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Abstract

The planar Hajós calculus is the Hajós calculus with the restriction that all the graphs that
appear in the construction (including a final graph) must be planar. We prove that the planar
Hajós calculus is polynomially bounded iff the Hajós calculus is polynomially bounded.

1 Introduction

One of the most important open questions in complexity theory is whether or not extended Frege
systems, the most powerful proof systems ever known for propositional formulas, are polynomially
bounded. Since extended Frege systems are very general, an obvious approach to this open question
is to seek a reduction to another system which appears more structured and/or less powerful. Pitassi
and Urquhart [21] made an important step to this goal, namely, they proved that the above open
question is equivalent to whether the Hajós calculus, which is a simple, nondeterministic procedure
for generating non-3-colorable graphs, is polynomially bounded. Thus, the famous open question
in proof complexity is beautifully linked to the open question in graph theory; in order to prove
superpolynomial lower bounds for the extended Frege systems, it now suffices to find a “hard
example” from the set of non-3-colorable graphs. Thanks to the long and extensive research history
of graph theory and graph algorithms, this is hopefully easier than finding a hard example from
the set of formulas. In this paper, we make another step toward this direction by showing that it
still suffices if Hajós calculus is restricted to within the class of planar graphs, not only for the final
graph but also intermediate ones. More formally:

Our contribution The Hajós calculus consists of three rules (see the next section), each of
which modifies a graph into another. For a given graph G, its construction is a sequence of
graphs G1, G2, . . . , Gm = G such that each Gi is a K4 or follows from its previous graph(s) by
applying one of the rules. Suppose that G is a non-3-colorable planar graph. Since the Hajós
calculus is complete, there must be such a construction if we allow non-planar graphs for Gi’s. Our
new generating system, the planar Hajós calculus, requires all the intermediate graphs to be also
planar. Since each rule of the Hajós calculus can easily violate planarity, this requirement imposes
a strong restriction in applying the rules and therefore the resulting system seems significantly
weaker than the original one. (In fact, even the completeness proof needs much more work than the
original proof.) Nevertheless we prove that the worst-case complexity of the planar Hajós calculus
is polynomially equivalent to that of the general Hajós calculus, i.e., the former is polynomially
bounded for all non-3-colorable planar graphs iff so is the latter for all non-3-colorable (general)
graphs.
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Thus, combined with [21], we would be able to claim a superpolynomial lower bound of extended
Frege systems by finding planar non-3-colorable graphs which need superpolynomial steps for its
construction by the planar Hajós calculus. To do so, we could use many graph properties specific
to planar graphs. For example there is always a small separator for a planar graph, which enables
us, for example, to design sub-exponential-time algorithms for many NP-hard problems (including
3-colorability) and to obtain nontrivial size lower bounds for planar circuits [19]. Planar graphs of
course admit planar embedding, which is also useful for designing e.g., linear-time algorithms for
isomorphism testing for planar graphs [15] and PTAS for the planar TSP [11]. Most importantly,
every planar graph is 4-colorable [2, 3], and we have the detailed case-analysis for efficiently coloring
planar graphs. We thus believe that our one-step from the Hajós calculus to the planar Hajós
calculus is not too small. Note that, although it is very unlikely, we could also claim NP = coNP
by proving the planar Hajós calculus is polynomially bounded, by taking these advantages.

Related work We briefly review the history on proving lower bounds for propositional proof
systems. As formalized by Cook and Reckhow [6], there exists a propositional proof system pro-
viding short (polynomial-size) proofs for all tautologies if and only if NP = coNP. In other
words, to prove superpolynomial lower bounds for powerful proof systems is a good evidence for
NP 6= coNP. To do so for the extended Frege systems is an obvious goal, but people had known
that is extremely hard and research interests have naturally shifted into their subsystems. Res-
olution is one of the most studied such a proof system. First superpolynomial lower bounds for
Resolution were obtained by Tseitin [26] in the special case of regular Resolution and this bound
was improved to an exponential one by Galil [8]. Haken [14] proved the first superpolynomial (ac-
tually exponential) lower bounds for general Resolution. After Haken’s breakthrough, several lower
bounds were obtained for stronger proof systems. Ajtai [1] gave superpolynomial lower bounds for
bounded-depth Frege proofs, and Pitassi et. al. [20] and Kraj́ıček et. al. [18] improved the bound
to an exponential one. These results lead exponential lower bounds for the subsystems of the Hajós
calculus [21, 16]. There are also several proof systems for which superpolynomial lower bounds are
known, including Gomory-Chvátal cutting planes [22], Lovász-Schrijver systems [7] and PCR [4].
More backgrounds on proof complexity can be found in [5, 17, 23, 24, 25, 27].

2 Hajós Calculus

Although the Hajós calculus generates non-k-colorable graphs for general k (≥ 3), we only consider
k = 3 in this paper. The set of initial graphs in the Hajós calculus contains all graphs isomorphic
to complete graph K4. There are three rules for generating new graphs:

1. Vertex/Edge Introduction Rule: Add (any number of) vertices and edges.

2. Join Rule: Let G1 and G2 be disjoint graphs, a and b adjacent vertices in G1, and a′ and
b′ adjacent vertices in G2. Construct a graph G3 from G1 ∪ G2 as follows. First, remove
edges (a, b) and (a′, b′); then add an edge (b, b′); lastly, contract vertices a and a′ into a single
vertex. (See Fig. 1(i))

3. Contraction Rule: Contract two nonadjacent vertices into a single vertex, and remove any
resulting duplicated edges.

Vertex/Edge Introduction Rule implies that if a subgraph of G has a construction, G also has a
construction. Rules 1 and 2 increase vertices and/or edges, but Rule 3 reduces vertices and edges,
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Figure 1: (i)Join Rule (ii)Edge Elimination Rule

thus the construction may not be polynomially bounded or the number of construction steps may
not be bounded by polynomial in |G|. There is another version of the Hajós calculus, denoted
by HC. The system HC has the same set of initial graphs, as well as Rules 1 and 3 of the Hajós
calculus, but Rule 2 is replaced by the following rule:

4. Edge Elimination Rule: Let G1 and G2 be two graphs with common vertex set {a, b, c, . . .}
which are identical except that G1 contains edges (a, b) and (b, c) and not (a, c), whereas G2

contains edges (a, b) and (a, c) and not (b, c). Then from G1 and G2, we can construct a graph
G3 that is identical to G1 but does not contain (b, c) (See Fig. 1(ii)).

Let C and C′ be two graph calculus systems, then C p-simulates C′ if there is a polynomial-time
computable function f so that for all graphs G, if σ is a graph construction of G in C′, then f(σ) is
a graph construction of G in C. C and C′ are p-equivalent if C p-simulates C′ and C′ p-simulates C.

Proposition 1 ([21]). HC is p-equivalent to the Hajós calculus.

3 Planar Hajós Calculus

Now we introduce our new system, the planar Hajós calculus. Suppose that a sequence of graphs
G1, G2, . . . , Gm satisfies the following conditions: (i) All Gi are planar. (ii) Each Gi is K4 or is
constructed from previous graph(s) by one of the three rules of HC. Then we say that Gm is
constructed by planar HC or PHC. Note that Rules 1 and 3 (but not Rule 4) may violate the
planarity of the graph. So, the definition is equivalent to the following: When we introduce a new
edge between vertices a and b of Gi, then there must be a planar embedding of Gi such that a and
b are on the same face. When we apply Contraction Rule between vertices a and b of Gi, then
there must be a planar embedding of Gi such that for all vertices x being adjacent to a, vertex b

is also adjacent to x or b and x are on the same face.
In some cases, this planarity restriction is quite annoying. Fig. 2(i) shows a simple example.

Suppose that we wish to remove the chord (u, v) to make a face of size five in some planar graph as
G1. Then what we would do is to construct another planar graph as G2 and apply Edge Elimination
Rule to obtain G3. One should notice, however, that this can be done because we can draw the other
cord (u,w) without violating planarity and that it is no longer obvious if such a chord elimination
is still possible for a face of size four.

To overcome this difficulty, we introduce a new Edge Elimination Rule.

5. Edge Elimination Rule II: Let G1 be a graph with vertices {a, b, . . .} that contains an
edge (a, b), and G2 be the same graph as G1 except that vertices a and b (after removing the
edge between them) are contracted. Then from G1 and G2, we can construct a graph G3 that
is identical to G1 but does not contain (a, b) (See Fig. 2(ii)).
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Figure 2: (i)Removing chords (ii)Edge Elimination Rule II

To make the difference clear, Rule 4 is called Edge Elimination Rule I from now on. This rule
obviously keeps non-3-colorability and the following fact shows that it is at least as powerful as
the Rule 4. See Fig. 1(ii). Let G4 be a graph obtained by contracting an edge (a, c) of G1. Then
we get G3 from G2 and G4 by Edge Elimination II, meaning Rule 4 can be simulated by Rules 5
and 3. (Consequently, notice that Rules 1, 3 and 5 are a new complete system for generating
non-3-colorabe graphs.)

Thus adding Rule 5 to PHC may seem to increase the power of the system, but we can prove
that this is not the case, i.e., Rule 5 can be simulated by PHC in polynomial steps, as shown in
Lemma 3 of section 5. It turns out that the new rule is quite convenient for dealing with faces of
size four, which plays an important role in the rest of the paper.

Obviously PHC is sound, i.e., all graphs generated by PHC are non-3-colorable (planar) graphs.
Let LPHC be the set of such graphs generated by PHC. What we want to prove to attain our goal
is that HC generates all non-3-colorable graphs in polynomial steps if and only if PHC generates all
graphs in LPHC in polynomial steps. Thus LPHC does not necessarily contain all non-3-colorable
planar graphs or PHC is not necessarily complete. In fact there is no obvious extension of the
proof for the HC’s completeness to the proof for the PHC’s completeness. Fortunately, however,
the proof of our main theorem immediately implies the completeness of PHC, which is an important
by-product of this paper.

4 Planarization of a Graphs

Intuitively speaking, our main theorem clams that PHC is as powerful as HC. To prove this, the
natural approach is to develop a simulation of HC by PHC: Suppose that a planar graph G can
be generated by HC by a sequence of (maybe non-planar) graphs G1, G2, . . . , Gm = G. Then what
we do is to define planar graphs H1,H2, . . . ,Hm = G such that each Hi is “similar” to Gi and it
can be generated by PHC from previous Hj ’s (j < k) in polynomial steps. To define the similarity,
we can use the so-called the Crossover Gadget ; [10] showed that for a given (non-planar) drawing
Ĝ of a graph G, we can construct a planar graph H such that G is 3-colorable iff H is 3-colorable.
(A graph is drawn in the plane in such a way that each vertex v is represented by a point and each
edge (u, v) by a continuous line connecting the two points corresponding to u and v.)

Definition 1 ([10]). The Crossover Gadget, denoted by 3, is a planar graph given in Fig. 3(i).
Outer vertices a and c (b and d, also) are said to be opposite. One can easily see that opposite
vertices must have the same color in any proper 3-coloring.

Using this gadget, the non-planar drawing of G1 of Fig. 3(ii) is converted to a planar graph G′
1
,

where X and Y are Crossover Gadgets. More formally:

Definition 2. For a given drawing G of a graph, its planarization P (G) is a planar graph con-
structed by the following procedure: (i)Each crossing of G is replaced by a 3 (see Fig. 3(iii)(a)–(b)).
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Figure 3: (i)Crossover Gadget (ii)Example of Planarization (iii)Planarization Process

(ii)Let u, x1, y1, . . . , xk, yk, v be vertices corresponding to edge (u, v) in G, where xi and yi are pairs
of opposite vertices of each introduced 3’s, and consider pairs of vertices (u, x1), (y1, x2), . . . , (yk, v).
Draw an edge for exactly one of these k + 1 pairs and contract all the others. (See Fig. 3(iii)(c)).

The structure as shown in Fig. 3(iii)(c) is called an extended edge (or E-edge for short) and is
also illustrated as in Fig. 3(iii)(d), where dotted lines show contractions and •’s show Crossover
Gadgets. Fig. 3(ii) shows such a representation of P (G1).

5 Basic Tools of PHC

In this section we will prove a key lemma (Lemma 1). Suppose that there is a sequence G1, G2, . . . , Gm

of planar graphs such that (i)G1 is any (non-3-colorable, often omitted) planar graph (called an
axiom) (ii)For each 2 ≤ i ≤ m, Gi is K4 or can be derived from previous graphs by PHC in

polynomial steps. Then we write G1

∗
⇒ Gm. We also write G1, G2

∗
⇒ Gm if we need two axioms.

Lemma 1 (Redrawing). Suppose G1 and G2 are two drawings of the same (not necessarily

planar) graph. Then P (G1)
∗
⇒ P (G2) in poly(|G1|) + |G2|) steps.

The following lemmas provide convenient tools to prove G1

∗
⇒ G2 and to prove Lemma 1.

Lemma 2 (Triangle Elimination). Let G1 be a planar graph having a vertex v with degree at
most two, and G2 be the (obviously planar) graph obtained by removing v and its outgoing edges

from G1. Then G1

∗
⇒ G2 in polynomial steps.

Proof. If v’s degree is zero, all we have to do is to merge it to a nearby vertex. Suppose that v’s
degree is one. Then v has only one edge, (u, v), and if u is adjacent to another vertex w, then we
can contract v and w. Otherwise, contract u and v with u′ and v′ such that an edge exists between
them (If no such u′ and v′ exist, then the graph would be 3-colorable).

So, we can restrict ourselves to the case that v is of degree two. See Fig. 4(i). Let a and b be the
two vertices adjacent to v and there may or may not be an edge between a and b. We add vertices
and edges as G3 and G4, and get G5 by Edge Elimination I. Now we are going to remove triangle
a, v′, v′′ (vertices v′, v′′ and the three edges). This is the main part of this lemma and therefore we
call this procedure Triangle Elimination. If a is a part of another triangle a, c′, c′′ as shown in G6,
then we just contract v′ and c′ and v′′ and c′′.
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Figure 4: (i)Triangle Elimination (ii)Equality Introduction (iii)Edge Elimination II

Otherwise, we look for a triangle near a (say, e, d′, d′′ in G7) which is guaranteed to exist
somewhere since the underlying graph is a non-3-colorable, planar graph [12]. Then we continue to
change the graph into as G8 and G9 by Vertex/Edge Introduction then G10 by Edge Elimination I,
and G11 by Contraction (of vertices g and h), which allows us to introduce one extra edge (a, a′)
to the triangle. By repeating the same procedure, we can get another extra edge (a′, a′′) as in G12.

Now we can contract a′ and f , a′′ and e, v′ and d′, and v′′ and d′′. Extension to the general
case is straightforward. ¤

Lemma 3 (Simulation of Edge Elimination II). Edge Elimination II can be simulated by
PHC in polynomial steps.

Proof. For the simulation, we first need a tool, what we call Equality Introduction (see Fig. 4(ii)).
Consider an arbitrary vertex, say, a, as in G5. Our goal is to split a into two vertices a and a′

and to put two triangles with a shared edge between them as G8. The edges from a are arbitrarily
divided into from a and from a′ whenever the resulting graph is a planar graph. If the number of
such divided edges from a′ (or from a) is one, see G1 ∼ G4. From G1 to G2, a simple Vertex/Edge
Introduction is enough, G3 can be constructed from K4, and G4 is due to Edge Elimination I from
G2 and G3. If there are two edges from a′, see G5 ∼ G8 (The case that there are three or more
edges from a′ is similar and omitted). Repeat the above procedure twice to get G6 and contract a′

and a′′ and c and c′ to get G7. Finally G8 can be obtained by contracting d and d′.
Now the simulation of Edge Elimination II goes like Fig. 4(iii). From G1 to G4 is by Equality

Introduction, G2 to G5 by Vertex/Edge Introduction, G6 (and also G7 = G6) by Edge Elimination I.
G8 is obtained by Edge Elimination I and finally we get G3 by Triangle Elimination. ¤

Lemma 4 (Crossover Construction). Crossover Gadget G1 as shown in Fig. 5 can be con-
structed by PHC.

Proof. First we get X(2) by Equality Introduction to K4. Then G3, G4, G6, G8, G9 are obtained
from X(2) by (after contracting c and f for G3, G6 and G9) Vertex/Edge Introduction. For
example, G3 has a subgraph obtained by contracting c and f of X(2). Note that labels a to g are
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Figure 5: Crossover Construction

used to show corresponding vertices. All the remaining graphs are obtained by Edge Elimination II
which can now be used by Lemma 3. For example, we get G2 from G3 and G4 since G3 is a graph
obtained by contracting e and f of G4 (edge (e, f) of G4 is given as a bold line in the figure and
similarly for the others). ¤

Lemma 5 (Crossover Introduction). As Equality Introduction, a Crossover Gadget can be
added. See Fig. 6(i).

Proof. From G1 to G4, we just use Vertex/Edge Introduction (the added part is a Crossover
Gadget whose two opposite vertices are merged). G3 is by Crossover Construction that is possible
by Lemma 4. Use just Vertex/Edge Introduction to make G5 similar to the whole underlying graph.
Finally G2 is obtained by Edge Elimination II. ¤
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Lemma 6 (Crossover Elimination). Let a, b, c and d be four outer vertices of a Crossover
Gadget and b and d be opposite. Moreover c is free, i.e., c is not connected to any vertices except
those in the Crossover Gadget. Then this Crossover Gadget can be removed, i.e., b and d are merged
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into a single vertex, a also remains, but all the other vertices and edges of the Crossover Gadget
can be removed in polynomial steps. Namely, G1 is changed to G2 in Fig. 6(ii).

Proof. Contracts vertices a and f (and three others similarly) to get G3, and remove triangles
to get G4. Contract b and d (this is possible since c has no edges other than the three edges of the
gadget). Two Triangle Eliminations to get G6. As a different direction from the original graph,
merge e and g (and three others) to get G7, and contract c to h, b to a and d to a to get G8. G9

is obtained by applying two Contractions, i and j and k and l, G10 is by Triangle Elimination.
Finally use Edge Elimination II from G6 and G10 to G2. ¤

Now we are ready to prove Lemma 1.

Proof of Lemma 1. Let G1 and G2 be two drawings of the same graph G. We are going to show
that P (G1)

∗
⇒ P (G2) can be done (in polynomial steps) by the following algorithm. For exposition,

we use the example in Fig. 7(i) (recall that a Crossover Gadget is represented by •). Note that
vertices of the same label in P (G1) and P (G2) correspond to the same vertex of G.

Step 1 P (G2) is just added to P (G1) (by Vertex/Edge Introduction).

Step 2 Connect each pair of two vertices of the same label by using Crossover Gadgets as shown
in Fig. 7(i). Let this new graph be G3. Note that we may need two or more Crossover Gadgets
to connect a single pair of vertices to maintain newly created crossings but it is easily seen that
we can bound the total number of those Crossovers by a polynomial in |P (G1)| + |P (G2)|. Each
vertex label in P (G1) is changed from ` to `′ (a to a′, b to b′, etc., as in the Figure).

Step 3 We now delete all the edges of P (G1) one by one: Suppose that we want to delete edge
(b′, c′). Then all we have to do is to create a graph which is exactly the same as G3 except that
vertices b′ and c′ are contracted (and then Edge Elimination II can be used to remove the edge). To
to so, consider the cycle consisting of E-edge (b, c), edge (b′, c′), and Crossover Gadgets connecting
b and b′, and c and c′ (Fig. 7(ii)(a)). Note that the cycle is “twisted” and one can easily see that
at most one twist is enough for each cycle (The following procedure becomes easier if there is no
twist).

Now see Fig. 7(ii)(b). Our goal is to construct G3 with contracted b′ and c′. We start with a
planar graph in Fig. 7(ii)(d) consisting of a single Crossover Gadget (let its outer vertices be e, f, g

and h, e and g and f and h are opposite) such that e and f are connected by a single edge and
g and h are contracted. Obviously this graph is non-3-colorable, and it can be generated by PHC
in finite steps. (See Fig. 8. G1 is just by Crossover Construction. G2 is obtained from G1 by two
contractions between b and c and d and c. G3 is obtained from G1 by contracting c and d and
adding an edge (a, b). Note that labels a to d of G1 are used to show corresponding vertices. Finally
we get G4, which is exactly the same graph in Fig. 7(ii)(d), from G2 and G3 by Edge Elimination II
since G2 and G3 are the same graph if the bold (a, c) in G3 is contracted.) We then insert two
Crossover Gadgets at vertices e and f and get Fig. 7(ii)(e), which is exactly the same as (b). Now
we add vertices and edges to make it the same as G3 excepting the contracted b′ and c′. Let this
new graph be G′

3
and apply Edge Elimination II to delete the edge (b, c) from G3 as in Fig. 7(ii)(c).

Repeat this procedure to remove all the edges of P (G1) part. Thus we obtain the graph as in
Fig. 7(iii)(a).
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Step 4 Remove all the Crossover Gadgets excepting those within P (G2) to get Fig. 7(iii)(b).
Recall that when we remove the Crossover Gadgets, one by one, we need to find a Crossover
Gadget such that at least one of its outer vertices is free. To see this is always possible until all the
Crossover Gadgets disappear, see the cycle as in Fig. 7(iv)(a). Note that the cycle is twisted and
we can regard that it consists of two cycles, C1 and C2, each including an edge (e or e′). Suppose
that edge e′ is removed at step 3. Then the cycle C2 is “cut”, as shown in Fig. 7(b). Thus Crossover
Gadgets X1 and X2 have free outer vertices and can be removed. Then X3 has a free vertex and
is removed. Then X4 can be removed and the second cycle C1 is also cut and Crossover Gadgets
included this cycle can also be removed similarly.

This complete the proof for P (G1)
∗
⇒ P (G2). It is not hard to see that the procedure needs

only polynomial steps. ¤
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6 Main Theorem

We are now ready to prove our main theorem.

Theorem 1. PHC is polynomially bounded iff so is HC.

Proof. We first prove the if-part. Suppose that HC is polynomially bounded for any (non-3-
colorable) graph. Then it is obviously polynomially bounded for any (non-3-colorable) planar graph
G. Hence there is a sequence of (not necessarily planar) graphs

G1, G2, . . . , Gm = G

such that each Gi is (i) K4 or (ii) for some j < i, Gi is generated from Gj by Rule 1 (Vertex/Edge
Introduction) or Rule 3 (Contraction) of HC or (iii) for some j, k < i, Gi is generated from Gj

and Gk by Rule 4 (Edge Elimination I) of HC, all in time polynomial in |G|. For this sequence of
graphs, we prove that there exists a sequence of drawings

H1, H2, . . . ,Hm,H

such that:

(i) Hi is a (maybe non-planar) drawing of Gi and H is an arbitrary planar drawing of G.

(ii) For each 1 ≤ i ≤ m, K4

∗
⇒ P (Hi) or for some j < i, P (Hj)

∗
⇒ P (Hi) or for some j, k < i,

P (Hj), P (Hk)
∗
⇒ P (Hi), all in polynomial steps. Here, “polynomial” means polynomial

in |P (Hj)| + |P (Hk)|, which also means polynomial in |G| since |P (Hi)| is bounded by a
polynomial in |Gi| for all i and |Gi| is bounded by a polynomial in |G| by assumption.

(iii) P (Hm)
∗
⇒ H in polynomial (the same as above) steps.

Now we shall prove that for each Gi and G, there exists the corresponding Hi and H that satisfy
these three conditions by induction, which obviously means that any non-3-colorable planar graph
(G) can be generated by PHC in a polynomial number of steps. If i = 1, then G1 must be a K4.

Then we can select H1 as the planar drawing of K4, and obviously K4

∗
⇒ P (H1) in 0 steps.

For Gi (i ≥ 2), there are several cases:

Case 1 Gi is a K4. Completely the same as above.

Case 2 Gi is obtained from Gj (j < i) by Vertex/Edge Introduction. By induction hypothesis
Hj is a proper drawing of Gi. To add an vertex, just add one in anywhere Hj to obtain Hi, which
is obviously a proper drawing of Gi and satisfies the three conditions. If an edge is added between
v1 and v2 of Gj , then we draw an edge between the corresponding vertices of Hi, which is also a
proper drawing of Gi. For P (Hi) we may need to add Crossover Gadgets along the added edge.
The number of such Crossover Gadgets is at most the number of already existing (E-)edges and

thus a polynomial number of steps suffice for P (Hj)
∗
⇒ P (Hi).

Case 3 Gi is obtained from Gj (j < i) by contracting two vertices, v1 and v2. To obtain Hi, we just

“drag” v′
1

to v′
2
, where v′

1
and v′

2
correspond to v1 and v2 of Gj , respectively. For P (Hj)

∗
⇒ P (Hi),

see Fig. 9(i). Again we drag v′i into the face v′
2

is on in P (Hj), where we may need to add (at most
a polynomial number of) Crossover Gadgets as shown in Fig. 9(i). After that the two vertices are

contracted in a single step. Thus the whole P (Hj)
∗
⇒ P (Hi) needs polynomial steps.
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Figure 9: (i)Case 3 (ii)Case 4

Case 4 Gi is obtained from Gj and Gk (j, k < i) by Edge Elimination I. Let v1, v2 and v3 be
important vertices such that edge (v1, v2) exists both in Gj and Gk, edge (v2, v3) only in Gj , edge
(v1, v3) only in Gk. All the other parts of Gj and Gk are the same. Let G′

j (G′
k, respectively) be the

graph obtained from Gj (Gk, respectively) by removing the above two edges (v1, v2) and (v2, v3)
((v1, v2) and (v1, v3), respectively). By definition, G′

j and G′
k are the same graph and have the

same drawing Ḡ′
j and Ḡ′

k. This uniqueness of the drawing is important when we handle P (H ′
j) and

P (H ′
k) later, and for such a drawing, we can use for instance the following method. The vertices are

placed on a circle in the clockwise order of v1, v2, v3, . . . , vn, and each edge is drawn as a straight
line (See Fig. 9(ii)).

Now we put the removed two edges back to each of Ḡ′
j and Ḡ′

k, obtaining H ′
j and H ′

k, where
(v1, v2) and (v2, v3) are drawn as straight lines, but (v1, v3) is drawn as going around the outside of
v2 without any crossings. Their planarization P (H ′

j) and P (H ′
k) are given in Fig. 9(ii). Apparently

Hj and H ′
j are drawings of the same graph Gj and so are Hk and H ′

k. Hence, by Lemma 1,

P (Hj)
∗
⇒ P (H ′

j) and P (Hk)
∗
⇒ P (H ′

k), both in polynomial steps. Since P (H ′
j) and P (H ′

k) are
exactly the same graph excepting edge (v2, v3) in P (H ′

j) and (v2, v3) in P (H ′
k), we can apply Edge

Elimination I to get the graph P (Hi). Because of the drawing rule above mentioned, we can
determine Hi from P (Hi) uniquely, which is obviously a drawing of Gi.

Case 5 Deriving of H from P (Hm). Recall that H is a planar drawing of G and Hm is a (possibly
non-planar) drawing of Gm, but since Gm and G are the same graph, H and Hm are drawing of

the same graph. Thus we can use Lemma 1, i.e., P (Hm)
∗
⇒ H in polynomial steps. This completes

the proof of the if-part.

The proof of the only-if part is easier but rather technical. Suppose that PHC is polynomially
bounded. Let G be any (possibly non-planar) non-3-colorable graph and we denote its reasonable
(without too many crossings) drawing also by G. Then the size of P (G) is bounded by a polynomial
and it can be generated by PHC in polynomial steps. In order to show that HC is polynomially
bounded, it now suffices to show that G can be derived from P (G) by HC in polynomial steps.
Note that this is nothing other than a sequence of Crossover Eliminations. See Fig. 10(i): G1 is a
Crossover Gadget we want to remove. G3 is obtained by Contractions of a and c, b and d and pairs
of vertices labeled by s, t, v, w (recall we do not have to preserve planarity). G4 is by Triangle
Elimination (we need a care as mentioned below). G5 and G7 are by Contractions of b, d and a, c,
and s and b, d, respectively. G6 and G8 are both by sequences of triangle Eliminations. Finally, G2

is by Edge Elimination II.
Recall that the previous proof for Triangle Elimination needed the fact that any non-3-colorable

planar graph has a triangle as a subgraph. In the above derivation, we cannot use this property
since the graph may no longer be planar. So, in the following, we redesign the procedure for
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Triangle Elimination by assuming that the graph includes a chord-less cycle of odd length. (Any
non-3-colorable graph has such a cycle since otherwise the graph is bipartite.) See Fig. 10(ii). By
using the same procedure as before, we can make a triangle cde and a “shaft” abc which connects
the triangle and the odd cycle. Our goal is to remove this triangle and shaft. Recall that we can
change the length of shaft arbitrarily.
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(iv) (v)
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v w
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Figure 10: Crossover Elimination and Triangle Elimination

We have three basic operation: (i)Chord of size three(3-chord). As shown in Fig. 10(ii), we
can replace the triangle and shaft by a chord which connects two cycle vertices of distance two
(as in G2). This can be done by, for instance, contracting b and b′, c and c′, d and d′, and e and
b′. (ii)Inner triangle. As shown in G3, we can replace the triangle and chord by a inner triangle
consisting of one cycle edge + two chords by a procedure similar to (i). (iii)Chord Shift. See
Fig. 10(iii). Suppose that the triangle and shaft is replaced by chord ab (G1). Then we also apply
3-Chord to the original graph and get G2. G3 and G4 are obtained by Vertex/Edge Introduction
from G1 and G2 respectively. Then Edge Elimination I from G3 and G4, we can get G5 where the
one endpoint of the chord is “shifted” two positions on the cycle.

Now the triangle and shaft can be removed as follows: If the cycle is a triangle then we are
done as before. If the cycle is of size five, then see Fig. 10(iii). By 3-chord, we can make G1 and
G2, followed by Edge Elimination I. Suppose that the cycle is of size seven or more. See Fig. 10(v).
G1 is obtained by Inner Triangle, where two chords connect vertices of distance three and distance
four, and G2 by 3-Chord + Edge Addition. G3 is by Edge Elimination I and G4 by Chord Shift.
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Notice that in G3 the chord connects two vertices whose lower-half distance is odd and this is also
true in G4. Repeating Chord Shift, we can reach, from the original graph, G5 where the chord
connects two cycle vertices of distance three. G6 is obtained by 3-Chord and finally G7 is obtained
by Edge Elimination I.

Thus Triangle Elimination is still possible for non-planar non-3-colorable graphs, completing
the proof of the only-if part. ¤

If we allow arbitrary steps for generation, the above proof claims that if a planar non-3-colorable
graph G is generated by HC, then so is by PHC. Since the former is complete, we have the following
theorem:

Theorem 2. PHC is complete.

7 Concluding Remarks

Recall that our final goal is to find a hard example for PHC. Note that if the generation system is
more deterministic, or application of each rule is more restricted, then it is usually better to prove
lower bounds. In this sense, we should seek even more restricted graph calculus whose complexity
is p-equivalent to that of PHC. We already have candidates, for example, generation systems for
degree-restricted non-3-colorable planar graphs.
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