Santhanam. Infeasibility of instance poession and succinct PCPs for NP. TRO7-
096 in ECCC Reports 2007, available latt p: / / eccc. hpi - web. de/ eccc- | ocal / Li sts/ TR-
2007. ht m

[6] M. Frick and M. Grohe. The complexity of first-order and naalic second-order logic revisitednnals of
Pure and Applied Logic130:3 — 31, 2004.

[7] J. Guo and R. Niedermeier. Invitation to data reductind problem kernelizatiolPACM SIGACT News/ol.
38, No. 1, 2007.

[8] D. Harnik and M. Naor. On the compressibility of NP instas and cryptographic applications, In
Proceedings of the 47th Annual IEEE Symposium on FoundatafnComputer Science (FOCS'06)
page 719 — 728, 2006. Full version appears as TR06-022 in E®Efbrts 2006, available at
http://eccc. hpi -web. de/ eccc-1 ocal / Li sts/ TR- 2006. ht ni

[9] R. Impagliazzo, R.Paturi, and F. Zane. Which problemsehgtvongly exponential complexity3ournal of
Computer and System Sciencg3:512 — 530, 2001.

[10] R. Niedermeierlnvitation to Fixed-Parameter Algorithm®xford University Press, 2006.

[11] C. K. Yap. Some consequences of non-uniform condit@msniform classeslheoretical Computer Science
26, page 287 — 300, 1983.

16

ECCC ISSN 1433-809

http://eccc.hpi-web.de/

