
Constraint Satisfaction over a Non-Boolean Domain:

Approximation algorithms and Unique-Games hardness

Venkatesan Guruswami∗ Prasad Raghavendra†

Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195.

Abstract

We study the approximability of the MAX k-CSP problem over non-boolean domains, more
specifically over {0, 1, . . . , q − 1} for some integer q. We obtain a approximation algorithm that
achieves a ratio of C(q) · k/qk for some constant C(q) depending only on q. Further, we extend
the techniques of Samorodnitsky and Trevisan [17] to obtain a UGC hardness result when q is a
prime. More precisely, assuming the Unique Games Conjecture, we show that it is NP-hard to
approximate the problem to a ratio greater than q2k/qk. Except for constant factors depending
on q, the algorithm and the UGC hardness result have the same dependence on the arity k.

1 Introduction

Constraint Satisfaction Problems (CSP) capture a large variety of combinatorial optimization prob-
lems that arise in practice. In the MAX k-CSP problem, the input consists of a set of variables
taking values over a domain(say {0, 1}), and a set of constraints with each acting on k of the
variables. The objective is to find an assignment of values to the variables that maximizes the
number of constraints satisfied. Several classic optimization problems like 3-SAT, Max Cut fall in
to the general framework of CSPs. For most CSPs of interest, the problem of finding the optimal
assignment turns out to be NP-hard. To cope with this intractability, the focus shifts to approx-
imation algorithms with provable guarantees. Specifically, an algorithm A is said to yield an α
approximation to a CSP, if on every instance Γ of the CSP, the algorithm outputs an assignment
that satisfies at least α times as many constraints as the optimal assignment.

Apart from its natural appeal, the study of approximability of MAX k-CSP problem is interesting
for yet another reason. The best approximation ratio achievable for MAX k-CSP equals the optimal
soundness of a PCP verifier making at most k queries. In fact, inapproximability results for MAX

k-CSP have often been accompanied by corresponding developments in analysis of linearity testing.
Over the boolean domain, the problem of MAX k-CSP has been studied extensively. For a

boolean predicate P : {0, 1}k → {0, 1}, the MAX k-CSP (P) problem is the special case of MAX

k-CSP where all the constraints are of the form P (l1, l2, . . . , lk) with each literal li being either a

∗Work done while on leave at School of Mathematics, Institute for Advanced Study, Princeton, NJ. Research

supported in part by NSF CCF-0343672 and a Packard Fellowship.
†Research supported in part by NSF CCF-0343672.

Electronic Colloquium on Computational Complexity, Report No. 8 (2008)

ISSN 1433-8092

variable or its negation. For many natural boolean predicates P , approximation algorithms and
matching NP-hardness results are known for MAX k-CSP (P)[10]. For the general MAX k-CSP

problem over boolean domain, the best known algorithm yields a ratio of Ω(k
2k) [3], while any ratio

better than 2
√

2k/2k is known to be NP-hard to achieve [5]. Further if one assumes the Unique
Games Conjecture, then it is NP-hard to approximate MAX k-CSP problem to a factor better than
2k
2k [17].

In this work, we study the approximability of the MAX k-CSP problem over non-boolean do-
mains, more specifically over {0, 1, . . . , q − 1} for some integer q, obtaining both algorithmic and
hardness results (under the UGC) with almost matching approximation factors.

On the algorithmic side, we obtain a approximation algorithm that achieves a ratio of C(q)·k/qk

for some constant C(q) depending only on q. We remark that a straightforward reduction to the
binary case, by encoding elements of [q] by dlog2 qe bits, and appealing to the CMM algorithm [3],

gives an approximation ratio of Ω
(

k log q
2kdlog qe

)

, which in general does not even beat the trivial q−k

bound. Extending the techniques of [3] to handle variables taking one of q possible values for
arbitrary q (that is not a power of 2) requires some new ideas. Our algorithm is based on optimizing
a positive definite quadratic form with variables forced to take values on the q corners of the q-
dimensional simplex — this method could be of independent interest.

On the hardness side, we extend the techniques of [17] to obtain a UGC hardness result when
q is a prime. More precisely, assuming the Unique Games Conjecture, we show that it is NP-hard
to approximate the problem to a ratio greater than q2k/qk. Except for constant factors depending
on q, the algorithm and the UGC hardness result have the same dependence on of the arity k.
Independent of this work, Austrin and Mossel [2] obtain a more general UGC hardness result using
entirely different techniques. Technically, our proof extends the Gowers Uniformity based approach
of Samorodnitsky and Trevisan [17] to correlations on q-ary cubes instead of the binary cube.
This is related to the detection of multidimensional arithmetic progressions by a Gowers norm of
appropriately large degree. Along the way, we also make a simplification to [17] and avoid the need
to obtain a large cross-influence between two functions in a collection with a substantial Uniformity
norm; instead our proof works based on large influence of just one function in the collection.

1.1 Related Work

The simplest algorithm for MAX k-CSP over boolean domain is to output a random assignment
to the variables, thus achieving an approximation ratio of 1

2k . The first improvement over this

trivial algorithm, a ratio of 2
2k was obtained by Trevisan [18]. Hast [8] proposed an approximation

algorithm with a ratio of Ω(k
log k2k), which was later improved to the current best known algorithm

achieving an approximation factor of Ω(k
2k) [3].

On the hardness side, MAX k-CSP over the boolean domain was shown to be NP-hard to approx-

imate to a ratio greater than Ω(22
√

k/2k) by Samorodnitsky and Trevisan [16]. The result involved
an analysis of a graph-linearity test which was simplified subsequently by H̊astad and Wigder-
son [12]. Later, using the machinery of multi-layered PCP developed in [4], the inapproximability

factor was improved to O(2
√

2k/2k) in [5].
A predicate P is approximation resistant if the best optimal approximation ratio for MAX k-

CSP (P) is given by the random assignment. While no predicate over 2 variables is approximation
resistant, a predicate over 3 variables is approximation resistant if and only if it is implied by the

1

XOR of 3 variables [10, 19]. Almost all predicates on 4 variables were classified with respect to
approximation resistance in [9].

In recent years, several inapproximability results for MAX k-CSP problems were obtained as-
suming the Unique Games Conjecture. Firstly, a tight inapproximability of Θ

(

k
2k

)

was shown in
[17]. The proof relies on the analysis of a hypergraph linearity test using the Gowers uniformity
norms. Hastad showed that if UGC is true, then as k increases, nearly every predicate P on k
variables is approximation resistant [11].

More recently, optimal inapproximability results have been shown for large classes of CSPs
assuming the Unique Games Conjecture. Under an additional conjecture, optimal inapproximability
results were obtained in [1] for all boolean predicates over 2 variables. Subsequently, it was shown
in [15] that for every CSP over an arbitrary finite domain, the best possible approximation ratio
is equal to the integrality gap of a well known Semidefinite program. Further the same work
also obtains an algorithm that achieves the best possible approximation ratio assuming UGC.
Although the results of [15] apply to non-boolean domains, they do not determine the value of the
approximation factor explicitly, but only show that it is equal to the integrality gap of an SDP.
Further the algorithm proposed in [15] does not yield any approximation guarantee for MAX k-CSP

unconditionally. Thus neither the inapproximability nor the algorithmic results of this work are
subsumed by [15].

Austrin and Mossel [2] obtain a sufficient condition for a predicate P to be approximation
resistant. Through this sufficiency condition, they obtain strong UGC hardness results for MAX

k-CSP problem over the domain {1, . . . , q} for arbitrary k and q. For the case when q is a prime
power, their results imply a UGC hardness of kq(q − 1)/qk. The hardness results in this work
and [2] were obtained independently and use entirely different techniques. Also, our matching
approximation algorithms have not been obtained elsewhere, to the best of our knowledge.

1.2 Organization of the paper

We begin with background on the Unique Games conjecture, Gowers norm, and influence of vari-
ables in Section 2. We present our factor C(q)k/qk approximation algorithm for MAX k-CSP over
domain size q in Section 3. In Section 4, we present a linearity test that forms the core of the UGC
based hardness reduction. We prove our inapproximability result (for the case when q is a prime)
by a reduction from Unique Games in Section 5. The proof uses a technical step bounding a certain
expectation by an appropriate Gowers norm; this step is proved in Section 6.

2 Preliminaries

For a positive integer n, we use the notation [n] for the ring Z/(n) = {0, 1, . . . , n − 1} of integers
modulo n.

2.1 Unique Games conjecture

Definition 2.1. An instance of Unique Games represented as Γ = (X ∪Y, E,Π, 〈R〉), consists of a
bipartite graph over node sets X ,Y with the edges E between them. Also part of the instance is a set
of labels 〈R〉 = {1, . . . , R}, and a set of permutations πvw : 〈R〉 → 〈R〉 for each edge e = (v,w) ∈ E.
An assignment A of labels to vertices is said to satisfy an edge e = (v,w), if πvw(A(v)) = A(w).
The objective is to find an assignment A of labels that satisfies the maximum number of edges.

2

For sake of convenience, we shall use the following stronger version of Unique Games Conjecture
which was shown to be equivalent to the original conjecture [13].

Conjecture 2.2. For all constants δ > 0, there exists large enough constant R such that given a
bipartite unique games instance Γ = (X ∪ Y, E,Π = {πe : 〈R〉 → 〈R〉 : e ∈ E}, 〈R〉) with number
of labels R, it is NP-hard to distinguish between the following two cases:

• (1− δ)-satisfiable instances: There exists an assignment A of labels such that for 1− δ fraction
of vertices v ∈ X , all the edges (v,w) are satisfied.

• Instances that are not δ-satisfiable: No assignment satisfies more than a δ-fraction of the edges
E.

2.2 Gowers uniformity norm and influence of variables

We now recall the definition of the Gowers uniformity norm. For an integer d > 1 and a complex-
valued function f : G → C defined on an abelian group G (whose group operation we denote by
+), the d’th uniformity norm Ud(f) is defined as

Ud(f) := E
x,y1,y2,...,yd









∏

S⊆{1,2,...,d}
|S| even

f

(

x +
∑

i∈S

yi

)

∏

S⊆{1,2,...,d}

|S| odd

f

(

x +
∑

i∈S

yi

)









. (1)

where the expectation is taken over uniform and independent choices of x, y0, . . . , yd−1 from the

group G. Note that U1(f) =
(

E
x
[f(x)]

)2
.

We will be interested in the case when the group G is [q]R for positive integers q,R, with
group addition being coordinate-wise addition modulo q. G is also closed under coordinate-wise
multiplication modulo q by scalars in [q], and thus has a [q]-module structure. For technical reasons,
we will restrict attention to the case when q is prime and thus our groups will be vector spaces
over the field Fq of q elements. For a vector a ∈ [q]k, we denote by a1, a2, . . . , ak its k coordinates.
We will use 1,0 to denote the all 1’s and all 0’s vectors respectively (the dimension will be clear
from the context). Further denote by ei the ith basis vector with 1 in the ith coordinate and 0 in
the remaining coordinates. As we shall mainly be interested in functions over [q]R for a prime q,
we make our further definitions in this setting. Firstly, every function f : [q]R → C has a Fourier
expansion given by:

f(x) =
∑

α∈[q]R

f̂αχα(x)

where f̂α = E
x∈[q]R

[f(x)χα(x)] and χα(x) =
∏R

i=1 ωαixi for a qth root of unity ω.

The central lemma in the hardness reduction relates a large Gowers norm for a function f , to
the existence of an influential coordinate. Towards this, we define influence of a coordinate for a
function over [q]R.

Definition 2.3. For a function f : [q]R → C define the influence of the ith coordinate as follows:

Infi(f) = E
x
[Varxi

[f]] .

3

The following well known result relates influences to the Fourier spectrum of the function.

Fact. For a function f : [q]R → C and a coordinate i ∈ {1, 2, . . . , R},

Infi(f) =
∑

αi 6=0,α∈[q]R

|f̂α|
2 .

The following lemma is a restatement of Theorem 12 in [17].

Lemma 2.4. There exists an absolute constant C such that, if f : [q]m → C is a function satisfying
|f(x)| 6 1 for every x then for every d > 1,

Ud(f) 6 U1(f) + 2Cd max
i

Infi(f)

2.3 Noise Operator

Like many other UGC hardness results, one of the crucial ingredients of our reduction will be a
noise operator on functions over [q]R. We define the noise operator T1−ε formally below.

Definition 2.5. For 0 6 ε 6 1, define the operator T1−ε on functions f : [q]R → C as :

T1−εf(x) = E
η
[f(x + η)]

where each coordinate ηi of η is 0 with probability 1 − ε and a random element from [q] with
probability ε. The Fourier expansion of T1−εf is given by

T1−εf(x) =
∑

α∈[q]R

(1 − ε)|α|f̂αχα(x)

Here |α| denotes the number of non-zero coordinates of α.

Lemma 2.6. If a function f : [q]R → C satisfies |f(x)| 6 1 for all x, and g = T1−εf then

R
∑

i=1

Infi(g) 6
1

2e ln 1/(1 − ε)

Proof. Let f(x) =
∑

α f̂αχα(x) denote the Fourier expansion of f . The function g is given by

g(x) =
∑

α(1 − ε)|α|f̂αχα(x). Hence we get,

R
∑

i=1

Infi(g) =

R
∑

i=1

∑

α,αi 6=0

(1 − ε)2|α|f̂2
α =

∑

α∈[q]R

(1 − ε)2|α||α|f̂2
α

6 max
α∈[q]R

(

(1 − ε)2|α||α|
)

·
∑

α

f̂2
α 6 max

α∈[q]R
(1 − ε)2|α||α|

The function F (x) = x(1 − ε)2x achieves a maximum at x = −1/2 ln(1 − ε). Substituting we get
∑R

i=1 Infi(g) 6
1

2e ln 1/(1−ε) .

4

3 Approximation algorithm for MAX k-CSP over any domain

3.1 Reduction to MAX k-Equal

Without loss of generality, we may assume that the q-ary domain is Zq the set of integers mod q.
In this section, we shall frequently deal with points in R

q. To aid in understanding, we shall always
use bold face letters (x) to denote points in R

q and superscripts (x(i)) to index their coordinates.
Along the lines of [8, 3], we first reduce a general MAX k-CSP problem to a MAX k-Equal

problem. The MAX k-Equal problem over a q-ary domain is defined as follows:

Definition 3.1 (MAX k-Equal Problem). Given a set S of clauses of the form w1−a1 = w2−a2 =
w3 − a3 = . . . = wk − ak mod q with ai ∈ Zq (ai can change for different clauses), Find an
assignment to the variables wi that maximizes the number of satisfied clauses.

An arbitrary MAX k-CSP problem can be reduced to the MAX k-Equal problem as follows: Let
F (w1, . . . , wk) denote the constraint in an arbitrary MAX k-CSP problem. Let S(F) ⊂ [q]k denote
the set of all satisfying assignments of F . For each satisfying assignment (a1, a2, . . . , ak) ∈ [q]k,
introduce an equality clause w1 − a1 = w2 − a2 = . . . wk − ak mod q. Clearly the objective value
of the MAX k-Equal instance is at least as much as the original MAX k-CSP instance. Further the
value is at most q times the value of the MAX k-CSP instance. Hence a γ-approximation algorithm
for MAX k-Equal yields a γ/q approximation to a general MAX k-CSP problem.

3.2 Quadratic Program

Let I be a MAX k-Equal instance over a set of variables V = {w1, . . . , wn} and set of clauses C. Let
OPT (I) denote the maximum number of clauses satisfied by any assignment. For each variable

wi, introduce q variables x
(j)
i for j ∈ [q]. Let xi = (x

(0)
i , x

(2)
i , . . . , x

(q−1)
i). Consider the following

quadratic program in the variables xi.

QuadraticProgram Γ

Maximize
1

k2

∑

C∈C

∥

∥

∥

∑

(wi−j)∈C

x
(j)
i

∥

∥

∥

2

Subject to
∑

j∈[q]

x
(j)
i = 0 ∀wi ∈ V

x
(j)
i ∈

{

−
1

q − 1
, 1
}

∀wi ∈ V, j ∈ [q]

Observe that each vector xi = (x
(0)
i , x

(1)
i , . . . , x

(q−1)
i) ∈ R

q is constrained to be equal to one of
the q corners of the following polytope ∆q:

∆q =
{

x ∈ R
q : x(i) ∈

[

−
1

q − 1
, 1
]

,
∑

i∈[q]

x(i) = 0
}

In the intended solution, if the variable wi is assigned value a ∈ [q], then x
(a)
i = 1 and x

(j)
i =

− 1
q−1 for all j 6= a. Hence we have OPT (Γ) > OPT (I).

Theorem 3.2. There is an efficient algorithm that finds an assignment to Γ whose value is at least
2

π(q−1)4
times the optimal solution.

5

Proof. For each i, eliminate the variable x
(q−1)
i from the program by substituting x

(q−1)
i = −

∑

j∈[q−1] x
(j)
i .

The constraints
∑

j x
(j)
i = 0 can now be dropped from the quadratic program. Let Γ1 denote the

quadratic program obtained by relaxing every variable x
(j)
i to take values from the interval [− 1

q−1 , 1]

instead of {− 1
q−1 , 1}. Clearly, OPT (Γ) 6 OPT (Γ1). Observe that the objective function is a con-

vex function of the variables x
(j)
i . Hence there is an optimal solution of the program Γ1 with all the

x
(j)
i ∈ {− 1

q−1 , 1} instead of the interval [− 1
q−1 , 1]. In particular, this implies OPT (Γ1) = OPT (Γ).

Let Γ2 denote the quadratic program obtained by relaxing the range of each variable x
(j)
i to the

interval [−1, 1]. As the objective value is a convex function of x
(j)
i , there exists optimal solutions to

Γ2 with all variables x
(j)
i taking values ±1. Relax the range of values x

(j)
i from {−1, 1} to unit vectors

to obtain a semidefinite program Γ3. Thus we have OPT (Γ) = OPT (Γ1) 6 OPT (Γ2) 6 OPT (Γ3).

The semidefinite program Γ3 can be solved efficiently to obtain unit vectors v
(j)
i . Let OPT (Γ3)

denote the value of the SDP solution v
(j)
i . Now we use the following result of Nesterov [14] to

obtain a solution to Γ1 from the vectors v
(j)
i .

Theorem 3.3. [14] There exists an efficient procedure that given a positive semidefinite matrix
A = (aij) and a set of unit vectors vi, assigns ±1 to the variables zi such that

∑

i,j

aijzizj >
2

π

∑

i,j

aij〈vi, vj〉 (2)

Let z
(j)
i ∈ {−1, 1} denote the solution to Γ2. Define a solution to the quadratic program Γ1 by

scaling the values z
(j)
i appropriately:

y
(j)
i =

z
(j)
i

(q − 1)2
∀j ∈ [q − 1]

= −(
∑

j∈[q−1] z
(j)
i)/(q − 1)2 j = q

With z
(j)
i ∈ {−1, 1}, it is easy to see that y

(j)
i ∈ [− 1

q−1 , 1]. By definition, we have
∑

j y
(j)
i = 0.

If σ denotes the value of the solution y
(j)
i then,

σ >
2

π(q − 1)4
OPT (Γ3) >

2

π(q − 1)4
OPT (Γ)

Further since y
(j)
i form a feasible solution to the quadratic program Γ1, we have σ 6 OPT (Γ1) =

OPT (Γ). Thus σ is already a 2
π(q−1)4

approximation for OPT (Γ). Towards obtaining an explicit

solution to Γ, define V0,V1,V2, . . . ,Vq−1 ∈ R
q to be the q corners of the polytope ∆q. Since each

vector yi = (y
(0)
i , y

(1)
i , . . . , y

(q−1)
i) ∈ ∆q it can be expressed as a convex combination of the corners:

yi =

q
∑

j=1

p
(j)
i Vj

Round each vector yi independently to one of the corners Vj using the probability distribution

p
(j)
i . Let xi denote the random variable corresponding to the rounding of vector yi. By definition,

we have E[xi] = yi. If F denotes the objective function of the program Γ, then by convexity of F :

6

E[F (x1,x2, . . . ,xn)] > F (E[x1],E[x2], . . . ,E[xn]) >
2

π(q − 1)4
OPT (Γ)

Hence the vectors x1,x2, . . . ,xn form a 2
π(q−1)4

-approximate solution to Γ.

The above proof generalizes easily to optimizing positive definite quadratic form with the vari-
ables forced to take values on the corners of ∆q.

Theorem 3.4. Let A = (a
(k)(l)
ij) be a positive definite matrix where k, l ∈ [q] and 1 6 i, j 6 n. For

the following quadratic program, there exists an efficient algorithm that finds an assignment whose
value is at least 2

π(q−1)4 of the optimum.

maximize
∑

ij

a
(k)(l)
ij x

(k)
i · x

(l)
j

Subject to
∑

k∈[q]

x
(k)
i = 0 1 6 i 6 n

x
(k)
i ∈

{

−
1

q − 1
, 1
}

1 6 i 6 n, k ∈ [q]

3.3 Analysis

We propose a rounding scheme similar to the one used in [3].

Given a MAX k-Equal instance I = (V, C)

• Formulate the quadratic program Γ, apply Theorem 3.2 to find a solution x1,x2, . . . ,xn.

• Set δ =
√

1
10k .

• For each variable wi ∈ V assign independently

wi = j with probability
(1 + δx

(j)
i)

q
,∀j ∈ [q]

Theorem 3.5. The approximation algorithm yields an assignment that satisfies 1
2πeq(q−1)6

· k
qk OPT

clauses, where OPT is the number of clauses satisfied by the optimal assignment.

Proof. By Theorem 3.2, we know that the solution xj
i for the quadratic program Γ has the objective

value at least 2
π(q−1)4

OPT . Consider a clause C ∈ C, given by w1 + a1 = w2 + a2 = . . . wk + ak

mod q. For simplicity of notation, we shall assume a1 = a2 = . . . ak = 0, the general case is very
similar. The probability that clause C is satisfied is given by

Pr[C is satisfied] =
∑

j∈[q]

Pr[w1 = w2 = . . . wk = j]

=
∑

j∈[q]

k
∏

i=1

(1 + δx
(j)
i

q

)

7

For each j ∈ [q], define zj = |{i|x
(j)
i = 1}|. Rewriting the above equation in terms of zj,

Pr[C is satisfied] =
1

qk

∑

j∈[q]

(

1 + δ
)zj
(

1 −
δ

q − 1

)k−zj

>
1

qk

∑

j∈[q]

(

1 + δ
)zj
(

1 − δ
)

k−zj

q−1

=
1

qk

∑

j∈[q]

(1 − δ2)
k−zj

q−1 (1 + δ)zj−
k−zj

q−1

For each j ∈ [q],

(1 − δ2)
k−zj

q−1 > (1 − δ2)k =
(

1 −
1

k

)k
>

(

1 −
1

k

)1

e

Hence,

Pr[C is satisfied] >

(

1 −
1

k

)1

e
·

1

qk

∑

j∈[q]

(1 + δ)
zj−

k−zj

q−1

For each j ∈ [q], define bj =
∑k

i=1 x
(j)
i . Clearly, bj = zj · 1 + (k− zi) · (−

1
(q−1)). Recall that for each

i, exactly one of the variables x
(j)
i is 1. Hence we have

∑

j∈[q] zj = k and
∑

j∈[q] bj = 0.

Pr[C is satisfied] >

(

1 −
1

k

)1

e
·

1

qk

∑

j∈[q]

(1 + δ)bj

Now we will use the following simple inequality, whose proof is included in the Appendix A.

Lemma 3.6. Let b0, b1, . . . , bq−1 be real numbers such that
∑

j∈[q] bj = 0. For any δ > 0,

∑

j∈[q]

(1 + δ)bj >
δ2

2q(q − 1)2

∑

j∈[q]

b2
j

Applying the inequality and using (1 − 1
k) >

1
2 ,

Pr[C is satisfied] >
1

4eq(q − 1)2
·

1

qk
δ2
∑

j∈[q]

b2
j

>
1

4eq(q − 1)2
·

k

qk

∑

j∈[q]

1

k2
(
∑

i

xj
i)

2

The expected number of clauses satisfied is at least 1
4eq(q−1)2

· k
qk · OPT (Γ). Using Lemma 3.2, we

conclude that the expected number of clauses satisfied is at least 1
2πeq(q−1)6 · k

qk OPT .

8

4 Linearity Tests and MAX k-CSP Hardness

The best approximation ratio possible for MAX k-CSP is identical to the best soundness of a PCP
verifier for NP that makes k queries. This follows easily by associating the proof locations to CSP
variables, and the tests of the verifier to k-ary constraints on the locations. In this light, it is
natural that the hardness results of [16, 5, 17] are all associated with a linearity test with a strong
soundness. The hardness result in this work is obtained by extending the techniques of [17] from
binary to q-ary domains. In this section, we describe the test of [17] and outline the extension to
it.

For the sake of simplicity, let us consider the case when k = 2d − 1 for some d. In [17], the
authors propose the following linearity test for functions F : {0, 1}n → {0, 1}.

Complete Hypergraph Test (F, d)

• Pick x1, x2, . . . , xd ∈ {0, 1}n uniformly at random.

• Accept if for each S ⊆ [r],

F (
∑

i∈S

xi) =
∑

i∈S

F (xi)

The test reads the value of the function F at k = 2d − 1 points of a random subspace(spanned
by x1, . . . , xd) and checks that F agrees with a linear function on the subspace. Note that a
random function F would pass the test with probability 2d/2k, since there are 2d different satisfying
assignments to the k binary values queried by the verifier. The following result is a special case of
a more general result by Samorodnitsky and Trevisan [17].

Theorem 4.1. [17] If a function F : {0, 1}n → {0, 1} passes the Complete Hypergraph Test with
probability greater than 2d/2k + γ, then the function f(x) = (−1)F (x) has a large dth Gowers norm.
Formally, Ud(f) > C(γ, k) for some fixed function C of γ, k.

Towards extending the result to the domain [q], we propose a different linearity test. Again for
convenience, let us assume k = qd for some d. Given a function F : [q]n → [q], the test proceeds as
follows:

Affine Subspace Test (F, d)

• Pick x,y1,y2, . . . ,yd ∈ [q]n uniformly at random.

• Accept if for each a ⊆ [q]d,

F
(

x +

d
∑

i=1

aiyi

)

=
(

1 −

d
∑

i=1

ai

)

F (x) +

d
∑

i=1

aiF
(

x + yi

)

Essentially, the test queries the values along a randomly chosen affine subspace, and tests if the
function F agrees with an affine function on the subspace. Let ω denote a q′th root of unity. From
Theorem 6.1 presented in Section 6, the following result can be shown:

9

Theorem 4.2. If a function F : [q]n → [q] passes the Affine Subspace Test with probability greater
than qd+1/qk + γ, then for some q’th root of unity ω 6= 1, the function f(x) = ωF (x) has a large
dq’th Gowers norm . Formally, Udq(f) > C(γ, k) for some fixed function C of γ, k.

The above result follows easily from Theorem 6.1 using techniques of [17], and the proof is
ommited here. The Affine Subspace Test forms the core of the UGC based hardness reduction
presented in Section 5.

5 Hardness reduction from Unique Games

In this section, we will prove a hardness result for approximating MAX k-CSP over a domain of size q
when q is prime for every k > 2. Let d be such that qd−1 +1 6 k 6 qd. Let us consider the elements
of [q] to have a natural order defined by 0 < 1 < . . . < q − 1. This extends to a lexicographic
ordering on vectors in [q]d. Denote by [q]d<k the set consisting of the k lexicographically smallest
vectors in [q]d. We shall identify the set {1, . . . , k} with set of vectors in [q]d<k. Specifically, we shall
use {1, . . . , k} and vectors in [q]d<k interchangeably as indices to the same set of variables. For a
vector x ∈ [q]R and a permutation π of {1, . . . , R}, define π(x) ∈ [q]R defined by (π(x))i = xπ(i).

Let Γ = (X ∪ Y, E,Π = {πe : 〈R〉 → 〈R〉|e ∈ E}, 〈R〉) be a bipartite unique games instance.
Towards constructing a k-CSP instance Λ from Γ, we shall introduce a long code for each vertex
in Y. Specifically, the set of variables for the k-CSP Λ is indexed by Y × [q]R. Thus a solution to
Λ consists of a set of functions Fw : [q]R → [q], one for each w ∈ Y.

Similar to several other long code based hardness results, we shall assume that the long codes are
folded. More precisely, we shall use folding to force the functions Fw to satisfy Fw(x+1) = F (x)+1
for all x ∈ [q]R.

The k-ary constraints in the instance Λ are specified by the following verifier. The verifier uses
an additional parameter ε that governs the level of noise in the noise operator.

• Pick a random vertex v ∈ X . Pick k vertices {wa|a ∈ [q]d<k} from N(v) ⊂ Y uniformly at
random independently. Let πa denote the permutation on the edge (v,wa).

• Sample x,y1,y2, . . . ,yd ∈ [q]R uniformly at random. Sample vectors ηa ∈ [q]R for each
a ∈ [q]d<k from the following distribution: With probability 1 − ε, (ηa)j = 0 and with the
remaining probability, (ηa)j is a uniformly random element from [q].

• Query Fwa

(

πa(x +
∑

j ajyj + ηa)
)

for each a ∈ [q]d<k. Accept if the following equality holds

for each a ∈ [q]d<k.

Fwa

(

πa(x+

d
∑

j=1

ajyj +ηa)
)

=
(

1−

d
∑

j=1

aj

)

Fw0

(

π0(x+η0)
)

+

d
∑

j=1

ajFwej

(

πej
(x + yj + ηej

)
)

.

Theorem 5.1. For all primes q, positive integers d, k satisfying qd−1 < k 6 qd, and every γ > 0,
there exists small enough δ, ε > 0 such that

10

• Completeness: If Γ is a (1 − δ)-satisfiable instance of Unique Games, then there is an
assignment to Λ that satisfies the verifier’s tests with probability at least (1 − γ)

• Soundness: If Γ is not δ-satisfiable, then no assignment to Λ satisfies the verifier’s tests

with probability more than qd+1

qk + γ.

Proof. We begin with the completeness claim, which is straightforward.

Completeness: There exists labelings to the Unique Game instance Γ such that for 1− δ fraction
of the vertices v ∈ X all the edges (v,w) are satisfied. Let A : X ∪ Y → 〈R〉 denote one such
labelling. Define an assignment to the k-CSP instance by Fw(x) = xA(w) for all w ∈ Y.

With probability at least (1 − δ), the verifier picks a vertex v ∈ X such that the assignment A
satisfies all the edges (v,wa). In this case for each a, πa(A(v)) = A(wa). Let us denote A(v) = l.
By definition of the functions Fw, we get Fwa(πa(x)) = (πa(x))A(wa) = xπ−1

a (A(wa)) = xl for all

x ∈ [q]R. With probability at least (1 − ε)k, each of the vectors ηa have their lth component equal
to zero, i.e (ηa)l = 0. In this case, it is easy to check that all the constraints are satisfied. In
conclusion, the verifier accepts the assignment with probability at least (1 − δ)(1 − ε)k. For small
enough δ, ε, this quantity is at least (1 − γ).

Soundness: Suppose there is an assignment given by functions Fw for w ∈ Y that the verifier

accepts with probability greater than qd+1

qk + γ.
Let z1, z2, . . . , zk be random variables denoting the k values read by the verifier. Thus z1, . . . , zk

take values in [q]. Let P : [q]k → {0, 1} denote the predicate on k variables that represents the
acceptance criterion of the verifier. Essentially, the value of the predicate P (z1, . . . , zk) is 1 if and
only if z1, . . . , zk values are consistent with some affine function. By definition,

Pr[Verifier Accepts] = E
v∈X

E
wa∈N(v)

E
x,y1,...,yd

E
ηa

[

P (z1, . . . , zk)
]

>
qd+1

qk
+ γ

Let ω denote a qth root of unity. The Fourier expansion of the function P : [q]k → C is given by

P (z1, . . . , zk) =
∑

α∈[q]k

P̂αχα(z1, . . . , zk)

where χα(z1, . . . , zk) =
∏k

i=1 ωαizi and P̂α = E
z1,...,zk

[P (z1, . . . , zk)χα(z1, . . . , zk)]. Notice that for

α = 0, we get χα(z1, . . . , zk) = 1. Further,

P̂0 = E
z1,...,zk

[P (z1, . . . , zk)] = Pr[random assignment to z1, z2, . . . , zk satisfies P] =
qd+1

qk

Substituting the Fourier expansion of P , we get

Pr[Verifier Accepts] =
qd+1

qk
+
∑

α6=0

P̂α E
v∈X

E
wa∈N(v)

E
x,y1,...,yd

E
ηa

[

χα(z1, . . . , zk)
]

Recall that the probability of acceptance is greater than qd+1

qk + γ. Further |P̂α| 6 1 for all α ∈ [q]k.
Thus there exists α 6= 0 such that,

∣

∣

∣ E
v∈X

E
wa∈N(v)

E
x,y1,...,yd

E
ηa

[

χα(z1, . . . , zk)
]∣

∣

∣
>

γ

qk

11

For each w ∈ Y, t ∈ [q], define the function f
(t)
w : [q]d → C as f

(t)
w (x) = ωtFw(x). For convenience

we shall index the vector α with the set [q]d<k instead of {1, . . . , k}. In this notation,

∣

∣

∣ E
v∈X

E
wa∈N(v)

E
x,y1,...,yd

E
ηa

[

∏

a∈[q]d
<k

f (αa)
wa

(

πa(x +

d
∑

i=1

aiyi + ηa)
)

]∣

∣

∣ >
γ

qk

Let g
(t)
w : [q]d → C denote the smoothened version of function f

(t)
w . Specifically, let g

(t)
w (x) =

T1−εf
(t)
w (x) = Eη[f

(t)
w (x + η)] where η is generated from ε-noise distribution. Since each ηa is

independently chosen, we can rewrite the above expression,

∣

∣

∣ E
v∈X

E
wa∈N(v)

E
x,y1,...,yd

[

∏

a∈[q]d
<k

g(αa)
wa

(

πa(x +
d
∑

i=1

aiyi)
)

]∣

∣

∣
>

γ

qk
.

For each v ∈ X , t ∈ [q], define the function g
(t)
v : [q]d → C as g

(t)
v (x) = Ew∈N(v)[g

(t)
w (πvw(x))].

As the vertices wa are chosen independent of each other,

∣

∣

∣ E
v∈X

E
x,y1,...,yd

[

∏

a∈[q]d
<k

g(αa)
v

(

x +

d
∑

i=1

aiyi

)

]∣

∣

∣
>

γ

qk
.

As α 6= 0, there exists an index b ∈ [q]d<k such that αb 6= 0. For convenience let us denote
c = αb. Define

κ = 2−Cdq

(

γ

2qk

)2dq

where C is the absolute constant defined in Lemma 2.4.
For each v ∈ X , define the set of labels L(v) = {i ∈ 〈R〉 : Infi(g

c
v) > κ}. Similarly for each

w ∈ Y, let L(w) = {i ∈ 〈R〉 : Infi(g
c
w) > κ/2}. Obtain a labelling A to the Unique Games instance

Γ as follows : For each vertex u ∈ X ∪ Y, if L(u) 6= φ then assign a randomly chosen label from
L(u), else assign a uniformly random label from 〈R〉.

The functions g
(c)
w are given by g

(c)
w = T1−εf

(c)
w where f

(c)
w is bounded in absolute value by 1.

By Lemma 2.6, therefore, the sum of its influences is bounded by 1
e ln 1/(1−ε) . Consequently, for all

w ∈ Y the size of the label set L(w) is bounded by 2
κe ln 1/(1−ε) . Applying a similar argument to

v ∈ X , |L(v)| 6 1
κe ln 1/(1−ε) .

For at least γ/2qk fraction of vertices v ∈ X we have,

∣

∣

∣ E
x,y1,...,yd

[

∏

a∈[q]d
<k

g(αa)
v

(

x +

d
∑

i=1

aiyi

)

]∣

∣

∣ >
γ

2qk

We shall refer to these vertices as good vertices. Fix a good vertex v.

Observe that for each u ∈ X ∪ Y the functions g
(t)
u satisfy |g

(t)
u (x)| 6 1 for all x. Now we

shall apply Theorem 6.1 to conclude that the functions g
(t)
v have a large Gowers norm. Specifically,

consider the collection of functions given by fa = g
(αa)
v for a ∈ [q]d<k, and fa = 1 for all a /∈ [q]d<k.

From Theorem 6.1, we get

min
a

Udq(g(αa)
v) >

(γ

2qk

)2dq

12

In particular, this implies Udq(g
(c)
v) >

(

γ
2qk

)2dq

. Now we shall use Lemma 2.4 to conclude that

the function gv has influential coordinates. Towards this, observe that the functions f
(t)
w satisfy

f
(t)
w (x+1) = f

(t)
w (x)·ωt due to folding. Thus for all t 6= 0 and all w ∈ Y, Ex[f

(t)
w (x)] = 0. Specifically

for c 6= 0,

U1(g(c)
v) =

(

E
x
[g(c)

v (x)]
)2

=
(

E
w∈N(v)

E
η

E
x
[f (c)

w (x + η)]
)2

= 0

Hence it follows from Lemma 2.4 that there exists influential coordinates i with Infi(g
(c)
v) >

2−Cdq
(

γ
2qk

)2dq

= κ. In other words, L(v) is non-empty. Observe that, due to convexity of influences,

Infi(g
(c)
v) = Infi(E

w∈N(v)
[g(c)

w]) 6 E
w∈N(v)

Infπvw(i)([g
(c)
w (x)])

If the coordinate i has influence at least κ on g
(c)
v , then the coordinate πvw(i) has an influence

of at least κ/2 for at least κ/2 fraction of neighbors w ∈ N(v). The edge πvw is satisfied if
i is assigned to v, and πwv(i) is assigned to w. This event happens with probability at least

1
|L(u)||L(v)| > (eκ ln 1/(1 − ε))2/2 for at least κ/2 fraction of the neighbors w ∈ N(v). As there are at

least (γ/2qk) fraction of good vertices v, the assignment satisfies at least (γ/2qk)(eκ ln 1/(1 − ε))2κ/4
fraction of the unique games constraints. By choosing δ smaller than this fraction, the proof is
complete.

Since each test performed by the verifier involve k variables, by the standard connection between
hardness of MAX k-CSP and k-query PCP verifiers, we get the following hardness result conditioned
on the UGC.

Corollary 5.2. Assuming the Unique Games conjecture, for every prime q, it is NP-hard to ap-
proximate MAX k-CSP over domain size q within a factor that is greater than q2k/qk.

6 Gowers Norm and Multidimensional Arithmetic Progressions

We prove the following theorem which we used in the soundness analysis in the proof of Theorem 5.1.

Theorem 6.1. Let q > 2 be a prime and G be a Fq-vector space. Then for all positive integers
` 6 q and d, and all collections {fa : G → C}a∈[`]d of `d functions satisfying |fa(x)| 6 1 for every

x ∈ G and a ∈ [`]d, the following holds:

∣

∣

∣

∣

∣

∣

E
x,y1,y2,...,yd





∏

a∈[`]d

fa(x + a1y1 + a2y2 + · · · + adyd)





∣

∣

∣

∣

∣

∣

6 min
a∈[`]d

(

Ud`(fa)
)1/2d`

(3)

The proof of the above theorem is via double induction on d, `. We first prove the theorem
for the one-dimensional case, i.e., d = 1 and every `, 1 6 ` < q (Lemma 6.3). This will be done
through induction on `. We will then prove the result for arbitrary d by induction on d.

13

Remark 6.2. Green and Tao, in their work [7] on configurations in the primes, isolate and define
a property of a system of linear forms that ensures that the degree t Gowers norm is sufficient
to analyze patterns corresponding to those linear forms, and called this property complexity (see
Definition 1.5 in [7]). Gowers and Wolf [6] later coined the term Cauchy-Schwartz (CS) complexity
to refer to this notion of complexity. For example, the CS-complexity of the q linear forms x, x +
y, x + 2y, . . . , x + (q − 1)y corresponding to a q-term arithmetic progression equals q − 2, and the
U q−1 norm suffices to analyze them. It can similarly be shown that the CS-complexity of the
d-dimensional arithmetic progression (with qd linear forms as in (3)) is at most d(q − 1) − 1. In
our application, we need a ”multi-function” version of these statements, since we have a different
function fa for each linear form x+a·y. We therefore work out a self-contained proof of Theorem 6.1
in this setting.

Lemma 6.3. Let q > 2 be prime and `, 1 6 ` 6 q, be an integer, and G be a Fq-vector space. Let
{hα : G → C}α∈[`] be a collection of ` functions such that |hα(x)| 6 1 for all α ∈ [`] and x ∈ G.
Then

∣

∣

∣

∣

∣

∣

E
x,y1





∏

α∈[`]

hα(x + αy1)





∣

∣

∣

∣

∣

∣

6 min
α∈[`]

(

U `(hα)
)

1

2`
. (4)

Proof. The proof is by induction on `. For ` = 1, the LHS of (4) equals |E
x
[h0(x)]|, and the RHS

equals
√

U1(h0). By definition U1(h0) = E
x,y1

[h0(x)h0(x + y1)] = |E
x
[h0(x)]|2.

Now consider ` satisfying 1 < ` 6 q. By a change of variables it suffices to upper bound the

LHS of (4) by
(

U `(h`−1)
)1/2`

. We have

∣

∣

∣

∣

∣

∣

E
x,y1





∏

α∈[`]

hα(x + αy1)





∣

∣

∣

∣

∣

∣

2

6 E
x
[|h0(x)|2] · E

x





∣

∣

∣

∣

∣

∣

E
y′
1

[

∏

α∈{1,...,`−1}
hα(x + αy′1)

]

∣

∣

∣

∣

∣

∣

2



6 E
x,y′

1,z′1

[

∏

α∈{1,...,`−1}
hα(x + αy′1)hα(x + αz′1)

]

= E
x,y1,z1

[

∏

α∈{0,1,...,`−2}
hα+1(x + αy1)hα+1(x + αy1 + (α + 1)z1)

]

= E
z1



 E
x,y1

[

∏

α∈[`−1]

h̃z1
α (x + αy1)

]



 (5)

where we define h̃z1
α (t) := hα+1(t)hα+1(t + (α + 1)z1). By induction hypothesis, the inner expecta-

tion in (5) satisfies

E
x,y1

[

∏

α∈[`−1]

h̃z1
α (x + αy1)

]

6

(

U `−1(h̃z1
`−2)

)
1

2`−1
. (6)

14

Now,

(

E
z1

[

U `−1(h̃z1
`−2)

1

2`−1

]

)2`−1

6 E
z1

[

U `−1(h̃z1
`−2)

]

= E
z1

E
x,z2,...,z`

[

∏

S⊆{2,3,...,d}
|S| even

h`−1(x +
∑

i∈S

zi)h`−1(x + (` − 1)z1 +
∑

i∈S

zi)

∏

S⊆{2,3,...,d}

|S| odd

h`−1(x +
∑

i∈S

zi)h`−1(x + (` − 1)z1 +
∑

i∈S

zi)

]

= U `(h`−1) , (7)

where the last step uses the fact that for a random choice of z1, (` − 1)z1 is distributed uniformly
in G (this is why we need q to be a prime). Combining (5), (6), and (7), we obtain our desired

conclusion

∣

∣

∣

∣

E
x,y1

[

∏

α∈[`] hα(x + αy1)
]

∣

∣

∣

∣

6
(

U `(h`−1)
)1/2`

.

Proof of Theorem 6.1: Fix an arbitrary `, 1 6 ` 6 q. We will prove the result by induction on
d. The base case d = 1 is the content of Lemma 6.3, so it remains to consider the case d > 1.

By a change of variables, it suffices to upper bound the LHS of (3) by
(

Ud`(f(`−1)1)
)1/2d`

, and

this is what we will prove.
For α ∈ [`], and y2, y3, . . . , yd ∈ G, define the function

gy2,...,yd
α (x) =

∏

b=(b2,b3,...,bd)∈[`]d−1

f(α,b)(x + b2y2 + · · · + bdyd) . (8)

The LHS of (3), raised to the power 2d`, equals

∣

∣

∣

∣

∣

∣

E
y2,...,yd

E
x,y1

[

∏

α∈[`]

gy2,...,yd
α (x + αy1)

]

∣

∣

∣

∣

∣

∣

2d`

6



 E
y2,...,yd

[∣

∣

∣

∣

E
x,y1

∏

α∈[`]

gy2,...,yd
α (x + αy1)

∣

∣

∣

∣

2`]




2(d−1)`

6

∣

∣

∣

∣

E
y2,...,yd

U `(gy2,...,yd

`−1)

∣

∣

∣

∣

2(d−1)`

(using Lemma 6.3)

=

∣

∣

∣

∣

E
y2,...,yd

E
x,z1,...,z`

[

∏

S⊆{1,2,...,`}
gy2,...,yd

`−1

(

x +
∑

i∈S

zi

)

] ∣

∣

∣

∣

2(d−1)`

Defining the function

Hz1,...,z`

b (t) :=
∏

S⊆{1,2,...,`}
f(`−1,b)

(

t +
∑

i∈S

zi

)

(9)

for every b ∈ [`]d−1 and z1, . . . , z` ∈ G, the last expression equals

∣

∣

∣

∣

E
z1,...,z`

E
x,y2,...,yd

[

∏

b=(b2,...,bd)∈[`]d−1

Hz1,...,z`

b

(

x + b2y2 + · · · + bdyd

)

] ∣

∣

∣

∣

2(d−1)`

15

which is at most

E
z1,...,z`





∣

∣

∣

∣

E
x,y2,...,yd

[

∏

b=(b2,...,bd)∈[`]d−1

Hz1,...,z`

b

(

x + b2y2 + · · · + bdyd

)

] ∣

∣

∣

∣

2(d−1)`


 . (10)

By the induction hypothesis, (10) is at most

E
z1,...,z`

[

U (d−1)`
(

Hz1,...,z`

(`−1)1

)

]

Recalling the definition of Hz1,...,z`

b from (9), the above expectation equals

E
z1,...,z`

E
x,{z′

j
}

16j6(d−1)`







∏

S⊆{1,2,...,`}
T⊆{1,2,...,(d−1)`}

f(`−1)1

(

x +
∑

i∈S

zi +
∑

j∈T

z′j
)







which clearly equals Ud`(f(`−1)1).

References

[1] P. Austrin. Towards sharp inapproximability for any 2-CSP. In Proceedings of the 48th IEEE
Symposium on Foundations of Computer Science, pages 307–317, 2007.

[2] P. Austrin and E. Mossel. Approximation resistant predicates from pairwise independence.
Manuscript, December 2007.

[3] M. Charikar, K. Makarychev, and Y. Makarychev. Near-optimal algorithms for maximum
constraint satisfaction problems. In Proceedings of the 18th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 62–68, 2007.

[4] I. Dinur, V. Guruswami, S. Khot, and O. Regev. A new multilayered PCP and the hardness
of hypergraph vertex cover. SIAM J. Computing, 34(5):1129–1146, 2005.

[5] L. Engebretsen and J. Holmerin. More efficient queries in PCPs for NP and improved approx-
imation hardness of maximum CSP. In V. Diekert and B. Durand, editors, Proceedings of the
22nd Annual Symposium on Theoretical Aspects of Computer Science, volume 3404 of Lecture
Notes in Computer Science, pages 194–205. Springer, 2005.

[6] W. T. Gowers and J. Wolf. The true complexity of a system of linear equations.
arXiv:math.NT/0711.0185, 2007.

[7] B. Green and T. Tao. Linear equations in primes. arXiv:math.NT/0606088v1, 2006.

[8] G. Hast. Approximating MAX kCSP – outperforming a random assignment with almost a
linear factor. In Proceedings of the 32nd International Colloquium on Automata, Languages
and Programming, pages 956–968, 2005.

[9] G. Hast. Beating a Random Assignment: Approximating Constraint Satisfaction Problems.
PhD thesis, KTH: Royal Institute of Technology, 2005.

16

[10] J. Hȧstad. Some optimal inapproximability results. Journal of the ACM, 48(4):798–859, 2001.

[11] J. H̊astad. On the approximation resistance of a random predicate. In APPROX-RANDOM,
pages 149–163, 2007.

[12] J. H̊astad and A. Wigderson. Simple analysis of graph tests for linearity and PCP. Random
Struct. Algorithms, 22(2):139–160, 2003.

[13] S. Khot and O. Regev. Vertex cover might be hard to approximate to within 2-epsilon. In
Procedings of the 18th IEEE Conference on Computational Complexity, pages 379–388, 2003.

[14] Y. Nesterov. Quality of semidefinite relaxation for nonconvex quadratic optimization. CORE
Discussion Paper 9719, 1997.

[15] P. Raghavendra. Optimal algorithm and inapproximability results for every CSP? In Proceed-
ings of STOC 2008. To appear.

[16] A. Samorodnitsky and L. Trevisan. A PCP characterization of NP with optimal amortized
query complexity. In Proceedings of the 32nd ACM Symposium on Theory of Computing, pages
191–199, 2000.

[17] A. Samorodnitsky and L. Trevisan. Gowers uniformity, influence of variables, and PCPs. In
Proceedings of the 38th ACM Symposium on Theory of Computing, pages 11–20, 2006.

[18] L. Trevisan. Parallel approximation algorithms by positive linear programming. Algorithmica,
21(1):72–88, 1998.

[19] U. Zwick. Approximation algorithms for constraint satisfaction problems involving at most
three variables per constraint. In Proceedings of the Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 201–210, San Francisco, California, 25–27 Jan. 1998.

A Inequality

Lemma A.1. Let b0, b1, . . . , bq−1 be real numbers such that
∑

j∈[q] bj = 0. For any δ > 0,

∑

j∈[q]

(1 + δ)bj >
δ2

2q(q − 1)2

∑

j∈[q]

b2
j

Proof. Without loss of generality, we can assume b0 > b1 > . . . ,> bq−1. Let b = maxj∈[q]{|bj |}.

Since
∑

j∈[q] bj = 0, we have b0 >
b

q−1 .

∑

j∈[q]

(1 + δ)bj > (1 + δ)b0

>
δ2

2
b2
0 >

δ2

2

b2

(q − 1)2

>
δ2

2q(q − 1)2

∑

j∈[q]

b2
j

17

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

	Introduction
	Related Work
	Organization of the paper

	Preliminaries
	Unique Games conjecture
	Gowers uniformity norm and influence of variables
	Noise Operator

	Approximation algorithm for MAX k-CSP over any domain
	Reduction to MAX k-Equal
	Quadratic Program
	Analysis

	Linearity Tests and MAX k-CSP Hardness
	Hardness reduction from Unique Games
	Gowers Norm and Multidimensional Arithmetic Progressions
	Inequality

