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Abstract

Given a function f : {0, 1}n → {0, 1}, let εM (f) denote the smallest distance between f and a monotone

function on {0, 1}n. Let δM (f) denote the fraction of hypercube edges where f violates monotonicity.

We give an alternative proof of the tight bound: δM (f) ≥ 2

n
εM (f) for any boolean function f . This was

already shown by Raskhodnikova in [Ras99].

Let U be a set of objects and let P ⊆ U be a property of the elements of U . For many natural definitions

of U and P , an object in U that is “globally” far from being in P also exhibits many “local” discrepancies.

Thus, to test whether an object is globally far from being in P , one often only needs to make a few local

checks for discrepancies. In this note, we characterize the relationship between global and local farness with

respect to the property of monotonicity of boolean functions.

First, we fix some notation. For two elements x, y ∈ {0, 1}n, x is said to be less than y, or x ≺ y, if

x 6= y and for all i ∈ [n], xi ≤ yi. We view the set {0, 1}n as vertices of the n-dimensional hypercube

graph. An edge (x, y) in this graph denotes a pair of strings x and y such that x ≺ y and the Hamming

distance between x and y is exactly 1. Note that the number of edges in {0, 1}n is exactly 1
2n2n. For a

function f : {0, 1}n → {0, 1}, we say that an edge (x, y) is violated by f if x ≺ y but f(x) > f(y). The

function f is monotone if and only if no edge in the hypercube is violated by f .

Now, let us define the following two quantities:

Definition 1. For a function f : {0, 1}n → {0, 1},

• εM (f)
def
= min

g
Pr

x∈{0,1}n

[f(x) 6= g(x)], where g : {0, 1}n → {0, 1} ranges over all monotone functions

• δM (f)
def
= Pr

e edge in {0,1}n

[e violated by f ]

εM (f) represents the global distance of f from the monotonicity property. δM (f) is a local dis-

tance measure corresponding to the following natural test of monotonicity (analyzed, e.g., in [DGL+99,

GGL+00]): choose some random edges in the hypercube and check whether they are violated by f . The

combinatorial question that now arises is the characterization of the relationship between the two distance

measures. Goldreich et al. in [GGL+00] observed that this relationship is not simply determined; that is,

εM (·) is not just a function of δM (·) or vice versa. In fact, they proved the following:

Theorem 2 (Proposition 4 of [GGL+00]). For every c < 1, for any sufficiently large n, and for any α such

that 2−c·n ≤ α ≤ 1
2 :

1. There exists a function f : {0, 1}n → {0, 1} such that α ≤ εM (f) ≤ 2α and

δM (f) =
2

n
εM (f)

2. There exists a function f : {0, 1}n → {0, 1} such that (1 − o(1))α ≤ εM (f) ≤ 2α and

δM (f) = (1 ± o(1)) · (1 − c) · εM (f)
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[GGL+00] show that the function in the second part essentially achieves the maximum δM relative

to εM . They prove that, provided δM (f) > 2−o(n) (or equivalently, εM (f) > 2−o(n)), δM (f) ≤ (1 +
o(1))εM (f) which is appproximately what is achieved 1 in Theorem 2. The lowerbound in δM (f) is also

known to be tight. Sofya Raskhodnikova in her Masters thesis ([Ras99]) showed that δM (f) ≥ 2
n
εM (f).

We reprove this claim with a different proof that might be of independent interest.

Theorem 3. For any f : {0, 1}n → {0, 1},

δM (f) ≥
2

n
εM (f)

Our proof of Theorem 3 takes a slightly different approach than the corresponding proof of Theorem 2 in

[Ras99]. Both proofs proceed by showing that if there are not too many violated edges, then f can be made

monotone by changing its value at only a few vertices, but the proof of [GGL+00] uses a switching/sorting

operator while our proof shows more explicitly how to repair violated edges and is perhaps a little more

intuitive in the sense that the claims in the proof require less “checking” and case analysis.

Proof of Theorem 3. Given a function f : {0, 1}n → {0, 1} with at most ε2n violated edges, we show how

to obtain a monotone function by modifying the value of f at only ε2n many vertices of the hypercube.

Then, by the contrapositive, we will have that δM (f) ≥ εM (f)2n

n2n−1 = 2
n
εM (f).

The modification of f proceeds in n stages, where at each stage i, we repair the violated edges that lie2

in direction i. That is, we define a sequence of boolean functions g0, g1, . . . , gn such that g0 equals f and

the violated edges of each gi lie in directions greater than i. So, the last function in the sequence, gn, must

be monotone.

Let us define gi, given gi−1, for some i ∈ {1, . . . , n}. We assume inductively that gi−1 does not

have any violated edges in directions < i. Let H0
i = {x : xi = 0} and let H1

i = {x : xi = 1}.

The edges {(x, x ⊕ ei) : x ∈ H0
i } are a perfect matching between H0

i and H1
i . Let Mi be the subset

of the edges of this matching which are violated by gi−1. That is, if (x, y) ∈ Mi, xi = 0 and yi = 1
but gi−1(x) = 1 and gi−1(y) = 0. Additionally, we define the following sets of edges violated by gi−1:

Li = {(x, y) : (x, y) violated by gi−1, x, y ∈ H0
i }, L1

i = {(x, y) ∈ Li : (x, x ⊕ ei) ∈ Mi}, L2
i = Li − L1

i ,

Ri = {(x, y) : (x, y) violated by gi−1, x, y ∈ H1
i }, R1

i = {(x, y) ∈ Ri : (y ⊕ ei, y) ∈ Mi}, and R2
i =

Ri − R1
i . Now, gi is defined as follows. If |L1

i | ≤ |R1
i |, then:

gi(x) =

{

1 for (x ⊕ ei, x) ∈ Mi

gi−1(x) otherwise
(1)

Otherwise, if |L1
i | > |R1

i |, then:

gi(x) =

{

0 for (x, x ⊕ ei) ∈ Mi

gi−1(x) otherwise
(2)

So, gi repairs gi−1 in the i’th dimension by changing gi−1 so that either all the edges in Mi have both

endpoints labeled 1 or all the edges in Mi have both endpoints labeled 0. Furthermore, we will show that gi

does not introduce any new violated edges in directions less than i. Formally, we show the following:

1If the proviso δM > 2−o(n) is not true, then the second part of Theorem 2 is not tight. Consider δM = 2−c·n for c = Θ(1).

In this case, we can better the second item of Theorem 2; there exists a function f such that δM (f) = 2 · (1 − H−1
2 (1 − c)) ·

(1 ± o(1)) · εM (f), where H−1
2 (·) is the inverse of the binary entropy function, H2(p) = p log2 1/p − (1 − p) log2 1/(1 − p),

when restricted to p ∈ [0, 1
2
]. This function f has value 0 on all strings of weight 0, value 1 on all strings of weight 1, value 0 on

all strings of weight 2, and so on, until there are δM · n2n−1 violated edges (and then value 1 for rest of the strings). The same

analysis as in the proof of Proposition 4 in [GGL+00] combined with the fact that
∑

kn

i=0

(

n

i

)

≤ 2(H2(k)+o(1))n then yields the

desired result. This construction can also be shown to be tight, that is, it maximizes δM relative to εM .
2An edge (x, y) is said to lie in direction i if x and y differ only at the i’th coordinate.
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Figure 1: The values of gi−1 at the four vertices are labelled.

Lemma 4. For any g : {0, 1}n → {0, 1} and any i ∈ [n], let ∆i(g) be the number of edges lying in the i’th

direction that are violated by g. Then:

(i) For all k ∈ [i], ∆k(gi) = 0.

(ii)
∑n

k=i+1 ∆k(gi) ≤
∑n

k=i+1 ∆k(gi−1)

(iii)
∑

x |gi(x) − gi−1(x)| = ∆i(gi−1)

Observe that Lemma 4 implies our claim. By property (i), gn is monotone, as desired. The num-

ber of modifications needed to transform f to gn is
∑

x |gn(x) − g0(x)| ≤
∑n

i=1

∑

x |gi(x) − gi−1(x)| ≤
∑n

i=1 ∆i(gi−1) by property (iii). But by repeated application of property (ii), it follows that
∑n

i=1 ∆i(gi−1) ≤
∑n

i=1 ∆i(g0) ≤ ε2n. So, f can be converted to a monotone function by changing its value at ε2n vertices at

most. All that remains now is to prove Lemma 4.

Proof of Lemma 4. Suppose |L1
i | ≤ |R1

i | so that gi is defined by equation (1); a symmetric argument works

for the other case. Clearly, property (iii) is true, since |Mi| = ∆i(gi−1) and gi differs from gi−1 in only |Mi|
many vertices. To see properties (i) and (ii), observe the following. Any edge between two vertices in H0

i

is violated by gi iff it was violated by gi−1; so the edges in Li remain violated. Also, all the edges in R2
i

are still violated by gi because their endpoints are not incident to edges in Mi. However, the edges in R1
i

are now not violated by gi. This is so, because for any (x, y) ∈ R1
i , it must have been that gi−1(x) = 1 and

gi−1(y) = 0 but since gi(y) = 1 and gi(x) remains 1, the edge is now unviolated. Finally, there are some

edges violated by gi that were not violated by gi−1. Call this set of newly violated edges Ni. We will show

that any edge in Ni must lie in a direction greater than i and that |Ni| ≤ |L1
i |. This proves properties (i) and

(ii). Property (i) holds because clearly ∆i(gi) = 0 and none of the newly violated Ni lie in directions k ≤ i.

Property (ii) holds because

n
∑

k=i+1

∆k(gi) = |Li| + |R2
i | + |Ni|

≤ |Li| + |R2
i | + |L1

i |

≤ |Li| + |R2
i | + |R1

i | = |Li| + |Ri| =

n
∑

k=i+1

∆k(gi−1)

where the inequality in the last line is from the assumption that |L1
i | ≤ |R1

i |.
To see that any edge in Ni must lie in a direction greater than i and that |Ni| ≤ |L1

i |, refer to Figure 1.

Consider two edges (x, y) ∈ Mi and (y, z) ∈ Ni. Let (y, z) lie in direction j. It must have been the case

that gi−1(x) = 1 and gi−1(y) = gi−1(z) = 0. For (y, z) to become violated, it must also be the case that z

is not incident to an edge in Mi so that gi(z) is still 0. But this implies that gi−1(w) = 0 where w = x⊕ ej .
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Therefore, (x,w) ∈ L1
i . Since gi−1 does not violate any edges in directions less than i and (x, w) lies in

direction j, we see that j > i. Also, we have shown a one-to-one mapping from edges in Ni to edges in L1
i ,

namely the one that takes (y, z) to (x,w); so, |Ni| ≤ |L1
i |, completing our proof.

Note that our proof crucially exploits the fact that the edge expansion of the hypercube is 1. Very roughly

speaking, it shows that if there are at least ε2n many vertices that need to be changed in order to make the

function monotone, then the at least ε2n many edges incident to this set of vertices must be violated. We

end this note with the outstanding open problem [DGL+99] in this area:

Establish a tight characterization of the relationship between the global and local distance measures

of monotonicity for functions of the form f : {0, 1}n → [R] where R > 2 is a positive integer.
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