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Abstract

Any proof of P 6= NP will have to overcome two barriers: relativization and natural proofs.
Yet over the last decade, we have seen circuit lower bounds (for example, that PP does not
have linear-size circuits) that overcome both barriers simultaneously. So the question arises of
whether there is a third barrier to progress on the central questions in complexity theory.

In this paper we present such a barrier, which we call algebraic relativization or algebriza-
tion. The idea is that, when we relativize some complexity class inclusion, we should give the
simulating machine access not only to an oracle A, but also to a low-degree extension of A over
a finite field or ring.

We systematically go through basic results and open problems in complexity theory to delin-
eate the power of the new algebrization barrier. First, we show that all known non-relativizing
results based on arithmetization—both inclusions such as IP = PSPACE and MIP = NEXP, and
separations such as MAEXP 6⊂ P/poly —do indeed algebrize. Second, we show that almost all of
the major open problems—including P versus NP, P versus RP, and NEXP versus P/poly—will
require non-algebrizing techniques. In some cases algebrization seems to explain exactly why
progress stopped where it did: for example, why we have superlinear circuit lower bounds for
PromiseMA but not for NP.

Our second set of results follows from lower bounds in a new model of algebraic query com-
plexity, which we introduce in this paper and which is interesting in its own right. Some of
our lower bounds use direct combinatorial and algebraic arguments, while others stem from a
surprising connection between our model and communication complexity. Using this connec-
tion, we are also able to give an MA-protocol for the Inner Product function with O (

√
n log n)

communication (essentially matching a lower bound of Klauck), as well as a communication
complexity conjecture whose truth would imply NL 6= NP.

1 Introduction

In the history of the P versus NP problem, there were two occasions when researchers stepped
back, identified some property of almost all the techniques that had been tried up to that point,
and then proved that no technique with that property could possibly work. These “meta-discoveries”
constitute an important part of what we understand about the P versus NP problem beyond what
was understood in 1971.

The first meta-discovery was relativization. In 1975, Baker, Gill, and Solovay [5] showed
that techniques borrowed from logic and computability theory, such as diagonalization, cannot
be powerful enough to resolve P versus NP. For these techniques would work equally well in a
“relativized world,” where both P and NP machines could compute some function f in a single
time step. However, there are some relativized worlds where P = NP, and other relativized worlds
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where P 6= NP. Therefore any solution to the P versus NP problem will require non-relativizing
techniques: techniques that exploit properties of computation that are specific to the real world.

The second meta-discovery was natural proofs. In 1993, Razborov and Rudich [35] analyzed the
circuit lower bound techniques that had led to some striking successes in the 1980’s, and showed
that, if these techniques worked to prove separations like P 6= NP, then we could turn them around
to obtain faster ways to distinguish random functions from pseudorandom functions. But in that
case, we would be finding fast algorithms for some of the very same problems (like inverting one-way
functions) that we wanted to prove were hard.

1.1 The Need for a New Barrier

Yet for both of these barriers—relativization and natural proofs—we do know ways to circumvent
them.

In the early 1990’s, researchers managed to prove IP = PSPACE [27, 37] and other celebrated
theorems about interactive protocols, even in the teeth of relativized worlds where these theorems
were false. To do so, they created a new technique called arithmetization. The idea was that,
instead of treating a Boolean formula ϕ as just a black box mapping inputs to outputs, one can
take advantage of the structure of ϕ, by “promoting” its AND, OR, or NOT gates to arithmetic
operations over some larger field F. One can thereby extend ϕ to a low-degree polynomial ϕ̃ :
Fn → F, which has useful error-correcting properties that were unavailable in the Boolean case.

In the case of the natural proofs barrier, the way to circumvent it was actually known since
the work of Hartmanis and Stearns [18] in the 1960’s. Any complexity class separation proved
via diagonalization—such as P 6= EXP or ΣEXP

2
6⊂ P/poly [23]—is inherently non-naturalizing. For

diagonalization zeroes in on a specific property of the function f being lower-bounded—namely,
the ability of f to simulate a whole class of machines—and thereby avoids the trap of arguing that
“f is hard because it looks like a random function.”

Until a decade ago, one could at least say that all known circuit lower bounds were subject
either to the relativization barrier, or to the natural proofs barrier. But not even that is true
any more. We now have circuit lower bounds that evade both barriers, by cleverly combining
arithmetization (which is non-relativizing) with diagonalization (which is non-naturalizing).

The first such lower bound was proved by Buhrman, Fortnow, and Thierauf [9], who showed
that MAEXP, the exponential-time analogue of MA, is not in P/poly. To prove that their result
was non-relativizing, Buhrman et al. also gave an oracle A such that MAA

EXP ⊂ PA/poly. Using
similar ideas, Vinodchandran [41] showed that for every fixed k, the class PP does not have circuits
of size nk; and Aaronson [1] showed that Vinodchandran’s result was non-relativizing, by giving an
oracle A such that PPA ⊂ SIZEA (n). Most recently, Santhanam [36] gave a striking improvement
of Vinodchandran’s result, by showing that for every fixed k, the class PromiseMA does not have
circuits of size nk.

As Santhanam [36] stressed, these results raise an important question: given that current tech-
niques can already overcome the two central barriers of complexity theory, how much further can
one push those techniques? Could arithmetization and diagonalization already suffice to prove
NEXP 6⊂ P/poly, or even P 6= NP? Or is there a third barrier, beyond relativization and natural
proofs, to which even the most recent results are subject?

1.2 Our Contribution

In this paper we show that there is, alas, a third barrier to solving P versus NP and the other
central problems of complexity theory.
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Recall that a key insight behind the non-relativizing interactive proof results was that, given
a Boolean formula ϕ, one need not treat ϕ as merely a black box, but can instead reinterpret it
as a low-degree polynomial ϕ̃ over a larger field or ring. To model that insight, in this paper
we consider algebraic oracles: oracles that can evaluate not only a Boolean function f , but also a
low-degree extension f̃ of f over a finite field or the integers. We then define algebrization (short
for “algebraic relativization”), the main notion of this paper.

Roughly speaking, we say that a complexity class inclusion C ⊆ D algebrizes if CA ⊆ D eA for all

oracles A and all low-degree extensions Ã of A. Likewise, a separation C 6⊂ D algebrizes if C eA 6⊂ DA

for all A, Ã. Notice that algebrization is defined differently for inclusions and separations; and
that in both cases, only one complexity class gets the algebraic oracle Ã, while the other gets the
Boolean version A. These subtle asymmetries are essential for this new notion to capture what we
want, and will be explained in Section 2.

We will demonstrate how algebrization captures a new barrier by proving two sets of results.
The first set shows that, of the known results based on arithmetization that fail to relativize, all of
them algebrize. This includes the interactive proof results, as well as their consequences for circuit
lower bounds. More concretely, in Section 3 we show (among other things) that, for all oracles A
and low-degree extensions Ã of A:

• PSPACEA ⊆ IP
eA

• NEXPA ⊆ MIP
eA

• MA
eA
EXP 6⊂ PA/poly

• PromiseMA
eA 6⊂ SIZEA

(
nk
)

The second set of results shows that, for many basic complexity questions, any solution will
require non-algebrizing techniques. In Section 5 we show (among other things) that there exist
oracles A, Ã relative to which:

• NP
eA ⊆ PA, and indeed PSPACE

eA ⊆ PA

• NPA 6⊂ P
eA, and indeed RPA 6⊂ P

eA

• NPA 6⊂ BPP
eA, and indeed NPA 6⊂ BQP

eA and NPA 6⊂ coMA
eA

• NEXP
eA ⊂ PA/poly

• NP
eA ⊂ SIZEA (n)

These results imply that any resolution of the P versus NP problem will need to use non-
algebrizing techniques. But the take-home message for complexity theorists is actually stronger:
non-algebrizing techniques will be needed even to derandomize RP, to separate NEXP from P/poly,
or to prove superlinear circuit lower bounds for NP.

By contrast, recall that the separations MAEXP 6⊂ P/poly and PromiseMA 6⊂ SIZE
(
nk
)

have
already been proved with algebrizing techniques. Thus, we see that known techniques can prove
superlinear circuit lower bounds for PromiseMA, but cannot do the same for NP—even though
MA = NP under standard hardness assumptions [26]. Similarly, known techniques can prove
superpolynomial circuit lower bounds for MAEXP but not for NEXP. To summarize:
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Algebrization provides nearly the precise limit on the non-relativizing techniques of the
last two decades.

We speculate that going beyond this limit will require fundamentally new methods.1

1.3 Techniques

This section naturally divides into two, one for each of our main sets of results.

1.3.1 Proving That Existing Results Algebrize

Showing that the interactive proof results algebrize is conceptually simple (though a bit tedious in
some cases), once one understands the specific way these results use arithmetization. In our view,
it is the very naturalness of the algebrization concept that makes the proofs so simple.

To illustrate, consider the result of Lund, Fortnow, Karloff, and Nisan [27] that coNP ⊆ IP. In
the LFKN protocol, the verifier (Arthur) starts with a Boolean formula ϕ, which he arithmetizes to
produce a low-degree polynomial ϕ̃ : Fn → F. The prover (Merlin) then wants to convince Arthur
that ∑

x∈{0,1}n

ϕ̃ (x) = 0.

To do so, Merlin engages Arthur in a conversation about the sums of ϕ̃ over various subsets of points
in Fn. For almost all of this conversation, Merlin is “doing the real work.” Indeed, the only time
Arthur ever uses his description of ϕ̃ is in the very last step, when he checks that ϕ̃ (r1, . . . , rn)
is equal to the value claimed by Merlin, for some field elements r1, . . . , rn chosen earlier in the
protocol.

Now suppose we want to prove coNPA ⊆ IP
eA. The only change is that now Arthur’s formula ϕ

will in general contain A gates, in addition to the usual AND, OR, and NOT gates. And therefore,
when Arthur arithmetizes ϕ to produce a low-degree polynomial ϕ̃, his description of ϕ̃ will contain
terms of the form A (z1, . . . , zk). Arthur then faces the problem of how to evaluate these terms
when the inputs z1, . . . , zk are non-Boolean. At this point, though, the solution is clear: Arthur
simply calls the oracle Ã to get Ã (z1, . . . , zk)!

While the details are slightly more complicated, the same idea can be used to show PSPACEA ⊆
IP

eA and NEXPA ⊆ MIP
eA.

But what about the non-relativizing separation results, like MA
eA
EXP 6⊂ PA/poly? When we

examine the proofs of these results, we find that each of them combines a single non-relativizing
ingredient—namely, an interactive proof result—with a sequence of relativizing results. Therefore,
having shown that the interactive proof results algebrize, we have already done most of the work
of showing the separations algebrize as well.

1.3.2 Proving The Necessity of Non-Algebrizing Techniques

It is actually easy to show that any proof of NP 6⊂ P will need non-algebrizing techniques. One
simply lets A be a PSPACE-complete language and Ã be a PSPACE-complete extension of A; then

NP
eA = PA = PSPACE. What is harder is to show that any proof of RP ⊆ P, NP ⊆ BPP,

1While we have shown that most non-relativizing results algebrize, we note that we have skipped some famous
examples—involving small-depth circuits, time-space tradeoffs for SAT , and the like. We discuss some of these
examples in Section 9.
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NEXP 6⊂ P/poly, and so on will need non-algebrizing techniques. For the latter problems, we are
faced with the task of proving algebraic oracle separations. In other words, we need to show (for

example) that there exist oracles A, Ã such that RPA 6⊂ P
eA and NPA 6⊂ BPP

eA.
Just like with standard oracle separations, to prove an algebraic oracle separation one has to

do two things:

(1) Prove a concrete lower bound on the query complexity of some function.

(2) Use the query complexity lower bound to diagonalize against a class of Turing machines.

Step (2) is almost the same for algebraic and standard oracle separations; it uses the bounds
from (1) in a diagonalization argument. Step (1), on the other hand, is extremely interesting; it
requires us to prove lower bounds in a new model of algebraic query complexity.

In this model, an algorithm is given oracle access to a Boolean function A : {0, 1}n → {0, 1}.
It is trying to answer some question about A—for example, “is there an x ∈ {0, 1}n such that
A (x) = 1?”—by querying A on various points. The catch is that the algorithm can query not just
A itself, but also an adversarially-chosen low-degree extension Ã : Fn → F of A over some finite
field F.2 In other words, the algorithm is no longer merely searching for a needle in a haystack: it
can also search a low-degree extension of the haystack for “nonlocal clues” of the needle’s presence!

This model is clearly at least as strong as the standard one, since an algorithm can always
restrict itself to Boolean queries only (which are answered identically by A and Ã). Furthermore,
we know from interactive proof results that the new model is sometimes much stronger: sampling
points outside the Boolean cube does, indeed, sometimes help a great deal in determining properties
of A. This suggests that, to prove lower bounds in this model, we are going to need new techniques.

In this paper we develop two techniques for lower-bounding algebraic query complexity, which
have complementary strengths and weaknesses.

The first technique is based on direct construction of adversarial polynomials. Suppose an
algorithm has queried the points y1, . . . , yt ∈ Fn. Then by a simple linear algebra argument,
it is possible to create a multilinear polynomial p that evaluates to 0 on all the yi’s, and that
simultaneously has any values we specify on 2n− t points of the Boolean cube. The trouble is that,
on the remaining t Boolean points, p will not necessarily be Boolean: that is, it will not necessarily
be an extension of a Boolean function. We solve this problem by multiplying p with a second
multilinear polynomial, to produce a “multiquadratic” polynomial (a polynomial of degree at most
2 in each variable) that is Boolean on the Boolean cube and that also has the desired adversarial
behavior.

The idea above becomes more complicated for randomized lower bounds, where we need to
argue about the indistinguishability of distributions over low-degree polynomials conditioned on a
small number of queries. And it becomes more complicated still when we switch from finite field
extensions to extensions Â : Zn → Z over the integers. In the latter case, we can no longer use linear
algebra to construct the multilinear polynomial p, and we need to compensate by bringing in some
tools from elementary number theory, namely Chinese remaindering and Hensel lifting. Even then,
a technical problem (that the number of bits needed to express Ã (x) grows with the running times
of the machines being diagonalized against) currently prevents us from turning query complexity
lower bounds obtained by this technique into algebraic oracle separations over the integers.

Our second lower-bound technique comes as an “unexpected present” from communication
complexity. Given a Boolean function A : {0, 1}n → {0, 1}, let A0 and A1 be the subfunctions

2Later, we will also consider extensions over the integers.
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obtained by fixing the first input bit to 0 or 1 respectively. Also, suppose Alice is given the truth
table of A0, while Bob is given the truth table of A1. Then we observe the following connection
between algebraic query complexity and communication complexity:

If some property of A can be determined using T queries to a multilinear extension
Ã of A over the finite field F, then it can also be determined by Alice and Bob using
O (Tn log |F|) bits of communication.

This connection is extremely generic: it lets us convert randomized algorithms querying Ã into
randomized communication protocols, quantum algorithms into quantum protocols, MA-algorithms
into MA-protocols, and so on. Turning the connection around, we find that any communication
complexity lower bound automatically leads to an algebraic query complexity lower bound. This
means, for example, that we can use celebrated lower bounds for the Disjointness problem [33, 22,

25, 34] to show that there exist oracles A, Ã relative to which NPA 6⊂ BPP
eA, and even NPA 6⊂ BQP

eA

and NPA 6⊂ coMA
eA. For the latter two results, we do not know of any proof by direct construction

of polynomials.
The communication complexity technique has two further advantages: it yields multilinear

extensions instead of multiquadratic ones, and it works just as easily over the integers as over finite
fields. On the other hand, the lower bounds one gets from communication complexity are more
contrived. For example, one can show that solving the Disjointness problem requires exponentially
many queries to Ã, but not that finding a Boolean x with A (x) = 1 does. Also, we do not

know how to use communication complexity to construct A, Ã such that NEXP
eA ⊂ PA/poly and

NP
eA ⊂ SIZEA (n).

1.4 Related Work

In a survey article on “The Role of Relativization in Complexity Theory,” Fortnow [13] defined a
class of oracles O relative to which IP = PSPACE. His proof that IPA = PSPACEA for all A ∈ O
was similar to our proof, in Section 3.2, that IP = PSPACE algebrizes. However, because he wanted
both complexity classes to have access to the same oracle A, Fortnow had to define his oracles in
a subtle recursive way, as follows: start with an arbitrary Boolean oracle B, then let B̃ be the
multilinear extension of B, then let f be the “Booleanization” of B̃ (i.e., f (x, i) is the ith bit in

the binary representation of B̃ (x)), then let
˜̃
B be the multilinear extension of f , and so on ad

infinitum. Finally let A be the concatenation of all these oracles.
As we discuss in Section 10.1, it seems extremely difficult to prove separations relative to these

recursively-defined oracles. So if the goal is to show the limitations of current proof techniques
for solving open problems in complexity theory, then a non-recursive definition like ours seems
essential.

Recently (and independently of us), Juma, Kabanets, Rackoff and Shpilka [21] studied an
algebraic query complexity model closely related to ours, and proved lower bounds in this model.
In our terminology, they “almost” constructed an oracle A, and a multiquadratic extension Ã of

A, such that #PA 6⊂ FP
eA/poly.3 Our results in Section 4 extend those of Juma et al. and solve

some of their open problems.

3We say “almost” because they did not ensure eA (x) was Boolean for all Boolean x; this is an open problem of
theirs that we solve in Section 4.2.1. Also, their result is only for field extensions and not integer extensions.
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Juma et al. also made the interesting observation that, if the extension Ã is multilinear rather
than multiquadratic, then oracle access to Ã sometimes switches from being useless to being ex-
traordinarily powerful. For example, let A : {0, 1}n → {0, 1} be a Boolean function, and let
Ã : Fn → F be the multilinear extension of A, over any field F of characteristic other than 2. Then
we can evaluate the sum

∑
x∈{0,1}n A (x) with just a single query to Ã, by using the fact that

∑

x∈{0,1}n

A (x) = 2nÃ

(
1

2
, . . . ,

1

2

)
.

This observation helps to explain why, in Section 4, we will often need to resort to multiquadratic
extensions instead of multilinear ones.

1.5 Table of Contents

The rest of the paper is organized as follows.

Section 2 Formal definition of algebraic oracles, and various subtleties of the model
Section 3 Why known results such as IP = PSPACE and MIP = NEXP algebrize
Section 4 Lower bounds on algebraic query complexity
Section 5 Why open problems will require non-algebrizing techniques to be solved
Section 6 Generalizing to low-degree extensions over the integers
Section 7 Two applications of algebrization to communication complexity
Section 8 The GMW zero-knowledge protocol for NP, and whether it algebrizes
Section 9 Whether we have non-relativizing techniques besides arithmetization
Section 10 Two ideas for going beyond the algebrization barrier and their limitations
Section 11 Conclusions and open problems

Also, the following table lists our most important results and where to find them.

Result Theorem(s)
IP = PSPACE algebrizes 3.7
MIP = NEXP algebrizes 3.8
Recent circuit lower bounds like MAEXP 6⊂ P/poly algebrize 3.16-3.18
Lower bound on algebraic query complexity (deterministic, over fields) 4.4
Lower bound on algebraic query complexity (probabilistic, over fields) 4.9
Communication lower bounds imply algebraic query lower bounds 4.11
Proving P 6= NP will require non-algebrizing techniques 5.1
Proving P = NP (or P = RP) will require non-algebrizing techniques 5.3
Proving NP ⊆ BPP (or NP ⊂ P/poly) will require non-algebrizing techniques 5.4
Proving NEXP 6⊂ P/poly will require non-algebrizing techniques 5.6
Proving NP ⊆ BQP, BPP = BQP, etc. will require non-algebrizing techniques 5.11
Lower bound on algebraic query complexity (deterministic, over integers) 6.10
Plausible communication complexity conjecture implying NL 6= NP 7.2
Inner Product admits an MA-protocol with O (

√
n log n) communication 7.4

The GMW Theorem algebrizes, assuming “explicit” one-way functions 8.4
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2 Oracles and Algebrization

In this section we discuss some preliminaries, and then formally define the main notions of the
paper: extension oracles and algebrization.

We use [t] to denote the set {1, . . . , t}. See the Complexity Zoo4 for definitions of the complexity
classes we use.

Given a multivariate polynomial p (x1, . . . , xn), we define the multidegree of p, or mdeg (p), to
be the maximum degree of any xi. We say p is multilinear if mdeg (p) ≤ 1, and multiquadratic
if mdeg (p) ≤ 2. Also, we call p an extension polynomial if p (x) ∈ {0, 1} whenever x ∈ {0, 1}n.
Intuitively, this means that p is the polynomial extension of some Boolean function f : {0, 1}n →
{0, 1}.

The right way to relativize complexity classes such as PSPACE and EXP has long been a subject
of dispute: should we allow exponentially-long queries to the oracle, or only polynomially-long
queries? On the one hand, if we allow exponentially-long queries, then statements like “IP =
PSPACE is non-relativizing” are reduced to trivialities, since the PSPACE machine can simply
query oracle bits that the IP machine cannot reach. Furthermore the result of Chandra, Kozen,
and Stockmeyer [11] that APSPACE = EXP becomes non-relativizing, which seems perverse. On
the other hand, if we allow only polynomially-long queries, then results based on padding—for
example, P = NP =⇒ EXP = NEXP—will generally fail to relativize.5

In this paper we adopt a pragmatic approach, writing CA or CA[poly] to identify which convention
we have in mind. More formally:

Definition 2.1 (Oracle) An oracle A is a collection of Boolean functions Am : {0, 1}m → {0, 1},
one for each m ∈ N. Then given a complexity class C, by CA we mean the class of languages
decidable by a C machine that can query Am for any m of its choice. By CA[poly] we mean the
class of languages decidable by a C machine that, on inputs of length n, can query Am for any
m = O (poly (n)). For classes C such that all computation paths are polynomially bounded (for
example, P, NP, BPP, #P...), it is obvious that CA[poly] = CA.

We now define the key notion of an extension oracle.

Definition 2.2 (Extension Oracle Over A Finite Field) Let Am : {0, 1}m → {0, 1} be a Boolean
function, and let F be a finite field. Then an extension of Am over F is a polynomial Ãm,F : Fm → F

such that Ãm,F (x) = Am (x) whenever x ∈ {0, 1}m. Also, given an oracle A = (Am), an extension

Ã of A is a collection of polynomials Ãm,F : Fm → F, one for each positive integer m and finite
field F, such that

(i) Ãm,F is an extension of Am for all m, F, and

(ii) there exists a constant c such that mdeg(Ãm,F) ≤ c for all m, F.6

Then given a complexity class C, by C eA we mean the class of languages decidable by a C ma-

chine that can query Ãm,F for any integer m and finite field F. By C eA[poly] we mean the class of

4www.complexityzoo.com
5Indeed, let A be any PSPACE-complete language. Then P

A = NP
A, but EXP

A[poly] = NEXP
A[poly] if and only if

EXP = NEXP in the unrelativized world.
6All of our results would work equally well if we instead chose to limit mdeg( eAm,F) by a linear or polynomial

function of m. On the other hand, nowhere in this paper will mdeg( eAm,F) need to be greater than 2.
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languages decidable by a C machine that, on inputs of length n, can query Ãm,F for any integer
m = O (poly (n)) and finite field with |F| = 2O(m).

We use mdeg(Ã) to denote the maximum multidegree of any Ãm.
For most of this paper, we will restrict ourselves to extensions over finite fields, as they are easier

to work with than integer extensions and let us draw almost the same conceptual conclusions. We
note that many of our results—including all results showing that existing results algebrize, and all
oracle separations proved via communication complexity—easily carry over to the integer setting.
Furthermore, even our oracle separations proved via direct construction can be “partly” carried
over to the integer setting. Section 6 studies integer extensions in more detail.

Definition 2.3 (Algebrization) We say the complexity class inclusion C ⊆ D algebrizes if CA ⊆
D eA for all oracles A and all finite field extensions Ã of A. Likewise, we say that C ⊆ D does not
algebrize, or that proving C ⊆ D would require non-algebrizing techniques, if there exist A, Ã such

that CA 6⊂ D eA.

We say the separation C 6⊂ D algebrizes if C eA 6⊂ DA for all A, Ã. Likewise, we say that C 6⊂ D
does not algebrize, or that proving C 6⊂ D would require non-algebrizing techniques, if there exist

A, Ã such that C eA ⊆ DA.

When we examine the above definition, two questions arise. First, why can one complexity
class access the extension Ã, while the other class can only access the Boolean part A? And second,
why is it the “right-hand class” that can access Ã for inclusions, but the “left-hand class” that can
access Ã for separations?

One answer is that we want to define things in such a way that every relativizing result is also
algebrizing. This clearly holds for Definition 2.3: for example, if CA is contained in DA, then CA

is also contained in D eA, since DA ⊆ D eA. On the other hand, it is not at all clear that CA ⊆ DA

implies C eA ⊆ D eA.
A second answer is that, under a more stringent notion of algebrization, we would not know

how to prove that existing interactive proof results algebrize. So for example, while we will prove

that PSPACEA[poly] ⊆ IP
eA for all oracles A and extensions Ã of A, we do not know how to prove

that PSPACE
eA[poly] = IP

eA for all Ã.
A third answer is that, for our separation results, this issue seems to make no difference. For

example, in Section 5 we will construct oracles A,B and extensions Ã, B̃, such that not only

P
eA = NP

eA and P
eB 6= NP

eB, but also NP
eA ⊆ PA and NPB 6⊂ P

eB . This implies that, even under
our “broader” notion of algebrization, any resolution of the P versus NP problem will require
non-algebrizing techniques.

3 Why Existing Techniques Algebrize

In this section, we go through a large number of non-relativizing results in complexity theory,
and explain why they algebrize. The first batch consists of conditional collapses such as P#P ⊂
P/poly =⇒ P#P = MA, as well as containments such as PSPACE ⊆ IP and NEXP ⊆ MIP. The
second batch consists of circuit lower bounds, such as MAEXP 6⊂ P/poly.

Note that each of the circuit lower bounds actually has a conditional collapse as its only non-
relativizing ingredient. Therefore, once we show that the conditional collapses algebrize, we have
already done most of the work of showing that the circuit lower bounds algebrize as well.
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The section is organized as follows. First, in Section 3.1, we show that the self-correctibility of
#P, proved by Lund et al. [27], is an algebrizing fact. From this it will follow, for example, that
for all oracles A and finite field extensions Ã,

PP
eA ⊂ P

eA/poly =⇒ P#P
A ⊆ MA

eA.

Next, in Section 3.2, we reuse results from Section 3.1 to show that the interactive proof results of

Lund et al. [27] and Shamir [37] algebrize: that is, for all A, Ã, we have P#P
A ⊆ IP

eA, and indeed

PSPACEA[poly] ⊆ IP
eA.

Then, in Section 3.3, we sketch an extension to the Babai-Fortnow-Lund theorem [4], giving

us NEXPA[poly] ⊆ MIP
eA for all A, Ã. The same ideas also yield EXPA[poly] ⊆ MIP

eA
EXP for all A, Ã,

where MIPEXP is the subclass of MIP with the provers restricted to lie in EXP. This will imply, in
particular, that

EXP
eA[poly] ⊂ P

eA/poly =⇒ EXPA[poly] ⊆ MA
eA

for all A, Ã.
Section 3.4 harvests the consequences for circuit lower bounds. We show there that Vinod-

chandran [41], Buhrman-Fortnow-Thierauf [9], and Santhanam [36] : that is, for all A, Ã,

• PP
eA 6⊂ SIZEA

(
nk
)

for all constants k

• MA
eA
EXP 6⊂ PA/poly

• PromiseMA
eA 6⊂ SIZEA

(
nk
)

for all constants k

Finally, Section 3.5 discusses some miscellaneous interactive proof results, including that of
Impagliazzo, Kabanets, and Wigderson [20] that NEXP ⊂ P/poly =⇒ NEXP = MA, and that of
Feige and Kilian [12] that RG = EXP.

Throughout the section, we assume some familiarity with the proofs of the results we are
algebrizing.

3.1 Self-Correction for #P: Algebrizing

In this subsection we examine some non-relativizing properties of the classes #P and PP, and show
that these properties algebrize. Our goal will be to prove tight results, since that is what we will
need later to show that Santhanam’s lower bound PromiseMA 6⊂ SIZE

(
nk
)

[36] is algebrizing. The
need for tightness will force us to do a little more work than would otherwise be necessary.

The first step is to define a convenient #P-complete problem.

Definition 3.1 (#FSAT) An FSAT formula over the finite field F, in the variables x1, . . . , xN ,
is a circuit with unbounded fan-in and fan-out 1, where every gate is labeled with either + or ×, and
every leaf is labeled with either an xi or a constant c ∈ F. Such a formula represents a polynomial
p : FN → F in the obvious way. The size of the formula is the number of gates.

Now let #FSATL,F be the following problem: given a polynomial p : FN → F specified by an
FSAT formula of size at most L, evaluate the sum

S (p) :=
∑

x1,...,xN∈{0,1}
p (x1, . . . , xN ) .

10



Also, let #FSAT be the same problem but where the input has the form 〈L, F, p〉 (i.e., L and F are
given as part of the input). For the purpose of measuring time complexity, the size of an #FSAT
instance is defined to be n := L log |F|.

Observe that if p is represented by an FSAT formula of size L, then deg (p) ≤ L.
It is clear that #FSAT is #P-complete. Furthermore, Lund, Fortnow, Karloff, and Nisan [27]

showed that #FSAT is self-correctible, in the following sense:

Theorem 3.2 ([27]) There exists a polynomial-time randomized algorithm that, given any #FSATL,F

instance p with char (F) ≥ 3L2 and any circuit C:

(i) Outputs S (p) with certainty if C computes #FSATL,F.

(ii) Outputs either S (p) or “FAIL” with probability at least 2/3, regardless of C.

Now let A be a Boolean oracle, and let Ã be a low-degree extension of A over F. Then an

FSAT
eA formula is the same as an FSAT formula, except that in addition to + and × gates we

also allow Ã-gates: that is, gates with an arbitrary fan-in h, which take b1, . . . , bh ∈ F as input and

produce Ãh,F (b1, . . . , bh) as output. Observe that if p is represented by an FSAT
eA formula of size

L, then deg (p) ≤ L2 mdeg(Ã).

Let #FSAT
eA be the same problem as #FSAT , except that the polynomial p is given by an

FSAT
eA formula. Then clearly #FSAT

eA ∈ #P
eA. Also:

Proposition 3.3 #FSAT
eA is #PA-hard under randomized reductions.

Proof. Let CA be a Boolean circuit over the variables z1, . . . , zN , with oracle access to A. Then
a canonical #PA-hard problem is to compute

∑

z1,...,zN∈{0,1}
CA (z1, . . . , zN ) ,

the number of satisfying assignments of CA.

We will reduce this problem to #FSAT
eA. For each gate g of C, define a variable xg, which

encodes whether g outputs 1. Then the polynomial p will simply be a product of terms that enforce
“correct propagation” through the circuit. For example, if g computes the AND of gates i and j,
then we encode the constraint xg = xi ∧ xj by the term

xgxixj + (1 − xg) (1 − xixj) .

Likewise, if g is an oracle gate, then we encode the constraint xg = Ãh,F (xi1 , . . . , xih) by the term

xgÃh,F (xi1 , . . . , xih) + (1 − xg)
(
1 − Ãh,F (xi1, . . . , xih)

)
.

The last step is to find a sufficiently large prime q > 2N , one that will not affect the sum, to take
as the order of F. This can be done in randomized polynomial time.

By contrast, we do not know how to show that #FSAT
eA is #P

eA-hard—intuitively because

of a #P
eA machine’s ability to query the Ãh,F’s in ways that do not respect their structure as

polynomials.
We now prove an algebrizing version of Theorem 3.2.

11



Theorem 3.4 There exists a BPP
eA algorithm that, given any #FSAT

eA
L,F instance p with char (F) ≥

3L3 mdeg(Ã) and any circuit C
eA:

(i) Outputs S (p) if C
eA computes #FSAT

eA
L,F.

(ii) Outputs either S (p) or “FAIL” with probability at least 2/3, regardless of C
eA.

Proof. The proof is basically identical to the usual proof of Lund et al. [27] that #FSAT is self-
correctible: that is, we use the circuit C to simulate the prover in an interactive protocol, whose
goal is to convince the verifier of the value of S (p). The only difference is that at the final step,

we get an FSAT
eA formula instead of an FSAT formula, so we evaluate that formula with the help

of the oracle Ã.
In more detail, we first call C

eA to obtain S′, the claimed value of the sum S (p). We then
define

p1 (x) :=
∑

x2,...,xN∈{0,1}
p (x, x2, . . . , xN ) .

Then by making two more calls to C
eA, we can obtain p′1, the claimed value of p1. We then check

that S′ = p′ (0) + p′ (1). If this test fails, we immediately output “FAIL.” Otherwise we choose
r1 ∈ Fq uniformly at random and set

p2 (x) :=
∑

x3,...,xN∈{0,1}
p (r1, x, x3, . . . , xN ) .

We then use two more calls to C
eA to obtain p′2, the claimed value of p2, and check that p′1 (r1) =

p′2 (0)+p′2 (1). If this test fails we output “FAIL”; otherwise we choose r2 ∈ F uniformly at random
and set

p3 (x) :=
∑

x4,...,xN∈{0,1}
p (r1, r2, x, x4, . . . , xN ) ,

and continue in this manner until we reach the polynomial

pN (x) := p (r1, . . . , rN−1, x) .

At this point we can evaluate pN (0) and pN (1) directly, by using the FSAT
eA formula for p together

with the oracle Ã. We then check that p′N−1 (rN−1) = pN (0) + pN (1). If this final test fails then
we output “FAIL”; otherwise we output S (p) = S′.

Completeness and soundness follow by the same analysis as in Lund et al. [27]. First, if C
eA

computes #FSAT
eA

L,F, then the algorithm outputs S (p) = S′ with certainty. Second, if S (p) 6= S′,
then by the union bound, the probability that the algorithm is tricked into outputting S (p) = S′

is at most
Ldeg (p)

char (F)
≤ L3 mdeg(Ã)

3L3 mdeg(Ã)
=

1

3
.

From the self-correcting property of #P-complete problems, Lund et al. [27] deduced the
corollary that PP ⊂ P/poly implies P#P = PP = MA. We now wish to obtain an algebrizing version

of their result. Thus, let MAJFSAT
eA be the following decision version of #FSAT

eA: given a

#FSAT
eA instance 〈L, F, p〉, together with an integer k ∈ [char (F)], decide whether S (p) ≥ k

interpreted as an integer. Then clearly MAJFSAT
eA is in PP

eA and hard for PPA. We will also

refer to MAJFSAT
eA

L,F in the case where L and F are fixed.

12



Theorem 3.5 For all A, Ã and time-constructible functions s,

MAJFSAT
eA ∈ SIZE

eA (s (n)) =⇒ MAJFSAT
eA ∈ MATIME

eA (s (n) poly (n)) .

So in particular, if PP
eA ⊂ P

eA/poly then P#P
A ⊆ MA

eA.7

Proof. Given a procedure to solve MAJFSAT
eA

L,F, it is clear that we can also solve #FSAT
eA

L,F, by
calling the procedure O (log q) times and using binary search. (This is analogous to the standard

fact that PPP = P#P.) So if MAJFSAT
eA ∈ SIZE

eA (s (n)), then an MA machine can first guess

a circuit for MAJFSAT
eA

L,F of size s (n), and then use that circuit to simulate the prover in an

interactive protocol for MAJFSAT
eA

L,F, exactly as in Theorem 3.4. This incurs at most polynomial

blowup, and therefore places MAJFSAT
eA in MATIME

eA (s (n) poly (n)).

In particular, if PP
eA ⊂ P

eA/poly, then MAJFSAT
eA is in P

eA/poly, hence MAJFSAT
eA is in

MA
eA, hence PPA ⊆ MA

eA, hence PPP
A

= P#P
A ⊆ MA

eA.

3.2 IP = PSPACE: Algebrizing

Examining the proof of Theorem 3.4, it is not hard to see that the P#P ⊆ IP theorem of Lund et
al. [27] algebrizes as well.

Theorem 3.6 For all A, Ã, P#P
A ⊆ IP

eA.

Proof. It suffices to note that, in the proof of Theorem 3.4, we actually gave an interactive protocol

for #FSAT
eA where the verifier was in BPP

eA. Since #FSAT
eA is #PA-hard by Proposition 3.3,

this implies the containment P#P
A ⊆ IP

eA.
Indeed we can go further, and show that the famous IP = PSPACE theorem of Shamir [37] is

algebrizing.

Theorem 3.7 For all A, Ã, PSPACEA[poly] ⊆ IP
eA.

Proof Sketch. When we generalize the #P protocol of Lund et al. [27] to the PSPACE protocol of
Shamir [37], the conversation between the prover and verifier becomes somewhat more complicated,
due to the arithmetization of quantifiers. The prover now needs to prevent the degrees of the
relevant polynomials from doubling at each iteration, which requires additional steps of degree
reduction (e.g. “multilinearization” operators). However, the only step of the protocol that is
relevant for algebrization is the last one, when the verifier checks that p (r1, . . . , rN ) is equal to the
value claimed by the prover for some r1, . . . , rN ∈ F. And this step can be algebrized exactly as
in the #P case.

7We could have avoided talking about MAJFSAT at all in this theorem, had we been content to show

that PP
eA ⊂ SIZE

eA (s (n)) implies PP
eA ⊆ MATIME

eA (s (poly (n))). But in that case, when we tried to
show that Santhanam’s result PromiseMA 6⊂ SIZE

`
nk

´
was algebrizing, we would only obtain the weaker result

PromiseMATIME
eA

`
npolylog n

´
6⊂ SIZE

A
`
nk

´
.
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3.3 MIP = NEXP: Algebrizing

Babai, Fortnow, and Lund [4] showed that MIP = NEXP. In this subsection we will sketch a proof
that this result algebrizes:

Theorem 3.8 For all A, Ã, NEXPA[poly] ⊆ MIP
eA.

To prove Theorem 3.8, we will divide Babai et al.’s proof into three main steps, and show that
each of them algebrizes.

The first step is to define a convenient NEXP-complete problem.

Definition 3.9 (hSAT) Let an h-formula over the variables x1, . . . , xn ∈ {0, 1} be a Boolean
formula consisting of AND, OR, and NOT gates, as well as gates of fan-in n that compute a
Boolean function h : {0, 1}n → {0, 1}.

Then given an h-formula Ch, let hSAT be the problem of deciding whether there exists a Boolean
function h : {0, 1}n → {0, 1} such that Ch (x) = 0 for all x ∈ {0, 1}n.

Babai et al. showed the following:

Lemma 3.10 ([4]) hSAT is NEXP-complete.

The proof of this lemma is very simple: h encodes both the nondeterministic guess of the NEXP

machine on the given input, as well as the entire tableau of the computation with that guess. And
the extension to circuits with oracle access is equally simple. Let A be a Boolean oracle, and let
hSATA be the variant of hSAT where the formula Ch,A can contain gates for both h and A. Then
our first observation we make is that Lemma 3.10 relativizes: hSATA is NEXPA[poly]-complete.
Indeed, h will be constructed in exactly the same way. We omit the details.

The second step in Babai et al.’s proof is to use the LFKN protocol [27] to verify that Ch (x) = 0
for all x, assuming that the prover and verifier both have oracle access to a low-degree extension
h̃ : Fn → F of h.

Lemma 3.11 ([4]) Let h̃ : Fn → F be any low-degree extension of a Boolean function h. Then it

is possible to verify, in IP
eh, that Ch (x) = 0 for all x ∈ {0, 1}n.

Proof Sketch. Observe that if we arithmetize Ch, then we get a low-degree polynomial C̃h : Fn →
F extending Ch. Furthermore, C̃h can be efficiently evaluated given oracle access to h̃. So by
using the LFKN protocol, the verifier can check that

∑

x∈{0,1}n

C̃h (x) =
∑

x∈{0,1}n

Ch (x) = 0.

Our second observation is that Lemma 3.11 algebrizes: if we allow the prover and verifier oracle
access to any low-degree extension Ã of A, then the same protocol works to ensure that Ch,A (x) = 0
for all x ∈ {0, 1}n.

In reality, of course, the verifier is not given oracle access to a low-degree extension h̃. So the
third step in Babai et al.’s proof is a low-degree test and subsequent self-correction algorithm, which
allow the verifier to simulate oracle access to h̃ by exchanging messages with two untrustworthy
provers.

14



Lemma 3.12 ([4]) There exists a BPPB algorithm that, given any oracle B : Fn → F and input
y ∈ Fn:

(i) Outputs B (y) if B is a low-degree polynomial.

(ii) Outputs “FAIL” with probability Ω (1/poly (n)) if B differs from all low-degree polynomials
on a Ω (1/poly (n)) fraction of points.

Combining Lemmas 3.11 and 3.12, we see that the verifier in the LFKN protocol does not need

the guarantee that the oracle gates in C̃h, which are supposed to compute h̃, indeed do so. A
cheating prover will either be caught, or else the execution will be indistinguishable from one with
a real h̃.

Our final observation is that Lemma 3.12 deals only with the gates of C̃h computing h̃, and is
completely independent of what other gates C has. It therefore algebrizes automatically when we
switch to circuits containing oracle gates A. This completes the proof sketch of Theorem 3.8.

We conclude this section by pointing out one additional result. In Babai et al.’s original proof,
if the language L to be verified is in EXP, then the function h encodes only the tableau of the
computation. It can therefore be computed by the provers in EXP. Furthermore, if h is in EXP,
then the unique multilinear extension h̃ : Fn → F is also in EXP. So letting MIPEXP be the subclass
of MIP where the provers are in EXP, we get the following consequence:

Theorem 3.13 ([4]) MIPEXP = EXP.

Now, it is clear that if L ∈ EXPA[poly] then h and h̃ can be computed by the provers in EXPA[poly].
We therefore find that Theorem 3.13 algebrizes as well:

Theorem 3.14 For all A, Ã, EXPA[poly] ⊆ MIP
eA
EXP.

Theorem 3.14 has the following immediate corollary:

Corollary 3.15 For all A, Ã, if EXP
eA[poly] ⊂ P

eA/poly then EXPA[poly] ⊆ MA
eA.

Proof. If EXP
eA[poly] ⊂ P

eA/poly, then an MA
eA verifier can guess two polynomial-size circuits, and

use them to simulate the EXP
eA[poly] provers in an MIP

eA
EXP protocol for EXPA[poly].

3.4 Recent Circuit Lower Bounds: Algebrizing

As mentioned earlier, Vinodchandran [41] showed that PP 6⊂ SIZE
(
nk
)

for all constants k, and
Aaronson [1] showed that this result fails to relativize. However, by using Theorem 3.5, we can
now show that Vinodchandran’s result algebrizes.

Theorem 3.16 For all A, Ã and constants k, we have PP
eA 6⊂ SIZEA

(
nk
)
.

Proof. If PP
eA 6⊂ PA/poly then we are done, so assume PP

eA ⊂ PA/poly. Then certainly PP
eA ⊂

P
eA/poly, so Theorem 3.5 implies that P#P

A ⊆ MA
eA. Therefore

(
ΣP

2

)A ⊆ MA
eA as well, since

Toda’s Theorem [39] (which relativizes) tells us that ΣP
2
⊆ P#P and hence

(
ΣP

2

)A ⊆ P#P
A
. But

Kannan’s Theorem [23] (which also relativizes) tells us that ΣP
2
6⊂ SIZE

(
nk
)

for fixed k, and hence(
ΣP

2

)A 6⊂ SIZEA
(
nk
)
. Therefore MA

eA 6⊂ SIZEA
(
nk
)
. So since MA ⊆ PP and this inclusion

relativizes, PP
eA 6⊂ SIZEA

(
nk
)

as well.
In a similar vein, Buhrman, Fortnow, and Thierauf [9] showed that MAEXP 6⊂ P/poly, and also

that this circuit lower bound fails to relativize. We now show that it algebrizes.
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Theorem 3.17 For all A, Ã, we have MA
eA
EXP 6⊂ PA/poly.

Proof. Suppose MA
eA
EXP ⊂ PA/poly ⊆ P

eA/poly. Then certainly PP
eA ⊂ P

eA/poly as well, so

Theorem 3.5 implies that P#P
A ⊆ MA

eA. Hence we also have
(
ΣP

2

)A ⊆ MA
eA by Toda’s Theorem

[39], and hence
(
ΣEXP

2

)A ⊆ MA
eA
EXP by padding. But Kannan’s Theorem [23] tells us that

(
ΣEXP

2

)A 6⊂
PA/poly, so MA

eA
EXP 6⊂ PA/poly as well.

Finally, Santhanam [36] recently showed that PromiseMA 6⊂ SIZE
(
nk
)

for all constants k. Let
us show that Santhanam’s result algebrizes as well.8

Theorem 3.18 For all A, Ã and constants k, we have PromiseMA
eA 6⊂ SIZEA

(
nk
)
.

Proof. First suppose PP
eA ⊂ P

eA/poly. Then P#P
A ⊆ MA

eA by Theorem 3.5. Hence
(
ΣP

2

)A ⊆ MA
eA

by Toda’s Theorem [39], so by Kannan’s Theorem [23] we have MA
eA 6⊂ SIZEA

(
nk
)

and are done.

Next suppose PP
eA 6⊂ P

eA/poly. Then there is some superpolynomial function s (not necessarily
time-constructible) such that

MAJFSAT
eA ∈ SIZE

eA (s (n)) \ SIZE
eA (s (n) − 1) .

We define a promise problem (L′
YES, L

′
NO) by padding MAJFSAT

eA
n as follows:

L′
YES :=

{
x1s(n)1/2k

: x ∈ MAJFSAT
eA

n

}
,

L′
NO :=

{
x1s(n)1/2k

: x /∈ MAJFSAT
eA

n

}
.

Our first claim is that (L′
YES, L

′
NO) /∈ SIZEA

(
nk
)
. For suppose otherwise; then by ignoring the

padding, we would obtain circuits for MAJFSAT
eA

n of size

(
n + s (n)1/2k

)k
� s (n) ,

contrary to assumption.

Our second claim is that (L′
YES, L

′
NO) ∈ PromiseMA

eA. This is because, on input x1s(n)1/2k
, a

PromiseMA
eA machine can guess a circuit for MAJFSAT

eA
n of size s (n), and then use Theorem 3.5

to verify that it works.

3.5 Other Algebrizing Results

Impagliazzo, Kabanets, and Wigderson [20] proved that NEXP ⊂ P/poly implies NEXP = MA. In
the proof of this theorem, the only non-relativizing ingredient is the standard result that EXP ⊂
P/poly implies EXP = MA, which is algebrizing by Corollary 3.15. One can thereby show that the
IKW theorem is algebrizing as well. More precisely, for all A, Ã we have

NEXP
eA[poly] ⊂ P

eA/poly =⇒ NEXPA[poly] ⊆ MA
eA.

8Note that Santhanam originally proved his result using a “tight” variant of the IP = PSPACE theorem, due to
Trevisan and Vadhan [40]. We instead use a tight variant of the LFKN theorem. However, we certainly expect that
the Trevisan-Vadhan theorem, and the proof of Santhanam based on it, would algebrize as well.
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Feige and Kilian [12] showed that RG = EXP, where RG is Refereed Games: informally, the
class of languages L decidable by a probabilistic polynomial-time verifier that can interact (and
exchange private messages) with two competing provers, one trying to convince the verifier that
x ∈ L and the other that x /∈ L. By analogy to IP = PSPACE and MIP = NEXP, one would expect
this theorem to algebrize. And indeed it does, but it turns out to relativize as well! Intuitively,
this is because the RG protocol of Feige and Kilian involves only multilinear extensions of Turing
machine tableaus, and not arithmetization as used (for example) in the IP = PSPACE theorem.
We omit the details.

4 Lower Bounds on Algebraic Query Complexity

What underlies our algebraic oracle separations is a new model of algebraic query complexity.
In the standard query complexity model, an algorithm is trying to compute some property of a
Boolean function A : {0, 1}n → {0, 1} by querying A on various points. In our model, the function
A : {0, 1}n → {0, 1} will still be Boolean, but the algorithm will be allowed to query not just A,
but also a low-degree extension Ã : Fn → F of A over some field F. In this section we develop the
algebraic query complexity model in its own right, and prove several lower bounds in this model.
Then, in Section 5, we apply our lower bounds to prove algebraic oracle separations. Section 6
will consider the variant where the algorithm can query an extension of A over the ring of integers.

Throughout this section we let N = 2n. Algorithms will compute Boolean functions (properties)
f : {0, 1}N → {0, 1}. An input A to f will be viewed interchangeably as an N -bit string A ∈ {0, 1}N ,
or as a Boolean function A : {0, 1}n → {0, 1} of which the string is the truth table.

Let us recall some standard query complexity measures. Given a Boolean function f : {0, 1}N →
{0, 1}, the deterministic query complexity of f , or D (f), is defined to be the minimum number
of queries made by any deterministic algorithm that evaluates f on every input. Likewise, the
(bounded-error) randomized query complexity R(f) is defined to be the minimum expected9 number
of queries made by any randomized algorithm that evaluates f with probability at least 2/3 on
every input. The bounded-error quantum query complexity Q (f) is defined analogously, with
quantum algorithms in place of randomized ones. See Buhrman and de Wolf [10] for a survey of
these measures.

We now define similar measures for algebraic query complexity. In our definition, an important
parameter will be the multidegree of the allowed extension (recall that mdeg (p) is the largest degree
of any of the variables of p). In all of our results, this parameter will be either 1 or 2.

Definition 4.1 (Algebraic Query Complexity Over Fields) Let f : {0, 1}N → {0, 1} be a
Boolean function, let F be any field, and let c be a positive integer. Also, let M be the set of

deterministic algorithms M such that M
eA outputs f (A) for every oracle A : {0, 1}n → {0, 1} and

every finite field extension Ã : Fn → F of A with mdeg(Ã) ≤ c. Then the deterministic algebraic
query complexity of f over F is defined as

D̃F,c (f) := min
M∈M

max
A, eA : mdeg( eA)≤c

TM (Ã),

where TM (Ã) is the number of queries to Ã made by M
eA. The randomized and quantum alge-

braic query complexities R̃F,c (f) and Q̃F,c (f) are defined similarly, except with (bounded-error)
randomized and quantum algorithms in place of deterministic ones.

9Or the worst-case number of queries: up to the exact constant in the success probability, one can always ensure
that this is about the same as the expected number.
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4.1 Multilinear Polynomials

Our construction of “adversary polynomials” in our lower bound proofs will require some useful
facts about multilinear polynomials. In particular, the basis of delta functions for these polynomials
will come in handy.

In what follows F is an arbitrary field (finite or infinite). Given a Boolean point z, define

δz (x) :=
∏

i:zi=1

xi

∏

i:zi=0

(1 − xi)

to be the unique multilinear polynomial that is 1 at z and 0 elsewhere on the Boolean cube. Then
for an arbitrary multilinear polynomial m : Fn → F, we can write m uniquely in the basis of δz’s
as follows:

m (x) =
∑

z∈{0,1}n

mzδz (x)

We will often identify a multilinear polynomial m with its coefficients mz in this basis. Note that
for any Boolean point z, the value m (z) is simply the coefficient mz in the above representation.

4.2 Lower Bounds by Direct Construction

We now prove lower bounds on algebraic query complexity over fields. The goal will be to show that
querying points outside the Boolean cube is useless if one wants to gain information about values
on the Boolean cube. In full generality, this is of course false (as witnessed by interactive proofs and
PCPs on the one hand, and by the result of Juma et al. [21] on the other). To make our adversary
arguments work, it will be crucial to give ourselves sufficient freedom, by using polynomials of
multidegree 2 rather than multilinear polynomials.

We first prove deterministic lower bounds, which are quite simple, and then extend them to
probabilistic lower bounds. Both work for the natural NP predicate of finding a Boolean point z
such that A (z) = 1.

4.2.1 Deterministic Lower Bounds

Lemma 4.2 Let F be a field and let y1, . . . , yt be points in Fn. Then there exists a multilinear
polynomial m : Fn → F such that

(i) m (yi) = 0 for all i ∈ [t], and

(ii) m (z) = 1 for at least 2n − t Boolean points z.

Proof. If we represent m as

m (x) =
∑

z∈{0,1}n

mzδz (x) ,

then the constraint m (yi) = 0 for all i ∈ [t] corresponds to t linear equations over F relating the 2n

coefficients mz. By basic linear algebra, it follows that there must be a solution in which at least
2n − t of the mz’s are set to 1, and hence m (z) = 1 for at least 2n − t Boolean points z.

Lemma 4.3 Let F be a field and let y1, . . . , yt be points in Fn. Then for at least 2n − t Boolean
points w ∈ {0, 1}n, there exists a multiquadratic extension polynomial p : Fn → F such that
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(i) p (yi) = 0 for all i ∈ [t],

(ii) p (w) = 1, and

(iii) p (z) = 0 for all Boolean z 6= w.

Proof. Let m : Fn → F be the multilinear polynomial from Lemma 4.2, and pick any Boolean w
such that m (w) = 1. Then a multiquadratic extension polynomial p satisfying properties (i)-(iii)
can be obtained from m as follows:

p (x) := m (x) δw (x) .

Given a Boolean function A : {0, 1}n → {0, 1}, let the OR problem be that of deciding whether
there exists an x ∈ {0, 1}n such that A (x) = 1. Then Lemma 4.3 easily yields an exponential
lower bound on the algebraic query complexity of the OR problem.

Theorem 4.4 D̃F,2 (OR) = 2n for every field F.

Proof. Let Y be the set of points queried by a deterministic algorithm, and suppose |Y| < 2n.
Then Lemma 4.3 implies that there exists a multiquadratic extension polynomial Ã : Fn → F such
that Ã (y) = 0 for all y ∈ Y, but Ã (w) = 1 for some Boolean w. So even if the algorithm is
adaptive, we can let Y be the set of points it queries assuming each query is answered with 0, and
then find Ã, B̃ such that Ã (y) = B̃ (y) = 0 for all y ∈ Y, but nevertheless Ã and B̃ lead to different
values of the OR function.

Again, the results of Juma et al. [21] imply that multidegree 2 is essential here, since for
multilinear polynomials it is possible to solve the OR problem with only one query (over fields of
characteristic greater than 2).

Though Lemma 4.3 sufficed for the basic query complexity lower bound, our oracle separations
will require a more general result. The following lemma generalizes Lemma 4.3 in three ways: it
handles extensions over many fields simultaneously instead of just one field; it lets us fix the queried
points to any desired values instead of just zero; and it lets us toggle the values on many Boolean
points instead of just the single Boolean point w.

Lemma 4.5 Let F be a collection of fields (possibly with multiplicity). Let f : {0, 1}n → {0, 1}
be a Boolean function, and for every F ∈ F , let pF : Fn → F be a multiquadratic polynomial over
F extending f . Also let YF ⊆ Fn for each F ∈ C, and t :=

∑
F∈C |YF|. Then there exists a subset

B ⊆ {0, 1}n, with |B| ≤ t, such that for all Boolean functions f ′ : {0, 1}n → {0, 1} that agree with
f on B, there exist multiquadratic polynomials p′

F
: Fn → F (one for each F ∈ F) such that

(i) p′
F

extends f ′, and

(ii) p′
F
(y) = pF (y) for all y ∈ YF.

Proof. Call a Boolean point z good if for every F ∈ F , there exists a multiquadratic polynomial
uF,z : Fn → F such that

(i’) uF,z (y) = 0 for all y ∈ YF,

(ii’) uF,z (z) = 1, and
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(iii’) uF,z (w) = 0 for all Boolean w 6= z.

Then by Lemma 4.3, each F ∈ F can prevent at most |YF| points from being good. Hence
there are at least 2n − t good points.

Now let G be the set of all good points, and B = {0, 1}n \ G be the set of all “bad” points.
Then for all F ∈ F , we can obtain a polynomial p′

F
satisfying (i) and (ii) as follows:

p′
F
(x) := pF (x) +

∑

z∈G

(
f ′ (z) − f (z)

)
uF,z (x) .

4.2.2 Probabilistic Lower Bounds

We now prove a lower bound for randomized algorithms. As usual, this will be done via the
Yao minimax principle, namely by constructing a distribution over oracles which is hard for every
deterministic algorithm that queries few points. Results in this subsection are only for finite fields,
the reason being that they allow a uniform distribution over sets of all polynomials with given
restrictions.

Lemma 4.6 Let F be a finite field. Also, for all w ∈ {0, 1}n, let Dw be the uniform distribution
over multiquadratic polynomials p : Fn → F such that p (w) = 1 and p (z) = 0 for all Boolean
z 6= w. Suppose an adversary chooses a “marked point” w ∈ {0, 1}n uniformly at random, and
then chooses p according to Dw. Then any deterministic algorithm, after making t queries to p,
will have queried w with probability at most t/2n.

Proof. Let yi ∈ Fn be the ith point queried, so that y1, . . . , yt is the list of points queried by step
t. Then as in Lemma 4.5, call a Boolean point z good if there exists a multiquadratic polynomial
u : Fn → F such that

(i) u (yi) = 0 for all i ∈ [t],

(ii) u (z) = 1, and

(iii) u (z′) = 0 for all Boolean z′ 6= z.

Otherwise call z bad. Let Gt be the set of good points immediately after the tth step, and let
Bt = {0, 1}n

�Gt be the set of bad points. Then it follows from Lemma 4.3 that |Gt| ≥ 2n − t,
and correspondingly |Bt| ≤ t. Also notice that Bt ⊆ Bt+1 for all t.

For every good point z ∈ {0, 1}n, fix a “canonical” multiquadratic polynomial uz that satisfies
properties (i)-(iii) above. Also, for every Boolean point z, let Vz be the set of multiquadratic
polynomials v : Fn → F such that

(i’) v (yi) = p (yi) for all i ∈ [t],

(ii’) v (z) = 1, and

(iii’) v (z′) = 0 for all Boolean z′ 6= z.

Now let x, x′ ∈ Gt be any two good points.

20



Claim 4.7 Even conditioned on the values of p (y1) , . . . , p (yt), the probability that p (x) = 1 is
equal to the probability that p (x′) = 1.

To prove Claim 4.7, it suffices to show that |Vx| = |Vx′ |. We will do so by exhibiting a one-to-one
correspondence between Vx and Vx′ . Our correspondence is simply the following:

v ∈ Vx ⇐⇒ v + ux′ − ux ∈ Vx′ .

Now imagine that at every step i, all points in Bi are automatically queried “free of charge.”
This assumption can only help the algorithm, and hence make our lower bound stronger.

Claim 4.8 Suppose that by step t, the marked point w still has not been queried. Then the
probability that w is queried in step t + 1 is at most

|Bt+1| − |Bt|
2n − |Bt|

.

To prove Claim 4.8, notice that after t steps, there are 2n − |Bt| points still in Gt—and by
Claim 4.7, any of those points is as likely to be w as any other. Furthermore, there are at most
|Bt+1| − |Bt| points queried in step t + 1 query that were not queried previously. For there are
|Bt+1|−|Bt| points in Bt+1�Bt that are queried “free of charge,” plus one point yt+1 that is queried
explicitly by the algorithm. Näıvely this would give |Bt+1| − |Bt| + 1, but notice further that if
yt+1 is Boolean, then yt+1 ∈ Bt+1.

Now, the probability that the marked point was not queried in steps 1 through t is just 1 −
|Bt| /2n. Therefore, the total probability of having queried w after t steps is

t−1∑

i=0

(
1 − |Bi|

2n

)( |Bi+1| − |Bi|
2n − |Bi|

)
=

t−1∑

i=0

|Bi+1| − |Bi|
2n

≤ t

2n
.

An immediate corollary of Lemma 4.6 is that, over a finite field, randomized algebraic query
algorithms do no better than deterministic ones at evaluating the OR function.

Theorem 4.9 R̃F,2 (OR) = Ω (2n) for every finite field F.

To give an algebraic oracle separation between NP and BPP, we will actually need a slight
extension of Lemma 4.6, which can be proven similarly to Lemma 4.5 (we omit the details).

Lemma 4.10 Given a finite field F and string w ∈ {0, 1}n, let Dw,F be the uniform distribution
over multiquadratic polynomials p : Fn → F such that p (w) = 1 and p (z) = 0 for all Boolean z 6= w.
Suppose an adversary chooses w ∈ {0, 1}n uniformly at random, and then for every finite field F,
chooses pF according to Dw,F. Then any algorithm, after making t queries to any combination of
pF’s, will have queried w with probability at most t/2n.

4.3 Lower Bounds by Communication Complexity

In this section we point out a simple connection between algebraic query complexity and com-
munication complexity. Specifically, we show that algebraic query algorithms can be efficiently
simulated by Boolean communication protocols. This connection will allow us to derive many
lower bounds on algebraic query complexity that we do not know how to prove with the direct
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techniques of the previous section. Furthermore, it will give lower bounds even for multilinear
extensions, and even for extensions over the integers. The drawbacks are that (1) the functions
for which we obtain the lower bounds are somewhat more complicated (for example, Disjointness
instead of OR), and (2) this technique does not seem useful for proving algebraic oracle collapses

(such as NP
eA ⊂ SIZEA (n)).

For concreteness, we first state our “transfer principle” for deterministic query and communi-
cation complexities—but as we will see, the principle is much broader.

Theorem 4.11 Let A : {0, 1}n → {0, 1} be a Boolean function, and let Ã : Fn
q → Fq be the unique

multilinear extension of A over a finite field F. Suppose one can evaluate some Boolean predicate
f of A using T deterministic adaptive queries to Ã. Also, let A0 and A1 be the subfunctions of A
obtained by restricting the first bit to 0 or 1 respectively. Then if Alice is given the truth table of
A0 and Bob is given the truth table of A1, they can jointly evaluate f (A) using O (Tn log |F|) bits
of communication.

Proof. Given any point y ∈ Fn, we can write Ã (y) as a linear combination of the values taken by
A on the Boolean cube, like so:

Ã (y) =
∑

z∈{0,1}n

δz (y)A (z) .

Now let M be an algorithm that evaluates f using T queries to Ã. Our communication protocol
will simply perform a step-by-step simulation M , as follows.

Let y1 ∈ Fn be the first point queried by M . Then Alice computes the partial sum

Ã0 (y1) :=
∑

z∈{0,1}n−1

δ0z (y)A (0z)

and sends (y1, Ã0 (y1)) to Bob. Next Bob computes

Ã1 (y1) :=
∑

z∈{0,1}n−1

δ1z (y) A (1z) ,

from which he learns Ã (y1) = Ã0 (y1) + Ã1 (y1). Bob can then determine y2, the second point
queried by M given that the first query had outcome Ã (y1). So next Bob computes Ã1 (y2) and
sends (y2, Ã1 (y2)) to Alice. Next Alice computes Ã (y2) = Ã0 (y2) + Ã1 (y2), determines y3, and
sends (y3, Ã0 (y3)) to Bob, and so on for T rounds.

Each message uses O (n log |F|) bits, from which it follows that the total communication cost is
O (Tn log |F|).

In proving Theorem 4.11, notice that we never needed the assumption that M was deterministic.
Had M been randomized, our simulation would have produced a randomized protocol; had M been
quantum, it would have produced a quantum protocol; had M been an MA machine, it would have
produced an MA protocol, and so on.

To illustrate the power of Theorem 4.11, let us now prove a lower bound on algebraic query
complexity without using anything about polynomials.

Given two Boolean strings x = x1 . . . xN and y = y1 . . . yN , recall that the Disjointness problem
is to decide whether there exists an index i ∈ [N ] such that xi = yi = 1. Supposing that Alice
holds x and Bob holds y, Kalyasundaram and Schnitger [22] showed that any randomized protocol
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to solve this problem requires Alice and Bob to exchange Ω (N) bits (see also the simpler proof by
Razborov [33]).

In our setting, the problem becomes the following: given a Boolean function A : {0, 1}n → {0, 1},
decide whether there exists an x ∈ {0, 1}n−1 such that A (0x) = A (1x) = 1. Call this problem
DISJ, and suppose we want to solve DISJ using a randomized algorithm that queries the multilinear
extension Ã : Fn → F of A. Then Theorem 4.11 immediately yields a lower bound on the number
of queries to Ã that we need:

Theorem 4.12 R̃F,1 (DISJ) = Ω
(

2n

n log|F|

)
for all finite fields F.

Proof. Suppose by way of contradiction that R̃F,1 (DISJ) = o
(

2n

n log|F|

)
. Then by Theorem

4.11, we get a randomized protocol for the Disjointness problem with communication cost o (N),
where N = 2n−1. But this contradicts the lower bound of Razborov [33] and Kalyasundaram and
Schnitger [22] mentioned above.

In Section 5, we will use the transfer principle to convert many known communication complexity
results into algebraic oracle separations.

5 The Need for Non-Algebrizing Techniques

In this section we show formally that solving many of the open problems in complexity theory will
require non-algebrizing techniques. We have already done much of the work in Section 4, by proving
lower bounds on algebraic query complexity. What remains is to combine these query complexity
results with diagonalization or forcing arguments, in order to achieve the oracle separations and
collapses we want.

5.1 Non-Algebrizing Techniques Needed for P vs. NP

We start with an easy but fundamental result: that any proof of P 6= NP will require non-algebrizing
techniques.

Theorem 5.1 There exist A, Ã such that NP
eA ⊆ PA.

Proof. Let A be any PSPACE-complete language, and let Ã be the unique multilinear extension
of A. As observed by Babai, Fortnow, and Lund [4], the multilinear extension of any PSPACE

language is also in PSPACE. So as in the usual argument of Baker, Gill, and Solovay [5], we have

NP
eA = NPPSPACE = PSPACE = PA.
The same argument immediately implies that any proof of P 6= PSPACE will require non-

algebrizing techniques:

Theorem 5.2 There exist A, Ã such that PSPACE
eA[poly] = PA.

Next we show that any proof of P = NP would require non-algebrizing techniques, by giving an
algebraic oracle separation between P and NP. As in the original work of Baker, Gill, and Solovay
[5], this direction is the harder of the two.

Theorem 5.3 There exist A, Ã such that NPA 6⊂ P
eA. Furthermore, the language L that achieves

the separation simply corresponds to deciding, on inputs of length n, whether there exists a w ∈
{0, 1}n with An (w) = 1.
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Proof. Our proof closely follows the usual diagonalization argument of Baker, Gill, and Solovay [5],
except that we have to use Lemma 4.5 to handle the fact that P can query a low-degree extension.

For every n, the oracle A will contain a Boolean function An : {0, 1}n → {0, 1}, while Ã will
contain a multiquadratic extension Ãn,F : Fn → F of An for every n and finite field F. Let L
be the unary language consisting of all strings 1n for which there exists a w ∈ {0, 1}n such that

An (w) = 1. Then clearly L ∈ NPA for all A. Our goal is to choose A, Ã so that L /∈ P
eA.

Let M1,M2, . . . be an enumeration of DTIME
(
nlog n

)
oracle machines. Also, let Mi (n) = 1

if Mi accepts on input 1n and Mi (n) = 0 otherwise, and let L (n) = 1 if 1n ∈ L and L (n) = 0
otherwise. Then it suffices to ensure that for every i, there exists an n such that Mi (n) 6= L (n).

The construction of Ã proceeds in stages. At stage i, we assume that L (1) , . . . , L (i − 1) are
already fixed, and that for each j < i, we have already found an nj such that Mj (nj) 6= L (nj). Let

Sj be the set of all indices n such that some Ãn,F is queried by Mj on input 1nj . Let Ti :=
⋃

j<i Sj .

Then for all n ∈ Ti, we consider every Ãn,F to be “fixed”: that is, it will not change in stage i or
any later stage.

Let ni be the least n such that n /∈ Ti and 2n > nlog n. Then simulate the machine Mi on input
1ni , with the oracle behaving as follows:

(i) If Mi queries some Ãn,F (y) with n ∈ Ti, return the value that was fixed in a previous stage.

(ii) If Mi queries some Ãn,F (y) with n /∈ Ti, return 0.

Once Mi halts, let Si be the set of all n such that Mi queried some Ãn,F. Then for all n ∈ Si\Ti

other than ni, and all F, fix Ãn,F := 0 to be the identically-zero polynomial. As for ni itself, there

are two cases. If Mi accepted on input 1ni , then fix Ãni,F := 0 for all F, so that L (ni) = 0. On
the other hand, if Mj rejected, then for all F, let YF be the set of all y ∈ Fni that Mi queried. We
have

∑
F
|YF| ≤ nlog n. So by Lemma 4.5, there exists a Boolean point w ∈ {0, 1}ni such that for

all F, we can fix Ãni,F : Fni → F to be a multiquadratic polynomial such that

(i’) Ãni,F (y) = 0 for all y ∈ YF,

(ii’) Ãni,F (w) = 1, and

(iii’) Ãni,F (w) = 0 for all Boolean z 6= w.

We then have L (ni) = 1, as desired.
In the proof of Theorem 5.3, if we simply replace 2n > nlog n by the stronger condition 2n−1 >

nlog n, then an RP algorithm can replace the NP one. Thus, we immediately get the stronger result

that there exist A, Ã such that RPA 6⊂ P
eA. Indeed, by interleaving oracles such that RPA 6⊂ P

eA

and coRPA 6⊂ P
eA, it is also possible to construct A, Ã such that ZPPA 6⊂ P

eA (we omit the details).

5.2 Non-Algebrizing Techniques Needed for NP vs. BPP

We now show an algebraic oracle separation between NP and BPP. This result implies that any
proof of NP ⊆ BPP would require non-algebrizing techniques—or to put it more concretely, there
is no way to solve 3SAT in probabilistic polynomial time, by first arithmetizing a 3SAT formula
and then treating the result as an arbitrary low-degree black-box polynomial.

Theorem 5.4 There exist A, Ã such that NPA 6⊂ BPP
eA. Furthermore, the language L that

achieves the separation simply corresponds to finding a w ∈ {0, 1}n with An (w) = 1.
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Proof. Our proof closely follows the proof of Bennett and Gill [7] that PA 6= NPA with probability
1 over A.

Similarly to Lemma 4.10, given a Boolean point w and a finite field F, let Dn,w,F be the uniform
distribution over all multiquadratic polynomials p : Fn → F such that p (w) = 1 and p (z) = 0 for
all Boolean z 6= w. Then we generate the oracle Ã according to following distribution. For each
n ∈ N, first draw wn ∈ {0, 1}n uniformly at random, and set An (wn) = 1 and An (z) = 0 for all
n-bit Boolean strings z 6= wn. Next, for every finite field F, draw the extension Ãn,F of An from
Dn,wn,F.

We define the language L as follows: 0i1n−i ∈ L if and only if the ith bit of wn is a 1, and x /∈ L

for all x not of the form 0i1n−i. Clearly L ∈ NPA. Our goal is to show that L /∈ BPP
eA with

probability 1 over the choice of Ã.
Fix a BPP oracle machine M . Then let EM,n,i be the event that M correctly decides whether

0i1n−i ∈ L, with probability at least 2/3 over M ’s internal randomness, and let

EM,n := EM,n,1 ∧ · · · ∧ EM,n,n.

Supposing EM,n holds, with high probability we can recover wn in polynomial time, by simply
running M several times on each input 0i1n−i and then outputting the majority answer as the ith

bit of wn. But Lemma 4.10 implies that after making t queries, we can guess wn with probability
at most

t

2n
+

1

2n − t
,

just as if we had oracle access only to An and not to the extensions Ãn,F.
So given n, choose another input size n′ � n which is so large that on inputs of size n or less,

M cannot have queried Ãn′,F for any F (for example, n′ = 22n
will work for sufficiently large n).

Then for all sufficiently large n, we must have

Pr
eA

[
EM,n′ | EM,1 ∧ · · · ∧ EM,n

]
≤ 1

3
.

This implies that
Pr

eA
[EM,1 ∧ EM,2 ∧ · · · ] = 0.

But since there is only a countable infinity of BPP machines, by the union bound we get

Pr
eA

[∃M : EM,1 ∧ EM,2 ∧ · · · ] = 0

which is what we wanted to show.
Theorem 5.4 readily extends to show any proof of NP ⊂ P/poly would require non-algebrizing

techniques:

Theorem 5.5 There exist A, Ã such that NPA 6⊂ P
eA/poly.

Proof Sketch. Suppose we have a P
eA/poly machine that decides a language L ∈ NPA using an

advice string of size nk. Then by guessing the advice string, we get a BPP
eA machine that decides

L on all inputs with probability Ω(2−nk
). We can then run the BPP

eA machine sequentially on
(say) n2k inputs x1, . . . , xn2k , and decide all of them with a greater probability than is allowed by
the proof of Theorem 5.4.10

10Because of the requirement that the BPP
eA machine operates sequentially—i.e., that it outputs the answer for

each input xt before seeing the next input xt+1—there is no need here for a direct product theorem. On the other
hand, proving direct product theorems for algebraic query complexity is an interesting open problem.
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5.3 Non-Algebrizing Techniques Needed for Circuit Lower Bounds

We end by giving an oracle A and extension Ã, such that NEXP
eA ⊂ PA/poly. This implies that

any proof of NEXP 6⊂ P/poly will require non-algebrizing techniques.

Theorem 5.6 There exist A, Ã such that NTIME
eA (2n) ⊂ SIZEA (n).

Proof. Let M1,M2, . . . be an enumeration of NTIME (2n) oracle machines. Then on inputs of size
n, it suffices to simulate M1, . . . ,Mn, since then every Mi will be simulated on all but finitely many
input lengths.

For simplicity, we will assume that on inputs of size n, the Mi’s can query only a single poly-
nomial, p : F4n → F. Later we will generalize to the case where the Mi’s can query Ãn,F for every
n and F simultaneously.

We construct p by an iterative process. We are dealing with n2n pairs of the form 〈i, x〉, where
x ∈ {0, 1}n is an input and i ∈ [n] is the label of a machine. At every iteration, each 〈i, x〉 will be
either satisfied or unsatisfied, and each point in F4n will be either active or inactive. Initially all
〈i, x〉’s are unsatisfied and all points are active.

To fix an active point y will mean we fix the value of p (y) to some constant cy, and switch y
from active to inactive. Once y is inactive, it never again becomes active, and p (y) never again
changes.

We say that y is fixed consistently, if after it is fixed there still exists a multiquadratic extension
polynomial p : F4n → F such that p (y) = cy for all inactive points y. Then the iterative process
consists of repeatedly asking the following question:

Does there exist an unsatisfied 〈i, x〉, such that by consistently fixing at most 2n active points,
we can force Mi to accept on input x?

If the answer is yes, then we fix those points, switch 〈i, x〉 from unsatisfied to satisfied, and
repeat. We stop only when we can no longer find another 〈i, x〉 to satisfy.

Let D be the set of inactive points when this process halts. Then |D| ≤ n22n. So by Lemma
4.5, there exists a subset G ⊆ {0, 1}4n, with |G| ≥ 24n − n22n, such that for any Boolean function
f : {0, 1}4n → {0, 1}, there exists a multiquadratic polynomial p : F4n → F satisfying

(i) p (y) = cy for all y ∈ D,

(ii) p (z) = f (z) for all z ∈ G, and

(iii) p (z) ∈ {0, 1} for all Boolean z.

To every machine-input pair 〈i, x〉, associate a unique string wi,x ∈ {0, 1}4n in some arbitrary
way. Then for all 〈i, x〉 we have

Pr
z∈{0,1}4n

[z ⊕ wi,x ∈ G] ≥ 1 − n22n

24n
.

So by the union bound, there exists a fixed string z′ ∈ {0, 1}4n such that z′⊕wi,x ∈ G for all 〈i, x〉.
We will choose the Boolean function f so that for every 〈i, x〉 pair, f (z′ ⊕ wi,x) encodes whether or
not Mi accepts on input x. Note that doing so cannot cause any additional 〈i, x〉 pairs to accept,
for if it could, then we would have already forced those pairs to accept during the iterative process.

Our linear-size circuit for simulating the Mi’s will now just hardwire the string z′.
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Finally, let us generalize to the case where the Mi’s can query Ãn,F for any input length n and
finite field F of their choice. This requires only a small change to the original proof. We construct
Ã in stages. At stage n, assume that Ã1,F, . . . , Ãn−1,F have already been fixed for every F. Then

our goal is to fix Ãn,F for every F. Let YF be the set of points in Fn for which the value of Ãn,F

was fixed in one of the previous n − 1 stages. Then

∑

F

|YF| ≤
n−1∑

m=1

m22m ≤ n22n.

So by Lemma 4.5, for all F we can find multiquadratic polynomials Ãn,F : F4n → F that satisfy all
the forcing conditions, and that also encode in some secret location whether Mi accepts on input
x for all i ∈ [n] and x ∈ {0, 1}n.

By a standard padding argument, Theorem 5.6 immediately gives A, Ã such that NEXP
eA ⊂

PA/poly. This collapse is almost the best possible, since Theorem 3.17 implies that there do not

exist A, Ã such that MA
eA
EXP ⊂ PA/poly.

Wilson [43] gave an oracle A relative to which EXPNP
A ⊂ PA/poly. Using similar ideas, one

can straightforwardly generalize the construction of Theorem 5.6 to obtain the following:

Theorem 5.7 There exist A, Ã such that EXPNP
eA ⊂ PA/poly.

One can also combine the ideas of Theorem 5.6 with those of Theorem 5.4 to obtain the following:

Theorem 5.8 There exist A, Ã such that BPEXP
eA ⊂ PA/poly.

We omit the details of the above two constructions. However, we would like to mention one
interesting implication of Theorem 5.8. Fortnow and Klivans [14] recently showed the following:

Theorem 5.9 ([14]) If the class of polynomial-size circuits is exactly learnable by a BPP machine
from membership and equivalence queries, or is PAC-learnable by a BPP machine with respect to
the uniform distribution, then BPEXP 6⊂ P/poly.

By combining Theorem 5.9 with Theorem 5.8, we immediately get the following corollary:

Corollary 5.10 There exist A, Ã such that PA/poly circuits are not exactly learnable from mem-
bership and equivalence queries (nor PAC-learnable with respect to the uniform distribution), even
if the learner is a BPP machine with oracle access to Ã.

Informally, Corollary 5.10 says that learning polynomial-size circuits would necessarily require
non-algebrizing techniques.

5.4 Non-Algebrizing Techniques Needed for Other Problems

We can use the communication complexity transfer principle from Section 4.3 to achieve many
other separations.

Theorem 5.11 There exist A, Ã such that

(i) NPA 6⊂ BPP
eA,
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(ii) coNPA 6⊂ MA
eA,

(iii) NPA 6⊂ BQP
eA,

(iv) BQPA 6⊂ BPP
eA, and

(v) QMAA 6⊂ MA
eA.

Furthermore, for all of these separations Ã is simply the multilinear extension of A.

Proof Sketch. Let us first explain the general idea, before applying it to prove these separations.
Given a complexity class C, let Ccc be the communication complexity analogue of C: that is, the
class of communication predicates f : {0, 1}N ×{0, 1}N → {0, 1} that are decidable by a C machine

using O (polylog N) communication. Also suppose CA ⊆ D eA for all oracles A and multilinear
extensions Ã of A. Then the transfer principle (Theorem 4.11) would imply that Ccc ⊆ Dcc. Thus,
if we know already that Ccc 6⊂ Dcc, we can use that to conclude that there exist A, Ã such that

CA ⊆ D eA.
We now apply this idea to prove the five separations listed above.

(i) Recall that Kalyasundaram and Schnitger [22] (see also [33]) proved an Ω (N) lower bound on
the randomized communication complexity of the Disjointness predicate. From this, together
with a standard diagonalization argument, one easily gets that NPcc 6⊂ BPPcc. Hence there

exist A, Ã such that NPA 6⊂ BPP
eA.

(ii) Klauck [25] has generalized the lower bound of [33, 22] to show that Disjointness has MA

communication complexity Ω(
√

N). From this it follows that coNPcc 6⊂ MAcc, and hence

coNPA 6⊂ MA
eA.

(iii) Razborov [34] showed that Disjointness has quantum communication complexity Ω(
√

N).

This implies that NPcc 6⊂ BQPcc, and hence NPA 6⊂ BQP
eA.11

(iv) Raz [30] gave an exponential separation between randomized and quantum communication
complexities for a promise problem. This implies that PromiseBQPcc 6⊂ PromiseBPPcc, and

hence BQPA 6⊂ BPP
eA (note that we can remove the promise by simply choosing oracles A, Ã

that satisfy it).

(v) Raz and Shpilka [31] showed that PromiseQMAcc 6⊂ PromiseMAcc. As in (iv), this implies

that QMAA 6⊂ MA
eA.

A possible drawback of Theorem 5.11 is that the problems achieving the oracle separations are
not the “natural” ones, but rather come from communication complexity.

We end by mentioning, without details, two other algebraic oracle separations that can be
proved using the connection to communication complexity.

First, Andy Drucker (personal communication) has found A, Ã such that NPA 6⊂ PCP
eA, thus

giving a sense in which “the PCP Theorem is non-algebrizing.” Here PCP is defined similarly to

11Let us remark that, to our knowledge, this reduction constitutes the first use of quantum communication com-
plexity to obtain a new lower bound on quantum query complexity. The general technique might be applicable to
other problems in quantum lower bounds.
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MA, except that the verifier is only allowed to examine O (1) bits of the witness. Drucker proves this
result by lower-bounding the “PCP communication complexity” of the Non-Disjointness predicate.
In particular, if Alice and Bob are given a PCP of m bits, of which they can examine at most c,
then verifying Non-Disjointness requires at least N/mO(c) bits of communication. It remains open
what happens when m is large compared to N .

Second, Hartmut Klauck (personal communication) has found A, Ã such that coNPA 6⊂ QMA
eA,

by proving an Ω(N1/3) lower bound on the QMA communication complexity of the Disjointness
predicate.12

6 The Integers Case

For simplicity, thus far in the paper we restricted ourselves to low-degree extensions over fields
(typically, finite fields). We now consider the case of low-degree extensions over the integers.
When we do this, one complication is that we can no longer use Gaussian elimination to construct
“adversary polynomials” with desired properties. A second complication is that we now need to
worry about the size of an extension oracle’s inputs and outputs (i.e., the number of bits needed to
specify them). For both of these reasons, proving algebraic oracle separations is sometimes much
harder in the integers case than in the finite field case.

Formally, given a vector of integers v = (v1, . . . , vn), we define the size of v,

size (v) :=
n∑

i=1

dlog2 (|vi| + 2)e ,

to be a rough measure of the number of bits needed to specify v. Notice that size (v) ≥ n for all v.
We can now give the counterpart of Definition 2.2 for integer extensions:

Definition 6.1 (Extension Oracle Over The Integers) Let Am : {0, 1}m → {0, 1} be a Boolean
function. Then an extension of Am over the integers Z is a polynomial Âm : Zm → Z such that
Âm (x) = Am (x) whenever x ∈ {0, 1}m. Also, given an oracle A = (Am), an extension Â of A is
a collection of polynomials Âm : Zm → Z, one for each m ∈ N, such that

(i) Âm is an extension of Am for all m,

(ii) there exists a constant c such that mdeg(Âm) ≤ c for all m, and

(iii) there exists a polynomial p such that size(Âm (x)) ≤ p (m + size (x)) for all x ∈ Zm.

Then given a complexity class C, by C bA or C bA[poly] we mean the class of languages decidable
by a C machine that, on inputs of length n, can query Âm for any m or any m = O (poly (n))
respectively.

Notice that integer extensions can always be used to simulate finite field extensions—since
given an integer Âm (x), together with a field F of order qk where q is prime, an algorithm can just
compute Ãm,F (x) := Âm (x)mod q for itself. In other words, for every integer extension Â, there

exists a finite field extension Ã such that D eA ⊆ D bA for all complexity classes D capable of modular

12It is an extremely interesting question whether his lower bound is tight. We know that Disjointness admits a
quantum protocol with O(

√
N) communication [8, 2], as well as an MA-protocol with O(

√
N log N) communication

(see Section 7.2). The question is whether these can be combined somehow to get down to O(N1/3).
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arithmetic. Hence any result of the form CA ⊆ D eA for all A, Ã automatically implies CA ⊆ D bA for

all A, Â. Likewise, any construction of oracles A, Â such that CA 6⊂ D bA automatically implies the

existence of A, Ã such that CA 6⊂ D eA.
We now define the model of algebraic query complexity over the integers.

Definition 6.2 (Algebraic Query Complexity Over Z) Let f : {0, 1}N → {0, 1} be a Boolean
function, and let s and c be positive integers. Also, let M be the set of deterministic algorithms
M such that for every oracle A : {0, 1}n → {0, 1}, and every integer extension Â : Zn → Z of A
with mdeg(Â) ≤ c,

(i) M
bA outputs f (A), and

(ii) every query x made by M
bA satisfies size (x) ≤ s.

Then the deterministic algebraic query complexity of f over Z is defined as

D̂s,c (f) := min
M∈M

max
A, bA:mdeg( bA)≤c

TM (Â),

where TM (Â) is the number of queries to Â made by M
bA. (For the purposes of this definition,

we do not impose any upper bound on size(Â (x)).) The randomized and quantum algebraic query
complexities R̂s,c (f) and Q̂s,c (f) are defined similarly, except with (bounded-error) randomized and
quantum algorithms in place of deterministic ones.

Notice that proving lower bounds on D̂s,c, R̂s,c, and Q̂s,c becomes harder as s increases, and
easier as c increases.

Our goal is twofold: (1) to prove lower bounds on the above-defined query complexity measures,
and (2) to use those lower bounds to prove algebraic oracle separations over the integers (for

example, that there exist A, Â such that NPA 6⊂ P
bA).

6.1 Lower Bounds by Communication Complexity

A first happy observation is that every lower bound or oracle separation proved using Theorem 4.11
(the communication complexity transfer principle) automatically carries over to the integers case.
This is so because of the following direct analogue of Theorem 4.11 for integer extensions:

Theorem 6.3 Let A : {0, 1}n → {0, 1} be a Boolean function, and let Â : Zn → Z be the unique
multilinear extension of A over Z. Suppose one can evaluate some Boolean predicate f of A using
T deterministic adaptive queries to Â, where each query x ∈ Zn satisfies size (x) ≤ s. Also, let A0

and A1 be the subfunctions of A obtained by restricting the first bit to 0 or 1 respectively. Then if
Alice is given the truth table of A0 and Bob is given the truth table of A1, they can jointly evaluate
f (A) using O (Ts) bits of communication.

The proof of Theorem 6.3 is essentially the same as the proof of Theorem 4.11, and is therefore
omitted.

By analogy to Theorem 4.12, Theorem 6.3 has the following immediate consequence for the
randomized query complexity of Disjointness over the integers:

Theorem 6.4 R̂s,1 (DISJ) = Ω (2n/s) for all s.
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Proof. Suppose R̂s,1 (DISJ) = o (2n/s). Then by Theorem 6.3, we get a randomized protocol for
Disjointness with communication cost o (2n), thereby violating the lower bound of Razborov [33]
and Kalyasundaram and Schnitger [22].

One can also use Theorem 6.3 to construct oracles A and integer extensions Â such that

• NPA 6⊂ P
bA,

• RPA 6⊂ P
bA,

• NPA 6⊂ BQP
bA,

and so on for all the other oracle separations obtained in Section 5.4 in the finite field case.
The proofs are similar to those in Section 5.4 and are therefore omitted.

6.2 Lower Bounds by Direct Construction

Unlike with the communication complexity arguments, when we try to port the direct construction
arguments of Section 4.2 to the integers case we encounter serious new difficulties. The basic
source of the difficulties is that the integers are not a field but a ring, and thus we can no longer
construct multilinear polynomials by simply solving linear equations.

In this section, we partly overcome this problem by using some tools from elementary number
theory, such as Chinese remaindering and Hensel lifting. The end result will be an exponential
lower bound on D̂s,2 (OR): the number of queries to a multiquadratic integer extension Â : Zn → Z

needed to decide whether there exists an x ∈ {0, 1}n with A (x) = 1, assuming the queries are
deterministic and have size at most s � 2n.

Unfortunately, even after we achieve this result, we will still not be able to use it to prove oracle

separations like NPA 6⊂ P
bA. The reason is technical, and has to do with size(Â (x)): the number

of bits needed to specify an output of Â. In our adversary construction, size(Â (x)) will grow like
O (size(x) + ts), where t is the number of queries made by the algorithm we are fighting against
and s is the maximum size of those queries. The dependence on size(x) is fine, but the dependence
on t and s is a problem for two reasons. First, the number of bits needed to store Â’s output might
exceed the running time of the algorithm that calls Â! Second, we ultimately want to diagonalize
against all polynomial-time Turing machines, and this will imply that size(Â (x)) must grow faster
than polynomial.

Nevertheless, both because we hope it will lead to better results, and because the proof is
mathematically interesting, we now present a lower bound on D̂s,2 (OR).

Our goal is to arrive at a lemma similar to Lemma 4.3 in the field case; its analogue will be
Lemma 6.9 below.

Lemma 6.5 Let y1, . . . , yt be points in Zn and let q be a prime. Then there exists a multilinear
polynomial hq : Zn → Z such that

(i) hq (yi) ≡ 0 (mod q) for all i ∈ [t], and

(ii) hq (z) = 1 for at least 2n − t Boolean points z.

(Note that hq could be non-Boolean on the remaining Boolean points.)
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Proof. Let N = 2n; then we can label the N Boolean points z1, . . . , zN . For all i ∈ [N ], let δi be
the unique multilinear polynomial satisfying δi (zi) = 1 and δi (zj) = 0 for all j 6= i.

Now let Λ be a (t + N) × N integer matrix whose top t rows are labeled by y1, . . . , yt, whose
bottom N rows are labeled by z1, . . . , zN , and whose columns are labeled by δ1, . . . , δN . The (x, δi)
entry is equal to δi (x). We assume without loss of generality that the top t × N submatrix of Λ
has full rank mod q, for if it does not, then we simply remove rows until it does. Notice that the
bottom N × N submatrix of Λ is just the identity matrix I.

Now remove t of the bottom N rows, in such a way that the resulting N × N submatrix B of
Λ is nonsingular mod q. Then for every vector v ∈ FN

q , the system Bα ≡ v (mod q) is solvable

for α ∈ FN
q . So choose v to contain 0’s in the first t coordinates and 1’s in the remaining N − t

coordinates; then solve to obtain a vector α = (α1, . . . , αN ). Finally, reinterpret the αi’s as integers
from 0 to q − 1 rather than elements of Fq, and set the polynomial hq to be

hq (x) :=

N∑

i=1

αiδi (x) .

It is clear that hq so defined satisfies property (i). To see that it satisfies (ii), notice that the last
N − t rows of B are unit vectors. Hence, even over Fq, any solution to the system Bα ≡ v (mod q)
must set αt+1 = · · · = αN = 1.

We wish to generalize Lemma 6.5 to the case where the modulus q is not necessarily prime. To
do so, we will need two standard number theory facts, which we prove for completeness.

Proposition 6.6 (Hensel Lifting) Let B be an N×N integer matrix, and suppose B is invertible
mod q for some prime q. Then the system Bα ≡ v (mod qe) has a solution in α ∈ ZN for every
v ∈ ZN and e ∈ N.

Proof. By induction on e. When e = 1 the proposition obviously holds, so assume it holds for e.
Then there exists a solution α to Bα ≡ v (mod qe), meaning that Bα − v = qec for some c ∈ ZN .
From this we want to construct a solution α′ to Bα′ ≡ v

(
mod qe+1

)
. Our solution will have the

form α′ = α + qeβ for some β ∈ ZN . To find β, notice that

Bα′ = B (α + qeβ)

= Bα + qeBβ

= v + qec + qeBβ

= v + qe (c + Bβ) .

Thus, it suffices to find a β such that Bβ ≡ −c (mod q). Since B is invertible mod q, such a β
exists.

Proposition 6.7 (Chinese Remaindering) Let K and L be relatively prime. Then there exist
integers a, b ∈ [KL] such that:

(i) For all x, y, z, the congruence z ≡ ax + by (mod KL) holds if and only if z ≡ x (modK) and
z ≡ y (modL).

(ii) If x = y = 1, then ax + by = KL + 1 as an integer.
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Proof. Let K ′ and L′ be integers in [KL] such that K ′ ≡ K−1 (modL) and L′ ≡ L−1 (mod K);
note that these exist since K and L are relatively prime. Then we simply need to set a := LL′

and b := KK ′.
We can now prove the promised generalization of Lemma 6.5.

Lemma 6.8 Let y1, . . . , yt be points in Zn, let Q be an integer, and let Q = qe1
1 · · · qem

m be its prime
factorization. Then there exists a multilinear polynomial hQ : Zn → Z such that

(i) hQ (yi) ≡ 0 (modQ) for all i ∈ [t], and

(ii) hQ (z) = 1 for at least 2n − mt Boolean points z.

Proof. Say that a multilinear polynomial h : Zn → Z is (K, r)-satisfactory if

(i’) h (yi) ≡ 0 (mod K) for all i ∈ [t], and

(ii’) h (z) = 1 for at least 2n − r Boolean points z.

Recall that if q is prime, then Lemma 6.5 yields a (q, t)-satisfactory polynomial hq. Furthermore,
the coefficients (α1, . . . , αN ) of hq were obtained by solving a linear system Bα ≡ b (mod q) where
B was invertible mod q.

First, suppose K = qe is a prime power. Then by Proposition 6.6, we can “lift” the solution
α ∈ Zn of Bα ≡ b (mod q) to a solution α′ ∈ Zn of Bα′ ≡ v (modK). Furthermore, after we
perform this lifting, we still have α′

t+1 = · · · = α′
N = 1, since the matrix B has not changed (and

in particular contains the identity submatrix). So if we set

hK (x) :=

N∑

i=1

α′
iδi (x)

then hK is (K, t)-satisfactory.
Now let K and L be relatively prime, and suppose we found a (K, r)-satisfactory polynomial hK

as well as an (L, r′)-satisfactory polynomial hL. We want to combine hK and hL into a (KL, r + r′)-
satisfactory polynomial hKL. To do so, we use Chinese remaindering (as in Proposition 6.7) to
find an affine linear combination

hKL (x) := ahK (x) + bhL (x) − KL

such that

(i”) hKL (x) ≡ 0 (modKL) if and only if hK (x) ≡ 0 (mod K) and hL (x) ≡ 0 (mod L), and

(ii”) if hK (x) = 1 and hL (x) = 1 then hKL (x) = 1.

Since there are at least 2n − (r + r′) Boolean points z such that hK (z) = hL (z) = 1, this yields
a (KL, r + r′)-satisfactory polynomial as desired.

Thus, given any composite integer Q = qe1
1 · · · qem

m , we can first use Hensel lifting to find a
(qei

i , t)-satisfactory polynomial hqi for every i ∈ [m], and then use Chinese remaindering to combine
the hqi ’s into a (Q,mt)-satisfactory polynomial hQ.

We are finally ready to prove the integer analogue of Lemma 4.3.
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Lemma 6.9 Let y1, . . . , yt be points in Zn, such that size (yi) ≤ s for all i ∈ [t]. Then for at least
2n −2t2s Boolean points w ∈ {0, 1}n, there exists a multiquadratic polynomial p : Zn → Z such that

(i) p (yi) = 0 for all i ∈ [t],

(ii) p (w) = 1, and

(iii) p (z) = 0 for all Boolean z 6= w.

Proof. Assume t ≤ 2n, since otherwise the lemma is trivial.
Let hQ : Zn → Z be the multilinear polynomial from Lemma 6.8, for some integer Q to be

specified later. Then our first claim is that there exists a multilinear polynomial g : Qn → Q, with
rational coefficients, such that

(i’) g (yi) = hQ (yi) for all i ∈ [t], and

(ii’) g (z) = 0 for at least 2n − t Boolean points z.

This claim follows from linear algebra: we know the requirements g (yi) = hQ (yi) for i ∈ [t] are
mutually consistent, since there exists a multilinear polynomial, namely hQ, that satisfies them.
So if we write g in the basis of δz ’s, as follows:

g (x) =
∑

z∈{0,1}n

g (z) δz (x)

then condition (i’) gives us t′ independent affine constraints on the 2n coefficients g (z), for some
t′ ≤ t. This means there must exist a solution g such that g (z) = 0 for at least 2n − t′ Boolean
points z. Let z1, . . . , zt′ be the remaining t′ Boolean points.

Notice that z1, . . . , zt′ can be chosen independently of hQ. This is because we simply need
to find t′ Boolean points z1, . . . , zt′ , such that any “allowed” vector (hQ (y1) , . . . , hQ (yt)) can be
written as a rational linear combination of vectors of the form

(
δzj (y1) , . . . , δzj (yt)

)
with j ∈ [t′].

We now explain how Q is chosen. Let Γ be a t× t′ matrix whose rows are labeled by y1, . . . , yt,
whose columns are labeled by z1, . . . , zt′ , and whose (i, j) entry equals δzj (yi). Then since we had
t′ independent affine constraints, there must be a t′ × t′ submatrix Γ′ of Γ with full rank. We set
Q := |det (Γ′)|.

With this choice of Q, we claim that g is actually an integer polynomial. It suffices to show
that g (zj) is an integer for all j ∈ [t′], since the value of g at any x ∈ Zn can be written as an integer
linear combination of its values on the Boolean points. Note that the vector (g (z1) , . . . , g (zt′))
is obtained by applying the matrix (Γ′)−1 to some vector (v1, . . . , vt′) whose entries are hQ (yi)’s.

Now, every entry of (Γ′)−1 has the form k/Q, where k is an integer; and since hQ (yi) ≡ 0 (mod Q)
for all i ∈ [t], every vi is an integer multiple of Q. This completes the claim.
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Also, since size (yi) ≤ s for all i ∈ [t], we have the upper bound

Q =
∣∣det

(
Γ′)∣∣

≤ t′!

(
n∏

i=1

(|yi| + 1)

)t′

≤ tt

(
n∏

i=1

(|yi| + 1)

)t

≤ tt2ts

= 2ts+t log2 t

≤ 22ts.

Here the last line uses the assumption that log2 t ≤ n, together with the fact that n ≤ s.
Therefore Q can have at most 2ts distinct prime factors. So by Lemma 6.8, we have hQ (z) = 1

for at least 2n − 2t2s Boolean points z.
Putting everything together, if we define m (x) := hQ (x) − g (x), then we get a multilinear

polynomial m : Zn → Z such that

(i”) m (yi) = 0 for all i ∈ [t], and

(ii”) m (z) = 1 for at least 2n − 2t2s Boolean points z.

Then for any w ∈ {0, 1}n with m (w) = 1, we can get a multiquadratic polynomial p : Zn → Z

satisfying conditions (i)-(iii) of the lemma by taking p (x) := m (x) δw (x).
Lemma 6.9 easily implies a lower bound on the deterministic query complexity of the OR

function.

Theorem 6.10 D̂s,2 (OR) = Ω
(√

2n/s
)

for all s.

Proof. Let Y be the set of points queried by a deterministic algorithm, and assume size (y) ≤ s for
all y ∈ Y. Then provided 2n − 2 |Y|2 s > 0 (or equivalently |Y| <

√
2n−1/s), Lemma 6.9 implies

that there exists a multiquadratic extension polynomial Â : Zn → Z such that Â (y) = 0 for all
y ∈ Y, but nevertheless Â (w) = 1 for some Boolean point w. So even if the algorithm is adaptive,
we can let Y be the set of points it queries assuming each query is answered with 0, and then find
Â, B̂ such that Â (y) = B̂ (y) = 0 for all y ∈ Y, but nevertheless Â and B̂ lead to different values
of the OR function.

As mentioned before, one can calculate that the polynomial p from Lemma 6.9 satisfies size (p (x)) =
O (size (x) + ts). For algebrization purposes, the key question is whether the dependence on t and
s can be eliminated, and replaced by some fixed polynomial dependence on size (x) and n. Another
interesting question is whether one can generalize Lemma 6.9 to queries of unbounded size—that
is, whether the assumption size (yi) ≤ s can simply be eliminated.

7 Applications to Communication Complexity

In this section, we give two applications of our algebrization framework to communication com-
plexity:
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(1) A new connection between communication complexity and computational complexity, which
implies that certain plausible communication complexity conjectures would imply NL 6= NP.

(2) MA-protocols for the Disjointness and Inner Product problems with total communication cost
O (

√
n log n), essentially matching a lower bound of Klauck [25].

Both of these results can be stated without any reference to algebrization. On the other hand,
they arose directly from the “transfer principle” relating algebrization to communication complexity
in Section 4.3.

7.1 Karchmer-Wigderson Revisited

Two decades ago, Karchmer and Wigderson [24, 42] noticed that certain communication complexity
lower bounds imply circuit lower bounds—or in other words, that one can try to separate complexity
classes by thinking only about communication complexity. In this section we use algebrization
to give further results in the same spirit. Our approach will only require lower-bounding the
communication complexity of functions, not of relations as in the Karchmer-Wigderson case.

Let f : {0, 1}N × {0, 1}N → {0, 1} be a Boolean function, and let x and y be inputs to f held
by Alice and Bob respectively. By an IP-protocol for f , we mean a randomized communication
protocol where Alice and Bob exchange messages with each other, as well as with an omniscient
prover Merlin who knows x and y. The communication cost is defined as the total number of bits
exchanged among Alice, Bob, and Merlin. If f (x, y) = 1, then there should exist a strategy of
Merlin that causes Alice and Bob to accept with probability at least 2/3, while if f (x, y) = 0 no
strategy should cause them to accept with probability more than 1/3.

Lemma 7.1 Suppose f : {0, 1}N × {0, 1}N → {0, 1} is in NL. Then f has an IP-protocol with
communication cost O (polylog N).

Proof. Let N = 2n. Then we can define a Boolean function A : {0, 1}n+1 → {0, 1}, such that
the truth table of A (0x) corresponds to Alice’s input, while the truth table of A (1x) corresponds
to Bob’s input. Taking n as the input length, we then have f ∈ PSPACEA[poly]. By Theorem 3.7

we have PSPACEA[poly] ⊆ IP
eA, where Ã is the multilinear extension of A. Hence f ∈ IP

eA. But
by Theorem 4.11, this means that f admits an IP-protocol with communication cost O (poly n) =
O (polylog N).

An immediate consequence of Lemma 7.1 is that, to prove a problem is outside NL, it suffices
to lower-bound its IP communication complexity:

Theorem 7.2 Let Alice and Bob hold 3SAT instances ϕA, ϕB respectively of size N . Suppose
there is no IP-protocol with communication cost O (polylog N), by which Merlin can convince Alice
and Bob that ϕA and ϕB have a common satisfying assignment. Then NL 6= NP.

Likewise, to prove a problem is outside P, it suffices to lower-bound its RG communication
complexity, where RG is the Refereed Games model of Feige and Kilian [12] (with a competing
yes-prover and no-prover). In this case, though, the EXP = RG theorem is not only algebrizing
but also relativizing, and this lets us prove a stronger result:

Theorem 7.3 Let ϕ be a 3SAT instance of size N . Suppose there is no bounded-error randomized
verifier that decides whether ϕ is satisfiable by
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(i) making O (polylog N) queries to a binary encoding of ϕ, and

(ii) exchanging O (polylog N) bits with a competing yes-prover and no-prover, both of whom know
ϕ and can exchange private messages not seen by the other prover.

Then P 6= NP.

Proof. Suppose P = NP. Then by padding, EXPA[poly] = NEXPA[poly] for all oracles A. As
discussed in Section 3.5, the work of Feige and Kilian [12] implies that EXPA[poly] = RGA for
all oracles A. Hence NEXPA[poly] = RGA as well. In other words, given oracle access to an
exponentially large 3SAT instance ϕ, one can decide in RG whether ϕ is satisfiable. Scaling down
by an exponential now yields the desired result.

7.2 Disjointness and Inner Product

In this subsection we consider two communication problems. The first is Disjointness, which was
defined in Section 4.3. The second is Inner Product, which we define as follows. Alice and Bob
are given n-bit strings x1 . . . xn and y1 . . . yn respectively; then their goal is to compute

IP (x, y) :=

n∑

i=1

xiyi

as an integer. Clearly Disjointness is equivalent to deciding whether IP (x, y) = 0, and hence is
reducible to Inner Product.

Klauck [25] showed that any MA-protocol for Disjointness has communication cost Ω (
√

n). The
“natural” conjecture would be that the

√
n was merely an artifact of his proof, and that a more

refined argument would yield the optimal lower bound of Ω (n). However, using a protocol inspired
by our algebrization framework, we are able to show that this conjecture is false.

Theorem 7.4 There exist MA-protocols for the Disjointness and Inner Product problems, in which
Alice receives an O (

√
n log n)-bit witness from Merlin and an O (

√
n log n)-bit message from Bob.

Proof. As observed before, it suffices to give a protocol for Inner Product; a protocol for Disjoint-
ness then follows immediately.

Assume n is a perfect square. Then Alice and Bob can be thought of as holding functions
a : [

√
n] × [

√
n] → {0, 1} and b : [

√
n] × [

√
n] → {0, 1} respectively. Their goal is to compute the

inner product

IP :=
∑

x,y∈[
√

n]

a (x, y) b (x, y) .

Choose a prime q ∈ [n, 2n]. Then a and b have unique extensions ã : F2
q → Fq and b̃ : F2

q → Fq

respectively as degree-(
√

n − 1) polynomials. Also, define the polynomial s : Fq → Fq by

s (x) :=

√
n∑

y=1

ã (x, y) b̃ (x, y) (mod q).

Notice that deg (s) ≤ 2 (
√

n − 1).
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Merlin’s message to Alice consists of a polynomial s′ : Fq → Fq, which also has degree at most
2 (

√
n − 1), and which is specified by its coefficients. Merlin claims that s = s′. If Merlin is honest,

then Alice can easily compute the inner product as

IP =

√
n∑

x=1

s (x) .

So the problem reduces to checking that s = s′. This is done as follows: first Bob chooses r ∈ Fq

uniformly at random and sends it to Alice, along with the value of b (r, y) for every y ∈ [
√

n]. Then
Alice checks that

s′ (r) =

√
n∑

y=1

ã (r, y) b̃ (r, y) (mod q) .

If s = s′, then the above test succeeds with certainty. On the other hand, if s 6= s′, then

Pr
r∈Fq

[
s (r) = s′ (r)

]
≤ deg (s)

q
≤ 1

3
,

and hence the test fails with probability at least 2
3 .

Let us make two remarks about Theorem 7.4.
First, we leave as an open problem whether one could do even better than Õ (

√
n) by using an

AM-protocol: that is, a protocol in which Alice (say) can send a single random challenge to Merlin
and receive a response. (As before, the communication cost is defined as the sum of the lengths of
all messages between Alice, Bob, and Merlin.) On the other hand, it is easy to generalize Theorem
7.4 to give an MAM-protocol (one where first Merlin sends a message, then Alice, then Merlin)
with complexity O

(
n1/3 log n

)
. Similarly, one can give an MAMAM-protocol with complexity

O
(
n1/4 log n

)
, an MAMAMAM-protocol with complexity O

(
n1/5 log n

)
, and so on. In the limit of

arbitrarily many rounds, one gets an IP-protocol with complexity O (log n log log n).
Second, one might wonder how general Theorem 7.4 is. In particular, can it be extended to

give an MA-protocol for every predicate f : {0, 1}n × {0, 1}n → {0, 1} with total communication
Õ (

√
n)? The answer is no, by a simple counting argument.

We can assume without loss of generality that every MA-protocol has the following form: first
Alice and Bob receive an m-bit message from Merlin; then they exchange T messages between
themselves consisting of a single bit each. Let pt be the probability that the tth message is a ‘1’,
as a function of the n + m + t− 1 bits (one player’s input plus Merlin’s message plus t− 1 previous
messages) that are relevant at the tth step. It is not hard to see that each pt can be assumed to
have the form i/n2, where i is an integer, with only negligible change to the acceptance probability.

In that case there are
(
n2
)2n+m+t−1

choices for each function pt : {0, 1}n+m+t−1 → [0, 1], whence

(
n2
)2n+m (

n2
)2n+m+1

· · ·
(
n2
)2n+m+T−1

possible protocols. But if m + T = o (n), this product is still dwarfed by 222n
, the number of

distinct Boolean functions f : {0, 1}n × {0, 1}n → {0, 1}.
Thus, Theorem 7.4 has the amusing consequence that the Inner Product function, which is

often considered the “hardest” function in communication complexity, is actually unusually easy
for MA-protocols. (The special property of Inner Product we used is that it can be written as a
degree-2 polynomial in Alice’s and Bob’s inputs.)
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8 Zero-Knowledge Protocols

In searching complexity theory for potentially non-algebrizing results, it seems the main source is
cryptography—and more specifically, cryptographic results that exploit the locality of computa-
tion. These include the zero-knowledge protocol for NP due to Goldreich, Micali, and Wigderson
[16] (henceforth the GMW Theorem), the two-party oblivious circuit evaluation of Yao [45], and
potentially many others. Here we focus on the GMW Theorem.

As discussed in Section 1, the GMW Theorem is inherently non-black-box, since it uses the
structure of an NP-complete problem (namely 3-Coloring). On the other hand, the way the
theorem exploits that structure seems inherently non-algebraic: it does not involve finite fields or
low-degree polynomials. Nevertheless, in this section we will give a nontrivial sense in which even
the GMW Theorem is algebrizing.

Let us start by defining the class CZK, or Computational Zero Knowledge.

Definition 8.1 A language L is in CZK if there exists a protocol in which a probabilistic polynomial-
time verifier V interacts with a computationally-unbounded prover P , such that for all inputs x the
following holds.

• Completeness. If x ∈ L then P causes V to accept with probability 1.

• Soundness. If x /∈ L then no prover P ∗ can cause V to accept with probability more than
1/2.

• Zero-Knowledge. If x ∈ L then for every polynomial-time verifier V ∗, it is possible, in
expected polynomial time, to produce a message transcript that cannot be efficiently distin-
guished from a transcript of an actual conversation between V ∗ and P . (In other words, the
two probability distributions over message transcripts are computationally indistinguishable.)

Then Goldreich et al. [16] proved the following:

Theorem 8.2 (GMW Theorem) If one-way functions exist then NP ⊆ CZK.

It is not hard to show that Theorem 8.2 is non-relativizing. Intuitively, given a black-box
function f : {0, 1}n → {0, 1}, suppose we want to convince a polynomial-time verifier V that there
exists a z such that f (z) = 1. Then there are two possibilities: either we can cause V to query
f (z), in which case we will necessarily violate the zero-knowledge condition (by revealing z); or else
we can not cause V to query f (z), in which case we will violate either completeness or soundness.
By formalizing this intuition one can show the following:

Theorem 8.3 There exists an oracle A relative to which

(i) one-way functions exist (i.e. there exist functions computable in PA that cannot be inverted
in BPPA on a non-negligible fraction of inputs), but

(ii) NPA 6⊂ CZKA.

(Note that by CZKA, we simply mean the version of CZK where all three machines—the prover,
verifier, and simulator—have access to the oracle A.)

By contrast, we now show that, assuming the existence of an explicit13 one-way function, the
inclusion NP ⊆ CZK is algebrizing. In proving this theorem, we will exploit the availability of a
low-degree extension Ã to make the oracle queries zero-knowledge.

13Namely, which is easy to compute without the oracle, but hard to invert even with an extension oracle.
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Theorem 8.4 Let A be an oracle and let Ã be any extension of A. Suppose there exists a one-

way function, computable in P, which cannot be inverted with non-negligible probability by BPP
eA

adversaries. Then NPA ⊆ CZK
eA.

Proof. We will assume for simplicity that the extension Ã is just a polynomial Ã : Fn → F over a
fixed finite field F, which extends a Boolean function A : {0, 1}n → {0, 1}. Also, let d = deg(Ã),
and assume d � char (F). (The proof easily generalizes to the case where A and Ã are as defined
in Section 2.)

Deciding whether an NPA machine accepts is equivalent to deciding the satisfiability of a Boolean
formula ϕ (w1, . . . , wm), which consists of a conjunction of two types of clauses:

(i) Standard 3SAT clauses over the variables w1, . . . , wm.

(ii) “Oracle clauses,” each of which has the form yi = A (Yi), where Yi ∈ {0, 1}n is a query to A
(composed of n variables wj1, . . . , wjn) and yi is its expected answer (composed of another
variable wjn+1).

Given such a formula ϕ, our goal is to convince a BPP
eA verifier that ϕ is satisfiable, without

revealing anything about the satisfying assignment w1, . . . , wm (or anything else). To achieve
this, we will describe a constant-round zero-knowledge protocol in which the verifier accepts with
probability 1 given an honest prover, and rejects with probability Ω (1/poly (n)) given a cheating
prover. Given any such protocol, it is clear that we can increase the soundness gap to Ω (1), by
repeating the protocol poly (n) times.

Let us describe our protocol in the case that the prover and verifier are both honest. In the
first round, the prover uses the explicit one-way function to send the verifier commitments to the
following objects:

• A satisfying assignment w1, . . . , wm for ϕ.

• A random nonzero field element r ∈ F.

• For each oracle clause yi = A (Yi),

– A random affine function Li : F → Fn (in other words, a line) such that Li (0) = Yi and
Li (1) 6= Yi.

– A polynomial pi : F → F, of degree at most d, such that pi (t) = Ã (Li (t)) for all t ∈ F.

Given these objects, the verifier can choose randomly to perform one of the following four tests:

(1) Ask the prover for a zero-knowledge proof that the standard 3SAT clauses are satisfied.

(2) Choose a random oracle clause yi = A (yi), and ask for a zero-knowledge proof that Li (0) = Yi.

(3) Choose a random oracle clause yi = A (yi), and ask for a zero-knowledge proof that pi (0) = yi.

(4) Choose a random oracle clause yi = A (yi) as well as a random nonzero field element s ∈ F.
Ask for the value u of Li (rs), as well as a zero-knowledge proof that u = Li (rs). Query
Ã (Li (rs)). Ask for a zero-knowledge proof that pi (rs) = Ã (Li (rs)).
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To prove the correctness of the above protocol, we need to show three things: completeness,
zero-knowledge, and soundness.

Completeness: This is immediate. If the prover is honest, then tests (1)-(4) will all pass with
probability 1.

Zero-Knowledge: Let V ∗ be any verifier. We will construct a simulator to create a transcript
which is computationally indistinguishable from its communication with the honest prover P . The
simulator first chooses random values for the wi’s (which might not be satisfying at all) and commits
to them. It also commits to a random r ∈ F ∗. For tests (1)-(3), the simulator acts as in the proof
of the GMW Theorem [16]. So the interesting test is (4).

First note that rs is a random nonzero element, regardless of how V ∗ selected s. Now the key
observation is that Li (rs), the point at which the verifier queries Ã, is just a uniform random point
in Fn� {Yi}. Thus, we can construct a simulator as follows: if the verifier is going to ask the prover
about an oracle clause yi = A (yi), then first choose a point Xi ∈ Fn uniformly at random and query
Ã (Xi). (The probability that Xi will equal Yi is negligible.) Next choose nonzero field elements
r, s ∈ F uniformly at random. Let Li be the unique line such that Li (0) = Yi and Li (rs) = Xi,
and let pi be the unique degree-d polynomial such that pi (t) = Ã (Li (t)) for all t ∈ F (which can be
found by interpolation). Construct commitments to all of these objects. Assuming the underlying

commitment scheme is secure against BPP
eA machines, the resulting probability distribution over

messages will be computationally indistinguishable from the actual distribution.
Soundness: Suppose the NPA machine rejects. Then when the prover sends the verifier a

commitment to the “satisfying assignment” w1, . . . , wm, some clause C of ϕ will necessarily be
unsatisfied. If C is one of the standard 3SAT clauses, then by the standard GMW Theorem, the
prover will be caught with Ω (1/poly (n)) probability when the verifier performs test (1). So the
interesting case is that C is an oracle clause yi = A (Yi).

In this case, since the truth is that yi 6= A (Yi), at least one of the following must hold:

(i) yi 6= pi (0),

(ii) pi (0) 6= Ã (Li (0)), or

(iii) Ã (Li (0)) 6= A (Yi).

If (i) holds, then the prover will be caught with Ω (1/poly (n)) probability when the verifier
performs test (3).

If (ii) holds, then the two degree-d polynomials pi (t) and Ã (Li (t)) must differ on at least
a 1 − d/ char (F) fraction of points t ∈ F. Hence, since rs is a random nonzero element of F

conditioned only on s being random, the prover will be caught with Ω (1/poly (n)) probability
when the verifier performs test (4).

If (iii) holds, then Li (0) 6= Yi. Hence the prover will be caught with Ω (1/poly (n)) probability
when the verifier performs test (2).

Let us make three remarks about Theorem 8.4.

(1) Notice that in our zero-knowledge protocol, the prover’s strategy can actually be implemented

in BPP
eA, given a satisfying assignment w1, . . . , wm for the formula ϕ.

(2) Although our protocol needed poly (n) rounds to achieve constant soundness (or O (1) rounds
to achieve 1/poly (n) soundness), we have a variant that achieves constant soundness with
a constant number of rounds. For the non-oracle part of the protocol, it is well-known how
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to do this. To handle oracle queries, one composes the polynomially many queries that the
verifier selects among by passing a low-degree curve through them. This reduces the case (4)
to a single random query on this curve. We omit the details.

(3) The reader might wonder why we needed an explicit one-way function to make our protocol
work. The reason is that, in the usual GMW Theorem [16], one proves an NP predicate by
first reducing it to an instance of graph 3-coloring, and then exploiting the local structure of
the 3-coloring problem. However, this reduction manifestly breaks down for NPA predicates.

We leave as an open problem whether the existence of a one-way function computable in P
eA

and secure against BPP
eA adversaries implies NPA ⊆ CZK

eA.

9 The Limits of Our Limit

Some would argue with this paper’s basic message, on the grounds that we already have various
non-relativizing results that are not based on arithmetization. Besides the GMW protocol (which
was discussed in Section 8), the following examples have been proposed:

(1) Small-depth circuit lower bounds, such as AC0 6= TC0 [32], can be shown to fail relative to
suitable oracle gates.

(2) Arora, Impagliazzo, and Vazirani [3] argue that even the Cook-Levin Theorem (and by ex-
tension, the PCP Theorem) should be considered non-relativizing.

(3) Hartmanis et al. [17] cite, as examples of non-relativizing results predating the “interactive
proofs revolution,” the 1977 result of Hopcroft, Paul, and Valiant [19] that TIME (f (n)) 6=
SPACE (f (n)) for any space-constructible f , as well as the 1983 result of Paul et al. [29] that
TIME (n) 6= NTIME (n). Recent time-space tradeoffs for SAT (see van Melkebeek [28] for a
survey) have a similar flavor.

There are two points we can make regarding these examples. Firstly, the small-depth circuit
lower bounds are already “well covered” by the natural proofs barrier. Secondly, because of
subtleties in defining the oracle access mechanism, there is legitimate debate about whether the
results listed in (2) and (3) should “truly” be considered non-relativizing; see Fortnow [13] for a
contrary perspective.14

Having said this, we do not wish to be dogmatic. Our results tell us a great deal about the future
prospects for arithmetization, but about other non-relativizing techniques they are comparatively
silent.

10 Beyond Algebrizing Techniques?

In this section, we discuss two ideas one might have for going beyond the algebrization barrier, and
show that some of our limitation theorems apply even to these ideas.

14Eric Allender has suggested the delightful term “irrelativizing,” for results that neither relativize nor fail to
relativize.
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10.1 k-Algebrization

One of the most basic properties of relativization is transitivity : if two complexity class inclusions
C ⊆ D and D ⊆ E both relativize, then the inclusion C ⊆ E also relativizes. Thus, it is natural
to ask whether algebrization is transitive in the same sense. We do not know the answer to this
question, and suspect that it is no. However, there is still a kind of transitivity that holds. Given

an oracle A, let a double-extension
˜̃
A of A be an oracle produced by

(1) taking a low-degree extension Ã of A,

(2) letting f be a Boolean oracle such that f (x, i) is the ith bit in the binary representation of
Ã (x), and then

(3) taking a low-degree extension
˜̃
A of f .

(One can similarly define a triple-extension
˜̃̃
A, and so on.) Then the following is immediate:

Proposition 10.1 For all complexity classes C,D, E, if CA ⊆ D eA and DA ⊆ E eA for all A, Ã, then

CA ⊆ E
eeA for all A,

˜̃
A.

Now, the above suggests one possible approach to defeating the algebrization barrier. Call a

complexity class inclusion C ⊆ D double-algebrizing if CA ⊆ D
eeA for all A,

˜̃
A, triple-algebrizing if

CA ⊆ D
eeeA for all A,

˜̃̃
A, and so on. Then any k-algebrizing result is also (k + 1)-algebrizing, but the

converse need not hold. We thus get a whole infinite hierarchy of proof techniques, of which this
paper studied only the first level.

Alas, we now show that any proof of P 6= NP will need to go outside the entire hierarchy!

Theorem 10.2 Any proof of P 6= NP will require techniques that are not merely non-algebrizing,
but non-k-algebrizing for every constant k.

Proof. Recall that in Theorem 5.1, we showed that any proof of P 6= NP will require non-

algebrizing techniques, by giving oracles A, Ã such that NP
eA = PA = PSPACE. In that case, A

was any PSPACE-complete language, while Ã was the unique multilinear extension of A, which is

also PSPACE-complete by Babai, Fortnow, and Lund [4]. Now let
˜̃
A be the multilinear extension

of the binary representation of Ã. Then
˜̃
A is also PSPACE-complete by Babai et al. Hence

NP
eeA = PA = PSPACE. The same is true inductively for

˜̃̃
A and so on.

Similarly, any proof P 6= PSPACE will require techniques that are non-k-algebrizing for every
k.

On the other hand, for most of the other open problems mentioned in this paper—P versus
RP, NEXP versus P/poly, and so on—we do not know whether double-algebrizing techniques already

suffice. That is, we do not know whether there exist A,
˜̃
A such that RPA 6⊂ P

eeA, NEXP
eeA ⊂ PA/poly,

and so on. Thus, of the many open problems that are beyond the reach of arithmetization, at least
some could conceivably be solved by “k-arithmetization.”
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10.2 Non-Commutative Algebras

We have shown that arithmetization—“lifting” Boolean logic operations to arithmetic operations
over the integers or a field—will not suffice to solve many of the open problems in complexity
theory. A natural question is whether one could evade our results by lifting to other algebras,
particularly non-commutative ones. Unfortunately, we now explain why our limitation theorems
extend with little change to associative algebras with identity over a field. This is a very broad
class that includes matrix algebras, quaternions, Clifford algebras, and more. The one constraint
is that the dimension of the algebra (or equivalently, the representation size of the elements) should
be at most polynomial in n.15

Formally, an algebra over the field F is a vector space V over F, which is equipped with a
multiplication operation V · V → V such that u (v + w) = uv + uw for all u, v,w ∈ V . The
algebra is associative if its multiplication is associative, and has identity if one of its elements is a
multiplicative identity. The dimension of the algebra is the dimension of V as a vector space.

A crucial observation is that every k-dimensional associative algebra over F is isomorphic to a
subalgebra of Mk (F), the algebra of k × k matrices with entries in the field F. The embedding is
the natural one: every element v ∈ V defines a linear transformation Mv via Mvx = v · x.

We will now explain why, for associative algebras with identity, our main results go through
almost without change. For notational simplicity, we will state our results in terms of the full
matrix algebra Mk (F), though the results would work just as well for any subalgebra of Mk (F)
containing the zero and identity elements.

Given a polynomial p : Mk (F)n → Mk (F), call p sorted-multilinear if it has the form

p (X1, . . . ,Xn) =
∑

S⊆[n]

aS

∏

i∈S

Xi,

where the coefficients aS belong to F, and all products are taken in order from X1 to Xn.
Now let Ik be the k × k identity matrix and 0k be the all-zeroes matrix. Also, call a point

Z ∈ Mk (F)n Boolean if every coordinate is either Ik or 0k, and let

δZ (X) :=

n∏

i=1

[ZiXi + (Ik − Zi) (Ik − Xi)]

be the unique sorted-multilinear polynomial such that δZ (Z) = Ik and δZ (W ) = 0k for all Boolean
W 6= Z.

Then just as in the commutative case, every sorted-multilinear polynomial m has a unique
representation in the form

m (X) =
∑

Z∈{0k,Ik}n

mZδZ (X)

where mZ is a coefficient in F such that m (Z) = mZIK . Also, every Boolean function f :
{0k, Ik}n → {0k, Ik} has a unique extension

f̃ (X) =
∑

Z∈{0k ,Ik}n

f (Z) δZ (X)

as a sorted-multilinear polynomial.

15This is similar to the requirement that the integers should not be too large in Section 6.

44



Provided k = O (poly (n)), it is easy to show that any proof of P 6= NP will require “non-
commutatively non-algebrizing techniques.” Once again, we can let A be any PSPACE-complete
language, and let Ã be the unique sorted-multilinear extension of A over Mk (F). Then the
observations of Babai, Fortnow, and Lund [4] imply that Ã is also computable in PSPACE, and

hence NP
eA = PA = PSPACE.

We can also repeat the separation results of Sections 4 and 5 in the non-commutative setting.
Rather than tediously going through every result, we will just give one illustrative example. We
will show that, given a non-commutative extension Ã : Mk (F)n → Mk (F) of a Boolean function
A : {0k, Ik}n → {0k, Ik}, any deterministic algorithm needs Ω

(
2n/k2

)
queries to Ã to find a

Boolean point W ∈ {0k, Ik}n such that A (W ) = Ik. (Note that switching from fields to k × k
matrix algebras will cause us to lose a factor of k2 in the bound.)

The first step is to prove a non-commutative version of Lemma 4.2.

Lemma 10.3 Let Y1, . . . , Yt be any points in Mk (F)n. Then there exists a sorted-multilinear
polynomial m : Mk (F)n → Mk (F) such that

(i) m (Yi) = 0k for all i ∈ [t], and

(ii) m (W ) = Ik for at least 2n − k2t Boolean points W ∈ {0k, Ik}n.

Proof. If we represent m as

m (X) =
∑

Z∈{0k,Ik}n

mZδZ (X) ,

then the constraint m (Yi) = 0k for all i ∈ [t] corresponds to k2t linear equations relating the 2n

coefficients mZ . By basic linear algebra, it follows that there must be a solution in which at least
2n − k2t of the coefficients are equal to Ik, and hence m (W ) = Ik for at least 2n − k2t Boolean
points W .

Using Lemma 10.3, we can also prove a non-commutative version of Lemma 4.3.

Lemma 10.4 Let Y1, . . . , Yt be any points in Mk (F)n. Then for at least 2n − k2t Boolean points
W ∈ {0k, Ik}n, there exists a multiquadratic polynomial p : Mk (F)n → Mk (F) such that

(i) p (Yi) = 0k for all i ∈ [t],

(ii) p (W ) = Ik, and

(iii) p (Z) = 0k for all Boolean Z 6= W .

Proof. Let m : Mk (F)n → Mk (F) be the sorted-multilinear polynomial from Lemma 10.3, and pick
any Boolean W such that m (W ) = Ik. Then a multiquadratic polynomial p satisfying properties
(i)-(iii) can be obtained from m as follows:

p (X) := m (X) δW (X) .

Lemma 10.4 immediately gives us a non-commutative version of Theorem 4.4, the lower bound
on deterministic query complexity of the OR function.

Theorem 10.5 D̃Mk(F),2 (OR) = Ω
(
2n/k2

)
for every matrix algebra Mk (F).

By using Theorem 10.5, for every k = O (poly (n)) one can construct an oracle A, and a k × k

matrix extension Ã of A, such that NP
eA 6⊂ PA. This then implies that any resolution of the P

versus NP problem will require “non-commutatively non-algebrizing techniques.”
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11 Conclusions and Open Problems

Arithmetization is one of the most powerful ideas in the history of complexity theory. It led to
the IP = PSPACE Theorem, the PCP Theorem, non-relativizing circuit lower bounds, and many
other achievements of the last two decades. Yet we showed that arithmetization is fundamentally
unable to resolve many of the barrier problems in the field, such as P versus NP, derandomization
of RP, and circuit lower bounds for NEXP.

Can we pinpoint what it is about arithmetization that makes it incapable of solving these
problems? In our view, arithmetization simply fails to “open the black box wide enough.” In
a typical arithmetization proof, one starts with a polynomial-size Boolean formula ϕ, and uses ϕ
to produce a low-degree polynomial ϕ̃. But having done so, one then treats p as an arbitrary
black-box function, subject only to the constraint that deg (p) is small. Nowhere does one exploit
the small size of ϕ, except insofar as it lets one evaluate p in the first place. The message of this
paper has been that, to make further progress on the central problems of the field, one will have
to probe ϕ in some “deeper” way.

To reach this conclusion, we introduced a new model of algebraic query complexity, which has
already found independent applications in communication complexity, and which has numerous
facets to explore in its own right.

We now propose five directions for future work, and list some of the main open problems in
each direction.

(1) Find non-algebrizing techniques. This, of course, is the central challenge we leave.
The best example we have today of a non-algebrizing result is arguably the set of cryptographic

protocols—including those of Goldreich-Micali-Wigderson [16] and Yao [45]—that exploit the lo-
cality of computation in manifestly non-algebraic ways. Yet in Section 8, we showed that even
the GMW protocol algebrizes, assuming the existence of a one-way function that is computable

in P (with no oracle) but secure even against BPP
eA adversaries. It would be interesting to know

whether the GMW protocol algebrizes under more standard cryptographic assumptions.
If arithmetization—which embeds the Boolean field F2 into a larger field or the integers—is not

enough, then a natural idea is to embed F2 into a non-commutative algebra. But in Section 10.2 we
showed that for every subexponential k, the algebra of k× k matrices is still not “sufficiently rich.”
So the question arises: what other useful algebraic structures can mathematics offer complexity
theory?

Another possible way around the algebrization barrier is “recursive arithmetization”: first arith-
metizing a Boolean formula, then reinterpreting the result as a Boolean function, then arithmetizing
that function, and so on ad infinitum. In Section 10.1, we showed that k-arithmetization is not
powerful enough to prove P 6= NP for any constant k. But we have no idea whether double-
arithmetization is already powerful enough to prove P = RP and NEXP 6⊂ P/poly.

(2) Find ways to exploit the structure of polynomials produced by arithmetization.
This is also a possible way around the algebrization barrier, but is important enough to have its own
category. The question is this: given that a polynomial Ã : Fn → F was produced by arithmetizing
a small Boolean formula, does Ã have any properties besides low degree that a polynomial-time
algorithm querying it could exploit? Or alternatively, do there exist “pseudorandom extensions”
Ã : Fn → F—that is, low-degree extensions that are indistinguishable from “random” low-degree

extension polynomials by any BPP
eA machine, but that were actually produced by arithmetizing

small Boolean formulas?
Here is a small hint of how the structure of Ã might be exploited. Recall our result from

Section 5.2, that one cannot solve 3SAT in randomized polynomial time by

46



(1) arithmetizing a 3SAT formula to produce a polynomial Ã : Fn → F, and then

(2) treating Ã as an arbitrary low-degree polynomial to which one can make black-box queries.

By contrast, we now make the following observation: if one remembers that Ã came from
arithmetizing a polynomial-size 3SAT formula ϕ, then information-theoretically, one can essentially
recover ϕ, and thereby decide its satisfiability, using poly (n) randomized black-box queries to Ã.16

Of course, this is just an information-theoretic result; the real question is how much of the structure
of Ã is visible to a polynomial-time algorithm.

(3) Find open problems that can still be solved with algebrizing techniques. In the
short term, this is perhaps the most “practical” response to the algebrization barrier. Here are two
problems that, for all we know, can still be solved with tried-and-true arithmetization methods.
First, show unconditionally that PNP ⊆ PP.17 Second, improve the result of Santhanam [36] that
PromiseMA 6⊂ SIZE

(
nk
)

to MA 6⊂ SIZE
(
nk
)
.

(4) Prove algebraic oracle separations. Can we show that the interactive protocol of
Lund, Fortnow, Karloff, and Nisan [27] cannot be made constant-round by any algebrizing tech-

nique? In other words, can we give an oracle A and extension Ã such that coNPA 6⊂ AM
eA? In

the communication complexity setting, Klauck [25] mentions coNP versus AM as a difficult open
problem; perhaps the algebraic query version is easier.

The larger challenge is to give algebraic oracles that separate all the levels of the polyno-
mial hierarchy—or at least separate the polynomial hierarchy from larger classes such as P#P and
PSPACE.18 In the standard oracle setting, these separations were achieved by Furst-Saxe-Sipser
[15] and Yao [44] in the 1980’s, whereas in the communication setting they remain notorious open
problems. Again, algebraic query complexity provides a natural intermediate case between query
complexity and communication complexity.

Can we show that non-algebrizing techniques would be needed to give a Karp-Lipton collapse
to MA? Or give an interactive protocol for coNP where the prover has the power of NP?

Can we show that a BQP
eA or MA

eA machine needs exponentially many queries to the extension
oracle Ã, not only to solve the Disjointness problem, but also just to find a Boolean point x such

that Ã (x) = 1? Also, in the integers case, can we show that a P
bA machine needs exponentially

many queries to Â to find an x such that Â (x) = 1? (That is, can we remove the technical
limitations of Theorem 6.10?)

16To see this, call two 3SAT formulas isomorphic if arithmetizing them yields the same polynomial eA, and note
that if ϕ and φ are isomorphic then they are either both satisfiable or both not. Now let ϕ be a 3SAT formula with
p (n) bits, let F be a finite field with char (F) � p (n), and let eA : Fn → F be the arithmetization of ϕ over F. Suppose

one simply queries eA at uniform random points r1, r2, . . . ∈ Fn; and that at all times, one maintains the set St of all
3SAT formulas with p (n) bits (up to isomorphism) whose arithmetizations are compatible with eA (r1) , . . . , eA (rt).
Then by the Schwartz-Zippel lemma, with overwhelming probability one will have |St| ≤ |St−1| /2 for all t. Since
|S0| ≤ 2p(n), it follows that with overwhelming probability one will also have

˛̨
Sp(n)

˛̨
= 1.

17Any proof would have to be non-relativizing, since Beigel [6] gave an oracle relative to which P
NP 6⊂ PP.

18If the oracle eA only involves a low-degree extension over Fq, for some fixed prime q = o (n/ log n), then we can

give A, eA such that PP
A 6⊂ PH

eA. The idea is the following: let eA be the unique multilinear extension of A over Fq.

Clearly a PP
A machine can decide whether

P
x∈{0,1}n A (x) ≥ 2n−1. On the other hand, supposing a PH

eA machine
solved the same problem, we could interpret the universal quantifiers as AND gates, the existential quantifiers as
OR gates, and the queries to eA as summation gates modulo q. We could thereby obtain an AC

0 [q] circuit of size
2poly(n), which computed the Boolean MAJORITY given an input of size 2n (namely, the truth table of A). But
when q = o (n/ log n), such a constant-depth circuit violates the celebrated lower bound of Smolensky [38].

Unfortunately, the above argument breaks down when the field size is large compared to n—as it needs to be for
most algorithms that would actually exploit oracle access to eA. Therefore, it could be argued that this result is not
“really” about algebrization.
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(5) Understand algebrization better. In defining what it meant for inclusions and sepa-
rations to algebrize, was it essential to give only one machine access to the extension oracle Ã, and

the other access to A? Or could we show (for example) not only that coNPA ⊆ IP
eA, but also that

coNP
eA ⊆ IP

eA? What about improving the separation PP
eA 6⊂ SIZEA

(
nk
)

to PP
eA 6⊂ SIZE

eA
(
nk
)
?

Likewise, can we improve the separation MA
eA
EXP 6⊂ PA/poly to MA

eA[poly]
EXP

6⊂ PA/poly?

Are there complexity classes C and D that can be separated by a finite field extension Ã, but
not by an integer extension Â? Are there complexity classes that can be separated in the algebraic
oracle setting, but not the communication setting?

Low-degree extensions can be seen as just one example of an error-correcting code. To what
extent do our results carry over to arbitrary error-correcting codes?

Arora, Impagliazzo, and Vazirani [3] showed that contrary relativizations of the same statement
(for example, PA = NPA and PB 6= NPB) can be interpreted as proving independence from a certain
formal system. Can one interpret contrary algebrizations the same way?
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