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Abstract
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on the size of tree-like Lovasz-Schrijver proof systems needed to refute certain unsatisfiable
CNFs, and super-polynomial lower bounds on the size of any tree-like proof system whose
terms are degree-d polynomial inequalities for d = log logn — O(logloglogn).

To prove our bound, we develop a new technique for showing lower bounds in the number-
on-the-forehead model which is based on the norm induced by cylinder intersections. This
bound naturally extends the linear program bound for rank useful in the two-party case to the
case of more than two parties, where the fundamental concept of monochromatic rectangles
is replaced by monochromatic cylinder intersections. Previously, the only general method
known for showing lower bounds in the unrestricted number-on-the-forehead model was the
discrepancy method, which can only show bounds of size O(log n) for disjointness.

To analyze the bound given by our new technique for the disjointness function, we extend
an elegant framework developed by Sherstov in the two-party case which relates polynomial
degree to communication complexity. Using this framework we are able to obtain bounds for
any tensor of the form F(z1,...,x;) = f(x1 A ... A x) where f is a function which only
depends on the number of ones in the input.

1 Introduction

Since its introduction by Yao [Yao79] nearly thirty years ago, communication complexity has
become a key concept in complexity theory and theoretical computer science in general. Part of
its appeal is that it can be applied to many different computational models, for example to formula
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size and circuit depth, branching programs, VLSI design, and time-space trade-offs for Turing
machines (see [KN97] for more details).

Perhaps the area of communication complexity which remains the most mysterious today is
the k-party “number-on-the-forehead” model, originally introduced by Chandra, Furst and Lipton
[CFL83]. In this model, k parties wish to compute a function f : ({0,1}")%¥ — {—1,1} where
player i has the input x; € {0, 1}" “on his forehead.” That is to say, player i has knowledge of the
entire input except for the string z;. The communication is written “on the blackboard” so that all
players have knowledge of each message. The large overlap in the player’s knowledge is part of
what makes showing lower bounds in this model so difficult. This difficulty, however, is rewarded
by the richness of consequences of such lower bounds: for example, showing a linear lower bound
on an explicit function for £ = n° many players would give an explicit function which requires
superpolynomial size ACC circuits.

While showing such bounds still seems distant, we do know of explicit functions which require
reasonably large communication in this model. Babai, Nisan, and Szegedy [BNS89] show that the
inner product function generalized to k-parties requires randomized communication 2(n/4%), and
for other explicit functions slightly larger bounds of size Q(n/2¥) are known.

For other basic functions, however, there are huge gaps in our knowledge. One example is the
disjointness function, where the goal of the players is to determine if there is an index j such that
every string x; has a one in position j. The best protocol known for disjointness has communication
O(kn/2%) [Gro94]—this upper bound in fact holds for any function whose value only depends on
the size of the intersection of the strings x;. On the other hand, the best lower bound in the general
number-on-the-forehead model is 2(logn/(k — 1)) [BPSWO06, Tes02]. A major obstacle toward
proving better lower bounds on disjointness is that the discrepancy method, a very common and
general technique in communication complexity, can only show bounds of size O(log n). Because
of this limitation, disjointness is always one of the most recalcitrant problems in any model—for
example, in the two-party randomized and quantum models, determining the complexity of dis-
jointness was a long-standing open problem which required the development of novel techniques
to resolve [KS87, Raz92, Raz03].

In the multiparty case, this difficulty is compounded by the fact that discrepancy is essentially
the only method available to show lower bounds in the general number-on-the-forehead model.
Indeed, Kushilevitz and Nisan [KN97] say, “The only technique from two-party communication
complexity that generalizes to the multiparty case is the discrepancy method.”
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eral k-party number-on-the-forehead model by developing a new technique which extends the dis-
crepancy method in a natural way. This bound is in the same ballpark as the previously best known
results for very restricted classes of protocols. Viola and Wigderson [VWO07b] show a bound of
Q(n'/*:=1) /EOk)) on the communication needed by one-way protocols to solve k-party disjoint-
ness. For the k& = 3 case, Beame, Pitassi, Segerlind, and Wigderson [BPSW06] show a bound
of Q(n'/3) for protocols where the first party speaks once, and then the two other parties interact
arbitrarily.

To analyze the bound given by our technique for disjointness, we use the elegant framework
developed by Sherstov [She07b] which relates the polynomial degree of a function f to the com-

We show that disjointness requires randomized communication 2 ( ) in the gen-



plexity of a matrix—or tensor, in our case—which is formed from f in a structured way. This
allows us to show lower bounds not only for disjointness, but for any function whose value de-
pends only on the size of the intersection of the players’ inputs.

After our work was completed and a version of our manuscript circulated, Chattopadhyay and
Ada independently obtained similar lower bounds [ChaO7b].

1.1 Consequences for Lovasz-Schrijver proof systems and beyond

There is an additional motivation to studying the complexity of disjointness in the number-on-the-
forehead model. Beame, Pitassi, and Segerlind [BPS06] show that bounds on disjointness imply
strong lower bounds on the size of refutations of certain unsatisfiable formulas, for a very general
class of proof systems. We now introduce and motivate the study of these proof systems.

As linear and semidefinite programming are some of the most sophisticated polynomial time
algorithms which have been developed, it is natural to ask how they fare when pitted against NP-
complete problems. For many NP-complete problems, there is a very natural approach to solving
them via linear or semidefinite programming: namely, we first formulate the problem as optimiz-
ing a convex function over the Boolean cube, i.e. with variables subject to the quadratic constraints
x? = x;. We then relax these quadratic constraints to linear or semidefinite constraints to obtain a
program which can be solved in polynomial time. For example, a linear relaxation of x? = z; may
simply be the constraint 0 < z; < 1. Such arelaxation already gives a linear program with approxi-
mation ratio of 2 for the problem of vertex cover. Semidefinite constraints are in general more com-
plicated, but there are several “automatic” ways of generating valid semidefinite inequalities—that
is, semidefinite inequalities satisfied by all Boolean solutions of the original problem. Perhaps the
best known of these is the Lovasz-Schrijver “lift and project” method [L.S91]. The seminal 0.878-
approximation algorithm for MAXCUT of Goemans and Williamson [GW95] can be obtained by
relaxing the natural Boolean programming problem with semidefinite constraints obtained by one
application of the Lovasz-Schrijver method.

As these techniques have given impressive results in approximation algorithms, it is natural
to ask if they can also be used to efficiently obtain exact solutions. Namely, how many inequal-
ities need to be added in general until all fractional optima are eliminated and only true Boolean
solutions remain?

One way to address this question is to consider proof systems with derivation rules based on
linear programming or the Lovéasz-Schrijver method. Our particular application will look at the
size of proofs needed to refute unsatisfiable formulas. Given a CNF ¢, we can naturally represent
the satisfiability of ¢ as the satisfiability of a system of linear inequalities, one for each clause. For
example, the clause x; V x4 V =25 would be represented as z; + x4 + (1 — x5) > 1. Suppose
that ¢ is unsatisfiable. Then consider a proof system in which the “axioms” are the inequalities
obtained from the clauses of ¢, and the goal is to derive the contradiction 0 > 1. By the results
of [BPS06], our results on disjointness imply that there are unsatisfiable formulas such that any
refutation obtained by generating new inequalities by the Lovasz-Schrijver method in a “tree-like”
way requires size on™ " For a standard formulation of the Lovasz-Schrijver method known as
LS., bounds of size 2™ for tree-like proofs have already been shown by very different methods
[TKO6].



The advantage of the number-on-the-forehead communication complexity approach, however,
is that it can also be applied to much more powerful proof systems which are currently untouchable
by other approaches. Beame, Pitassi, and Segerlind [BPS06] show that lower bounds on k-party
communication complexity of disjointness give lower bounds on the size of tree-like proofs of
certain unsatisfiable CNFs ¢(z), where the derivation rule is as follows: from inequalities f, g
of degree £k — 1 in z, we are allowed to conclude a degree £ — 1 inequality h if every Boolean
assignment to x which satisfies f and g also satisfies h. Lovdsz-Schrijver proof systems are a
special case of such degree-2 systems. Our bounds on disjointness imply the existence of unsat-
isfiable formulas whose refutation requires super-polynomial size tree-like degree-£ proofs, for
any k = loglogn — O(logloglogn). The aforementioned lower bounds on LS, proof systems
strongly rely on specific geometrical properties of the Lovdsz-Schrijver operator—showing su-
perpolynomial bounds on the size of tree-like proofs in the more general degree-k model was
previously open even in the case k = 2.

2 Preliminaries and notation

We let [n] = {1,...,n}. For multi-party communication complexity it is convenient to work with
tensors, the generalization of matrices to higher dimensions. If an element of a tensor A is specified
by k indices, we say that A has rank k. A tensor for which all entries are in {—1, 1} we call a sign
tensor. For a distributed function f : X; x ... x X — {—1,1}, we define the communication

tensor corresponding to f to be a rank k tensor Ay where A¢[zy,..., 2] = f(x1,...,2%). We
identify f with its communication tensor. For a set Z C X x ... x X; we let x(Z) be its
characteristic tensor where x(Z)[z1, ..., x| = 1if (x1,...,2%) € Z and is 0 otherwise.

For a sign tensor A, we denote by D*(A) the deterministic communication complexity of A
in the k-party number-on-the-forehead model. The corresponding randomized communication
complexity with error bound ¢ > 0 is denoted R*(A). When we drop the superscript it is to be
assumed that the number of parties is equal to the rank of A.

We use the shorthand A > c to indicate that all of the entries of A are at least c. The Hadamard
or entrywise product of two tensors A and B is denoted by A o B. Their inner product is denoted
(A,B) = > . 2 Alza, .o 2] Blzy, ... xg]. The ¢ and {, norms of a tensor A are [|Al|; =
> ey Al - ]| and || Al = maxg, o, [Alz1, . . ., 74|, respectively.

We also need some basic elements of Fourier analysis. For S C [n] we define xs : {0,1}" —
{—1,1} as xg(z) = (—1)Zies®i, As the yg form an orthogonal basis, for any function f :
{0,1}™ — R we have a unique representation

F(@) =3 f(S)xs(a)

SCn

where f(S) = (1/2")(f, xs)-



3 The Method

In this section we present a method for proving lower bounds on randomized communication
complexity in the number-on-the-forehead model that generalizes and significantly strengthens the
discrepancy method.

3.1 Cylinder intersection norm

In two-party communication complexity, a key role is played by combinatorial rectangles—subsets
of the form Z; x Z, where Z; is a subset of inputs to Alice and Z is a subset of inputs to Bob.
The analogous concept in the number-on-the-forehead model of multi-party communication com-
plexity is that of a cylinder intersection.

Definition 1 (Cylinder intersection) A subset Z; C X; X ... X X} is called a cylinder in the
ith dimension if membership in Z; does not depend on the i*" coordinate. That is, for every
(21, Ziy .oy 2k) € Z;and 2} € X, it also holds that (zy,...,2.,...,2k) € Z;. A set Z is

called a cylinder intersection if it can be expressed as Z = NY_, Z; where each Z; is a cylinder in
the i*" dimension.

The reason why cylinder intersections are so important is that a successful protocol partitions
the communication tensor into cylinder intersections, each of which is monochromatic with respect
to the function f. This leads us to our next definition:

Cylinder intersection norm We denote by y the norm induced by the absolute convex hull of
the characteristic functions of all cylinder intersections. That is, for a k-tensor M

u(M) = min {Z las| : M = ZaiX<Zi)}

[

where each Z; is a cylinder intersection, and x(Z;) is a k-tensor where x(Z;)[x1, ..., xx] = 1 if
(x1,...,2x) € Z; and 0 otherwise.

Remark 2 In our definition of |1 above we chose to take x(Z;) as {0, 1} tensors. One can alter-
natively take them to be +1 valued tensors—a form which is sometimes easier to bound—without
changing much. One can show

u(M) > s (M) = 275 u(M).

where 1 (M) is defined as above with x(Z;) taking values from {—1,1}.
We further remark that in the two dimensional case, | is very closely related to a semidefi-

nite programming quantity v, introduced to communication complexity by Linial and Shraibman.
Indeed, for matrices M we have (M) = O(yo(M)) [LSO7].



A successful communication protocol for a sign k-tensor M partitions M into monochromatic
cylinder intersections, Z1, Z, . .., Z,pr - Hence M = . a;x(Z;) where the coefficients «; are
either 1 or —1. Therefore

Theorem 3 For every sign k-tensor M, D*(M) > log(u(M)).

A randomized protocol is simply a probability distribution over deterministic protocols. This
gives us the following fact:

Fact 4 A sign k-tensor M satisfies RF(M) < c if and only if there are sign k-tensors A; for
i=1,...,0satisfying D¥(A;) < c and a probability distribution (py, ..., p;) such that

IM = pidilloo < 2.

To lower bound randomized communication complexity we consider an approximate variant of the
cylinder intersection norm.

Definition 5 (Approximate cylinder intersection norm) Let M be a sign k-tensor, and o > 1.
We define the a-approximate cylinder intersection norm as

p*(M) = 111\1}/11{/1(&[’) 1< MoM <a}

In words, we take the minimum of the cylinder intersection norm over all tensors M’ which are
signed as M and have entries with magnitude between 1 and o. Considering the limiting case as
a — 00 motivates us to define

pe (M) = n]%},n{/uo(]wl) 1< MoM'}

One should note that (M) < (M) for 1 < 8 < a.
The following theorem is an immediate consequence of the definition of approximate cylinder
norm and Fact 4.

Theorem 6 Let M be a sign k-tensor, and 0 < € < 1/2. Then
RE(M) > log(u®(M)) — log(ax)
where a. = 1/(1 — 2¢) and o > a.

Proof: Let p; and A; for 1 < i < ( be as in Fact 4. We take

L
1
1— 2 ;p

6



Notice that 1 < B o M < a., and hence by Definition 5
uo (M) < p(B).
Employing the fact that ;2 is a norm and Theorem 3, we get

By< A) < — 2D'“<A‘><2RE(M)
wl )_1—2622,:]%#( i)_l—QEZ:pi =T-2¢

3.2 Employing duality

We now have a quantity, u®(M ), which can be used to prove lower bounds for randomized com-
munication complexity in the number-on-the-forehead model. As this quantity is defined in terms
of a minimization, however, it seems in itself a difficult quantity to bound from below.

In this section, we employ the duality theory of linear programming to find an equivalent for-
mulation of y®(M) in terms of a maximization problem. This makes the task of proving lower
bounds for p*( M) much easier, as the ¥ quantifier we had to deal with before is now replaced by
an 1 quantifier.

As it turns out, in order to prove lower bounds on p*(M) we will need to understand the dual
norm of y, denoted p*. The standard definition of a dual norm is

pi(Q) = e §1<M ,Q),
for every tensor (). Since the unit ball of y is the absolute convex hull of the characteristic vectors
of cylinder intersections, we can alternatively write

H(@) = max (@ (2))]

where the maximum is taken over all cylinder intersections Z.
We will use the following form for our lower bounds:

Theorem 7 Let M be a sign tensor and 1 < a.

1+ a)(M, Q)+ (1—a)|Qlh
2

p*(M) = max (
Q
st pf(Q) <1
When a = oo we have
pe (M) = max (M,Q)

Q:MoQ>0
st pf(Q) <1



Proof: We treat the case 1 < o < oo first. We can write u*(M) as a linear program as follows.
For each cylinder intersection Z; let X; = x(Z;). Then

(M) = mi i 1+
(M) Ig’glzp q

.t 1< (Z(pi — qi)XZ) oM< a

i

Pi; ¢ > 0
Taking the dual of this program in the straightforward way, we obtain

(Lt a)(.Q) + (-],
2
s.t. (X;, Q)| < 1, forall X;

M) = ma
p* (M) 2

For oo = oo we get the same program as above without the constraint () ,(p; — ¢;)X;)oM < a.
Dualizing this program gives the desired result. O

Observing the bounds in Theorem 7 we see that to lower bound p*(M) it suffices to find
a tensor @) with p*(Q) < 1 that has a large inner product with M. In Section 4 we discuss a
technique for showing bounds on .

3.3 The discrepancy method

Virtually all lower bounds in the general number-on-the-forehead model have used the discrepancy
method, which we now recall.

Definition 8 Let M be a sign k-tensor, and let P be a probability distribution on its entries. The
discrepancy of M with respect to P, written discp(M) is

discp(M) = m?X(M o P,x(2))

where the maximum is taken over cylinder intersections Z. We further define the general discrep-
ancy as
disc(M) = m}in discp(M)

where the minimum is taken over all probability distributions P.
The discrepancy method turns out to be equivalent to > (M).
Theorem 9

1
o(M)= .
W M) = G



Proof: By Theorem 7, for every sign tensor M

p(M) = max {{M,Q):p*(Q) <1}

We can rewrite this as

- B (M, Q) B (M, M o P)
M) = M Q) T RS (e P)

As both numerator and denominator are homogeneous, we have

oY — (M, Mo P)
wEM) = e o P)
1Pl =1

1
= max ————
p:P>0 *(M o P
Pl ( )
1
 disc(M)

4 Techniques to bound 1*(Q)

In the last section, we saw that to bound the randomized number-on-the-forehead communication
complexity of a tensor M, it suffices to find a tensor @) such that (M, Q) is large and p*(Q) is small.
The first quantity is simply a sum and is in general not too hard to compute. Upper bounding 1*(Q)
is more subtle. In this section, we review some techniques for doing this.

In upper bounding the magnitude of the largest eigenvalue of A, a common thing is to consider
the matrix AAT, and use the fact that ||A|> < X\;(AAT). We will try to do a similar thing in upper
bounding £*(Q). In analogy with AAT we make the following definition:

Definition 10 (Contraction product) Ler A be a k-tensor with entries indexed by elements from
X X ... X Xy. We define the contraction product of A along X,, denoted A ey A, to be a2(k—1)-

tensor with entries indexed by elements from Xo x Xo X ... X Xi X Xi. The x3,%}, ..., Tk, T},
entry is defined to be
A.l A[x27x/27"'7xk7x§c] :Z H A[xlay%"':yk}

1 ya€{z2,ah ), Yk €{TR 2}
The contraction product may be defined along other dimensions mutatis mutandis.

Notice that when A is a matrix A ey A corresponds to AAT. When A is a m;-by-m, matrix,
the fact that || A||> < A\ (A ey A) implies that pu*(A)? < myu*(Aey A) or p*(A)? < mop*(Aey A).
The next claim gives the general result for k-tensors. This approach is fairly standard and one can
find similar statements in, for example, [Cha07, VW07a].

9



Claim 11 Let A be a k-tensor with dimensions (my, ..., my,). Then

/~L*<A)2kil < m2 2 -2 -m2k71_2/ub*(A o A)

1 2 k

Proof: Let ¢1,..., ¢, be 0/1 valued functions which maximize p*(A), and where ¢; does not
depend on the 7** variable z;. Then we have

pr(A) = Z Alzy, . w]or(To, o mk) - O, Tm)

X1,...,Tk
= Z or(z , T—1) ZAxl;--- Klo1(@2, .. k) - G- (@, - T2, T)
L1y T—1

Applying the Cauchy-Schwarz inequality we find

2
,U*(A>2§m1m2' Z (ZA T1y--n, ¢1<1’2;---«,1’k>"'¢k1($1,--->$k2,$k)>

T15--ey Tr—1

SmlmQ"'mk—l Z H A[xlz"'ayk]gél(x%"'7yk)"'gbk—l(xla"':'rk—%yk)

1Tt g€zl }
Tp, T,

The result follows by repeating the above process in turn for each variable z;_1, ..., . O

4.1 Example: Hadamard tensors

We give an example to show how Claim 11 can be used in conjunction with our ; method. Let
H be a N-by-N Hadamard matrix. We show that y>(H) > V/N. Indeed, simply let the witness
matrix () be H itself. Incidentally, this corresponds to taking the uniform probability distribution
in the discrepancy method. With this choice we clearly have H o @ > 0, and so

(H,H)  N?
w(H) e (H)

Now we bound p*( H) using Claim 11 which gives:

p>=(H) >

p(H)* < Np'(H ei H) = N°
As H o1 H has nonzero entries only on the diagonal, and these entries are of magnitude N.

Ford and Gal [FGO0S5] extend the notion of matrix orthogonality to tensors, defining what they
call Hadamard tensors.
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Definition 12 (Hadamard tensor) Let H be a sign k-tensor of dimensions (N, ..., N). We say
that H is a Hadamard tensor if

(H o1 H)[z2,25,...,25,z,] =0
whenever x; # x} foralli =2, ... k.

The simple proof above for Hadamard matrices can be easily extended to Hadamard tensors:

Theorem 13 (Ford and Gal [FGO05]) Let H be a rank k Hadamard tensor. Then

N\
H) > -
e )_(k—l)

Proof: We again take the witness () to be H itself. This clearly satisfies H o () > 0, and so

- (H,H) B Nk
WD = ) T )

It now remains to upper bound p*( H) which we do by Claim 11. This gives us

u*(H)2k71 S Nk2k71_2k+1u*<H o H)
The “Hadamard” property of H lets us easily upper bound / e, 1. We have

k—1
Priv* =)< —
r[\/ZZQ('IZ IZ)] — N

by a union bound. Thus the number of non-zero entries in / e; H is at most NV 2(’“_1)%. Each
non-zero entry has magnitude /N. Hence, we obtain

ok—1

M*(H> < (k’ . 1)Nk2k71—2k+1N2k—2 _ (k’ . 1>Nk2k71_1‘

Putting everything together, we have

Remark 14 By doing a more careful inductive analysis, Ford and Gdl obtain this result without
the k — 1 term in the denominator. They also construct explicit examples of Hadamard tensors.
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5 Lower bounds on ;. for pattern tensors

In a series of works, Sherstov [She(07a, She07b] develops a beautiful framework for proving lower
bounds on the discrepancy and the communication complexity of sign matrices A of a particular
form, which he calls pattern matrices. A pattern matrix A is derived from a Boolean function f in
a structured way, according to a particular “pattern”. For such matrices, Sherstov is able to relate
discrepancy to the sign degree of f. He terms this the degree-discrepancy lemma [She(7a]. In a
follow-up work [She07b], he relates the bounded-error approximate degree of f to an approximate
version of the trace norm developed by Razborov [Raz03] to give a new, more transparent, proof
for the lower bounds on the quantum communication complexity of symmetric predicates.

Chattopadhyay [Cha07] extends Sherstov’s degree-discrepancy lemma to relate the sign degree
of f to discrepancy, or equivalently ;:*°(Ay), of an appropriately defined pattern tensor Ay. In this
section, we take the natural step to generalize this result to relate the approximate degree of f to
p*(Ay) for any a. In fact, the advantage of our approach is that ¢ provides a uniform framework
in which one can view all of these results, and seamlessly treats both the case of discrepancy
(a = o0) and bounded-error (bounded «).

In Section 5.1 we describe a key lemma which relates the approximate polynomial degree of f
to the existence of a hard input “distribution” for f. This will only truly correspond to a distribution
in the case of discrepancy—otherwise it can take on negative values. Then in Section 5.2 we use
this distribution, together with the machinery developed in Section 4 to show our main result
relating the a-approximate degree of f to u®(Ay).

5.1 Dual polynomials

We define approximate degree in a slightly non-standard way so that we may simultaneously treat
the bounded o and o = oo cases.

Definition 15 Ler f : {0,1}" — {—1,1}. For a > 1 we say that a function g gives an a-
approximation to f if 1 < g(x)f(z) < a forall x € {0,1}". Similarly we say that g gives an
oo-approximation to f if 1 < g(x)f(zx) for all x € {0, 1}". We let the a-approximate degree of f,
denoted deg, (f), be the smallest degree of a function g which gives an a-approximation to f.

Remark 16 In a more standard scenario, one is considering a 0/1 valued function [ and defines
the approximate degree as deg.(f) = min{deg(g) : ||f — glloo < €}. Letting fi be the sign

representation of f, one can see that for 0 < ¢ < 1/2 our definition is equivalent to the standard

one in the following sense: deg.(f) = deg,, (f+) where aie = 75

For a fixed degree d, let a4(f) be the smallest value of a for which there is a degree d poly-
nomial which gives an a-approximation to f. Notice that ay(f) can be written as a linear pro-
gram. Namely, let B(n,d) = 3¢ (%), and ® be a 2"-by-B(n, d) incidence matrix, with rows
labelled by strings = € {0, 1}" and columns labelled by monomials of degree at most d. We set
®(x,m) = (—=1)™@), where m(z) is the evaluation of the monomial 7 on input . Then

aulf) = min{ @yl 1 < By o f}

12



If this program is infeasible with value a—that is, if there is no degree d polynomial which gives
an a-approximation to f—then the feasibility of the dual of this program will give us a “witness”
to this fact. It is this witness that we will use to construct a tensor () which witnesses that p“ is
large.

Lemma 17 L)
+ (v, T
adlf) = mpx { A ol = 107 0
Proof: Follows from duality theory of linear programming. O

Corollary 18 (cf. Sherstov Corollary 3.3.1 [She07b]) Let f : {0,1}" — {—1,1} and let d =
deg, (f). Then there exists a function v : {0,1}" — R such that

1. (v, g) = 0 for any function g of degree < d.
2. vl =1
3. (v, f) >t

— a+1°

In particular, when oo = o, there is a function v : {0,1}" — R satisfying items (1), (2), and such
that v(x) f(z) > 0 forall z € {0,1}".

5.2 Pattern Tensors

We now define a pattern tensor of rank k. Take m and M such that m divides M. Divide [M] into
m many contiguous blocks, each of size M /m. Let S, 5% ..., S¥~1 C [M/m|™, be vectors of m
elements from [M/m]. We will use the notation S°[t] to refer to the t** element of S°. Finally, let
z € {0, 1}™M/m"" \where we think of z as a k-tensor of dimensions (m, M/m, ..., M/m).

For a function ¢ : {0, 1}™ — R define the (k, m, M, ¢) pattern tensor, denoted Ay ,, 17, by

1 @2 k=1 _
Apmarg(x, 57,87, 87) = ¢(I1,i{,z’§,...,z"f*1 - ‘rmz}nz%lzf{l)
where 7 = {¢],4},...,4,} forj = 1,...,k — 1. We will use the shorthand x|g: g1 to refer to

the m-bit string Ty bt T

i1 52
[RRRRELS Myl st im

Now we are ready to state our main theorem.

k—1.

Theorem 19 For non-negative integers k, m and M > e(k — 1)22k_1m2, and a Boolean function
f on m variables
_ apg — o
log pt*(Apmoary) > d 281 4+ log ———,
og U (Apm,.p) = deggy, (f)/ + log a1l
forevery 1l < a < ay < oo. Furthermore,

log 11> (Apmoarg) = degoo(f)/257.
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Proof: For simplicity we will drop the subscripts and just write A for Ay, as,5. Recall that

1 A, 1—
o o (1) (AQ)+(1-a)
QlQlh=1 2p(Q)
(A4,Q)
max .
Q:QoA>0 1*(Q)
Let v be the vector from Corollary 18 which witnesses that the a-approximate degree of f is at
least d. We let @ be 1/c times the (k,m, M, v) pattern tensor, where ¢ = 2m(M/m)"""=m (1) (k=Dm
With this choice of normalization we have ||Q||; = 1.

p=(A) =

Lower bound on (A, Q) First consider the case 1 < a < co. Then we have (v, f) > (ag —
1)/(ag + 1), and so, by our choice of normalization, (A, Q) > (ag — 1)/(ag + 1). This allows us
to bound (1/2) the term in the numerator of ;*(A) as follows:

1+ a)(A,Q)+ (1 —a) - (ap—1)(1+a)+ (ap+1)(1 —a)
2 - 2(ap +1)

O{o—}—l‘

In the case a = oo, observe that () inherits the property Q o A > 0 as v o f > (. The fact that
vo f > 0together with ||v||; = 1 gives (v, f) = 1, which in turn implies (4, Q) = 1.

Upper bound on £*(Q) We use the Fourier representation of v, namely
ofz] = Y o(T)xr(x),
TCm]
which naturally induces a representation of () as:
1 X
Q== > o(T)Ar,
TC[m]

where Arp is the (k, m, M, x7) pattern tensor.
By Claim 11, to bound p*(@) it suffices to bound p*(Q e, Q) < [|Q e, Q||;. Now we have

lQe@lhis = S Y X I il g )

Ly _
T,Clm]  slsl..sk~tgh=1| = (e{0,1}k! o
2e{0,1}F-1

SWZ Z Z H ><Tz(95|s€11 ..... gh1)

Lr—1

|TﬁT|e2d SL.St..,Sk-t gkt | @ Le{0 1}k
as 0(1y) = 1/2™(v, xr,) < 1/2™, and ©(T;) = 0 whenever |T;| < d.
Fortunately, for many values of S}, St,..., S5, S¥~! the quantity within absolute values is

simply 0. The next claim upper bounds the probability that it is non-zero.

14



Claim 20 Fix sets T, C [m] for ¢ € {0,1}*1.

Z H XTZZC|51 skl)#o S(W)Mm

Lr—1
z (e{0,1}k—1

We continue in the main line of proof and delay the proof of this claim to the end. Applying
Claim 20 together with the observation that, when the inner sum is non-zero, it has magnitude

om(M/m)*! e find
om(M/m)k=t (M)Z(k—l)m (k- )m |Ug T
ol < T —mat— ¥ (“577)
\Te\zzd

Applying Claim 11, and the fact that ;*(Q e, Q) < ||Q e, Q||1, we get

QP < Y (W)' "

Ty
|T;|>d

We now quantify this sum over the cardinality of U, T;. As each T} is of cardinality at least d,
| Ue Ty > d as well. As there are fewer than 22" (™) many collections {77} c(o.1y+1 With

| Ue Ti| = r, we obtain:
ok—1 “ rok—1 [T (k:—l)m "
< 2 ] .
o =32 () (M

Finally, using (') < (em/r)" we find

ford > 1and M > e(k —1)2% 'm?

We now turn to the proof of Claim 20.
Proof:[of Claim 20] We first develop a simple necessary condition for the sum in question to be
non-zero.

15



Claim 21 For ( € {0,1}*7%, fix sets T, C [m)], and sets S;, C [M/m]™ where i = 1,... k — L.
Then
> Il xataly  g)#0
z (e{0,1}k—1 o
only if for all t € U, Ty there exists j € {1,. ..,k — 1} such that Sj[t] = Si[t].

Proof: We show the contrapositive. Assume without loss of generality that there is a t € Tj..0
such that for all j : S{[t] # Si[t]. Then we claim that

Z H XTex|Sl ..... g1) =0

T (e{0,1}k1 kot
Indeed, if we denote by W the index (¢, S}[t], ..., SE*[t]) of z, we find the above sum is equal to
LWzt XTo.o(Tlsy, s5) I1 xr(elsy st )+

£€{0,1}F-1-(0...0)

..... S’H) H XTe<iU|s}1,...,s’cil )

£€{0,1}k=1-(0...0)

Zx:x[W]:O XTo..0 < |Sl

= 0.
If z" is = with the bit in position W' flipped, then xz, (2|51  gt-1) = =Xz o(2|51,  gt-1)
The fact that SJ[t] # SI[t } for all j guarantees that 1/ does not appear in the restriction of z to
(Sgys---»Sg, F ) for ¢ # ( .0), implying the cancellation of the above two terms. O

Now that we know the sum can be nonzero only if for all ¢ € U T}, there exists j such that
Si[t] = Si[t], all that remains is to calculate the probability this happens. For a fixed ¢ € U T}, we
have

i : (k—1)m
p Ji: Si[Y = Sif]] < —2
SZ}i[t]C[rM/m][ bS] = Sill) < 7

by a union bound. It then follows that

|UTy|
Pr [VteUT,3i: St = Si[t] < <w) :

s;’i C[M/m]m™

as each S [t] is chosen independently. O

6 Applications

6.1 Symmetric functions

In this section, we apply Theorem 19 to prove lower bounds on the k-party number-on-the-forehead
randomized communication complexity of all symmetric functions. A function f,, : {0,1}" —
{—1, 1} is called symmetric if f,,(x) = g,(|z|) for some function g, : [n| — {—1,1}.

16



For a function f,, : {0,1}™ — {—1,1} we denote by Fj,, s the function F,, ; : ({0, 1}™)*
{—1,1} defined by Fj, ¢(z1,...,2x) = f(x1 A z2... A xy). In particular, we have DISJ,, =

Fk: n,OR-
Our main result on pattern tensors allows us to say the following about functions Fj , ;.

Theorem 22 Fix( < € < 1/2, and let ag > 1/(1—2¢). Set ¢, = e(k—1)2%""". For any symmetric
function f,, : {0,1}" — {—1,1}

RE(Fion,p) > degy, (fm)/2571 = O(1),

form = [(n/c;™)"E].

Proof: Take m = [(n/ci™")"/*] and M = |czm?], and n’ = m(M /m)*~*. Tt is easy to check that
n>n'.

We show that the (k, m, M, f) pattern tensor, Ay ,, as.f, is a sub-tensor of Fy ,, ¢, i.e. that there
is a reduction from the problem of computing Ay, ,, 1/, to the problem of computing F}, ./ s. For

purposes of presentation, we consider = and each y; in the vector of inputs (y1, ..., yi) t0 Fn ¢
as tensors of dimension (m, M/m, ..., M/m).
The reduction is as follows: The inputs (z, S*,...,S*7!) to Ag s are mapped to inputs

(z,y1,...,Yr_1), respectively. The input x is mapped to itself. For each j € {1,... .k — 1}, we
lety,[t, I, ..., 1] = 1if I; = S7[t] and 0 otherwise.
To see that this is indeed a reduction, observe that

Few @,y .o k=) = fu@ A Ayz... Ayr—1))
= gu(lcA(yi Aya .. ANyr1)|)
(

|
~
3 3
—
8
«a
[
T

= Ak,m,]\/[,f(x,sl Sk 1)

The third equality follows from the fact that the vector y; Ays ... Ay, is equal to 1 in coordinate
(t,I,...,Ix_1) if and only if (I, = S'[t]) A (I, = S*[t])... A (Iy_; = S*7'[t]). Hence, the
coordinates that are taken in = when restricting = to S*, ..., S¥! are exactly the coordinates in
which the vector y; A yo... A yr_1 1s equal to 1. The rest of the steps follow directly from the
definitions.

Therefore, taking ag > a > 1/(1 — 2¢) we have

log p*(Fie.p) > 10g p*(Apmary) = degy, (fin) /2871 = O(1),

where the last inequality follows from Theorem 19.
Finally there is a natural reduction from Fj,, ;s to Fy , s for n > n/, which simply restricts
some of the coordinates in the input to zero. Thus

log 1 (Fien,r) > log ™ (Fiem f)-
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The application to randomized communication complexity follows from Theorem 6. O

We can instantiate this theorem using a result of Paturi which gives asymptotically optimal
bounds on the approximate degree of all symmetric functions. We need the following definition.

Definition 23 Let g, : [n]| — {—1, 1}. Define
lo(gn) € {0,1,...,|n/2]|}, l1(gn) € {0,1,...,[n/2]}

to be the smallest integers such that g, is constant in the interval [ly(g,),n — (1(g,)]. For a
symmetric function f(x) = g,(|z|) let {o(f) = Lo(g,) and similarly (1(f) = (1(gn)-

Theorem 24 (Paturi) Ler f : {0,1}" — {—1, 1} be a symmetric function. Then

degy(f) = © (Valbo(D) + (1))

Using this characterization of approximate degree, and Theorem 22, we get the following sim-
ple lower bound.

Corollary 25 Set ¢, — e(k — 1)22" ', Let f,(z) = gn(|2|) be a symmetric function. Then

Rija(Fokf) = <\/m b J;”Z 1+€1(fm))>

where m = | (n/ci=1)Y*|. In particular,

nl/2k
Ry/4(DIST;,) = Q ( e 22,“)

6.2 Proof systems

In this section we formally define the proof systems discussed in the introduction, and the lower
bounds which follow from our results on disjointness.

A k-threshold formula is a formula of the form ) ;M > t, where ¢, y; are integers, and each
m; is a monomial over variables z, ..., z,. The size of a k-threshold formula is the sum of the
sizes of 7; and ¢, written in binary. For k-threshold formulas f, fs. g, we say that g is semantically
entailed by f, and fs if every 0/1 assignment to x4, . . . , z,, that satisfies both f; and f5 also satisfies
g.

Let ¢ be an unsatisfiable CNF formula with variables z1, ..., x,. For each clause of ¢ we
create a linear threshold formula which is satisfied if and only if the clause is. We refer to these
clauses as axioms. We say that P is a Th(k) refutation of ¢ if

18



e Pisasequence Ly,...,L; of k-threshold formulas.

e Each formula L; is either an axiom or is semantically entailed by formulas L;, Ly with
1,1 < 7.
e The final formula L;is 0 > 1.
The size of P is the sum of the sizes of Li,...,L;. We say that P is tree-like if the underlying
directed acyclic graph representing the implication structure of the proof is a tree.

We are now ready to state the connection of [BPS06] between the number-on-the-forehead
complexity of disjointness and the size of Th(k) proofs.

Theorem 26 (Beame, Pitassi, and Segerlind [BPS06]) Let k > 2. For every n there is a CNF
formula ¢ over n variables such that the size of any Th(k — 1) refutation of ¢ is at least

Rt (DIST, )\
exp | © ( 1/4( k, /)>

logn

Substituting the bounds from our Corollary 25 we obtain the following Corollary:

Corollary 27 Let k > 2. For every n there is a CNF formula ¢ over n variables which requires
Th(k — 1) refutation proofs of size

nl/52k
P (Q ((log(n)(k _ 1)2k—122k1)1/3)> )

In particular, for any k = loglogn — O(logloglogn) there is a CNF formula which requires
superpolynomial size Th(k) refutations.
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