
Limitations of Hardness vs. Randomness

under Uniform Reductions

Dan Gutfreund ∗

Math Department and CSAIL

Massachusetts Institute of Technology

Salil Vadhan†

School of Engineering and Applied Sciences

Harvard University

February 5, 2008

Abstract

We consider (uniform) reductions from computing a function f to the task of dis-
tinguishing the output of some pseudorandom generator G from uniform. Impagliazzo
and Wigderson [IW] and Trevisan and Vadhan [TV] exhibited such reductions for every
function f in PSPACE. Moreover, their reductions are “black box,” showing how to use
any distinguisher T , given as oracle, in order to compute f (regardless of the complexity
of T). The reductions are also adaptive, but only mildly (queries of the same length
do not occur in different levels of adaptivity). Impagliazzo and Wigderson [IW] also
exhibited such reductions for every function f in EXP, but those reductions are not
black-box, because they only work when the oracle T is computable by small circuits.

Our main results are that:

• Nonadaptive black-box reductions as above can only exist for functions f in BPPNP

(and thus are unlikely to exist for all of PSPACE).

• Mildly adaptive black-box reductions as above can only exist for functions f in
PSPACE (and thus are unlikely to exist for all of EXP).

Keywords: pseudorandom generators, derandomization, black-box reductions

∗Research was partially supported by NSF grant CCF-0514167. Part of this research was done while the
author was at Harvard University and supported by ONR grant N00014-04-1-0478 and NSF grant CNS-
0430336.

†Work done in part while visiting UC Berkeley, supported by the Miller Institute for Basic Research in
Science and the Guggenheim Foundation. Also supported by ONR grant N00014-04-1-0478 and US-Israel
BSF grant 2006060.

1

Electronic Colloquium on Computational Complexity, Report No. 7 (2008)

ISSN 1433-8092

1 Introduction

The hardness versus randomness paradigm, first developed by Blum, Micali, Yao, Nisan,
and Wigderson [BM, Yao, NW], is one of the most exciting achievements of the field of
computational complexity. It shows how to use the hardness of a function f (computable
in exponential time) to construct a pseudorandom generator G, which can then be used
to derandomize probabilistic algorithms. By now there are many varieties of such results,
trading off different assumptions on the function f , different types of probabilistic algorithms
(e.g. BPP algorithms or AM proof systems), and different levels of derandomization.

For many years, all of the results of this type (based on the hardness of an arbi-
trary exponential-time computable function) required the function f to be hard for even
nonuniform algorithms, e.g. f /∈ P/poly. Nearly a decade ago, Impagliazzo and Wigder-
son [IW] overcame this barrier, showing how to construct pseudorandom generators as-
suming only the existence of an exponential-time computable function f that is hard for
uniform probabilistic algorithms, i.e. assuming EXP 6= BPP. This result and subsequent
work [Kab, IKW, TV, KI, GST1, SU2] have raised the hope that we may be able to prove
an equivalence between uniform and nonuniform hardness assumptions, or even obtain un-
conditional derandomization and new lower bounds.

The work of Impagliazzo and Wigderson [IW], as well as the subsequent ones on de-
randomization from uniform assumptions, have used a number of ingredients that were not
present in earlier works on hardness vs. randomness. In this paper, following [TV], we
explore the extent to which these new ingredients are really necessary. The hope is that
such an understanding will help point the way to even stronger results,1 and also highlight
techniques that might be used to overcome barriers in other parts of complexity theory. We
now describe the new ingredients introduced by Impagliazzo and Wigderson [IW].

Black-box reductions. Classic results on hardness vs. randomness can be formulated
as “black box” constructions. That is, they are obtained by providing two efficient oracle
algorithms G and R. The construction G uses oracle access to a (supposedly hard) function
f to compute a generator Gf , which stretches a short seed to a long sequence of bits. The
reduction R is meant to show that the output of Gf is pseudorandom if the function f is
hard. Specifically, we require that for every statistical test T that distinguishes the output of
Gf from uniform, there exists an “advice string” z such that RT (z, ·) computes the function
f . Note that if T is efficient, then by hardwiring z, we obtain a small circuit computing f .
Put in the contrapositive, this says that if f cannot be computed by small circuits, then
there cannot exist an efficient test T distinguishing the output of Gf from uniform.

Note that the above notion requires both the construction G and the reduction R to be
black box, and requires that they work for every function f and statistical test T , regardless
of the complexity of f and T . In the taxonomy of [RTV], these are referred to as fully black-
box constructions. The advice string z that we provide to the reduction R is what makes
the reduction nonuniform, and thereby require a nonuniform hardness assumption on the
function f to deduce that Gf is pseudorandom. If the advice string could be eliminated, then
then we would immediately get results based on uniform assumptions, like those of [IW].
Unfortunately, as shown in [TV], it is impossible to have a fully black-box construction of

1A seemingly modest but still elusive goal is a “high-end” version of [IW], whereby one can con-
struct a pseudorandom generator with exponential stretch from the assumption that EXP does not have
subexponential-time probabilistic algorithms.

1

a pseudorandom generator without a significant amount of advice. Thus the Impagliazzo–
Wigderson construction necessarily deviates from the fully black-box framework.

The most obvious way in which the Impagliazzo–Wigderson [IW] construction is not
fully black box is that the construction is not proven to work for every function f , and
rather it makes use of the fact that f is in EXP or some other complexity class such as P#P

or PSPACE [TV]. For example, in the case of P#P or PSPACE, it uses the fact that f can
be reduced to a function f ′ that is both downward self-reducible and self-correctible (e.g.
f ′ is the Permanent), which is then used to construct the pseudorandom generator. That
is, the construction algorithm G is not black box. Whether the Impagliazzo–Wigderson
reduction algorithm R is or is not black box (i.e. works for every test T given as oracle)
depends on which class f is taken from. For functions in P#P or PSPACE, R is black box.
But if we are only given a function in EXP, then the reduction relies on the fact that the
test T is efficiently computable. Another interesting aspect of the reduction R is that it
makes adaptive queries to the statistical test T , whereas earlier reductions in this area were
nonadaptive. (There are subsequent reductions, due to Shaltiel and Umans [SU1, Uma],
that are also adaptive.)

Our results. Our main results provide evidence that some of these new ingredients are
necessary. Specifically, we consider arbitrary (non-black-box) constructions of a pseudo-
random generator G from a function f , and uniform reductions R (i.e. with no advice)
from computing f to distinguishing the output of G from uniform. For simplicity, we also
assume that the generator G is computable in time exponential in its seed length and that
it stretches by a factor of at least 4. (More general statements are given in the body of the
paper.)

Our first result shows that adaptivity is likely to be necessary unless we assume the
function is in PH (rather than PSPACE or EXP).

Theorem 1.1 (informal). If there is a nonadaptive, uniform, black-box reduction R from
distinguishing a generator G to computing a function f , then f is in BPPNP.

Next, we consider reductions R that are only mildly adaptive in the sense that all the
queries of a particular length can be made simultaneously, but they may depend on answers
of the statistical test on queries of other lengths. (We call this 1-adaptive later in the paper,
as a special case of a more general notion.) The Impagliazzo–Wigderson reduction for
functions f in P#P or PSPACE is mildly adaptive. We show that this property is unlikely
to extend to EXP.

Theorem 1.2 (informal). If there is a mildly adaptive, uniform, black-box reduction R
from distinguishing a generator G to computing a function f , then f is in PSPACE.

Thus, to obtain a result for arbitrary functions f in EXP, the reduction must either be
non-black-box or “more adaptive.” Impagliazzo and Wigderson exploit the former possi-
bility, giving a non-black-box reduction, and their method for doing so turns out to have a
substantial price — a statistical test running in time t(n) yields an algorithm computing f
that runs in time roughly t(t(n)), rather than something polynomially related to t, which is
what is needed for a “high end” result. (See [TV].) Theorem 1.2 suggests that their result
might be improved by employing reductions with greater adaptivity, such as [SU1, Uma].
Alternatively, it would be interesting to rule out such an improvement by strengthening
Theorem 1.2 to hold for arbitrary adaptive reductions.

2

Finally, we consider “how non-black-box” the Impagliazzo–Wigderson reduction is for
EXP. Specifically, we observe that even though the analysis of the reduction R relies on
the fact that T is efficient (i.e. computable by small size circuits), the reduction itself only
needs oracle access to T (i.e., it does not need the description of the circuits). We call such
reductions size-restricted black-box reductions. Reductions of this type were recently studied
by Gutfreund and Ta-Shma [GT].2 They exhibited such a reduction (based on [GST2]) for
a worst-case/average-case connection that cannot be established via a standard black-box
reduction. Theorem 1.2, together with Theorem 1.3 below (which is implicit in [IW]),
provides another example of a size-restricted black-box reduction that bypasses black-box
limitations. For technical reasons, we state the [IW] result in terms of hitting-set generators,
which are a natural weakening of pseudorandom generators that suffice for derandomizing
probabilistic algorithms with 1-sided error (i.e. RP rather than BPP). Theorems 1.1 and
1.2 above can be strengthened to apply also to hitting-set generators.

Theorem 1.3 (implicit in [IW], informal). For every function f in EXP, there is a genera-
tor G and a mildly adaptive, uniform, size-restricted black-box reduction from distinguishing
G as a hitting set to computing f .

A final result of ours is an “infinitely-often” version of the Impagliazzo–Wigderson reduc-
tion [IW]. The original versions of their reductions are guaranteed to compute f correctly
on all input lengths assuming that the statistical test T successfully distinguishes the gen-
erator on all input lengths. Unlike most other results in the area, it is not known how to
obtain reductions that compute f correctly on infinitely many input lengths when the test
T is only guaranteed to succeed on infinitely many input lengths. We observe that such
a result can be obtained for constructing hitting-set generators (and derandomizing RP)
from hard problems in PSPACE rather than constructing pseudorandom generators (and
derandomizing BPP) from hard problems in EXP as done in [IW].

Perspective. As discussed above, one motivation for studying the limitations of black-box
reductions is to help identify potential approaches to overcoming apparent barriers. Another
motivation is that black-box reductions sometimes have advantages over non-black-box re-
ductions, and thus it is informative to know when these advantages cannot be achieved. For
example, Trevisan’s realization that fully black-box constructions of pseudorandom gener-
ators yield randomness extractors [Tre] yielded substantial benefits for both the study of
pseudorandom generators and extractors. Similarly, Klivans and van Melkebeek [KvM]
observed that black-box constructions of pseudorandom generators extend naturally to de-
randomize classes other than BPP, such as AM.

Unfortunately, results showing the limitations of black-box reductions are often inter-
preted as saying that proving certain results (e.g. such as worst-case/average-case connec-
tions for NP, for which nonadaptive black-box reductions were ruled out in [BT]) are outside
the reach of “current techniques”. We strongly disagree with these kinds of interpretations,
and indeed hope that our results together with [IW] will serve as another reminder that
such limitations can be overcome.

2There are subtle differences between the reductions that we consider and the ones in [GT], see Remark
2.5.

3

2 Preliminaries

For n ∈ N, we denote by Un the uniform distribution over {0, 1}n. For a distribution D,
we denote by x← D that x is a sample drawn from D. For two distributions D1,D2 on a
discrete space Γ, we denote by ∆(D1,D2) there statistical difference. I.e.,

∆(D1,D2) = max
S⊂Γ
| Pr
x←D1

[x ∈ S]− Pr
y←D2

[y ∈ S]|

2.1 Complexity Classes

We assume that the reader is familiar with standard complexity classes such as EXP, BPP,
the polynomial-time hierarchy etc., as well as with standard models of computation such
as probabilistic Turing Machines, and Boolean circuits.

For class C of algorithms, we let io−C be the class of languages such that an algorithm
from C correctly decides L for infinitely many input lengths.

For a a time bound T = T (n) and ε = ε(n), we define the complexity class HeurTIMEε(T)
to be the class of languages L for which there is a deterministic algorithm A that runs in
time T (n) on instances of size n and for every large enough n,

Pr
x←Un

[A(x) 6= L(x)] ≤ ε(|x|)

2.2 Pseudorandom Generators and Hardness vs. Randomness

Definition 2.1. Let b : N→ N be such that for every a, b(a) > a. Let G = {Ga : {0, 1}a →
{0, 1}b(a)}a∈N be a sequence of functions, and let T = {T : {0, 1}∗ → {0, 1}} be a family of
Boolean functions (which we call statistical tests). For δ > 0 we say that,

1. G is a sequence of pseudorandom generators (PRGs for short) that δ-fools T i.o.
(infinitely often), if for every T ∈ T , there are infinitely many a ∈ N such that

| Pr
y←Ua

[T (Ga(y)) = 1]− Pr
x←Ub(a)

[T (x) = 1]| < δ (1)

2. G is a sequence of hitting-set generators (HSGs for short) that δ-hits T i.o., if for every
T ∈ T , there are infinitely many a ∈ N such that

Pr
x←Ub(a)

[T (x) = 0] ≥ δ ⇒ Pr
y←Ua

[T (Ga(y)) = 0] > 0 (2)

If a function T : {0, 1}∗ → {0, 1} violates (1) (respectively (2)), we say that it δ-
distinguishes G from uniform a.e. (almost everywhere).

δ-fooling (respectively δ-hitting) a.e. and δ-distinguishing i.o. are defined analogously
with the appropriate changes in the quantification over input lengths.

Note that if G is a PRG that δ-fools T i.o. (respectively a.e.) then it is also a HSG that
δ-hits T i.o. (respectively a.e.).

4

Definition 2.2. A (uniform) black-box reduction from deciding a language L to δ-distinguishing
a.e. a family of (either pseudorandom or hitting-set) generators G = {Ga : {0, 1}a →
{0, 1}b(a)}a∈N, is a probabilistic polynomial-time oracle Turing Machine (TM) R, such that
for every statistical test T that δ-distinguishes G a.e., for every large enough n ∈ N and for
every x ∈ {0, 1}n,

Pr[RT (x) = L(x)] > 2/3

where the probability is over the random coins of R, and RT (x) denotes the execution of R
on input x and with oracle access to T .

We say that such a reduction asks single-length queries if for every n, there exist a = a(n)
such that on every execution of R on instances of length n, all the queries that R makes
are of length exactly b(a).

We say that the reduction has k = k(n) levels of adaptivity if on every execution of R
on inputs of length n and every statistical test T , the queries to T can be partitioned to
k +1 subsets (which are called the levels of adaptivity), such that each query in the i’th set
is a function of the input x, the randomness of R, the index of the query within the i’th set
(as well as i itself), and the answers that T gives on queries in the sets 1, . . . , i− 1. We say
that a reduction is nonadaptive if it has zero levels of adaptivity.

Finally, we say that the reduction is k(a, n)-adaptive if for every statistical test T , every
instance of length n and every a, there are at most k(a, n) levels of adaptivity in which
queries of length b(a) appear with positive probability (over the randomness of R when it
is given oracle access to T).

We now define a different notion of reductions that still only have oracle access to the
distinguishers, however the correctness of the reduction is only required to hold when the
distinguisher is restricted to be a function that is computable by polynomial-size circuits.

Definition 2.3. A (uniform) size-restricted black-box reduction from deciding a language
L to δ-distinguishing a.e. a family of (pseudorandom or hitting-set) generators G = {Ga :
{0, 1}a → {0, 1}b(a)}a∈N, is a probabilistic polynomial-time oracle TM R, such that for every
statistical test T that δ-distinguishes G a.e., and is computable by a sequence of quadratic-
size circuits3, for every large enough n ∈ N and for every x ∈ {0, 1}n,

Pr[RT (x) = L(x)] > 2/3

where the probability is over the random coins of R.
Quantifiers over query length and adaptivity are defined as in the black-box case.

Remark 2.4. The quadratic bound on the circuit size of the distinguishers is arbitrary and
can be any (fixed) polynomial. The reason for our quadratic choice is that restricting
the attention to distinguishers of this size is enough for derandomization. In Section 5,
we explain why the reduction of [IW] is size-restricted black-box reduction according to
Definition 2.3. We stress though that it is in fact a size-restricted black-box reduction with
respect to any (fixed) polynomial bound on the size of the distinguishers.

Remark 2.5. The restricted black-box reductions that we consider here run in any arbi-
trary polynomial time bound, which in particular can be larger than the fixed (quadratic)
polynomial bound on the size of the distinguishers. In contrast, the notion of class-specific

3Recall that the distinguishers’ circuit size is measured with respect to their input length, which is the
output length of the generator.

5

black-box reductions defined in [GT], considers reductions that run in a fixed polynomial-
time that is independent of the running time (or the circuit size) of the oracle (i.e. the
oracle function can be computed by algorithms that run in arbitrary polynomial time).

We need the following hardness vs. randomness result.

Theorem 2.6. [BFNW] For every constant δ > 0, there exist constants ε < δ and d ∈ N

such that for every 1 ≤ k ≤ nε, for any functions f : {0, 1}k → {0, 1} and T : {0, 1}n →

{0, 1}, there is a function Gf : {0, 1}n
δ
→ {0, 1}n that is computable in polynomial-time with

oracle access to f , as well as a function RT : {0, 1}n
d
× {0, 1}k → {0, 1} that is computable

in probabilistic polynomial-time with oracle access to T , such that if T 1
n -distinguishes Gf

from uniform then there is a ∈ {0, 1}n
d

such that Pr[RT (a, x) = f(x)] > 1 − 1/k2, where
the probability is over the randomness of R and x chosen uniformly from {0, 1}k.

Note that the above theorem applies to every 1 ≤ k ≤ nε. Typically, only k = nε is of
interest because it implies the weakest hardness assumption. We, however, use the fact that
it also works for k < nε (see Section 6). The fact that the theorem is true for all k < nε,
follows trivially from the case k = nε. This is because we can view any function on k bits
as a function on nε bits simply by ignoring the last nε − k bits of the input.

Observe that if f is self-correctible (in the sense defined below), we can modify the
reduction in Theorem 2.6 to compute f on every input correctly with high probability.

Definition 2.7. A function f is self-correctible if there is a probabilistic polynomial-time
oracle TM C such that for every large enough n, for every gn : {0, 1}n → {0, 1} for which
Prx←Un [gn(x) = f(x)] > 1− 1/n, and for every x ∈ {0, 1}n:

Pr[Cgn(x) = f(x)] > 2/3

where the probability is over the randomness of C.

2.3 Approximate counting

We will need the following variant of the approximate counting problem: given a circuit C
with input length n ≤ |C| and a parameter 0 < ε < 1, output r such that,

(1− ε) Pr
x←Un

[C(x) = 1] ≤ r ≤ (1 + ε) Pr
x←Un

[C(x) = 1]

Theorem 2.8. [Sip, Sto, JVV] There is a probabilistic algorithm that uses an NP-oracle,
runs in time poly(|C|, ε−1, log(δ−1)), and solves the approximate counting problem with suc-
cess probability 1− δ.

3 Nonadaptive Reductions

In this section we show that any black-box nonadaptive reduction from deciding a language
L to distinguishing a generator implies that L is in the polynomial-time hierarchy.

Theorem 3.1. Let L ⊆ {0, 1}∗ be a language, and let G = {Ga : {0, 1}a → {0, 1}b(a)}a∈N be
a family of hitting-set generators such that Ga is computable in time 2O(a), and b(a) > 4a.
If there is a nonadaptive black-box reduction R from L to 1

2-distinguishing G a.e., then L is
in BPPNP. If we remove the time bound condition on computing Ga then L is in PNP/poly.

6

Proof outline: Let us concentrate on the single-length case. We describe a BPPNP

algorithm that decides L. Fix an input x ∈ {0, 1}n, and let a ∈ N be such that R queries
its oracle on instances of length b = b(a) when given inputs of length n.

The basic idea is to define, based on x, a statistical test T (that may not be efficiently
computable) that has the following properties:

1. T 1
2 -distinguishes Ga. This means that RT decides L correctly on every instance of

length n.

2. There is a function T ′ that can be computed in BPPNP, such that RT and RT ′

behave almost the same on the input x. This means that RT ′
decides correctly the

membership of x in L (since so does RT), but now the procedure together with the
oracle computations can be implemented in BPPNP.

To construct such a T , we classify queries that R makes on input x, according to
the probability that they come up in the reduction (where the probability is over R’s
randomness).4 We call a query heavy if the probability it comes up is at least 2−t and
light otherwise, where t is the average of a and b = b(a). Note that the classification to
heavy/light is well defined and is independent of any oracle that R may query, because the
reduction is nonadaptive. We define T to be 1 on heavy queries as well as on elements in
the image of Ga, and 0 otherwise.

First, we argue that T 1
2 -distinguishes Ga. This is because clearly it is always 1 on a

sample taken by Ga. On the other hand, the number of elements for which T is 1 is small
relative to the universe {0, 1}b. This is because there are only 2a elements in the image of
Ga, and at most 2t heavy elements. Recall that both a and t are smaller than b.

We define T ′ to be 1 on heavy elements and 0 otherwise. Note that the only difference
between T and T ′ is on light elements in the image set of Ga (T gives them the value 1,
while T ′ gives them the value 0). When we run R on input x, the probability that such
elements appear is small because their number is small (at most 2a) and each one appears
with small probability (because it is light). So R, on input x, behaves roughly the same
when it has oracle access to either T or T ′. We therefore conclude that RT ′

decides correctly
the membership of x in L.

Now to show that T ′ is computable in BPPNP, we use Theorem 2.8 to approximate
the weight of queries made by R and thus simulate its run with the oracle T ′. Since for
every query we only get an approximation of its weight, we cannot handle a sharp threshold
between heavy and light queries. To that end, instead of defining the threshold t to be
the average of a and b, we define two thresholds (both are a weighted average of a and b),
such that light queries are those below the low threshold, heavy are those above the high
threshold, and undetermined queries in between. We now need more subtle definitions of
T and T ′, but still the outline described above works.

Proof. [Of Theorem 3.1] For simplicity, we prove the theorem for the case that R makes
single-length queries. At the end we explain how the proof can be modified to handle
different lengths.

Fix an input length n and fix an instance x ∈ {0, 1}n. Let a ∈ N be such that R
queries its oracle on instances of length b = b(a) when given inputs of length n. Let
k = k(n) = poly(n) be the number of queries that R makes on instances of length n. We
may assume that 10 log k < a. Otherwise, since a = O(log k) = O(log n), we can hardwire

4A similar idea appears in [BT].

7

all the outputs of Ga into R, and we get a polynomial-size circuit that does not need any
oracle and decides the language L. If Ga is computable in time 2O(a), we can compute the
outputs of the generator in time poly(n), and hence place L in BPP. Let

Im(Ga)
def
= {q ∈ {0, 1}b : ∃y ∈ {0, 1}a s.t. Ga(y) = q}

We call q ∈ {0, 1}b heavy if

Pr[R(x) asks the query q] > 2−(b
3
+ 2a

3
),

where the probability is over the random coins of R. We call q light if

Pr[R(x) asks the query q] < 2−(2b
3

+ a
3
)

If neither of the two cases above hold we say that q is undetermined. (Recall that R is
nonadaptive, so light/heavy/undetermined does not depend on the oracle.) Define the sets

H
def
= {q ∈ {0, 1}b : q is heavy}, F

def
= {q ∈ {0, 1}b : q is light} and E

def
= {q ∈ {0, 1}b :

q is undetermined}.
Consider the family of statistical tests T = {T : {0, 1}b → {0, 1}}, consisting of statis-

tical tests T : {0, 1}b → {0, 1} satisfying:

T (q) =

{

1 if q ∈ H ∪ Im(Ga)
0 if q ∈ F \ Im(Ga)

Note that if q ∈ E, T (q) may take an arbitrary 0/1 value (hence we get a family of
tests and not just one). Also note that since we now only handle the single-length case, it
is enough to define the function T only on the domain {0, 1}b.

Claim 3.2. For every T ∈ T , T 1
2-distinguishes Ga.

Proof. By the definition of T , Pry←Ua [T (Ga(y)) = 1] = 1. On the other hand,

Pr
y′←Ub

[T (y′) = 1] ≤ Pr
y′←Ub

[y′ ∈ H ∪E ∪ Im(Ga)]

≤ k · 2(2b
3

+ a
3
) · 2−b + 2a · 2−b

≤ 2k · 2−(b−a
3

)

< 1/2

The second inequality follows from the fact that there are at most 2(2b
3

+ a
3
) non-light elements,

and there are at most k queries in which such an element can appear. In the last inequality
we use the fact that log k < a/10, and the fact that b > 4a.

Corollary 3.3. For every T ∈ T , Pr[RT (x) = L(x)] > 2/3, where the probability is over
the random coins of R.

Define a family of functions T ′ = {T ′ : {0, 1}b → {0, 1}} each taking the following form:

T ′(q) =

{

1 if q ∈ H
0 if q ∈ F

8

Claim 3.4. For every T ′ ∈ T ′, exists T ∈ T , such that ∆(RT (x), RT ′
(x)) ≤ 2−

b−a
3

Proof. We take T to be such that on every q ∈ H ∪ Im(Ga), T (q) = 1, on every q ∈ F ,
T (q) = 0, and otherwise T agrees with T ′. Note that the answers of T and T ′ only differ
on light or undetermined elements in Im(Ga). So,

∆(RT (x), RT ′

(x)) ≤ Pr[R queries an element in (F ∪ E) ∩ Im(Ga)]

≤ 2a · 2−(b
3
+ 2a

3
)

= 2−(b−a
3

)

From Corollary 3.3 and Claim 3.4 we obtain:

Corollary 3.5. Pr[RT ′
(x) = L(x)] > 3/5, where the probability is over the random coins

of R.

We are now ready to describe a BPPNP algorithm that decides L on every input. On
input x ∈ {0, 1}n, we run R to generate queries q1, . . . , qk ∈ {0, 1}

b. We now simulate
the oracle used by R as follows: For every 1 ≤ i ≤ k, estimate the probability that qi

is generated by R(x), using the approximate counting procedure from Theorem 2.8 with

δ = 2−n. If the estimate it at most 2−
b+a
2 we let the answer of the oracle on qi to be 0, and

otherwise 1.
By Theorem 2.8 the procedure above can be implemented in BPPNP. We now argue

correctness. For every i, if qi is heavy then with probability at least 1−2−n its estimate will

be at least 2−
b+a
2 and the ”oracle” will give it the value 1. If qi is light then with probability

at least 1−2−n the estimate will be at most 2−
b+a
2 , and the ”oracle” will give it the value 0.

Thus with probability at least 1 − k2−n, R runs as if it has access to some oracle T ′ ∈ T ′.
By Corollary 3.5, this implies that the procedure decides correctly the membership of x in
L with probability at least 3/5− k2−n (which can be amplified in the standard way). This
conlcludes the proof for the single-length case.

In case R makes queries of different lengths, we modify the proof as follows. After
fixing x ∈ {0, 1}n, we say that a is relevant if R makes queries of length b(a) with positive
probability. We set a0 to be 10 log k, and b0 = b(a0). For every relevant a < a0 we hardwire
the entire image of Ga into R as described above. So from now on we may assume that R
makes only queries of length b(a) for every relevant a ≥ a0. We then define queries of length
b(a) to be heavy/light/undetermined as before (with respect to a and b(a)). We then define
for each such a a family Ta similar to the way we defined T . And we take T to be the union
of these families. I.e. T contains all the functions that agree with one of the functions in
the family Ta for every relevant a (now T is defined on the domain

⋃

relevant a{0, 1}
b(a)).

Claim 3.2 is proven as above (arguing seperately for each relevant a). T ′ is defined as above
but now over all strings of length b(a) for all the relevant a. Claim 3.4 is proven seperately
for each relevant a. Then to bound ∆(RT (x), RT ′

(x)) we take the union bound over all

relevant a. Since there are at most k of them, this can be bounded by k2−
b0−a0

3 ≤ 2−10 (by
the facts that b0 > 4a0 and a0 > 10 log k) which is all that we need for Corollary 3.5. The
rest of the proof continues as before.

9

4 Adaptive Reductions

In this section we show that any black-box reduction, from a language L to distinguishing
a generator, that is mildly adaptive (in the sense that queries of the same length do not
appear in too many different levels), implies that L is in PSPACE.

Theorem 4.1. Let L ⊆ {0, 1}∗ be a language, and let G = {Ga : {0, 1}a → {0, 1}b(a)}a∈N be
a family of hitting-set generators such that Ga is computable in time 2O(a), and b(a) > 4a.
If there is a `(a, n)-adaptive black-box reduction R from L to 1

2-distinguishing G a.e., where

`(a, n) ≤ b(a)−a
40 log n for a ≥ 15 log n, then L is in PSPACE. If we remove the time bound

condition on computing Ga then L is in PSPACE/poly.

Proof outline: Our starting point is the proof of Theorem 3.1 (see proof outline in Section
3). Our aim is to construct, based on an input x, the functions T and T ′ as before. The
problem that we face when trying to implement the same ideas is that now, because the
reduction is adaptive, the property of a query being light or heavy depends on the oracle that
R queries (this is because queries above the first level depend on answers of the oracle). We
therefore cannot define T in the same manner (such a definition will be circular). Instead,
we classify queries to light and heavy separately for each level of adaptivity (i.e. a query
can be light for one level and heavy for the other). We do that inductively as follows. For
the first level we set a threshold 2−t1 (where t1 is a weighted average of a and b = b(a)). We
then define light and heavy with respect to this threshold. The distribution over queries
at the first level is independent of any oracle, so the classification is well defined. We then
define a function T1 to be 1 on queries that are heavy for the first level and 0 otherwise.
We can now proceed to define light and heavy for the second level when considering the
distribution over queries at the second level when running R(x) with oracle access to T1 at
the first level. We continue with this process inductively to define light/heavy at level i,
with respect to the distribution obtained by running R(x) with oracles T1, . . . , Ti−1 (each
at the corresponding level). Here Tj is defined to be 1 on queries that are heavy for at least
one of levels from the j’th down (and 0 otherwise). For each level i we define a different
threshold 2−ti , with the property that the thresholds gradually increase with the levels (the
reason for this will soon be clear).

We now define the statistical test T to be 1 on elements that are heavy for at least one
of the levels as well as on elements in the image set of Ga (and 0 otherwise). The argument
showing that T 1

2 -distinguishes Ga, is similar to the one in the proof of Theorem 3.1.
In the next step, instead of defining a T ′ as in the proof of Theorem 3.1, we directly

compare the outcomes of running R(x) with T as an oracle and running R(x) with oracles
T1, . . . , T` (where ` is the number of adaptivity levels), each at the corresponding level. We
argue that the two runs should be roughly the same (in the sense that the distributions
over the outputs will be close). To do that, we observe that at each level i, the answer of
T on a query q differs from the answer of Ti on this query if one of the following occurs:

1. q is in the image set of Ga and it is light for level 1, . . . , i.

2. q is light for all levels 1, . . . , i but heavy for at least one of the levels i + 1, . . . , `.

In both cases T will give q the value 1, while Ti the value 0. We bound the probability
that queries as above are generated by R(x) when it is given the oracles T1, . . . , T`. The
argument that bounds the probability that queries of the first type are generated is similar

10

to the argument in the proof of Theorem 3.1. The probability that queries of the second type
are generated at the i’th level is bounded as follows: the total number of heavy elements
for levels above the i’th is small (it is the reciprocal of their weight which is high). Of these
elements, those that are light at level i have small probability to be generated at level i
by virtue of them being light for that level. When we take the union bound over all such
queries we still get a small probability of at least one of them being generated. The point
is that the number of elements in the union bound is computed according to thresholds
of levels above the i’th, while their probability is taken according to the threshold of the
i’th level. By the fact that thresholds increase with the levels, we get that the number of
elements in the union bound is much smaller than the reciprocal of their probabilities, and
therefore the overall probability of such an event is small. We conclude that the output
distributions of running R with oracle access to T and running R(x) with oracle access to
T1, . . . , T` are very close, and therefore the latter decides correctly the membership of x in
L.

Finally we show that T1, . . . , T` can be implemented in PSPACE and thus the whole
procedure of running R(x) and computing these oracles is in PSPACE. To compute the
answers of the oracle Ti (at level i) we compute the exact weight of the query. We do that
by a recursive procedure that computes the exact weights of all the queries (at levels below
the i’th) that appear along the way. The fact that Ti only depends on Tj for 1 ≤ j < i
allows this procedure to run in polynomial-space. We proceed with the formal proof.

Proof. [of Theorem 4.1] As in the proof of Theorem 3.1 we will first prove the theorem for
the case that the reduction makes single-length queries, and towards the end of the proof
explain how it can be generalized.

Fix an input length n and fix an instance x ∈ {0, 1}n. Let a ∈ N be such that R
queries its oracle on instances of length b = b(a) when given inputs of length n. Let
k = k(n) = poly(n) ≥ n2 be an upper bound on the number of queries that R makes at

each one of the ` ≤ b(a)−a
40 log n levels. As in the proof of Theorem 3.1, we may assume that a >

10 log k > 15 log n (otherwise we can hardwire/compute the outputs of the generator). We

can also assume that log(b−a)
10 < a (i.e. the stretch of the generator is at most exponential).

Otherwise, since b ≤ poly(n) (b is the length of the queries that the poly(n)-time reduction
is making), we will get that a = O(log n) and again we can hardwire/compute the outputs
of the generator. Let,

Im(Ga)
def
= {q ∈ {0, 1}b : ∃y ∈ {0, 1}a s.t. Ga(y) = q}

For a sequence of functions f1, . . . , f` (where fi : {0, 1}b → {0, 1}), we denote by
Rf1,...,f`(x; r) the outcome of running R on input x using a random string r, where at level
i, R has access to the oracle fi. We denote by Rf1,...,fi−1(x; r) the queries that R generates
at the i’th level when given access to the oracles f1, . . . , fi−1 (each at the corresponding
level).
Let 0 < ε1 < 1 be a value to be determined later. We call q ∈ {0, 1}b heavy for level 1 if,

Pr[R(x) asks the query q in the first level] > 2−(ε1a+(1−ε1)b)

(where the probability is over the random coins of R). Otherwise we say that q is light for
level 1. Define the function T1 : {0, 1}b → {0, 1}:

T1(q) =

{

1 if q is heavy for the level 1
0 otherwise

11

We continue inductively and say that q ∈ {0, 1}b is heavy for the i’th level if,

Pr[RT1,...,Ti−1(x) asks the query q in level i] > 2−(εia+(1−εi)b)

and it is light for the i’th level otherwise.
And define Ti : {0, 1}b → {0, 1}:

Ti(q) =







1 if q is heavy for at least one
of the levels 1, . . . , i

0 otherwise

We set ε1 = 20 log n · (b− a)−1, and εi = εi−1 + ε1.
Define the statistical test T as follows:

T (q) =







1 if q is heavy for at least one
of the levels 1, . . . , ` or q ∈ Im(Ga)

0 otherwise

Claim 4.2. T 1
2-distinguishes Ga.

Proof. By the definition of T , Pry←Ua [T (Ga(y)) = 1] = 1. On the other hand,

Pr
y′←Ub

[T (y′) = 1] ≤ Pr
y′←Ub

[y′ is heavy for at least one of the levels or y′ ∈ Im(Ga)]

≤

(

(
∑̀

i=1

k · 2εia+(1−εi)b) + 2a

)

· 2−b

≤ (k · ` · 2ε1a+(1−ε1)b + 2a) · 2−b

≤ 1/2

The second inequality follows from the fact that there are at most 2εia+(1−εi)b heavy elements
for level i, and there are at most k queries (in level i) in which such an element can appear.
The third inequality follows from the fact that ε1 < ε2 < . . . < ε`. In the last inequality we
use the facts that ε1 = 20 log n · (b− a)−1, log k < a/10, ` ≤ b−a

40 log n , and b > 4a.

Corollary 4.3. Pr[RT (x) = L(x)] > 2/3, where the probability is over the random coins of
R.

Claim 4.4. ∆(RT1,...,T`(x), RT (x)) ≤ 1/10

Proof. We bound the probability of the event that at least one query in the execution of
RT1,...,T`(x) receives a different answer than it would receive if run with the oracle T . We
consider each level at a time.

A query q that is asked at level i will possibly be answered differently by Ti and T if
one of the following occurs:

1. q ∈ Im(G) and it is light for all levels 1, . . . , i. Or,

2. q is light for all levels 1, . . . , i but heavy for at least one of the levels i + 1, . . . , `.

12

We bound the probabilities that queries of these two types are generated by the reduc-
tion, starting with the first type. The probability that a query of the first type is generated

at level i is bounded by the probability of the event Ei
1

def
= {RT1,...,Ti−1(x) asks a query that

is light for level i and is in Im(G)}.

Pr[Ei
1] ≤ 2a · 2−(εia+(1−εi)b)

= 2−(1−εi)(b−a)

We now bound the probability that a query of the second type is generated at level

i. The probability that this happens is bounded by the probability of the event Ei
2

def
=

{RT1,...,Ti−1(x) asks a light query for level i that is heavy for at least one of the levels
i + 1, . . . , `.

Pr[Ei
2] ≤





∑̀

j=i+1

k · 2εja+(1−εj)b



 · 2−(εia+(1−εi)b)

≤ k` · 2εi+1a+(1−εi+1)b · 2−(εia+(1−εi)b)

= k` · 2−(εi+1−εi)(b−a)

In the second inequality we use the fact that εi+1 < . . . < ε`.
Taking the union bound over all levels, we get that the probability that T1, . . . , T` give

different answers than T (in at least one query) is bounded from above by

` · 2−(1−ε`)(b−a) + k`2 · 2−ε1·(b−a) ≤ 1/10 (3)

Here we use our choice of parameters and in particular the facts that ε1 < . . . < ε`, and
that ε1 = εi+1 − εi for every 1 ≤ i ≤ ` − 1, and also recalling that 10 log k < a, and
log(b−a)

10 < a.

From Corollary 4.3 and Claim 4.4 we get,

Corollary 4.5. Pr[RT1,...,T`(x) = L(x)] ≥ 19/30, where the probability is over the random
coins of R.

We show how to implement RT1,...,T`(x) in probabilistic polynomial space, which in turn
can be done deterministically by taking the majority vote over all possible random strings.
On randomness r for the reduction R, we simulate an execution of RT1,...,T`(x; r). For every
query q that is generated at some level 1 ≤ i ≤ ` we take the oracle answer to be the
value returned from running the procedure Simulate-Oracle(q, i) given in Figure 1. This
procedure checks whether q is heavy for at least one of the levels up to the i’th, by computing
its exact weight at each level. It returns 1 or 0 accordingly. Thus it simulates at the i’th
level precisely the oracle Ti. Hence by Corollary 4.5 the algorithm decides correctly the
membership of x in L.

We proceed to analyze the space complexity of the algorithm. R runs in polynomial-
time, and hence in polynomial space. Let us now analyze the space complexity of procedure
Simulate-Oracle. The depth of the recursion of Simulate-Oracle on input (q, i), is i ≤
poly(n). Each level requires space that is polynomial in the running-time and space used
by R (to store counter, r, j, h and the state of R). Note that at each point in time and
for every 1 ≤ i ≤ `, there is at most one execution of Simulate-Oracle(·, i) that is running.

13

Simulate-Oracle(q, i)

1. For every 1 ≤ j ≤ i:

(a) counter ← 0.

(b) For every r ∈ {0, 1}m (where m is the number of random coins that R
uses on inputs of length n):

i. Run R(x; r) up to level j. For every oracle query q′ ∈ {0, 1}b that
is generated during this execution at some level h < j, answer via
a recursive call Simulate-Oracle(q′, h).

ii. If q is one of the queries that R(x; r) generates at level j then:
counter ← counter + 1.

(c) If counter > 2−(εja+(1−εj)b) · 2m output 1 and halt. Otherwise proceed
to the next iteration.

2. Output 0.

Figure 1: The procedure Simulate-Oracle

Hence by re-using space between different calls we conclude that the whole procedure can
be done in poly(n) space.

We now explain how to generalize the proof to handle queries of different lengths. We
follow the outline above, with the only difference that we define light/heavy seperately for
each possible query length. That is, we have a different sequence of ε’s for each length
(and as before we need only consider statistical tests for generators with seed length more
than 10 log n), and different sequence of Ti’s as well as a different T . Claim 4.2 is proven
for each length separately, and conclude with Corollary 4.3 (where now T is defined over
several lengths). Finally, in Claim 4.4 we consider different events Ei

1 and Ei
2 for different

query lengths. And for each length a, we bound the probability that these events happen
by taking the union bound over all levels in which the query length has positive probability
to appear (which is at most `(a, n) = b(a)−a

40 log n). Thus for each length we have a bound similar
to the left hand side of inequality (3). We now observe that since R only use a > 10 log n
(images of Ga for smaller a’s are hardwired), each one of these expressions is bounded by

1
10n , and then by taking a union bound over all possible lengths, we get that the probability
that one of the ”bad” events happens is at most 1/10. The rest of the proof is as above.

5 Reductions from complete languages

In this section we revisit known reductions from deciding languages in high classes (such as
EXP and PSPACE) to distinguishing pseudorandom (and hitting-set) generators, in light of
our negative results. Impagliazzo and Wigderson [IW] showed that for any language L that is
both downwards self-reducible and self-correctible, there is a pseudorandom generator {GL :
{0, 1}a → {0, 1}poly(a)}a∈N, and a black-box reduction from deciding L to 1

2 -distinguishing
GL. The reduction is 1-adaptive and has n levels of adaptivity (each query length upto
n, where n is the length of the L-instance, appears in at most one level of adaptivity).
Specifically, GL is the generator from Theorem 2.6 where the function f is the characteristic

14

function of L. The reduction uses the self-correctibility of L to compute it on every instance
given an approximator that computes it on most instances. It uses the downwards self-
reducibility property of L to compute (in a recursive way) the values of certain instances of
L that originally (in [BFNW]) were given as a non-uniform advice (see Theorem 2.6). The
use of downwards self-reducibility is what makes this reduction adaptive.

It is well known that the permanent function is complete for the class P]P and is both
downwards self-reducible and self-correctible [Lip]. Another function having these properties
and is PSPACE-complete, was presented in [TV]. Thus we obtain,

Theorem 5.1. [IW, TV] For every language L in PSPACE there exists a polynomial
function k(·) such that for every polynomial function b(·), there is a uniform black-box
reduction from deciding L to distinguishing a certain family of pseudorandom generators
G = {G : {0, 1}a → {0, 1}b(a)}a∈N a.e.. The reduction is 1-adaptive and has k(n) levels of
adaptivity.

We conclude by Theorem 3.1 that the black-box reduction from the theorem above is
inherently adaptive, unless PSPACE = BPPNP.

The reduction of [IW] from deciding languages in EXP (rather than PSPACE) is more
involved and requires an additional idea. The reason is that (unless EXP = PSPACE) there
are no EXP-complete languages that are downwards self-reducible. I.e. one cannot use
directly their reduction from deciding languages that have this property to distinguishing
PRGs. To get around this, [IW] argue as follows: if there is an efficient statistical test
that distinguishes the generator (i.e. one that is computable by poly-size circuits), then
by the non-uniform reduction of [BFNW] (Theorem 2.6), f , the EXP-complete function,
is computable by polynomial-size circuits. This implies by [KL] that EXP = PSPACE
(in fact EXP = PH), which means that there is (another) EXP-complete function that is
both downwards self-reducible and self-correctible, and we can continue with the reduction
described above. Note that this part makes the reduction non-black-box; the argument
only works when considering efficient statistical tests (inefficient ones do not imply that
f ∈ P/poly and thus EXP = PSPACE).5 We do note however, that the reduction itself
(i.e. the TM that implements the reduction) still only has oracle access to the statistical
test that distinguishes the generator. It is only the proof of correctness that makes a non-
black-box use of the adversary by restricting the argument only to efficient statistical tests
(rather than arbitrary ones). More formally, the reduction is size-restricted black-box (see
Definition 2.3).

Note that the above argument does not give a single reduction from computing f to
distinguishing a generator. Rather it shows that if there is an efficient adversary that distin-
guishes both the generator from Theorem 2.6 based on f and the generator from Theorem
5.1 (which amounts to the generator from Theorem 2.6 constructed from a downwards self-
reducible and self-correctible function), then f can be decided efficiently (via a uniform
reduction). To make this a reduction to distinguishing a single generator, we combine the
two to get a hitting-set generator.

Theorem 5.2. (implicit in [IW]) For every language L in EXP and polynomial func-
tion b(·), there is a polynomial function k(·) and a uniform size-restricted black-box reduc-

5The reduction of [BFNW] gives a polynomial-size circuit with oracle to the distiguisher T that computes
f (see Theorem 2.6). Only if T is itself computable by polynomial-size circuits, we can conclude that there
is a polynomial-size circuit (without an oracle) that computes f .

15

tion from deciding L to distinguishing a certain family of hitting-set generators G = {G :
{0, 1}a → {0, 1}b(a)}a∈N a.e.. The reduction is 1-adaptive and has k(n) levels of adaptivity.6

Proof sketch. Let f be a self-correctible EXP-complete function (e.g. f can be the mul-
tilinear extension [BFL] of some fixed EXP-complete function). Let g be a downwards
self-reducible and self-correctible PSPACE-complete function (as in [TV]). Let G0 be the
pseudorandom generator from Theorem 2.6 that is based on f , setting δ to be such that
b(a)δ ≤ a for all sufficiently large a. (On seed length a, G0 uses f on inputs of length
m = bb(a)εc for some constant ε > 0 that depends on δ.) Let G1 be the pseudorandom
generator from Theorem 2.6 that is based on g, with the same δ. By Theorem 2.6, if there
is a statistical test T that is computable by quadratic-size circuits and distinguishes G0 a.e.
then f ∈ P/poly and therefore EXP ⊆ P/poly. By Karp and Lipton [KL] this implies
that EXP = PH = PSPACE and hence f reduces to g. Specifically, f has circuits of size
poly(b(a)) on instances of length m = bb(a)εc, and thus reduces to g-instances of length
poly(b(a)) = poly(m), where the latter polynomial depends on ε and hence on the degree
of b. Composing this with the reduction from L to f , we get a reduction from deciding L
on instances of length n to computing g on instances of length `(n) = poly(n), where this
polynomial depends on both L and b.

By Theorem 5.1, there is a uniform black-box reduction from computing g on instances
of length `(n) to distinguishing a certain generator from the family G1. This reduction
is 1-adaptive, has k(n) = poly(`(n)) levels of adaptivity. Thus if such a distinguisher for
G0 exists, we get a black-box poly(n)-time reduction from distinguishing L on instances of
length n, to distinguishing a generator in the family G1.

Now, consider the family of hitting-set generators G = {G : {0, 1}a×{0, 1} → {0, 1}b(a)}n∈N

defined as: G(s, b) = Gb(s) (for every a ∈ N, s ∈ {0, 1}a and b ∈ {0, 1}). If there is a statis-
tical test T that is computable by quadratic-size circuits and 1

2 -distinguishes G a.e., then it
must also 1

2 -distinguish both G0 and G1 a.e. as hitting-set generators (and thus distinguish
them from uniform also as pseudorandom generators). We can then plug this statistical test
into the black-box reduction (described above) from deciding L to distinguishing G1. This
reduction indeed decides L correctly a.e. since the statistical tests, which are computable
by quadratic-size circuits, also distinguish G0 a.e.. Thus we get a size-restricted black-box
reduction with the specified parameters from deciding L to 1

2 -distinguishing G a.e.. Note
that indeed the reduction only makes oracle queries to the distinguisher (since it runs the
black-box reduction from deciding L to distinguishing G1). However, the correctness of this
reduction relies on the fact that the distinguisher is of polynomial-size (since only in this
case there is a reduction from f to g, which is one of the steps in the black-box reduction
from deciding L to distinguishing G1).

The reduction in Theorem 5.2 should be contrasted with Theorem 4.1, which says that
any reduction that is 1-adaptive cannot be black box in the sense of Definition 2.2 (unless
EXP = PSPACE). That is, the ‘size-restricted’ aspect of Theorem 5.2 cannot be removed.

6 An “Almost Everywhere” version of [IW] for RP

The reduction from Theorem 5.2 gives the main result of [IW]:

6Note that the order of quantifiers over the polynomials b(·) and k(·) is swapped, as compared to Theorem
5.1. This is the result of the two reductions, both using the same distinguisher for two different generators
each on a different output length (see the details in the proof.)

16

Theorem 6.1. At least one of the following is true:

1. EXP = BPP

2. BPP ⊆ io−HeurTIMEn−c(2nδ
) for every c, δ > 0.

The proof of [IW], when applied to a single HSG, as outlined in the previous section,
shows a reduction that works for every input length whenever we have a family of distin-
guishers for every seed length. In this section we observe that for derandomizing the class
RP (of languages decidable in probabilistic polynomial-time with 1-sided error), a theorem
similar to Theorem 6.1 is true when we switch the i.o. quantifier from (2) to (1), and replace
EXP with PSPACE in item (1). In terms of reductions, this shows that when considering
HSGs (rather than PRGs), we can obtain a reduction that succeeds infinitely often, when
given access to a family of distinguishers that only succeeds (to distinguish) infinitely often.

Theorem 6.2. At least one of the following is true:

1. PSPACE ⊆ io− BPP

2. RP ⊆ HeurTIMEn−c(2nδ
) for every c, δ > 0.

Proof sketch. Let L ∈ RP and A be a probabilistic polynomial-time algorithm with 1-sided
error that observes that. Suppose that A runs in time m = poly(n) on instances of length
n and hence uses at most m random bits. Let f : {0, 1}∗ → {0, 1} be a PSPACE-complete
function that is both downwards self-reducible and self-correctible (as in [TV]). Let δ > 0
be an arbitrary constant and let ε be the constant from Theorem 2.6 that depends on δ.

For 1 ≤ k ≤ mε, let Gfk

δ,m : {0, 1}m
δ
→ {0, 1}m be the generator from Theorem 2.6,

where fk is the restriction of f to instances of length k. Define the hitting-set generator

Gδ,m : {0, 1}m
δ
× [bmεc] → {0, 1}m to be Gδ,m(x, k) = Gfk

δ,m(x). Note that since the fk’s
are computable in exponential-time (in their input length), Gδ,m is computable in time at

most 2mδ′

, where δ′ = κ · δ for some universal constant κ > 0.

To deterministically decide L, on instance x ∈ {0, 1}n, we run the (poly(m) · 2mδ′

)-time
deterministic simulation of A using the outputs of Gδ,m as random strings. If at least one
of the executions A(x, r) (where r is an output of the generator) accepts, then we accept x.

If for every L ∈ RP, for every δ, c and every large enough n, this deterministic algorithm
decides L correctly on a 1−n−c fraction of the instances of length n then we are done (RP ⊆

HeurTIMEn−c(2nδ
) for every δ > 0 and c > 0). Otherwise, there exist a language L ∈ RP

and there are δ, c > 0 and infinitely many n’s such that Gδ,m fails on at least n−c fraction
of the L-instances of length n. Each one of them gives rise to a Boolean circuit of size m

that 1
2 -distinguishes all the generators Gf1

δ,m, . . . , Gfk

δm
(as HSGs and therefore also as PRGs).

Furthermore, we can generate, for every 1 ≤ k ≤ bmεc, in poly(m)-time with oracle access

to fk, a size poly(m) circuit Dk that 1
2 -distinguishes Gfk

δ,m. This is done as in [IW]. That is,

we sample n2c L-instances of length n. From each one we create the circuit that simulates
the algorithm A, with the instance hardwired into it, and its input is the randomness of A.

For each such circuit, we check whether it distinguishes Gfk

δ,m from uniform, by estimating
its acceptance probabilities when it is fed the uniform distribution and when it is fed the
generated one. This is done by taking enough samples from each distribution. Note that by
Theorem 2.6, this procedure runs in poly(m) time given oracle access to fk. With very high
probability we indeed sample an instance on which the deterministic simulation fails (and

17

thus this instance gives rise to a distinguisher). Furthermore, by taking enough samples
for our acceptance estimates, we can ensure that with very high probability we determine
correctly for each circuit Dk whether it is a distinguisher or not.

The rest of the proof now follows the outline of [IW] which we now briefly sketch. We
will use Theorem 2.6 to obtain from these distinguishers Dk a sequence of poly(m)-size
circuits Ck that compute fk (for every 1 ≤ k ≤ mε). The realization of [IW] is that
Ck can actually be constructed in probabilistic polynomial time given oracle access to fk.
(That is, an advice string a satisfying the conclusion of Theorem 2.6 can be constructed in
probabilistic polynomial time given oracle access to T = Dk and f = fk.) Finally, the oracle
calls to fk needed in the construction of Dk and Ck are eliminated using the downwards
self-reducibility property of f . We conclude that there as a probabilistic polynomial-time
algorithm B such that for infinitely many m and every input x of length at most bmεc,
Pr[B(1m, x) = f(x)] ≥ 1 − 2−m (after amplifying the success probability).7 Moreover, by
inspecting the construction (or using the fact that PSPACE has ‘instance checkers’), we can
also ensure that Pr[B(1m, x) ∈ {f(x),⊥}] ≥ 1−2−m. That is, whp B recognizes when it fails
and outputs ⊥ rather than ¬f(x). We now argue that this implies PSPACE ⊆ io − BPP.
Let K be an arbitrary language in PSPACE, and let ρ be a polynomial-time reduction from
K to f . Then the algorithm C(x) that runs B(1m, ρ(x)) for all integers m in the interval
[|ρ(x)|1/ε, (|ρ(x)|+ 1)1/ε] and outputs the first answer that is not ⊥ will decide K correctly
for infinitely many input lengths.

Acknowledgments

We thank Ronen Shaltiel for helpful comments on the write-up.

References

[BFL] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-
prover interactive protocols. In Proceedings of the 31st Annual IEEE Symposium
on Foundations of Computer Science, pages 16–25, 1990.

[BFNW] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexponential
simulation unless Exptime has publishable proofs. Computational Complexity,
3:307–318, 1993.

[BM] M. Blum and S. Micali. How to generate cryptographically strong sequences
of pseudo-random bits. SIAM Journal on Computing, 13(4):850–864, November
1984.

[BT] A. Bogdanov and L. Trevisan. On worst-case to average-case reductions for NP
problems. In Proceedings of the 44th Annual IEEE Symposium on Foundations of
Computer Science, pages 308–317, 2003.

[GST1] D. Gutfreund, R. Shaltiel, and A. Ta-Shma. Uniform hardness vs. randoness
tradeoffs for Arthur-Merlin games. Computational Complexity, 12:85–130, 2003.

7The only difference between our argument and [IW] is that our distinguishers are of size m (even for
very small k’s), while their distinguishers are of size poly(k), this however does not change the fact that the
final algorithm runs in time poly(m) = poly(mε).

18

[GST2] D. Gutfreund, R. Shaltiel, and A. Ta-Shma. if NP languages are hard in the
worst-case then it is easy to find their hard instances. To appear in Computational
Complexity, 2007.

[GT] D. Gutfreund and A. Ta-Shma. Worst-case to average-case reductions revisited.
In 11th International Workshop on Randomization and Computation, RANDOM,
pages 569–583, 2007.

[IKW] R. Impagliazzo, V. Kabanets, and A. Wigderson. In search of an easy witness:
Exponential time vs. probabilistic polynomial time. Journal of Computer and
System Sciences, 65(4):672–694, 2002.

[IW] R. Impagliazzo and A. Wigderson. Randomness vs. time: de-randomization under
a uniform assumption. Journal of Computer and System Sciences, 63(4):672–688,
2001.

[JVV] M. Jerrum, L. Valiant, and V. Vazirani. Random generation of combinatorial
structures from a uniform distribution. Theor. Comput. Sci., 43:169–188, 1986.

[Kab] V. Kabanets. Easiness assumptions and hardness tests: Trading time for zero
error. Journal of Computer and System Sciences, 63 (2):236–252, 2001.

[KI] V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means
proving circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004.

[KL] R. M. Karp and R. J. Lipton. Some connections between nonuniform and uniform
complexity classes. In Proceedings of the 12th Annual ACM Symposium on Theory
of Computing, pages 302–309, 1980.

[KvM] A. R. Klivans and D. van Melkebeek. Graph nonisomorphism has subexponential
size proofs unless the polynomial-time hierarchy collapses. SIAM Journal on
Computing, 31(5):1501–1526, 2002.

[Lip] R. Lipton. New directions in testing. Proceedings of DIMACS workshop on dis-
tributed computing and cryptography, 2:191–202, 1991.

[NW] N. Nisan and A. Wigderson. Hardness vs. randomness. Journal of Computer and
System Sciences, 49:149–167, 1994.

[RTV] O. Reingold, L. Trevisan, and S. Vadhan. Notions of reducibility between cryp-
tographic primitives. In Theory of Cryptography, First Theory of Cryptography
Conference, TCC 2004, pages 1–20, 2004.

[Sip] M. Sipser. A complexity theoretic approach to randomness. In Proceedings of the
15th Annual ACM Symposium on Theory of Computing, pages 330–335, 1983.

[Sto] L. Stockmeyer. On approximation algorithms for]P. SIAM Journal on Comput-
ing, 14(4):849–861, 1985.

[SU1] R. Shaltiel and C. Umans. Simple extractors for all min-entropies and a new
pseudorandom generator. Journal of the ACM, 52(2):172–216, 2005.

19

[SU2] R. Shaltiel and C. Umans. Low-end uniform hardness vs. randomness tradeoffs for
AM. In Proceedings of the 39th Annual ACM Symposium on Theory of Computing,
pages 430–439, 2007.

[Tre] L. Trevisan. Construction of extractors using pseudo-random generators. Journal
of the ACM, 48(4):860–879, 2001.

[TV] L. Trevisan and S. Vadhan. Pseudorandomness and average-case complexity via
uniform reductions. To appear in Computational Complexity, 2007.

[Uma] C. Umans. Pseudo-random generators for all hardnesses. Journal of Computer
and System Sciences, 67(2):419–440, 2003.

[Yao] A. C. Yao. Theory and applications of trapdoor functions. In Proceedings of the
23rd Annual IEEE Symposium on Foundations of Computer Science, pages 80–91,
1982.

20

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

