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Abstract

We obtain a lower bound of n
Ω(1) on the k-party randomized com-

munication complexity of the Disjointness function in the ‘Number on
the Forehead’ model of multiparty communication when k is a con-
stant. For k = o(log log n), the bounds remain super-polylogarithmic
i.e. (log n)ω(1). The previous best lower bound for three players until
recently was Ω(log n).

Our bound separates the communication complexity classes NP
CC

k

and BPP
CC

k
for k = o(log log n). Furthermore, by the results of

Beame, Pitassi and Segerlind [4], our bound implies proof size lower
bounds for tree-like, degree k − 1 threshold systems and superpolyno-
mial size lower bounds for Lovász-Schrijver proofs.

To obtain our result, we further develop the “Generalized Discrep-
ancy Method” recently suggested by Sherstov [16]. The other main
components of the proof are the “Approximation/Orthogonality Prin-
ciple” that also appears in [16] and techniques to estimate discrepancy
under non-uniform distribution developed by Chattopadhyay [8].

A similar bound for Disjointness has been recently and indepen-
dently obtained by Lee and Shraibman.

1 Introduction

Chandra, Furst and Lipton [7] introduced the ‘Number on the Forehead’
model of multiparty communication as an extension of Yao’s [20] two party

∗authors are supported by research grants of Prof. D. Thérien. The first author thanks

M. David and T. Pitassi for several discussions.
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communication model. This model, besides being interesting in its own
right, has found numerous connections with circuit complexity, proof com-
plexity, branching programs, pseudo-random generators and other areas of
theoretical computer science.

Both proving upper and lower bounds for this model remain a very chal-
lenging task as it is known that the overlap of information accessible to play-
ers provides significant power to it. In fact, proving a super-polylogarithmic
lower bound on the communication needed by poly-logarithmic number of
players for computing a function f in the restricted setting of simultane-
ous deterministic communication, is enough to show that f is not in ACC0,
a class for which no strong bounds are known. Although several efforts
[2, 9, 14, 10] have been made, this goal currently remains out of reach as no
superlogarithmic lower bounds exist for even log n players.

More modestly, one would like to be able to determine the communica-
tion complexity of simple functions for at least constant number of players.
However, despite intensive research (see for example [5, 6, 19, 18]) the best
known lower bounds on the communication complexity of simple functions
like Disjointness and Pointer Jumping was Ω(log n) even for three players.
The root cause of this problem is that there was essentially only one method
that was the backbone of almost all strong lower bounds. This method is
known as the discrepancy method and was introduced in the seminal work
of Babai, Nisan and Szegedy [2]. It is however known that for functions like
Disjointness this method at best yields Ω(log n) lower bounds.

In this work, we further develop a technique called the Generalized Dis-
crepancy Method as suggested in the recent work of Sherstov [16] and im-
plicitly by Razborov [15] that in principle applies to functions that have
a large discrepancy. Combining the tools of Chattopadhyay [8] for esti-
mating discrepancy under certain non-uniform distribution over inputs and
the beautiful Approximation/Orthogonality principle discovered in [16], we
are able to apply the Generalized Discrepancy Method to yield nΩ(1) lower
bounds on the k-party communication complexity of Disjointness in the
bounded error randomized model (with public coin tosses) as long as k is a
constant.

Our result has interesting consequences for communication complexity
classes and proof complexity. It provides the first example of an explicit
function that has small non-deterministic communication complexity, but
exponentially high randomized complexity. In the language of complexity
classes, this separates BPPCC

k and NPCC
k for k = o(log log n). In fact,

the separation is exponential when k is any constant. Although such a
separation was already known from the work of [3], before our work no
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explicit function was known to separate these classes. By the work of Beame,
Pittasi and Szegerlind [4], our lower bounds on the k-party complexity of
Disjointness implies strong lower bounds on the proof size for a family of
proof systems known as tree-like, degree k − 1 threshold systems. Proving
lower bounds for these systems was a major open problem in propositional
proof complexity.

1.1 Our Main Result

Let y1, . . . , yk−1 be k− 1 n-bit binary strings. Define the k− 1× n boolean
matrix A obtained by placing yi in the ith row of A. For x ∈ {0, 1}n, let
x ⇐ y1, . . . , yk−1 be the n-bit string xi1xi2 . . . xit0

n−t, where i1, . . . , it are
the indices of the all-one columns of A.

Let g : {0, 1}n → {−1, 1} be a base function. We define Gg
k : ({0, 1}n)k →

{−1, 1} by Gg
k(x, y1, . . . , yk−1) := g(x⇐ y1, . . . , yk−1). Observe that GPARITY

k

is the Generalized Inner Product function and GNOR
k is the Disjointness func-

tion. Our main result shows how to use the high approximation degree of a
base function to generate a function with high randomized communication
complexity.

Let Rε
k(f) denote the randomized k-party communication complexity of

f with advantage ε. Then,

Theorem 1.1. Let f : {0, 1}m → {−1, 1} have δ-approximate degree d. Let

n ≥
(

22k

(k − 1)e
)k−1

mk, and f ′ : {0, 1}n → {−1, 1} be such that f(z) =
f ′(z0n−m). Then

Rε
k(G

f ′

k ) ≥ d

2k−1
+ log(δ + 2ε− 1).

As a corollary we show that

Rε
k(DISJk) = Ω

(

n1/2k

22k

e(k − 1)2k−1

)

for a constant ε. In brief, this follows from the following facts. Let NORn

denote the NOR function for inputs of length n. Then f ′ = NORn and
f = NORm satisfy f(z) = f ′(z0n−m) and by a result of Paturi [13], we
know that the 1/3-approximate degree of NORm is Θ(

√
m).

A similar bound for the Disjointness function has been recently and
independently obtained by Lee and Shraibman [12].
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1.2 Proof Overview

To obtain our results we use three main ingredients, the first of which is
the Generalized Discrepancy Method. The classical discrepancy method
states that if a function has low discrepancy, then it has high randomized
communication complexity. In the generalized discrepancy method this idea
is extended as follows. If a function g correlates well with f and has low
discrepancy, then f has high randomized communication complexity.

The second ingredient is the “Approximation/Orthogonality Principle”
of Sherstov [16]. It states that given a function f with high approximation
degree, we can find g and a distribution µ such that g is orthogonal to every
low degree polynomial under µ.

The third ingredient, called the Orthogonality-Discrepancy Lemma, is
derived from the work of Chattopadhyay [8]. This takes a function that
is orthogonal with low degree polynomials and constructs a new masked
function that has low discrepancy.

We can then summarize our strategy as follows. We start with a function
f : {0, 1}n → {−1, 1} with high approximation degree. By the Approxima-
tion/Orthogonality Principle, we obtain g that highly correlates with f and
is orthogonal with low degree polynomials. From f and g we construct new
masked functions F f

k and F g
k , similar to the construction of Gf

k . Since g
is orthogonal to low degree polynomials, by the Orthogonality-Discrepancy
Lemma we deduce that F g

k has low discrepancy under an appropriate dis-

tribution. Under this distribution F g
k and F f

k are highly correlated and
therefore applying the Generalized Discrepancy Method, we conclude that
F f

k has high randomized communication complexity. This implies, by the

construction of F f
k , that the randomized communication complexity of Gf

k
is high. See Figure 1 for an outline.

2 Preliminaries

2.1 Multiparty Communication Model

In the multiparty communication model introduced by [7], k players P1, . . . , Pk

wish to collaborate to compute a function f : {0, 1}n → {−1, 1}. The n in-
put bits are partitioned into k sets X1, . . . ,Xk ⊆ [n] and each participant
Pi knows the values of all the input bits except the ones of Xi. This game
is often referred to as the “Number/Input on the forehead” model since it
is convenient to picture that player i has the bits of Xi written on its fore-
head, available to everyone but itself. Players exchange bits, according to
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Approximation

Orthogonality

f
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F f
k
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k is low

Orthogonality-

Discrepancy

Generalized
Discrepancy

Method

Rε
k(F

f
k ) is high

Rε
k(G

f
k) is high

Figure 1: Proof outline

an agreed upon protocol, by writing them on a public blackboard. The pro-
tocol specifies whose turn it is to speak, and what the player broadcasts as
a function of the communication history and the input the player has access
to. The protocol’s output is a function of what is on the blackboard after
the protocol’s termination. We denote by Dk(f) the deterministic k-party
communication complexity of f , i.e. the number of bits exchanged in the
best deterministic protocol for f on the worst case input.

By allowing the players to access a public random string and the protocol
to err, one defines the randomized communication complexity of a function.
We say that a protocol computes f with ε advantage if the probability that
P and f agree is at least 1/2+ ε for all inputs. We denote by Rε

k(f) the cost
of the best protocol that computes f with advantage ε. One further intro-
duces non-determinism in protocols by allowing ‘God’ to help the players by
furnishing a proof string. As is usual with non-determinism in other models,
a correct non-deterministic protocol P for f has the following property: on
every input x at which f(x) = −1, P(x, y) = −1 for some proof string y
and whenever f(x) = 1, P(x, y) = 1 for all proof strings y. The length of
the proof string y is now included in the cost of P on an input and Nk(f)
denotes the cost of the best non-deterministic protocol for f on the worst
input.

Communication complexity classes were introduced for two players in
[1] in which “efficient” protocol was defined to have cost no more than
polylog(n). This idea naturally extends to the multiparty model giving rise
to the following classes: PCC

k := {f |Dk(f) = polylog(n)}, BPPCC
k :=
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{f |R1/3
k (f) = polylog(n)} and NPCC

k := {f |Nk(f) = polylog(n)}. De-
termining the relationship among these classes is an interesting research
theme within the broader area of understanding the relative power of deter-
minism, non-determinism and randomness in computation. While Beame
et.al. [3] show that BPPCC

k 6= NPCC
k , no explicit function was known that

separated these classes.

2.2 Cylinder Intersections and Discrepancy

The key combinatorial object that arises in the study of multiparty commu-
nication is a cylinder-intersection. A k-cylinder in the ith dimension is a sub-
set S of Y1×· · ·×Yk with the property that membership in S is independent
of the ith coordinate. A set S is called a cylinder-intersection if S = ∩k

i=1Si,
where Si is a cylinder in the ith dimension. One can represent a k-cylinder
in the ith dimension by its characteristic function φi : ({0, 1}n)k → {0, 1}.
Here φi(y1, ..., yk) does not depend on yi. A cylinder intersection is repre-
sented as the product

φ(y1, ..., yk) = φ1(y1, ..., yk)...φk(y1, ..., yk).

It is well known that a protocol that computes f with cost c partitions
the input space of f into at most 2c monochromatic cylinder intersections.

An important measure, defined for a function f : Y1× ...×Yk → {−1, 1},
is its discrepancy. With respect to any probability distribution µ over Y1 ×
· · · × Yk and cylinder intersection φ, define

discφ
k,µ(f) =

∣

∣

∣

∣

Pr
µ

[

f(y1, . . . , yk) = 1 ∧ φ(y1, . . . , yk) = 1
]

−Pr
µ

[

f(y1, . . . , yk) = −1 ∧ φ(y1, . . . , yk) = 1
]

∣

∣

∣

∣

.

Since f is -1/1 valued, it is not hard to verify that equivalently:

discφ
k,µ(f) =

∣

∣

∣

∣

Ey1,...,yk∼µf(y1, . . . , yk)φ(y1, . . . , yk)

∣

∣

∣

∣

. (1)

The discrepancy of f w.r.t. µ, denoted by disck,µ(f) is maxφdiscφ
k,µ(f).

For removing notational clutter, we often drop µ from the subscript when
the distribution is clear from the context. We now state the discrepancy
method which connects the discrepancy and the randomized communication
complexity of a function.
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Theorem 2.1 (see [2, 11]). Let 0 < ε ≤ 1/2 be any real and k ≥ 2 be any
integer. For every function f : Y1× ...×Yk → {1,−1} and distribution µ on
inputs from Y1 × · · · × Yk,

Rε
k(f) ≥ log

(

2ε

disck,µ(f)

)

. (2)

2.3 Fourier Expansion

We consider the vector space of functions from {0, 1}n → R. Equip this
space with the standard inner product 〈f, g〉

〈f, g〉 = Ex∼Uf(x)g(x) (3)

For each S ⊆ [n], define χS(x) = (−1)
P

i∈S
xi . Then it is easy to verify

that the set of functions {χS |S ⊆ [n]} forms an orthonormal basis for this
inner product space, and so every f can be expanded in terms of its Fourier
coefficients

f(x) =
∑

S⊆[n]

f̂(S)χS(x) (4)

where f̂(S) is defined as 〈f, χS〉. This expansion is unique and the exact
degree of f is defined to be the largest d such that there exists S ⊆ [n] with
|S| = d and f̂(S) 6= 0.

2.4 Approximation Degree

A natural question is the following. How large degree is needed if we want to
simply approximate f well? Define the ε-approximate degree of f , denoted
by degε(f) to be the smallest integer d for which there exists a function φ
of exact degree d such that

maxx∈{0,1}n

∣

∣

∣

∣

f(x)− φ(x)

∣

∣

∣

∣

≤ ε

For any D : {0, 1, . . . , n} → {1,−1}, define

`0(D) ∈ {0, 1, . . . , bn/2c}
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`1(D) ∈ {0, 1, . . . , dn/2e}
such that D is constant over the interval [`0(D), n − `1(D)] and `0(D) and
`1(D) are the smallest possible values for which this happens.

Paturi’s theorem provides bounds on the approximate degree of sym-
metric functions.

Theorem 2.2 (Paturi[13]). Let f : {0, 1}n → {1,−1} be any symmetric
function induced from the predicate D : {0, . . . , n} → {1,−1}. Then,

deg1/3(f) = Θ
(
√

n(`0(D) + `1(D))
)

(5)

In particular, the 1/3-approximate degree of NOR is Θ(
√

n).

3 The Generalized Discrepancy Method

Babai, Nisan and Szegedy [2] estimated the discrepancy of functions like
GIPk w.r.t k-wise cylinder intersections and the uniform distribution. These
estimates resulted in the first strong lower bounds in the k-party model via
Theorem 2.1. Unfortunately, the applicability of Theorem 2.1 is limited
to those functions that have small discrepancy. Disjointess is a classical
example of a function that does not have small discrepancy.

Lemma 3.1 (Folklore). Under every distribution µ over the inputs,

disck,µ(DISJk) = Ω(1/n).

Proof. Let X+ and X− be the set of disjoint and non-disjoint inputs re-
spectively. The first thing to observe is that if |µ(X+)− µ(X−)| = Ω(1/n),
then we are done immediately by considering the discrepancy over the in-
tersection corresponding to the entire set of inputs. Thus, we may assume
|µ(X+) − µ(X−)| = o(1/n). Thus, µ(X−) ≥ 1/2 − o(1/n). However,
X− can be covered by the following n monochromatic cylinder intersec-
tions: let Ci be the set of inputs in which the ith column is an all-one
column. Then X− = ∪n

i=1Ci. By averaging, there exists an i such that
µ(Ci) ≥ 1/2n−o(1/n2). Taking the discrepancy of this Ci, we are done.

Thus, it is impossible to obtain better than Ω(log n) bounds on the
communication complexity of Disjointness by a direct application of the
discrepancy method. In fact, the above method shows that Theorem 2.1
fails to give better than polylogarithmic lower bound for every function that
is in NPCC

k or co-NPCC
k .
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For dealing with such functions we need to generalize the discrepancy
method. Simply put, the generalized discrepancy method states that a low
discrepancy of a function g that highly correlates with f implies a high
randomized communication complexity for f . Formally we define correlation
to be Corrµ(f, g) = |Ex∼µf(x)g(x)|.

Lemma 3.2 (Generalized Discrepancy Method). Denote X = Y1 ×
...× Yk. Let f : X → {−1, 1} and g : X → {−1, 1} be such that under some
distribution µ we have Corrµ(f, g) ≥ δ. Then

Rε
k(f) ≥ log

(

δ + 2ε− 1

disck,µ(g)

)

(6)

Proof. Let P be a k-party randomized protocol that computes f with ad-
vantage ε and cost c. Then for every distribution µ over the inputs, we can
derive a deterministic k-player protocol P ′ for f that errs only on at most
1/2−ε fraction of the inputs (w.r.t. µ) and has cost c. Take µ to be a distri-
bution satisfying the correlation inequality. We know P ′ partitions the input
space into at most 2c monochromatic (w.r.t. P ′) cylinder intersections. Let
C denote this set of cylinder intersections. Then,

δ ≤
∣

∣Ex∼µf(x)g(x)
∣

∣

=
∣

∣

∑

x

f(x)g(x)µ(x)
∣

∣

≤
∣

∣

∑

x

P ′(x)g(x)µ(x)
∣

∣ +
∣

∣

∑

x

(f(x)− P ′(x))g(x)µ(x)
∣

∣

Since P ′ is a constant over every cylinder intersection S in C, we have

δ ≤
∑

S∈C

∣

∣

∑

x∈S

P ′(x)g(x)µ(x)
∣

∣ +
∑

x

∣

∣g(x)
∣

∣

∣

∣f(x)−P ′(x)
∣

∣µ(x)

≤
∑

S∈C

∣

∣

∑

x∈S

g(x)µ(x)
∣

∣ +
∑

x

∣

∣f(x)− P ′(x)
∣

∣µ(x)

≤ 2cdisck,µ(g) + 2(1/2 − ε).

This gives us immediately (6).

Observe that when f = g, i.e. Corrµ(f, g) = 1, we get the classical
discrepancy method (Theorem 2.1).
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S2

1 0 1 1 1 0 1 1 0
x = 0 0 0 0 1 0 1 1 1

1 1 0 0 0 0 0 1 0

S1 x← S1, S2 = 001

Figure 2: Illustration of the masking scheme x ← S1, S2. The parameters
are ` = 3,m = 3, n = 27.

4 Generating Functions With Low Discrepancy

4.1 Masking Schemes

We have already defined one masking scheme through the notation x ⇐
y1, . . . , yk. This allowed us to define Gg

k for a base function g. Well-known
functions such as GIPk and DISJk are respresentable in this notation by
GPARITY

k and GNOR
k respectively. Now we define a second masking scheme

which plays a crucial role in lowerbounding the communication complexity
of Gg

k.
Let S1, . . . Sk−1 ∈ [`]m for some positive ` and m. Let x ∈ {0, 1}n where

n = `k−1m. Here it is convenient to think of x to be divided into m equal
blocks where each block is a k − 1-dimensional array with each dimension
having size `. Each Si is a vector of length m with each co-ordinate being
an element from {1, . . . , `}. The k − 1 vectors S1, . . . , Sk−1 jointly unmask
m bits of x, denoted by x← S1, . . . , Sk−1, precisely one from each block of
x i.e.

x[1][S1[1], S2[1], ..., Sk−1[1]], . . . , x[m][S1[m], S2[m], . . . , Sk−1[m]].

where x[i] refers to the ith block of x. See Figure 2 for an illustration of this
masking scheme.

For a given base function f : {0, 1}m → {−1, 1}, we define F f
k : {0, 1}n×

([`]m)k−1 → {−1, 1} as F f
k (x, S1, . . . , Sk−1) = f(x← S1, . . . , Sk−1).

Lemma 4.1. If f : {0, 1}m → {−1, 1} and f ′ : {0, 1}n → {−1, 1} have
the property that f(z) = f ′(z0n−m) (here n = `k−1m as described in the
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construction of F f
k ), then

Rε
k(F

f
k ) ≤ Rε

k(G
f ′

k ). (7)

Proof Sketch. Observe that there are functions Γi : [`]m → {0, 1}n such that

F f
k (x, S1, . . . , Sk−1) = Gf ′

k (x,Γ1(S
1), . . . ,Γk−1(S

k−1)) for all x, S1, . . . , Sk−1.
Therefore the players can privately convert their inputs and apply the pro-

tocol for Gf ′

k .

Note that the proof shows (7) holds not just for randomized but any
model of communication.

4.2 Orthogonality and Discrepancy

Now we prove that if the base function f in our masking scheme has a
certain nice property, then the masked function F f

k has small discrepancy.
To describe the nice property, let us define the following: for a distribution
µ on the inputs, f is (µ, d)-orthogonal if Ex∼µf(x)χS(x) = 0, for all |S| < d.
Then,

Lemma 4.2 (Orthogonality-Discrepancy Lemma). Let f : {−1, 1}m →
{−1, 1} be any (µ, d)-orthogonal function for some distribution µ on {−1, 1}m

and some integer d > 0. Derive the probability distribution λ on {−1, 1}n ×
(

[`]m
)k−1

from µ as follows: λ(x, S1, . . . , Sk−1) = µ(x←S1,...,Sk−1)

`m(k−1)2n−m
. Then,

(

disck,λ

(

F f
k

)

)2k−1

≤
(k−1)m
∑

j=d

(

(k − 1)m

j

)(

22k−1−1

`− 1

)j

(8)

Hence, for `− 1 ≥ 22k

(k − 1)em and d > 2,

disck,λ

(

F f
k

)

≤ 1

2d/2k−1
. (9)

Remark. The Lemma above appears very similar to the Multiparty Degree-
Discrepancy Lemma in [8] that is an extension of the two party Degree-
Discrepancy Lemma of [17]. There, the magic property on the base function
is high voting degree. It is worth noting that (µ, d)-orthogonality of f is
equivalent to voting degree of f being at least d. Indeed the proof of the
above Lemma is almost identical to the proof of the Degree-Discrepancy
Lemma save for the minor details of the difference between our masking
scheme and the one used in [8].
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Proof of Lemma 4.2. The starting point is to write the expression for dis-
crepancy w.r.t. an arbitrary cylinder intersection φ,

discφ
k(F f

k ) =
∣

∣

∣

∣

∑

x,S1,...,Sk−1

F f
k (x, S1, . . . , Sk−1)φ(x, S1, . . . , Sk)

·λ(x, S1, . . . , Sk−1)

∣

∣

∣

∣

(10)

This changes to the more convenient expected value notation as follows:

discφ
k(F f

k ) = 2m

∣

∣

∣

∣

Ex,S1,...,Sk−1F
f
k (x, S1, . . . , Sk−1)

× φ(x, S1, . . . , Sk−1)µ
(

x← S1, . . . , Sk−1
)

∣

∣

∣

∣

(11)

where, (x, S1, . . . , Sk−1) is now uniformly distributed over {0, 1}`k−1m ×
(

[`]m
)k−1

. Then, we use the trick of repeatedly combining triangle inequal-
ity with Cauchy-Schwarz exactly as done in Chattopadhyay[8] to obtain the
following:

(discφ
k(F f

k ))2
k−1 ≤

22k−1m
ES1

0 ,S1
1 ,...,Sk−1

0 ,Sk−1
1

Hf
k

(

S1
0 , S1

1 , . . . , Sk−1
0 , Sk−1

1

)

(12)

where,

Hf
k

(

S1
0 , S1

1 , . . . , Sk−1
0 , Sk−1

1

)

=

∣

∣

∣

∣

E
x∈{0,1}tk−1m

∏

u∈{0,1}k−1

(

F f
k (x, S1

u1
, . . . , Sk−1

uk−1
)

× µ(x← S1
u1

, . . . , Sk−1
uk−1

)

)
∣

∣

∣

∣

(13)

We look at a fixed Si
0, S

i
1, for i = 1, . . . , k − 1. Let ri =

∣

∣Si
0 ∩ Si

1

∣

∣ and
r =

∑

i ri for 1 ≤ i ≤ 2k−1. We now make two claims that are analogous to
Claim 15 and Claim 16 respectively in [8].

Claim 4.3.

Hf
k

(

S1
0 , S1

1 , . . . , Sk−1
0 , Sk−1

1

)

≤ 2(2k−1−1)r

22k−1m
(14)

12



Claim 4.4. Let r < d. Then,

Hf
k

(

S1
0 , S1

1 , . . . , Sk−1
0 , Sk−1

1

)

= 0 (15)

We prove these Claims in the next section. Claim 4.3 simply follows
from the fact that µ is a probability distribution and f is 1/-1 valued while
Claim 4.4 uses the (µ, d) orthogonality of f . We now continue with the proof
of the Orthogonality-Discrepancy Lemma assuming these claims. Applying
them, we obtain

(discφ
k(Fk))2

k−1

≤
(k−1)m
∑

j=d

2(2k−1−1)j
∑

j1+···+jk−1=j

Pr
[

r1 = j1 ∧ · · · ∧ rk−1 = jk−1

]

(16)

Substituting the value of the probability, we further obtain:

(discφ
k(Fk))

2k−1

≤
(k−1)m
∑

j=d

2(2k−1−1)j
∑

j1+···+jk−1=j

(

m

j1

)

· · ·
(

m

jk−1

)

(`− 1)m−j1 · · · (`− 1)m−jk−1

`(k−1)m

(17)

The following simple combinatorial identity is well known:

∑

j1+···+jk−1=j

(

m

j1

)

· · ·
(

m

jk−1

)

=

(

(k − 1)m

j

)

Plugging this identity into (17) immediately yields (8) of the Orthogonality-

Discrepancy Lemma. Recalling
((k−1)m

j

)

≤
( e(k−1)m

j

)j
, and choosing `−1 ≥

22k

(k − 1)em, we get (9).

4.3 Proofs of Claims

We identify the set of all assignments to boolean variables in X = {x1, . . . , xn}
with the n-ary boolean cube {0, 1}n. For any u ∈ {0, 1}k−1, let Zu represent
the set of m variables indexed jointly by S1

u1
, . . . , Sk−1

uk−1
. There is precisely

one variable chosen from each block of X. Denote by Zi[α] the unique

13



variable in Zi that is in the αth block of X, for each 1 ≤ α ≤ m. Let
Z = ∪uZu. We abuse notation for the sake of clarity and use Zu in the con-
text of expected value calculations to also mean a uniformly chosen random
assignment to the variables in the set Zu.

Proof of Claim 4.4.

Hf
k

(

S1
0 , S1

1 , . . . , Sk−1
0 , Sk−1

1

)

=

∣

∣

∣

∣

EZ
0k−1

f(Z0k−1)µ(Z0) EX−Z
0k−1

∏

u∈{0,1}k−1

u 6=0

f(Zu)µ(Zu)

∣

∣

∣

∣

(18)

Observe that for any block α and any u 6= 0k−1, Zu[α] = Z0k−1 [α] iff for
each i such that ui = 1, Si

0[α] = Si
1[α]. Recall that ri is the number of indices

α such that Si
0[α] = Si

1[α]. Therefore, there are at most r =
∑k−1

i=1 ri many
indices α such that Zu[α] = Z0k−1 [α] for some u 6= 0k−1. This means the
inner expectation in (18) is a function that depends on at most r variables.
Since f is orthogonal under µ with every polynomials of degree less than d
and r < d, we get the desired result.

Proof of Claim 4.3. Observe that since F f
k is 1/-1 valued, we get the follow-

ing:

Hf
k

(

S1
0 , S1

1 , . . . , Sk−1
0 , Sk−1

1

)

≤ Ex

∏

u∈{0,1}k−1

µ(x← S1
u1

, . . . , Sk−1
uk−1

)

= EX−Z EZ

∏

u∈{0,1}k−1

µ(Zu)

= EX−Z
1

2|Z|

∑

Z∈{0,1}|Z|

∏

u∈{0,1}k−1

µ(Zu) (19)

≤ EX−Z
1

2|Z|

∑

y1,...,yk−1

∈{0,1}m

k−1
∏

i=1

µ(yi) (20)

where the last inequality holds because every product in the inner sum of
(19) appears in the inner sum of (20). Using the fact that µ is a probability

14



distribution, we get:

RHS of (20) = EX−Z
1

2|Z|

k−1
∏

i=1

∑

yi∈{0,1}m

µ(yi)

= EX−Z
1

2|Z|

=
1

2|Z|
.

We now find a lower bound on |Z|. Let tu denote the Hamming weight
of the string u and {j1, . . . , jtu} denote the set of indices in [k− 1] at which
u has a 1. Define

Yu =
{

Zu[α] | Sjs

1 [α] 6= Sjs

0 [α]; 1 ≤ s ≤ ti; 1 ≤ α ≤ m
}

(21)

The following follow from the above definition.

• |Y0k−1 | = m and |Yu| ≥ m−∑

1≤s≤ti
rjs
≥ m− r for all u 6= 0k−1.

• Yu ∩ Yv = ∅, for u 6= v. This follows from the following argument:
wlog assume there is an index β where u has a one but v has a zero.
Consider any block α such that Zu[α] is in Yu. It must be true that

Sβ
1 [α] 6= Sβ

0 [α]. This means that Zu[α] 6= Zv[α]. Therefore Zu[α] is
not in Yv and we are done.

• Y := ∪u∈{0,1}k−1Yu = Z. This is because if Zu[α] is not in Yu then there

are indices j1, . . . , js where u contains a one and Sji

0 [α] = Sji

1 [α]. Let
v be the string that contains a zero at positions j1, . . . , js and at other
positions, corresponds to u. Then by definition, Zu[α] = Zv[α] ∈ Yv.

Thus, |Z| = |Y | = ∑

u |Yu| ≥ m +
∑

u 6=0(m− r) = 2k−1m− (2k−1 − 1)r
and the result follows.

5 The Main Result

Before proving the main result, we borrow from Sherstov [16] a beautiful
duality between approximability and orthogonality. The intuition is that if a
function is at a large distance from the linear space spanned by the characters
of degree less than d, then its projection on the dual space spanned by
characters of degree at least d is large. More precisely,
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Lemma 5.1. Let f : {−1, 1}m → R be given with degδ(f) = d ≥ 1. Then
there exists g : {−1, 1}m → {−1, 1} and a distribution µ on {−1, 1}m such
that g is (µ, d)-orthogonal and Corrµ(f, g) > δ.

We do not prove this Lemma but the interested reader can read its short
proof in [16] which is based on an application of linear programming duality.

Theorem 5.2 (Main Theorem). Let f : {0, 1}m → {−1, 1} have δ-

approximate degree d. Let n ≥
(

22k

(k − 1)e
)k−1

mk, and f ′ : {0, 1}n →
{−1, 1} be such that f(z) = f ′(z0n−m). Then

Rε
k(G

f ′

k ) ≥ d

2k−1
+ log(δ + 2ε− 1). (22)

Proof. Applying Lemma 5.1 we obtain a function g and a distribution µ
such that Corrµ(f, g) > δ and Ex∼µg(x)χS(x) = 0 for |S| < d. These g and
µ satisfy the conditions of Lemma 4.2, therefore we have

disck,λ

(

F g
k

)

≤ 1

2d/2k−1 (23)

where λ is obtained from µ as stated in Lemma 4.2 and ` ≥ 22k

(k − 1)em.

Since n = `k−1m, (23) holds for n ≥
(

22k

(k − 1)e
)k−1

mk.

It can be easily verified that Corrλ(F f
k , F g

k ) = Corrµ(f, g) > δ. Thus,
by plugging the value of disck,λ

(

F g
k

)

in (6) of the generalized discrepancy
method we get

Rε
k(F

f
k ) ≥ d

2k−1
+ log(δ + 2ε− 1).

The desired result is obtained by applying Lemma 4.1.

5.1 Disjointness Separates BPPCC
k and NPCC

k

As a corollary to the main theorem, we obtain the following lower bound for
the Disjointness function.

Corollary 5.3.

Rε
k(DISJk) = Ω

( n
1
2k

22ke(k − 1)2k−1

)

as long as ε < 1/6.

Proof. Let f = NORm and f ′ = NORn. We know deg1/3(NORm) = Θ(
√

m)

by Theorem 2.2. Setting n =
(

22k

(k−1)e
)k−1

mk, and writing (22) in terms
of n gives the result.
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Observe that we get the same bound for the function GOR
k . It is not

difficult to see that there is a O(log n) bit non-deterministic protocol for
GOR

k and therefore this function separates the communication complexity
classes BPPCC

k and NPCC
k for all k = o(log log n).

5.2 Other Symmetric Functions

Theorem 5.2 does not immediately provide strong bounds on the commu-
nication complexity of Gf

k for every symmetric f . For instance, if f is the
MAJORITY function then one has to work a little more to derive strong
lower bounds.

In this section, using the main result and Paturi’s Theorem (Theo-

rem 2.2), we obtain a lower bound on the communication complexity of Gf
k

for each symmetric f . Let f : {0, 1}n → {1,−1} be the symmetric function
induced from a predicate D : {0, 1, . . . , n} → {1,−1}. We denote by GD

k the

function Gf
k . For t ∈ {0, 1, . . . , n−1}, define Dt : {0, 1, . . . , n− t} → {1,−1}

by Dt(i) = D(i + t). Observe that the communication complexity of GD
k is

at least the communication complexity of GDt

k .

Corollary 5.4. Let D : {0, 1, . . . , n} be any predicate and let `0 = `0(D),
`1 = `1(D). Define T : N→ N by

T (n) =

(

n

(22k(k − 1)e)k−1

)
1
k

Then,

Rε
k(G

D
k ) = Ω

(

Ψ(`0) +
T (`1)

2k−1

)

where

Ψ(`0) = min{Ω
(

√

T (n)`0

2k−1

)

,Ω
(T (n− `0)

2k−1

)

}.

Proof. There are three cases to consider.
Case 1: Suppose `0 ≤ T (n)/2. Let D′ : {0, 1, . . . , T (n)} → {1,−1} be such
that for any z ∈ {0, 1}T (n), we have D(|z|) = D′(|z|). By Theorem 5.2, the
complexity of GD

k is Ω(d/2k−1) where d = deg1/3(D
′). By Paturi’s Theorem,

deg1/3(D
′) ≥

√

T (n)`0(D′) =
√

T (n)`0 and so

Rε
k(G

D
k ) = Ω

(

√

T (n)`0

2k−1

)
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Case 2: Suppose T (n)/2 < `0 ≤ n/2. We find a lower bound on the
communication complexity of GDt where t = `0 − T (n − `0)/2. Let D′t :
{0, 1, . . . , T (n − `0)} → {1,−1} be such that D′t(|z|) = Dt(|z|). So by The-
orem 5.2, the complexity of GDt

k is Ω(d/2k−1) where d is the approximation
degree of D′t. We know

D′t(T (n− `0)/2) = Dt(T (n− `0)/2)

= D(T (n− `0)/2 + `0 − T (n− `0)/2)

= D(`0)

6= D(`0 − 1)

= D′t(T (n− `0)/2 − 1).

Thus by Paturi’s Theorem, deg1/3(D
′
t) ≥

√

T (n− `0)2/2. This implies

Rε
k(G

D
k ) = Ω

(T (n− `0)

2k−1

)

.

Case 3: Suppose `0 = 0 and `1 6= 0. The argument is similar to the
one for Case 2. Consider Dt where t = n − `1 − T (`1)/2. Let D′t :
{0, 1, . . . , T (`1)} → {1,−1} be such that D′t(|z|) = Dt(|z|). As in case 2,
one sees that D′t(T (`1)/2) 6= D′t(T (`1)/2 + 1), so deg1/3(D

′
t) ≥

√

T (`1)2/2.
Therefore,

Rε
k(G

D
k ) = Ω

(T (`1)

2k−1

)

.

Combining these three cases, we get the desired result.
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